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S1. Site description and online instruments 

Field observations were performed at eleven sites in eastern China, including four urban sites in Jinan, Guangzhou, Nanjing, 

and Beijing, five rural sites in Dongying, Wangdu, Yucheng, and Qingdao (including two sampling sites: Qingdao Campus of 

Shandong University and Entrepreneurship Center of Blue Silicon Valley), and two mountain sites at Mount Tai and Mount 

Lao (seen in Figure 1). Detailed information on sampling sites and online measurements is available below, with the specific 5 

sampling periods for each field campaign illustrated in Table S1. As indicated, three field campaigns were conducted in spring, 

six in summer, two in autumn, and five in winter. 

The Jinan site is situated at the Urban Atmospheric Environment Observation Station (~22 m above ground level) of Shandong 

University in Jinan, Shandong Province. Jinan, a major industrialized city in North China, has a sampling site characterized 

by intensive traffic, commercial and residential activities nearby, and extensive industrial facilities. Trace gases, including SO2, 10 

NO2, and O3, were monitored with online gas analyzers (Thermo Electronic Corporation, TEC, Model 43C, 42C, and 49C, 

respectively) and meteorological data were recorded by an automatic meteorological station (CAWS600, Huayun, China). 

Details about this site were given by Wang et al. (2017b). 

The southernmost Guangzhou site is located at the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences in 

Guangzhou, Guangdong Province. This site is surrounded by education and residential districts, with two heavily trafficked 15 

expressways nearby. Related site information was provided by Bi et al. (2016). 

The Nanjing site is situated at the Station for Observing Regional Processes of the Earth System (SORPES) in the Xianlin 

Campus of Nanjing University in Nanjing, Jiangsu Province. Nanjing is a megacity city that dominated by tertiary industries 

such as finance and software. This site is less influenced by industrial emissions in the vicinity but it is adjacent to the G25 

Freeway (~300 m) and G312 National Road (~1.8 km), which may potentially affect the air pollution levels at the sampling 20 

location. A more detailed description of this station can be found in a previous study by Ding et al. (2013). 

The Beijing site is located at the Chinese Research Academy of Environmental Sciences (CRAES), an urban site with education 

and residential districts and heavy traffic. As described by Ren et al. (2021), this area was significantly affected by 

anthropogenic activities and direct emissions. Meteorological parameters, as well as gaseous tracers, were determined 

simultaneously by employing automated instruments (Chinese Research Academy of Environmental Sciences Supersite for 25 

Urban Air Comprehensive Observation and Research). 

The Dongying site, where PM2.5 samples were collected, is situated at the Yellow River Delta Ecology Research Station of 

Coastal Wetland, Chinese Academy of Sciences. It is a typical rural site that located at the mouth of the Yellow River, 

characterized by minimal local anthropogenic emissions. Related tracer gases of SO2, NO2, and O3 were measured by Model 

43C (TEC), Model T500U (Teledyne Advanced Pollution Instrumentation, API), and Model 49C (TEC) analyzers, 30 
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respectively. Meteorological data were also measured online (JZYG, PC-4, China). Detailed information on this site was given 

by Zhang et al. (2019). 

The Wangdu site is located in a rural area of Baoding, Hebei province. The immediate vicinity (within 5 km) of the sampling 

site consists predominantly of agricultural land. However, this site is affected by anthropogenic emissions from nearby urban 

cities, such as Beijing, Tianjin, and Shijiazhuang. Trace gases of NO2 and O3 were monitored online using a Model 42i analyzer 35 

and a Model 49i analyzer (TEC), respectively, while SO2 was determined by a pulsed UV fluorescence analyzer. Moreover, 

meteorological parameters were measured using a weather station. More information on the site can be found in Tham et al. 

(2016). 

The measurements conducted at the Yucheng site, situated at the Chinese Academy of Sciences Comprehensive Station, 

Dezhou, Shandong province. The sampling site is surrounded by agricultural land, but there is the G308 highway located 1.5 40 

km south of the site. Trace gases, including NO2, O3, and SO2 were detected online with Model 42C, 49C, 43C analyzer (TEC), 

respectively. Data on meteorological parameters were provided by an automatic meteorological station (Model MILOS520, 

Vaisala, Finland). And details about the site were described by Yao et al. (2016). 

The two sampling sites situated in coastal areas in Qingdao are Qingdao Campus of Shandong University and Entrepreneurship 

Center of Blue Silicon Valley. The two sites are in close proximity to each other, with a linear distance of only 2.2 km (shown 45 

in Fig. 1b). They are surrounded by educational and residential districts, villages, and farmlands. As typical rural coastal areas, 

the two sites are influenced by both anthropogenic and natural sources. Specially, the concentrations of SO2, NO2, and O3 were 

measured in real time by gas analyzers (Model 43i, 42i, and 49i, respectively). More information on this sampling site can be 

seen in our previous study (Liu et al., 2022). 

The measurement site located on Mount Tai in Tai'an city, Shandong Province, is the highest point in the Northern China Plain, 50 

making it an ideal place for studying the transport, sources, and formation processes of air pollutants in northern China. This 

mountaintop lacks significant local anthropogenic emissions but is influenced by air masses transport processes in the region. 

Trace gases were recorded using online gas analyzers (Model 43C, Model T200/T500U, and Model T400U for SO2, NO2, and 

O3, respectively), and meteorological data were obtained from Taishan National Reference Climatological Station. Detailed 

descriptions of this site were given by Wang et al. (2017c). 55 

The sampling site on Mount Lao is situated in the southeastern part of the Shandong Peninsula in Shandong Province, with a 

straight-line distance of about 1 km from the coastline. This site is adjacent to a dedicated tourist road and surrounded by 

several villages, restaurants, and guesthouses. Therefore, Mount Lao is an ideal location for studying the impact of land-sea 

exchanges on atmospheric pollution characteristics in coastal regions at different scales. In addition, online gas analyzers 

(Thermo Scientific, U.S.A,) were used to determine the concentrations of trace gases, and meteorological parameters were 60 

measured by an ultrasonic automatic weather station (RS-FSXCS-N01-1, China). 
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S2. Aerosol surface area density (Sa) prediction 

Considering the complex relationship of Sa with particle mass concentrations, humidity, and temperature, this study established 

a prediction model based on random forest (RF) training algorithm due to its superior predictive capability to obtain Sa data 

from different sampling sites. First, increased particle concentrations typically contribute to larger Sa in the ambient 65 

atmosphere (Quinn et al., 2008). Additionally, higher RH facilitates hygroscopic growth of aerosols, which should also be 

taken into account (Sinclair et al., 1974). Meteorological conditions, such as temperature, also affect the suspension and 

deposition of aerosols, indirectly impacting Sa levels significantly (Chen et al., 2019). Consequently, the observational Sa data 

(hourly from 1 December to 31 December, 2019; n = 724) at Mount Tai served as target variables for training, while PM2.5 

concentrations, RH, and T were selected as input features. The entire dataset was randomly divided into two parts: 80% for 70 

training and RF model development, and 20% reserved for evaluation. The optimal RF model hyperparameters were set to 180 

decision trees and a maximum tree depth of 13. To quantitative verify the accuracy and precision of the trained RF model, we 

compared the observed and simulated Sa (only test data set) and found that they exhibited a strong correlation, with the R2 of 

0.90, RMSE of 27.07 µm2 cm-3, and MAE of 20.75 µm2 cm-3 (shown in Fig. S1). This suggested that the trained RF model is 

applicable for simulating Sa concentrations at other sites, with the simulated Sa data presented in Fig. S2. It needs to note that 75 

the estimated Sa data for different sampling sites in this study inherently propagate potential uncertainties into the subsequent 

prediction results of particulate NACs with the ensemble machine learning model. 

S3. Analytical method of NACs 

PM2.5 filter samples were extracted either ultrasonically or using a thermostatic orbital shaker, with methanol containing 30 

µL saturated EDTA solution three times for 30 min under a constant temperature condition of 18°C and settled for more than 80 

12 h. Then, the extracts were filtered through a 0.20 µm PTFE membrane syringe filter to remove insoluble impurity. The 

resulting clear filtrate was evaporated and concentrated with a gentle stream of nitrogen. Finally, the residue was reconstituted 

to a final volume of 300 µL with methanol containing the internal standard (100 ng mL -1 4-nitrophenol-2,3,5,6-d4 used for 

mountain sites and rural Qingdao, 200 ng mL-1 2,4,6-trinitrophenol used for the remaining sites) for further qualitative and 

quantitative analysis. 85 

NACs in the extracts were then analyzed by using UHPLC-MS equipped with ESI source. The separation of different NACs 

(only for mountain sites and rural Qingdao) was performed with an Acquity UPLC HSS T3 column (2.1 mm × 100 mm, 1.8 

µm particle size, 100Å, Waters, U.S.A.) with a VanGuard column (HSS T3, 1.8 µm) at a flow rate of 0.19 mL min-1. The 

mobile phase contained eluent A (ultrapure water with 0.1% acetic acid) and eluent B (methanol with 0.1% acetic acid). The 

gradient program was set as follows: eluent A was initially 99% and kept at 99% for 2.7 min, then gradually decreased to 46% 90 

with 12.5 min and kept at 46% for 1 min, and then decreased to 10% with 7.5 min and held for 0.2 min. After that, eluent A 

increased to 99% in 1.8 min and kept at 99% for the last 17.3 min before the next sample solution. For the remaining sampling 
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sites, the NACs were separated using an Atlantis T3 C18 column (2.1 mm × 150 mm, 3.0 µm particle size, 100Å, Waters, 

U.S.A.) coupled with a VanGuard column (Atlantis T3, 3.0 µm) at a flow rate of 0.2 mL min-1. The mobile phase consisted 

of 11% acetonitrile and 0.1% formic acid in ultrapure water (eluent A) and 11% acetonitrile in methanol (eluent B). The 95 

proportion of eluent A started with 66%, and then decreased to 44% within 19 min and was kept at 44% for 4min. Finally, it 

returned to 66% for the last 8 min. The blank samples were extracted and analyzed in the same procedure. 

The ESI source was operated in negative mode and eight mass-to-charge ratios including 138, 152, 154, 166, 168, 182, 183, 

and 197 amu were monitored in real time. Then target NACs were then identified by comparing individual retention times and 

mass spectra with standard mixtures: NPs (4-nitrophenol (4NP), 3-methyl-4nitrophenol (3M4NP), 2-methyl-4-nitrophenol 100 

(2M4NP), and 2.6-dimethyl-4-nitrophenol (2,6DM4NP)), NCs (4-nitrocatechol (4NC), 4-methyl-5-nitrocatechol (4M5NC), 

3-methyl-6-nitrocatechol  (3M6NC), and 3-methyl-5-nitrocatechol (3M5NC)), NSAs (5-nitrosalicylic acid (5NSA) and 3-

nitrosalicylic acid (3NSA)), and DNPs (2,4-dinitrophenol (2,4DNP) and 4-methyl-2,6-dinitrophenol (4M2,6DNP)). Finally, 

the twelve NACs were quantified using multi-point standard curves (R2 > 0.99) based on gradient standard mixtures. 

Furthermore, in this study, all reported data in the sample filters were blank-corrected. 105 

S4. Positive Matrix Factorization (PMF) analysis 

To obtain the potential factor profiles and contributions on NACs, in this study, two to six factors were tested for calculation 

and evaluation. The difference between Q
true

 provided by the model and calculated Q
robust

, which calculated by the following 

Eq. (S1), is used to determine the optimal number of factors for the calculation (Hong et al., 2022; Wu et al., 2020): 

Q
robust

 = m × n − p (m × n)  (S1) 110 

where m is the input sample numbers, n refers to the number of input species, and p refers to the number of factors. The changes 

in the Q
true

/Q
robust

 ratio values for PMF solutions with 2~6 factors are shown in the Fig. S3. The Q
true

/Q
robust

 value decreased 

slowly after four factors, so a four-factor solution was chosen as best choice.  

As shown in Fig. S4, the major contributions of factor 1 were 4NP (84.9%), 3M4NP (73.7%), and 2M4NP (85.2%). As reported 

by Lu et al. (2019a), remarkable amounts of NPs were detected in particles from residential coal combustion plumes, with 115 

emission factors ranging from 0.01 to 0.94 mg kg-1.  

Factor 2 is featured with the highest loading and contribution (87.3%) of NO2 and is determined as traffic emissions (TE). 

Previous studies have indicated that NACs can be directly emitted from traffic activities, with emission factors to be 0.68-

89.61 µg km-1 (Tremp et al., 1993; Schauer et al., 2002; Lu et al., 2019b), due to the hydrocarbons, polycyclic aromatic 

hydrocarbons and nitro-polycyclic aromatic hydrocarbons fuel combusting in the engine (Zhang et al., 2014; Cao et al., 2017).  120 

Factor 3 is characterized by high contributions of 4NC (56.6%), 4M5NC (84.7%), and 3M6NC (83.9%), which are significant 

tracers for biomass burning smoke (Iinuma et al., 2010; Claeys et al., 2012), and thus this factor is confirmed as biomass 
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burning (BB). This factor has been considered to be an important source of NACs in recent years that mainly produced by the 

pyrolysis of lignin (Simoneit et al., 2007). The emission factors of fine NACs from biomass burning were estimated to be 0.75-

11.1 mg kg-1 (Wang et al., 2017a). 125 

Factor 4 is distinguished by high levels of O3 (91.4%) along with 5NSA (80.0%) and 3NSA (86.9%), and is recognized as 

secondary formation associated with gas-phase reaction (GR). Atmospheric O3 is the major source of OH radicals, which 

dominate the secondary formation of NACs from precursors (Harrison et al., 2005). Additionally, field observations and 

experimental studies have confirmed that NSAs primarily originate from secondary oxidations in the gas phase (Wang et al., 

2018; Yuan et al., 2021). 130 

S5. Ensemble machine learning model 

S5.1. Base models 

Random forest (RF) is an ensemble learning technique that constructs multiple decision trees based on bagging theory 

(Breiman, 2001). RF improves predictive accuracy and controls overfitting by averaging the results of multiple trees, each 

built from a random subset of the data. This method enhances model robustness, reduces variance, and makes it well-suited 135 

for handling large datasets with complex interactions (Requia et al., 2020). Its inherent feature importance evaluation also 

provides insights into the significance of various predictors (Petkovic et al., 2017). 

Extreme gradient boosting (XGBoost), a gradient boosting algorithm, optimizes model performance by sequentially building 

and combining decision trees. XGBoost incorporates regularization techniques to prevent overfitting and utilizes parallel 

processing for efficiency, effectively handling large datasets and complex relationships. The XGBoost model has the advantage 140 

of superior predictive capabilities and computational efficiency (Fatahi et al., 2022; Gui et al., 2020). 

Similar to the XGBoost model, the light gradient boosting machine (LightGBM) is also a gradient boosting technique that 

leverages tree-based learning algorithms. It utilizes a histogram-based approach for efficient training, significantly reducing 

computation time and memory usage (Ke et al., 2017). LightGBM handles large datasets and complex features with high 

accuracy by employing techniques such as gradient-based one-side sampling and exclusive feature bundling. Its advantages 145 

include faster training speed, lower memory consumption, and effective handling of categorical features, which collectively 

enhance predictive performance and scalability (Kang et al., 2021; Ju et al., 2019; Pham et al., 2021). 

Multilayer perceptron (MLP) algorithm is a feedforward neural network consisting of an input layer, one or more hidden layers, 

and an output layer. Each layer is fully connected to the subsequent layer, and MLP uses backpropagation to adjust weights 

and biases during training. This model can achieve flexibility in modelling intricate data structures, adaptability to various 150 

types of tasks, and effectiveness in both regression and classification problems (Reifman and Feldman, 2002; Wang et al., 

2023). 
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The performance of ML approaches is significantly dependent on the hyperparameters, and the optimal values of tuning 

hyperparameters for the four base learners (RF, XGBoost, LightGBM, and MLP) are listed in Table S2. 

S5.2. Evaluation index 155 

The coefficient of determination (R2) evaluates the performance of regression model and quantifies how well the independent 

variables explain the variability of the dependent variable. R2 can be calculated according to the Eq. (S2) to (S4) (Spiess and 

Neumeyer, 2010): 

R2 = 1 −
SSres

SStol
  (S2) 

SSres = ∑ (y
i

− y
î
)

2n
i=1   (S3) 160 

SStol = ∑ (y
i

− y
i̅
)

2n
i=1   (S4) 

Root Mean Squared Error (RMSE) measures the square root of the average of the squared differences between the observed 

actual outcomes and the predictions. Mean Absolute Error (MAE) calculates the average of the absolute differences between 

the observed actual outcomes and the predictions. Moreover, lower RMSE and MAE values indicate better model performance, 

and the formulas are as follows (Chai and Draxler, 2014): 165 

RMSE = √
1

n
∑ (y

i
− y

î
)

2n
i=1   (S5) 

MAE = 
1

n
∑ |n
i=1 y

i
− y

î
|  (S6) 

where SSres is the residual sum of squares, SStol is total sum of squares, 𝑦𝑖  and 𝑦�̂�  are the observed and predicted values, 

respectively, 𝑦�̅� is the mean of observed values, and n is the number of samples. 

S5.3. SHAP interpretability 170 

Shapley Additive Explanations (SHAP), originating from cooperative game theory (Shapley, 1997), explains the importance 

of individual features in ML models by evaluating their marginal contributions with SHAP values (Ancona et al., 2019). For 

each predicted sample, SHAP fairly distributes the contribution values among all features, providing a comprehensive 

understanding of the relationship between the features and predictions (Hou et al., 2022), as shown in Eq. (S7): 

𝑓(𝑥) = 𝜑0(𝑓) + ∑ 𝜑𝑖
𝑀
𝑖=1   (S7) 175 

where 𝑓(𝑥) denotes the predicted value for each sample, 𝜑0(𝑓) is the expected concentration of the model prediction (𝑓) on 

all samples, M is the number input features, and 𝜑𝑖  is interpreted as Shapley value of i-th factor, which represents the 

contribution of feature i and can be expressed as Eq. (8): 
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𝜑𝑖 = ∑
|𝑆|!(𝑀−|𝑆|−1)!

𝑀!𝑆⊆{1,2,…..,𝑀}\{𝑖} [𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]  (S8) 

where 𝑆 is a subset of features excluding feature i, 𝑓(𝑆 ∪ {𝑖}) is the model prediction when features in subset 𝑆 and feature i 180 

are included, and 𝑓(𝑆) is the model prediction when only features in subset 𝑆 are included. 
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Table S1. Sampling sites and sampling periods involved in this study. 

Sampling 

site 
Site type Sampling period Season 

Number of 

samples 
Detected species 

Jinan urban 

2016.04.12-2016.04.27 spring 9 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

2014.09.04-2014.09.21 
summer 37 

1, 2, 3, 5, 6, 7, 8, 9, 10 

2016.06.27-2016.07.11 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

2017.10.22-2017.11.01 autumn 20 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

2013.11.26-2014.01.05 
winter 16 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

2016.02.19-2016.03.07 1, 2, 3, 5, 6, 7, 8, 9, 10 

Guangzhou urban 2017.06.28-2017.07.08 summer 20 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

Nanjing urban 2017.10.22-2017.10.31 autumn 16 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

Beijing urban 2018.01.15-2018.01.31 winter 14 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

Yucheng rural 2014.06.09-2014.06.20 summer 16 1, 2, 3, 5, 6, 7, 8, 9, 10 

Wangdu rural 2014.06.19-2014.06.29 summer 18 1, 2, 3, 5, 6, 7, 8, 9, 10 

Dongying rural 
2017.06.04-2017.06.15 summer 10 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

2017.01.15-2017.01.23 winter 9 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

Qingdao rural 
2019.01.10-2019.02.23 

winter 132 
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

2019.11.11-2019.12.25 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12 

Mount Tai mountain 

2018.03.22-2018.04.05 spring 25 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

2014.07.27-2014.08.06 summer 17 1, 2, 3, 5, 6, 7, 8, 9, 10 

2017.11.28-2017.12.09 
winter 157 

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

2019.12.01-2019.12.31 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

Mount Lao mountain 2021.04.16-2021.05.19 spring 97 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 

NOTE: 1 4-nitrophenol (4NP). 2 3-methyl-4-nitrophenol (3M4NP). 3 2-methyl-4-nitrophenol (2M4NP). 4 2,6-dimethyl-4-nitrophenol 

(2,6DM4NP). 5 4-nitrocatechol (4NC). 6 4-methyl-5-nitrocatechol (4M5NC). 7 3-methyl-6-nitrocatechol (3M6NC). 8 3-methyl-5-185 

nitrocatechol (3M5NC). 9 5-nitrosalicylic acid (5NSA). 10 3-nitrosalicylic acid (5NSA). 11 2,4-dinitrophenol (2,4DNP). 12 4-methyl-2,6-

dinitrophenol (4M2,6DNP). 
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Table S2. Hyperparameter settings for four base learners. 

Model Hyperparameters Value 

Random forest 

(RF) 

Number of trees 300 

Maximum tree depth 10 

Minimum number of samples required to 

split an internal node 
4 

Minimum number of samples required to be 

at a leaf node 
2 

Extreme Gradient 

Boosting 

(XGBoost) 

Number of trees 300 

Maximum tree depth 3 

Learning rate 0.1 

Subsample 0.8 

Colsample_bytree 1.0 

Light Gradient Boosting 

Machine 

(LightGBM) 

Number of trees 400 

Maximum tree depth 5 

Learning rate 0.1 

Subsample 0.6 

Colsample_bytree 0.6 

Number of leaves 20 

Multilayer Perceptron 

(MLP) 

Hidden layer and the number of neurons 
1 hidden layer with 100 

neurons in each layer 

Activation function relu 

L2 regularization 10-4 

Tolerance for the optimization 10-4 

  190 
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Table S3. Evaluation index results of NPs, NCs, and NSAs for the EML model. 

Compounds RMSE MAE CV-R2 

Nitrophenols (NPs) 5.49 3.13 0.90 

Nitrocatechols (NCs) 4.96 2.97 0.85 

Nitrosalicylic acids (NSAs) 0.63 0.44 0.93 
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Fig. S1. (a) Time series of RF model simulated and observed Sa data during the winter period at Mount Tai. (b) The linear fit 

between observed and RF model simulated Sa data (obtained after repeating the model five times). 195 

 

Fig. S2. The simulated Sa data based on trained RF model in (a) spring, (b) summer, (c) autumn, and (d) winter at different sampling 

sites, respectively.  
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Fig. S3. 𝑸𝒕𝒓𝒖𝒆/𝑸𝒓𝒐𝒃𝒖𝒔𝒕 ratios changes with the number of factors. 200 

 

Fig. S4. Source profile of resolved factors by PMF model. 
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Fig. S5. The scatter plots of cross-validation results for simulated and observed NACs on the testing data (obtained after repeating 

the model five times) by different base models. The red dashed line denotes the best fit line. 205 
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Fig. S6. (a) Comparison of EML simulated and observed NACs concentrations for all samples. (b) The scatter plots of cross-

validation results for simulated and observed NACs on the testing data (obtained after repeating the model five times) by ensemble 

machine learning. 210 

 

Fig. S7. Comparison of observed and simulated NACs at different sites with a leave-one-site-out cross-validation approach. 
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Fig. S8. (a) The interaction effect of temperature (T) and aerosol surface area (Sa), (b) the main effects of T on NACS, and (c) the 

interaction SHAP value between T and Sa shows how the effect of T on NACs varies with Sa. 215 
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Fig. S9. Summary plots of the SHAP interaction matrix values for (a) NPs, (b) NCs, and (c) NSAs, respectively. 
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Fig. S10. Heat maps for the contribution of single factor to each sample in the formation and loss of NACs in the (a) urban, (b) rural, 

and (c) mountain areas in winter.  220 
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