Atmos. Chem. Phys., 25, 8271-8288, 2025 Atmospheric
https://doi.org/10.5194/acp-25-8271-2025 :

© Author(s) 2025. This work is distributed under Chemls.try
the Creative Commons Attribution 4.0 License. and Physics

Introduction

Satellite detection of NO, distributions using TROPOMI
and TEMPO and comparison with ground-based
concentration measurements

Summer Acker', Tracey Holloway'2, and Monica Harkey'

Nelson Institute Center for Sustainability and the Global Environment,
University of Wisconsin—Madison, Madison, WI 53705, USA
2Department of Atmospheric and Oceanic Sciences, University of Wisconsin—Madison,
Madison, WI 53705, USA

Correspondence: Tracey Holloway (taholloway @wisc.edu)

Received: 18 January 2025 — Discussion started: 13 February 2025
Revised: 28 April 2025 — Accepted: 22 May 2025 — Published: 31 July 2025

Abstract. In this study we assess the capability of current-generation satellites to capture the variability of
near-surface nitrogen dioxide (NO») monitoring data, with the goal of supporting health and regulatory applica-
tions. We consider NO; vertical column densities (VCDs) over the United States from two satellite instruments,
the Tropospheric Monitoring Instrument (TROPOMI) and Tropospheric Emissions: Monitoring of Pollution
(TEMPO), and compare them with ground-based concentrations as measured by the EPA’s Air Quality System
(AQS) monitors. While TROPOMI provides a longer-term record of assessment (2019-2023), TEMPO informs
diurnal patterns relevant to evaluating peak NO;. We analyze frequency distributions and quantify their sim-
ilarity using the Jensen—Shannon divergence (JSD), where smaller values indicate better agreement. Satellite
and ground monitor NO, distributions are most similar at non-roadway monitors (JSD = 0.008) and are most
different at interstate (JSD = 0.158) and highway (JSD = 0.095) monitors. Seasonal analysis shows the great-
est similarity in distributions in winter (JSD = 0.010) and the greatest difference in summer (JSD = 0.035).
Across seasons and monitor locations, the calculated 13:30 LT TEMPO consistently exhibits JSDs that are better
than or comparable to TROPOMI (TEMPO: 0.005-0.151; TROPOMI: 0.012-0.265). TEMPO’s agreement with
monitors, in both December 2023 and July 2024, is found to be best around midday, with non-road monitors in
July having the best alignment (JSD = 0.008) at 16:00 UTC (=11:00LT). These findings highlight the ability
of TROPOMI and TEMPO to complement existing ground-based monitors and demonstrate their potential for
monitor siting, regulatory, and public health applications.

diseases (Mills et al., 2015; Urbanowicz et al., 2023; Meng et

Nitrogen dioxide (NO;) is a gas released through high-
temperature combustion processes, such as the burning of
fossil fuels (Lee et al., 1997; Richter et al., 2005), with on-
road vehicles, power plants, and industrial processes repre-
senting the largest anthropogenic sources in the United States
(US; van der A et al., 2008), as well as lightning NO,. emis-
sions (Dang et al., 2023) and soil microbial activity (Huber
et al., 2020) from natural sources. Exposure to elevated lev-
els of NO; has been linked to respiratory and cardiovascular

al., 2021), especially asthma in children (Mdlter et al., 2014;
Anenberg et al., 2022; Achakulwisut et al., 2019), as well
as premature mortality (Camilleri et al., 2023; Hales et al.,
2021; Huangfu and Atkinson, 2020) and other diseases (Xia
et al., 2024; Bai et al., 2018). NO, plays a critical role in
the formation of ozone, which also causes respiratory health
problems and is harmful to ecosystems (Grulke and Heath,
2020; Sillman, 1999). It is also a precursor to nitrate (Behera
and Sharma, 2012), a type of fine particulate matter (PM> s),
which can penetrate deep into the lungs and exacerbate respi-
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ratory and heart conditions (Sangkham et al., 2024; Sharma
et al., 2020), as well as causing premature death (Orellano et
al., 2020; Thangavel et al., 2022).

Due to its radiative characteristics, NO> may be observed
by satellites during daylight hours (Boersma et al., 2018;
van Geffen et al., 2020; Veefkind et al., 2012) and NO, has
emerged from satellite observations as one of the most air-
quality-relevant pollutants (Holloway et al., 2021). Several
studies have highlighted the potential for satellite NO, data
to supplement ground-based networks to support health anal-
ysis and air quality management (Duncan et al., 2014; Lee
and Koutrakis, 2014). The 2017 launch of the Tropospheric
Monitoring Instrument (TROPOMI; Boersma et al., 2018;
van Geffen et al., 2020; Veefkind et al., 2012) advanced these
applications (Goldberg et al., 2021; Griffin et al., 2019; Kim
et al., 2024; Yu and Li, 2022; Dressel et al., 2022; Gold-
berg et al., 2024; Lee et al., 2023). The Tropospheric Emis-
sions: Monitoring of Pollution (TEMPO; Chance et al., 2019;
Naeger et al., 2021; Zoogman et al., 2017) mission provides
further advancements, with hourly daytime observations of
NO; over North America and finer spatial coverage.

While advanced methods exist to calculate near-surface
NO; from satellite columns (Ahmad et al., 2024; Kim et al.,
2021; Shetty et al., 2024; Virta et al., 2023), there is also a
strong interest in the utilization of satellite vertical column
density (VCD) to directly infer NO, concentrations analo-
gous to ground-based monitors (Kim et al., 2024; Lamsal
et al., 2014; Griffin et al., 2019; Yu and Li, 2022; Zhang et
al., 2018; Lamsal et al., 2015; Goldberg et al., 2021; Dres-
sel et al., 2022; Goldberg et al., 2024; Harkey and Holloway,
2024; Bechle et al., 2013; Lee et al., 2023; Xu and Xiang,
2023). This study extends prior assessments of NO; column-
to-surface agreement; we focus on frequency distributions to
capture the net impact of day-to-day variability.

The relationship between surface NO, and column abun-
dance is influenced by physical and chemical processes,
many of which have seasonal components. In winter, shal-
low boundary layers trap pollutants near the surface, leading
to higher surface concentrations and increasing surface-to-
column agreement (Harkey et al., 2015). In summer, higher
temperatures and increased sunlight accelerate photochem-
ical reactions, converting NO; into ozone and other sec-
ondary pollutants and decreasing surface-to-column agree-
ment (Boersma et al., 2009). Seasonal changes in emissions,
such as high building-heating emissions in winter and high
power-plant emissions in summer (Frost et al., 2006; Levin-
son and Akbari, 2010), interact with atmospheric processes,
causing an increase in NO; column abundance in winter in
four-season climates (Shah et al., 2020). Processes affecting
the sources and sinks of NO; at the surface and through the
vertical column can also lead to temporal lags, with peak
surface NO, preceding peak column NO; in the mornings
(Harkey and Holloway, 2024).

Frequency distributions capture the variability, extremes,
and patterns of pollutant abundance, relevant to air quality
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standards, pollution trends, and the effectiveness of emission
control measures (Knox and Lange, 1974; Pollack, 1975;
Venkatram, 1979; Chowdhury et al., 2021; Mondal et al.,
2022). For example, Mondal et al. (2022) used frequency
distributions of ground-based monitors to examine changes
in air quality across Delhi and Kolkata during COVID-19
lockdown phases, showing how reduced human activity led
to shifts in pollutant levels. We extend this line of analysis
by comparing NO; distributions across multiple dimensions
with TROPOMI and include time-of-day- and resolution-
dependence of results using data from TEMPO.

In this work, we consider the following questions: (1) How
do the distributions of satellite NO, VCD measurements
compare with those for near-surface NO,? (2) To what de-
gree do new hourly data from TEMPO improve the agree-
ment between surface- and space-based NO, distribution
measurements? For both questions, we consider spatial vari-
ability, especially proximity to roadways, and temporal vari-
ability, including seasonality and diurnal variability. By con-
sidering the ability of satellites to capture peak NO, values
in a comparable distribution to surface data, we consider how
satellite measurements of VCD can support air quality man-
agement, improve health impact analysis, and inform air pol-
lution monitor siting.

2 Data and methods

In this study, we evaluate the ability of two satellite instru-
ments, TROPOMI and TEMPO, to capture the spatial and
temporal variability in NO; surface concentration distribu-
tions across the continental United States (CONUS), as mea-
sured by AQS monitors. By comparing the coefficient of vari-
ation (CV) and Jensen—Shannon divergence (JSD) between
satellite and monitor data, we aim to assess the alignment
between the datasets.

2.1 EPA surface monitor data

The Environmental Protection Agency (EPA) Air Quality
System (AQS) contains hourly NO, measurements from
ground-based monitors, providing high temporal resolution
data that are critical for assessing compliance with the US
National Ambient Air Quality Standards (NAAQS). There
are two NAAQS related to NO;: one for annual average con-
centration, set at 53 ppb, and one based on peak 1 h concen-
trations, set at 100 ppb, based on the 3 year average of the
98th percentile of the yearly distribution of daily maximum
1h NO; concentrations (EPA, 2010). Enforcement of these
standards relies on data from AQS NO, monitors, a network
that included 431 monitors as of August 2024. Because NO;
has a relatively short atmospheric lifetime, typically ranging
from a few hours to a day, depending on meteorological con-
ditions (Lange et al., 2022; Liu et al., 2021), ground monitors
are expected to capture local conditions (Wang et al., 2020).
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The EPA AQS dataset (EPA, 2025) was used to access
NO; monitor data for the years 2019 through 2023 from
all available sites in CONUS during this time period (503
unique monitors from 2019 to 2023). We note that there are
some areas that are overrepresented by NO, monitors and
others that are lacking monitors. Specifically, most moni-
tors are located in urban areas, especially on the East Coast
and in southern California, meaning that rural areas tend to
be less represented by ground monitors (Kerr et al., 2023).
Most monitors use a chemiluminescence method, where the
amount of NO» that is converted to NO is measured by a
molybdenum oxide converter (Fontijn et al., 1970). The con-
verter also reacts with other oxidized nitrogen compounds,
such as nitric acid (HNO3) and peroxyacetyl nitrate (PAN),
to form NO (Dunlea et al., 2007; Steinbacher et al., 2007);
this can lead to an overestimation of NO,. Corrections for
this bias have been applied when comparing with satellite
observations (e.g., Cooper et al., 2020; Lamsal et al., 2015;
Li et al., 2021). Uncorrected AQS NO; measurements have
been used for determining compliance with the NAAQS and
for health assessments; this is the approach we take here,
consistent with prior studies focused on regulatory relevance
(Novotny et al., 2011; Penn and Holloway, 2020; Harkey and
Holloway, 2024; Goldberg et al., 2021; Kim et al., 2024;
Duncan et al., 2013; Qin et al., 2019). More recently, some
NO;, monitors have been added to the network that measure
“true NO;” using cavity attenuated phase shift spectroscopy
(CAPS, Kebabian et al., 2005). These monitors are expected
to be more representative of ground-level NO, concentra-
tions and should have less overestimation, since they directly
measure NO, and no other species (Ge et al., 2013). Some
of the monitors used in this study use CAPS methodology
to measure NO;. We discuss the comparison of CAPS with
traditional NO; monitors in Sect. 3.1.

Hourly AQS measurements at 13:00 and 14:00 local time
(LT) were averaged to align with the TROPOMI overpass
of ~13:30LST. Hourly AQS measurements from 12:00 to
23:00 GMT were compared with hourly TEMPO data for
daylight hours. For both the TROPOMI and TEMPO analy-
ses, AQS data were filtered to ensure consistency with satel-
lite data availability. As a result of filtering monitoring data
for TROPOMI and TEMPO separately, the subsets of moni-
tor data available for comparison with each instrument differ,
even for the same time periods.

2.2 TROPOMI data

The Tropospheric Monitoring Instrument (TROPOMI;
Copernicus Sentinel-5P, 2018) is on board the Copernicus
Sentinel-5 Precursor satellite, which has a daily local over-
pass time of ~13:30LST (Veefkind et al., 2012). Currently,
the highest resolution of TROPOMI is 3.5km x 5.5km at
nadir, having increased from 3.5km x 7.0km since 6 Au-
gust 2019. Daily TROPOMI NO, data for the years 2019
through 2023 were allocated to a 4km x 4km grid over
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CONUS using the Wisconsin Horizontal Interpolation Pro-
gram for Satellites (WHIPS; Center for Sustainability and
the Global Environment, 2024; Harkey et al., 2015, 2021;
Harkey and Holloway, 2024; Penn and Holloway, 2020). Us-
ing WHIPS, we also remove data with a quality flag lower
than 0.75. Each monitor location was compared with the
4km x 4km gridded TROPOMI value in the correspond-
ing grid cell. December 2023 and July 2024 4km x 4km
TROPOMI NO; data were also collected for each of the
monitors for comparison with TEMPO data.

A 4km x 4km oversampled grid is used as opposed to the
1km x 1km oversampled grid since this study focuses on
daily observations and the 1 km x 1km grid is best suited for
monthly or annual averages (Goldberg et al., 2021). To en-
sure that a valid number of TROPOMI pixels were being rep-
resented despite the coarser grid resolution, we analyzed the
number of ground monitors falling within each TROPOMI
pixel by performing a spatial join between ground monitor
locations and the oversampled 4 km x 4km TROPOMI grid.
About 97 % of TROPOMI pixels contain only one monitor,
with only a small number of pixels (2.7 %) containing more
than one. Figure S1 in the Supplement shows the number
of monitors per TROPOMI pixel (locations where there are
more than one monitor per TROPOMI pixel) and the number
of valid TROPOMI retrievals from 2019 to 2023 at each grid
cell, confirming that monitors are well-distributed enough to
not disproportionately cluster within a small subset of satel-
lite pixels. Since monitors are spread across the entire US
and most are at least 4 km apart, there is generally sufficient
separation to ensure that most monitors are assigned to dis-
tinct TROPOMI pixels rather than falling into the same grid
cells repeatedly.

2.3 TEMPO data

The TEMPO instrument launched onboard the Intelsat 40e
mission (NASA Langley Research Center, 2024), a geosta-
tionary satellite, on 7 April 2023. TEMPO provides hourly
measurements of atmospheric pollutants over North Amer-
ica (Chance et al., 2019; Naeger et al., 2021; Zoogman
et al., 2017). TEMPO achieves a spatial resolution of ap-
proximately 2.1 km in the north—south direction and 4.5 km
in the east—west direction at the center of its field of regard
(FOR), centered around 36.5° N and 100° W (Chance et al.,
2019). The TEMPO Level-3 (LL3) NO; data (Suleiman, 2024)
used in this study were accessed through NASA’s EarthData
Search portal.

In order to synchronize TEMPO and ground-based hourly
measurements, TEMPO timestamps were rounded to the
nearest hour, with mid-hour values rounded up. All files
within each rounded-hour group were averaged, producing
a single NO value per hour per day. Only TEMPO observa-
tions with a main data quality flag of O and cloud fraction at
or less than 0.2 were retained, in line with TEMPO documen-
tation guidelines (NASA Langley Research Center, 2024).
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For the comparison with TROPOMI, the UTC equivalents
of 13:00 and 14:00 LT were determined for each time zone,
based on the latitude and longitude of each monitor loca-
tion. TEMPO NO; values corresponding to these calculated
UTC hours were averaged to align with the TROPOMI over-
pass time (*13:30LST). Similarly, for ground-based mea-
surements, the monitor data were filtered to include only val-
ues corresponding to 13:00 and 14:00 LT and then averaged.

2.4 Monitor classification

To classify the monitors by roadway proximity, the state-
level Census Bureau’s 2021 TIGER/Line Shapefiles for Pri-
mary and Secondary Roads (U.S. Census Bureau, 2025a)
were combined to form a comprehensive dataset for the
CONUS domain.

To evaluate how TROPOMI and ground-based monitor
NO, values vary by proximity to a road, monitors were also
assigned to different groups based on their distance from a
road (<20 m, 20-50 m, 50-300 m, 300 m—1 km, and >1 km),
with buffer distances calculated from the road shapefiles
(Fig. S3). There were nine monitors that were 20 m or less
away from a road, 66 between 20 and 50 m from a road, 108
between 50 and 300m, 167 between 300 m and 1km, and
153 that were greater than 1 km from a road.

Roads were also classified into three categories: (1) inter-
states, (2) highways, and (3) other roads, based on their route
type code (RTTYP) values. Where monitors are considered
as representing a roadway category, we followed the criteria
of the EPA Near-Road Network (Gantt et al., 2021; Kim et
al., 2024) to merge monitor locations with road buffers, con-
sidering the 50 m buffer recommended by the EPA, as well
as a less restrictive 300 m buffer. In each case, monitors in-
side the buffer of a particular roadway type were classified as
representing that category. If a monitor fell within multiple
buffers, it was assigned the classification of the largest road
type. Monitors not falling within any buffers were classified
as “non-roadway.”

Using the 50m buffer, 58 monitors were classified as
“interstate,” 17 as “highway,” and 428 as “non-roadway”
(Fig. S2; no monitors classified as “other roads”). Using the
300 m buffer, 91 monitors were classified as “interstate,” 90
as “highway,” 320 as “non-roadway,” and 2 as “other roads.”
Since there were no monitors classified as “other roads” for
the 50 m buffer, this category is excluded from the analysis.

We classified interstate monitors as urban or rural using the
US Census Bureau 2020 Urban Areas TIGER/Line Shape-
files (U.S. Census Bureau, 2025b). Only one interstate mon-
itor was identified as rural, so this analysis is not included.

2.5 Data analysis

The coefficient of variation (CV) was calculated for ground-
level monitor data and for satellite data. This metric was used
to compare the relative variability of NO, distributions be-
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tween satellite and ground-level data despite different mea-
surement units (Aerts et al., 2015). The CV is defined as the
ratio of the standard deviation (o) to the mean (u) of the data:

o
CV= (-) x 100.
n

The Jensen—Shannon divergence (JSD) is used to quantify
the similarity between the distributions of NO; from the
satellite and ground-level monitors despite the different mea-
surement units (Menéndez et al., 1997). The JSD is a robust
metric for comparing probability distributions that is used
within a wide variety of fields, including machine learning
(Thiagarajan and Ghosh, 2024; Saurette et al., 2023; Tsiga-
lou et al., 2021; Melville et al., 2005), data science (Toledo et
al., 2022; Zhao et al., 2024), biology (Yan et al., 2021; Jones
et al., 2023; Ahmed et al., 2023), and meteorology (Kibirige
et al., 2023). In environmental research using satellite data,
the JSD has shown that the Mangrove Forest Index (MFI)
from Sentinel-2 imagery outperforms traditional vegetation
indices in distinguishing submerged mangrove forests (Jia et
al., 2019). In air quality, the JSD has been used to compare
an air quality index (AQI) with measurements of specific air
pollutants (Wang and Zhang, 2022).

To calculate the JSD, each dataset was binned, with a bin
size of 1 ppb (for ground monitors) or 1 x 10! molec. cm™2
(for satellite data), for the range from 0 to 40 ppb or 40 x
10" molec. cm—2, with an additional bin for values exceed-
ing 40 ppb or 40 x 10" molec. cm~2. For visualization pur-
poses, the frequency distributions are binned for data from
the ground monitors ranging from 0 to 40 ppb and for satellite
data ranging from 0 to 30x 10" molec. cm~2, with additional
bins for values exceeding 40 ppb or 30 x 10! molec. cm™2.
Depending on the specific analysis, NO; data are grouped by

— distance from roadways (in m): TROPOMI daily data
from 2019 to 2023 (and corresponding ground monitor
data) are grouped by proximity to roads to assess spatial
alignment;

— season: TROPOMI daily data from 2019 to 2023 (and
corresponding ground monitor data) are grouped by sea-
son to analyze temporal alignment;

— month: TROPOMI daily data from December 2023 and
July 2024, along with TEMPO and ground monitor
data at the TROPOMI overpass time (*13:30 LT, repre-
sented by the average of 13:00 and 14:00LT data), are
grouped by month to compare the temporal differences
in alignment between TEMPO and TROPOMI; and

— road type (interstate, highway, non-roadway):
TROPOMI (daily), TEMPO (calculated overpass
time and hourly), and ground monitor data are grouped
by road type to evaluate varying alignment based on
road classification.
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Binned data were then normalized to form probability dis-
tributions. The divergence was calculated as

1
ISD(P. Q)= - [DxL(P|IM) + DxL(Q[IM)] .

where P and Q represent the probability distributions from
the monitor and satellite data, respectively, and M is the av-
erage of P and Q. The divergence Dy is the Kullback—
Leibler divergence between each distribution and its mean
(Clim et al., 2018). JSD values range from O to 1, with lower
values indicating greater similarity between the satellite and
monitor distributions. In general, JSD < 0.1 indicates very
good alignment, 0.1 <JSD < 0.3 indicates moderate align-
ment, and JSD > 0.3 (Kibirige et al., 2023) indicates poor
alignment.

3 Results

To evaluate the agreement between satellite-measured and
monitored NO; distributions, we consider the impact of
monitor location using TROPOMI, the impact of season
using TROPOMI, the comparison of distributions between
TROPOMI and TEMPO, and the impact of time of day using
TEMPO.

3.1 Alignment of TROPOMI NO» distributions with
surface NOs» distributions

This section analyzes TROPOMI and ground-based NO»
measurements across varying distances from roads and dif-
ferent seasons, as well as at monitors located near interstates,
highways, and non-roadway sites. Our results show that, as
the distance from roads increases, the distributions of surface
and column NO; become more similar. Monitor distributions
near interstates and highways exhibit lower agreement with
TROPOMI distributions, compared with those farther from
major roadways. Seasonally, alignment is strongest in winter
and weakest in summer.

Figure 1 illustrates the distribution of NO; levels mea-
sured by AQS ground-based monitors and TROPOMI obser-
vations as a function of distance from roadways using daily
measurements from 2019 to 2023. For both data sources,
mean, peak, and minimum NO; are all highest in the 20-
50m distance category (the second closest near-road cate-
gory). NO; abundance decreases as the distance to the road
increases and, to a lesser extent, as the distance to the road
decreases. The somewhat lower abundance in the <20 m cat-
egory vs. the 20-50 m category may be due to the speciation
of NO,, where nitric oxide (NO) is more abundant and con-
verts to a higher fraction of NO, as the distance to the road
increases (Kimbrough et al., 2017). Most direct vehicle emis-
sions are in the form of NO and, close to the roadway, NO
and NO; readily convert between these forms. Limited ozone
availability — especially during stable conditions, which con-
tribute to suppressed vertical mixing — can slow the con-
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version of NO to NO; (Richmond-Bryant et al., 2017). As
a result, NO; may initially be suppressed very close to the
road, and changes in total NO, are primarily driven by mix-
ing and dilution rather than chemical transformation. NO,
probably peaks in the 20—50 m range because this zone al-
lows for sufficient time and space for NO to oxidize to NO,
while still being close enough to the emission source to ex-
perience elevated concentrations; beyond this range, concen-
trations decrease with distance due to dispersion and dilu-
tion of pollutants into the surrounding atmosphere. Mean
monitored NO; is 6.85 ppb at <20 m, 10.47 ppb at 20-50 m,
4.53 ppb at 50-300 m, 3.71 ppb at 300 m—1 km, and 2.80 ppb
at >1 km. Mean TROPOMI NO; is 3.38 x 10" molec. cm—2
at <20m, 4.21 x 10" molec.cm™2 at 20-50m, 3.00 x
10" molec. cm™2 at 50-300m, 3.72 x 10" molec. cm™2 at
300 m—1km, and 3.13 x 10" molec. cm™2 at >1km. Mon-
itor values show a higher sensitivity to roadway proximity,
where the highest mean monitored concentration is 375 % of
the lowest mean concentration, compared with TROPOMI,
where the highest mean VCD is 140 % of the lowest mean
VCD.

Monitored NO; levels drop over 50 % at ~50 m from the
roadway (based on change in the mean, upper 2.5 interquar-
tile range (IQR), and upper 1.5 IQR), a finding that compares
with a 31 % reduction in NO; between 20 and 300 m from
Kimbrough et al. (2017), as well as other studies that identify
a decrease in NO; at further distances (Karner et al., 2010;
Richmond-Bryant et al., 2017). TROPOMI VCDs also show
the greatest change with roadway distance at &~50 km, but by
less than 30 % (based on change in the mean, upper 2.5 IQR,
and upper 1.5 IQR).

Just as total NO, abundance, from both monitor and satel-
lite data, is highest at distances of 20-50 m from the road-
way, the range of daily values is also widest for the 20—
50 m range and smallest at the >1 km range. Monitored val-
ues have a standard deviation of 8.24 ppb in the 20-50m
range and a standard deviation of 3.39 ppb in the >1km
range. The distribution of satellite data does not vary as
much in size across roadway locations, with a standard de-
viation of 3.90 x 103 molec.cm™2 for the 20-50m range
and 3.31 x 10" molec. cm~2 for the > 1 km range. In the 20—
50 m range, the upper IQR of AQS NO; is 38 % higher than
the mean. TROPOMI shows less variability than the moni-
tors, with the 20-50 m upper IQR 16 % higher than the mean.
As distance from the roadway increases, the distributions of
data from the ground and satellite become more compara-
ble. In the >1km range, the upper IQR of monitor NO; is
23 % higher than the mean and the upper IQR of satellite
data is 15 % higher than the mean. The ranges show more
similarity at greater distances from the roadway but, even
at distances of > 1km, the range of monitored values ex-
ceeds the range of satellite VCDs. These patterns agree with
Kim et al. (2024), who found that surface monitors show
better agreement with TROPOMI farther from major roads.
This improved alignment at greater distances probably re-
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flects the reduced influence of localized emission sources,
which tend to create sharp gradients and rapid variability
near roads. In areas farther from traffic, NO; concentrations
vary more gradually or are generally more uniform. As a re-
sult, surface monitors away from roads reflect broader condi-
tions, in better agreement with the coarser spatial resolution
of TROPOML.

When analyzed by season (Fig. S4), the relationships
are similar, except winter shows the highest IQRs, with
the 20-50m distance group having an IQR of 11.40ppb
for monitors and 4.96 x 10> molec. cm™2 for TROPOMI,
and summer shows the lowest IQRs for both moni-
tors (IQR =9.05ppb) and TROPOMI (IQR =1.71 x
10" molec. cm~2). In the >1 km distance group, again winter
has the highest IQRs (monitor IQR = 4.60 ppb; TROPOMI
IQR =3.95 x 10" molec.cm™2) and summer the lowest
IQRs (monitor IQR = 2.05 ppb; TROPOMI IQR = 1.55 x
10" molec. cm™2).

To consider the shape of monitor and satellite NO, dis-
tributions, we consider the effect of season in Fig. 2. The
winter distributions (Fig. 2a, calculated from December, Jan-
uary, and February data) exhibit the longest tails and high-
est NO; values. In winter, the 90th percentile of monitoring
data is 14.80 ppb and the 90th percentile of TROPOMI data
is 10.93 x 10" molec. cm~2. Spring distributions (Fig. 2b;
March, April, and May) show intermediate behavior, with
lower values and shorter tails than winter and fall but
higher values than summer (90th percentile from moni-
tors = 9.71 ppb; 90th percentile from TROPOMI = 6.19 x
10" molec. cm_z). In summer (Fig. 2c, June, July, and Au-
gust), the distributions exhibit the shortest tails and the lowest
NO; values (90th percentile from monitors = 9.00 ppb; 90th
percentile from TROPOMI = 4.57 x 10" molec. cm~2). Fall
(Fig. 2d; September, October, and November) also shows
intermediate behavior, generally between winter and spring
(90th percentile from monitors = 12.15 ppb; 90th percentile
from TROPOMI = 7.44 x 103 molec.cm~2). The higher
NO; values in winter from monitor and TROPOMI data are
attributed to reduced photochemical activity in winter lead-
ing to longer NO; lifetimes (Harkey et al., 2015; Boersma et
al., 2009; Shah et al., 2020).

The highest percentage frequencies for the monitor and
TROPOMI distributions generally occur within the 1-—
2ppb or 1-2 x 10" molec. cm~2 bin. However, the winter
TROPOMI distribution peaks in the 2-3 x 10'> molec. cm 2
bin, with a percentage frequency of 18.14 %, compared with
the winter monitor distribution, with a highest frequency of
14.33 %. The highest percentage frequency in spring from
TROPOMI is 30.39 % versus that from the monitor, 24.15 %;
in summer that from TROPOMI is 34.35 % versus that from
the monitor, 24.68 %; in fall that from TROPOMI is 24.90 %
versus that from the monitor, 18.89 %. These results indicate
that TROPOMI consistently records higher peak frequen-
cies than the monitors, whereas monitors consistently show
a wider distribution.
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Figure 2 provides a seasonal breakdown of the coefficient
of variation (CV) and Jensen—Shannon divergence (JSD) for
both monitor and TROPOMI data across all monitors. Sum-
mer exhibits the highest variability in monitored NO, con-
centrations (CV = 127.99 %) but the lowest variability in
satellite observations (CV = 78.00 %). The highest variabil-
ity in TROPOMI occurs in winter (CV = 103.51 %), similar
to the variability from monitor data (CV = 104.48 %). Satel-
lite CVs generally follow a similar pattern to that of monitors,
though the overall variability is lower for satellite data across
seasons.

This reduced variability in satellite observations can prob-
ably be attributed to the vertical mixing reflected in satellite
retrievals, as well as horizontal spatial averaging reflected
in satellite data, versus point-based NO; that are captured
by ground monitors. This finding is consistent with previous
studies that highlight the spatial averaging nature of satellite-
based measurements, which integrate NO, amounts over a
larger area than the point-based monitors (Ialongo et al.,
2020).

Across all seasons shown in Fig. 2, JSD values are all low
(<0.1), indicating that TROPOMI may be good at predict-
ing surface NO, across seasons. The alignment is strongest
in winter (JSD =0.010), while the divergence is highest
in summer (JSD = 0.035), meaning that the monitors and
TROPOMI align best when the NO, lifetime is long in the
colder months and they align worst when the NO, lifetime is
short in the warmer months. The better alignment in winter
could also be attributed to winter having the largest range
of values in the data, which reduces the sensitivity of the
JSD calculation to small differences in the distributions. A
wider spread in NO; values means that relative discrepancies
between TROPOMI and monitor measurements are smaller
in proportion to the total variability, potentially leading to
greater similarity.

Across seasons, we find that CAPS or “true NO,” moni-
tors tend to have slightly worse alignment with TROPOMI
than traditional chemiluminescence monitors. Out of the
monitors used in this study, 102 were identified as CAPS
monitors and 401 as traditional monitors. In winter, CAPS
monitors have a JSD of 0.027 and traditional monitors a JSD
of 0.009. In summer, CAPS monitors have a JSD of 0.078
and traditional monitors a JSD of 0.03. With all seasons com-
bined, CAPS monitors have a JSD of 0.047 and traditional
monitors have a JSD of 0.016.

Table 1 shows the CV and JSD for both monitor and satel-
lite data from 2019 through 2023, aggregated across all sea-
sons and separated by monitor classification (interstate, high-
way, and non-roadway), where roadway monitors are clas-
sified as being within 50 m (Table 1a) or 300 m (Table 1b)
of a road. For the 50 m buffer (Table 1a), the coefficient of
variation for ground-based monitor data increases progres-
sively from interstate monitor locations to non-roadway lo-
cations, with interstate monitors exhibiting the lowest vari-
ability (CV =75.07 %) and non-roadway monitors showing
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Figure 1. Box plots showing median and interquartile ranges of all daily 2019 to 2023 NO,, as measured by AQS monitors (blue) and
TROPOMI (orange) across various distances from roadways, with the whiskers extending to the 1.5 IQR range. No outliers are shown.
The left y axis represents AQS monitor values in parts per billion (ppb) and the right y axis represents TROPOMI NO, values in
1015 molec. cm™2. The distance categories from the roadway are <20 m, 20-50 m, 50-300 m, 300 m—1 km, and >1km.
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Figure 2. Seasonal frequency distributions of 2019-2023 NO,, as measured by AQS ground-based monitors (blue) and TROPOMI (light
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the highest variability (CV = 118.17 %). This indicates that
NO, concentrations measured by ground monitors in inter-
state areas are more consistent, compared with non-roadway
regions. This pattern is mirrored in the satellite data, with
CV values ranging from 91.62 % for highway monitors to
106.16 % for non-roadway monitors. These patterns suggest
that regular emissions play a larger role in determining near-
road NO,, where non-road areas vary with changes in wind
patterns and the chemical environment.

For highway monitors, the CVs of satellite (CV =
91.62 %) and monitor data (CV = 96.27 %) are similar, in-
dicating that TROPOMI performs similarly to ground mon-
itors in capturing NO, variability along highways. Near
interstates, TROPOMI (CV = 92.60 %) may capture more
variability than the ground-based measurements (CV =
75.07%), a finding that contrasts with Fig. 1, where
TROPOMI shows a narrower range of NO;, values across
all distances. This difference could stem from the fact that
the interquartile ranges in Fig. 1 measure the spread of ab-
solute values, while the coefficient of variation accounts for
variability relative to the mean. Together, these metrics re-
veal that TROPOMI may not fully capture localized extremes
(narrower IQR) but still captures more relative variability in
pollution near interstates than monitors (higher CV).

The key differences seen within the JSD across the three
monitor classifications are also present in the percentage
frequency distributions of NO; measured by ground-based
monitors and TROPOMI (Fig. S5), with interstate moni-
tors having the lowest alignment (JSD = 0.158), highway
monitors having better alignment (JSD = 0.095), and non-
roadway monitors having the best alignment (JSD = 0.009).
The strong alignment between TROPOMI and monitor dis-
tributions in non-roadway regions is consistent with previ-
ous studies (Dressel et al., 2022; Kim et al., 2024; Ialongo et
al., 2020). This close alignment may be due to the relatively
lower NO; concentrations, which TROPOMI captures more
accurately, compared with regions with higher emissions.
These findings further align with previous work showing that
TROPOMI tends to underestimate NO; in high-pollution ar-
eas (such as interstates and highways) but slightly overesti-
mates in areas of lower pollution, such as rural areas (Dressel
et al., 2022; lalongo et al., 2020; Goldberg et al., 2024).

Due to the large jump in NO; levels seen within Fig. 1
in the 50-300m category, we compare the 50m buffer
roadway classifications (Fig. S5; Table 1a) with the 300 m
buffer classifications (Fig. S6; Table 1b). Notable differences
emerge between distributions, particularly in the highway
category, where 73 monitors are added to the highway dis-
tribution (increasing from 17 to 90 monitors; Table 1) due
to the larger buffer. The alignment between monitor data
and TROPOMI observations is significantly improved within
the 300 m buffer near highways. This improvement in align-
ment is likely to be due to the decay of NO, with increas-
ing distance from the road (Karner et al., 2010; Kimbrough
et al., 2017; Richmond-Bryant et al., 2017). Consequently,

Atmos. Chem. Phys., 25, 8271-8288, 2025

S. Acker et al.: Satellite detection of NO» distributions

the lower surface NO, concentrations observed at 300 m are
better captured by TROPOMI. This is reflected in Table 1,
which shows a substantial reduction in the JSD for highway
monitors, from 0.095 in the 50 m buffer to 0.017 in the 300 m
buffer (an 82 % increase in alignment at the 300 m buffer).

The differences observed in the highway category with the
300 m buffer may be present, since the distribution includes
73 more monitors than the 50 m buffer, capturing lower NO;
amounts that are more aligned with TROPOMI’s observa-
tions. Conversely, the interstate category exhibits less notice-
able change, with only 33 additional monitors in the 300 m
buffer distribution (increasing from 58 in the 50 m buffer, Ta-
ble 1a, to 91 in the 300 m buffer, Table 1b). This suggests that
the monitors added in the 300 m buffer for interstates mea-
sure NO; levels similar to those already captured in the 50 m
buffer, resulting in little change to the overall distribution.

These results indicate that TROPOMI follows the trend of
NO; decreasing with increasing distance from roadways that
ground-based monitors record and that TROPOMI captures
surface concentrations best in winter and at 300+ m away
from the traffic source.

3.2 Column—column daily alignment

Here we compare the distributions of NO; from TROPOMI
and TEMPO with ground-based monitors to assess how well
each satellite instrument captures daily variations in NO,
concentration. Our results indicate that TEMPO consistently
aligns more closely with ground-based measurements than
TROPOMI, particularly in high-NO; areas, such as high-
ways and interstates.

Figure 3 shows the distributions of NO,, as measured
by AQS ground-based monitors (filtered to match valid
TROPOMI and TEMPO data), TROPOMI, and TEMPO,
separated by road classifications (interstates, highways, and
non-roadways) for December 2023 and July 2024. The 13:00
and 14:00 UTC (based on time zone) TEMPO and AQS val-
ues were averaged to align with the TROPOMI overpass time
of ~13:30 LT (see Sect. 2.3). The monitor data in each com-
parison differ, due to the data filtering (see Sect. 2.2 and 2.3).
The comparison of frequency distributions reveals how well
TEMPO and TROPOMI capture the wide range of ground-
based monitor readings across these classifications and time
periods.

In December 2023, TEMPO (JSD =0.007) and
TROPOMI (JSD =0.021) exhibit distinct differences
in how well they capture NO; distributions across the
various road classifications. Near interstates, TEMPO has
a 90th percentile at 18.34 x 10" molec. cm™2, whereas the
TROPOMI 90th percentile is 11.27 x 10! molec.cm™2.
TEMPO aligns more closely with monitor distributions,
with a JSD of 0.066, compared with the TROPOMI JSD
of 0.145 (Fig. 3). TEMPO has 21.42% of data points
above 11 x 10" molec.cm™2 for interstate values in De-
cember, whereas TROPOMI appears to underestimate the
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Table 1. Coefficient of variation (%) and Jensen—Shannon divergence for all seasons combined at interstate, highway, and non-roadway

monitors, 2019-2023, for the 50 and 300 m roadway buffers.

Road type Monitor CV. =~ TROPOMICV  JSD  # of monitors
(a) 50 m buffer Interstate 75.07 92.60 0.158 58
Highway 96.27 91.61 0.095 17
Non-roadway 118.17 106.16  0.009 428
(b) 300 m buffer Interstate 77.20 91.014 0.133 91
Highway 135.76 92.31 0.017 90
Non-roadway 116.23 108.43  0.008 320

frequency of higher NO, levels more, with a cumulative
frequency of 10.53 % above that threshold. Near highways,
the TEMPO 90th percentile is 14.70 x 10'3 molec. cm™2,
compared with TROPOMI, with a 90th percentile of
10.06 x 10" molec.cm~2. The JSD for TEMPO is 0.049
and that for TROPOMI is 0.125 for highway monitors, indi-
cating that TEMPO has much better alignment on highways
(Fig. 3). For non-roadway locations, both instruments show
very good alignment (TEMPO JSD = 0.005; TROPOMI
JSD = 0.012; Fig. 3) with the monitor data distributions but
with TEMPO again being slightly better.

In July 2024, the patterns show greater divergence across
road classifications (TEMPO JSD =0.027; TROPOMI
JSD = 0.049) between the satellite observations and ground-
based monitor data, compared with the December 2023
distributions. Near interstates, the TEMPO 90th percentile
is 8.46 x 10'3 molec.cm™2 and the TROPOMI 90th per-
centile is 5.58 x 10> molec. cm™2, with TEMPO aligning
more closely (JSD of 0.133 compared with TROPOMI JSD
of 0.265; Fig. 3). TEMPO has 17.01 % of data points above
7 x 1015 molec. cm™2 for interstate values in July, whereas
TROPOMI appears to underestimate the frequency of higher
NO; levels more, with a cumulative frequency of 3.61 %
above that threshold. Near highways, TEMPO achieves a
much better representation of the higher observed NO, lev-
els, with a 90th percentile of 9.34 x 10" molec. cm~2, com-
pared with TROPOMI, with a 90th percentile of 5.32 x
10" molec. cm™2. The JSD for TEMPO is 0.151 and that
for TROPOMI is 0.201 for highway monitors, indicat-
ing that TEMPO has better alignment near highways. For
non-roadway locations, both instruments show very good
alignment (TEMPO JSD = 0.024; TROPOMI JSD = 0.023;
Fig. 3) with the monitor data distributions, with TEMPO
and TROPOMI alignment with ground monitors being more
comparable than in December 2023.

Throughout both December 2023 and July 2024,
TEMPO’s improved alignment with ground-based monitors
compared with TROPOMI may be attributed to several fac-
tors. TEMPO operates from a geostationary orbit, allowing it
to take hourly measurements and capture the diurnal variabil-
ity of NO; concentrations more effectively than TROPOMI,
which has a single daily overpass time. This high tempo-
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ral resolution enables TEMPO to better match the timing of
NO; peaks and fluctuations detected by ground-based mon-
itors, which are also recorded on an hourly basis. Addition-
ally, TEMPO'’s finer spatial resolution, approximately 2 km
in the north—south direction and 4.5 km in the east-west di-
rection, may allow it to capture more localized pollution
sources, such as traffic emissions along highways and in-
terstates. This may be why we see such a large difference
in alignment in the interstate and highway categories be-
tween TEMPO and TROPOMI and very little difference in
alignment in the non-road category. In contrast, TROPOMI’s
4km x 4km (re-gridded) resolution and single overpass time
may be less effective at capturing these localized variations.
TEMPO’s finer resolution in one direction and its frequent
observations may enable it to more precisely match the spa-
tial and temporal variability detected by ground-based moni-
tors. The consistency of slight underestimation for both in-
struments in high-pollution areas like highways and inter-
states suggests challenges in fully capturing elevated NO;
levels that occur near traffic sources. Overall, this indicates
that while TEMPO generally provides a closer approxima-
tion of NO, distributions compared with TROPOMI, both
satellite instruments show limitations, particularly in repre-
senting peak concentrations at high-polluting sites.

3.3 Column-surface diurnal alignment

In this section we explore the hourly alignment between
monitor and hourly TEMPO distributions at interstate, high-
way, and non-roadway monitors. We find that TEMPO aligns
best with ground monitors around midday and exhibits
poorer alignment in the early morning and early evening.

Figure 4 presents the hourly JSD for TEMPO NO, mea-
surements compared with ground monitors categorized by
interstate (red), highway (orange), and non-roadway (green)
monitors for December 2023 (Fig. 4a) and July 2024
(Fig. 4b). The results highlight distinct diurnal patterns
across road types and seasons, reflecting the influence of traf-
fic emissions, atmospheric mixing, and insolation.

In December 2023, all monitor categories exhibit similar
trends in the early morning, with high JSD values (high-
way JSD = 0.358; interstate JSD = 0.331; non-road JSD =
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0.210) indicative of moderate to poor alignment between
TEMPO and ground-based monitors. This pattern, consis-
tent with early morning rush hour emissions and limited
atmospheric vertical mixing (Harkey and Holloway, 2024)
as well as a decrease in TEMPO’s measurement accuracy
due to high solar zenith angles in the morning, according
to TEMPO documentation (NASA Langley Research Cen-
ter, 2024), suggests that TEMPO may not capture rapid in-
creases in NO; during high-traffic and low-mixing periods.
By mid-morning, JSD has decreased for all road types (high-
way JSD = 0.085; interstate JSD = 0.067; non-road JSD =
0.027), indicative of good alignment, with non-road mon-
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itors showing the most significant improvement (87 % in-
crease in alignment). This pattern of better alignment in non-
road monitor areas could be attributed to lower NO, lev-
els away from major sources of emissions. As the day pro-
gresses in December, JSD values for highway and interstate
monitors increase steadily (with highways fluctuating more)
after 17:00 UTC (=~12:00LT), with highways increasing in
JSD from 0.102 to 0.490 and interstates increasing in JSD
from 0.097 to 0.590, indicating worsening alignment in the
afternoon and early evening. This pattern may reflect the re-
accumulation of NO, due to afternoon traffic and the col-
lapse of the boundary layer later in the afternoon (Harkey
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and Holloway, 2024), as well as the decrease in TEMPO’s
measurement accuracy in the evening (NASA Langley Re-
search Center, 2024). Non-road monitors show less change
in JSD through the day, suggesting that TEMPO alignment
is more consistent in non-road monitor areas throughout the
rest of the day, only fluctuating in JSD between 0.009 and
0.05.

In July 2024, highway and interstate monitors do not ex-
hibit a clear diurnal pattern, with JSD values fluctuating be-
tween (.14 and 0.416 for highways and 0.155 and 0.212 for
interstates throughout the day. Consistent localized traffic
emissions and the shorter NO; lifetime during the summer
suggest a less variable distribution of NO;. Non-road mon-
itors in July show somewhat worse alignment in the morn-
ing (JSD = 0.041), with improved agreement during the late
morning and early afternoon (JSD ranging between 0.008
and 0.025). The non-road JSD remains fairly constant into
the early evening, with alignment decreasing by about 13 %,
indicating that sunlight may play a larger role in the align-
ment in the evening since the sun is at a higher position in
the sky during this time in the summer than in the winter
(which increases in JSD at this time), enhancing TEMPO’s
measurement accuracy in the early evening in July.

Both months exhibit their highest JSDs, and worst align-
ment, in the early morning or early evening hours, which
coincide with peak traffic times and the most uncertainty in
TEMPO observations caused by the solar zenith angle. The
best alignment and lowest JSDs occur sometime near midday
(*~10:00LT to ~14:00LT).

The disparity between highways and interstates in
TEMPO, where highways generally had the highest JSD, dif-
fers from the pattern seen with TROPOMI, where interstates
tended to consistently exhibit worse alignment. This suggests
that TEMPO’s higher spatial and temporal resolution may
capture localized sources more effectively, leading to varia-
tions in alignment based on the distribution and intensity of
NO; sources.

4 Conclusions

This study evaluates the distributional alignment among es-
timates of NO; abundance from TROPOMI, TEMPO, and
ground monitors to inform the potential of satellite data
for both regulatory and public health applications, particu-
larly in informing future NO, monitor siting strategies. Sev-
eral limitations and sources of uncertainty should be consid-
ered. Limitations of this analysis include (1) the overrepre-
sentation of AQS monitors in urban areas, (2) the temporal
mismatch between satellite and ground measurements, and
(3) the fact that the distance-from-roads analysis does not
consider other local factors. A key limitation is the overrep-
resentation of urban areas in the AQS monitoring network,
which may bias our results toward urban areas. Since AQS
monitors are more densely located in urban regions with
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high emissions and complex local sources, the results may
not fully capture alignment in more rural areas with fewer
monitoring stations. Another important consideration is the
slight temporal mismatch between satellite and ground-based
measurements. TROPOMI provides a single daily observa-
tion around 13:30 local solar time, whereas ground moni-
tors and TEMPO record NO, concentrations throughout the
day. To better align with TROPOMTI’s overpass, we averaged
13:00 and 14:00 LT TEMPO and ground monitor NO, val-
ues. Since NOy concentrations can change rapidly due to
meteorological conditions and emissions variability, this av-
eraging approach may introduce some error in comparisons
between TEMPO, TROPOMI, and ground-based measure-
ments. The classification of monitors by distance from roads
is based on buffer analysis, which does not account for local
factors, such as wind direction, terrain, proximity to indus-
try, and traffic density, all of which influence NO; dispersion.
Despite these uncertainties, our findings highlight patterns in
column—surface NO; agreement and demonstrate the poten-
tial for satellite data to complement ground-based monitor-
ing.

The Jensen—Shannon divergence (JSD) offers a robust and
interpretable metric for comparing the alignment and similar-
ity of NO; distributions. Its symmetry and bounded range al-
lowed us to evaluate the degree of similarity between satellite
and monitor NO; values across different spatial and temporal
scales, providing a clear quantitative framework for assessing
the similarity of two different instruments.

Past studies comparing surface and satellite NO, have
found temporal correlation of daily values at individual sites
ranging from r =0.61 to r =0.69 (Lamsal et al., 2014,
2015), monthly and seasonal values at individual sites rang-
ing from r =0.67 to r =0.90 (Griffin et al., 2019; Yu and
Li, 2022; Harkey and Holloway, 2024; Dressel et al., 2022;
Xu and Xiang, 2023; Lamsal et al., 2015), and annual aver-
age values at sites ranging from r = 0.68 to r = 0.93 (Zhang
et al., 2018; Lamsal et al., 2015; Goldberg et al., 2021; Kim
et al., 2024; Bechle et al., 2013; Lee et al., 2023). Here, r
refers to the Pearson correlation coefficient, which measures
the strength and direction of a linear relationship between
variables. In some cases, these comparisons adjusted col-
umn values to the surface (e.g., Lamsal et al., 2014) and/or
adjusted ground monitors to reduce the error in chemilumi-
nescent detection of NO; (e.g., Lamsal et al., 2015; Bechle
et al., 2013). Using similar methods, TROPOMI tends to
show better agreement with annual AQS NO; than does
the Ozone Monitoring Instrument (OMI), e.g., r = 0.81 us-
ing TROPOMI (Goldberg et al., 2021) versus r = 0.68 from
OMI (Lamsal et al., 2015). Off-road AQS monitors tend to
show better agreement with satellite data than near-road AQS
monitors, e.g., ¥ = 0.81-0.87 at non-near-road sites versus
r = 0.64-0.74 at near-road sites (Kim et al., 2024). The un-
derestimation of estimated near-surface NO, near roads and
localized sources is a recurring issue in OMI and TROPOMI
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Figure 4. (a) December 2023 and (b) July 2024 hourly (UTC) TEMPO NO, Jensen—Shannon divergences at interstate (red), highway

(orange), and non-roadway (green) monitor locations.

NO;, VCDs (Dressel et al., 2022; Goldberg et al., 2024; Ia-
longo et al., 2020).

In this study, we find a pattern of decreasing NO, with
increasing distance from traffic sources, which is consis-
tent with the findings of previous studies (Kimbrough et al.,
2017; Karner et al., 2010; Richmond-Bryant et al., 2017).
While ground-based monitors and TROPOMI satellite data
may differ with proximity to roadways, particularly within
50 m, their measurements still follow the same overall trend.
This convergence with increasing distance may be due to the
reduction of localized near-road emissions and the broader
atmospheric mixing captured more effectively by satellite
observations at greater distances from roads. Using a larger
buffer distance from roads (300 m instead of 50 m) improves
the alignment between TROPOMI and monitor data, es-
pecially for highway monitor locations (JSD decreases by
~82 %). The overall trend reflects the well-established gra-
dient of declining NO; levels with increasing distance from
traffic sources, and TROPOMTI’s ability to capture this trend,
even if the specific values differ from AQS monitors in the
near-road environment. Our findings indicate that TROPOMI
tends to slightly underestimate surface NO, concentrations
in areas with high traffic, such as interstates and highways,
due to its spatial resolution and full-column measurements,
which smooth out localized, ground-level pollution peaks
captured by ground monitors. This is most evident in in-
terstate monitors, where the JSD reveals the greatest di-
vergence between satellite and monitor data (JSD = 0.158).
These results are consistent with prior studies (Dressel et al.,
2022; Kim et al., 2024; Ialongo et al., 2020), which also
found that satellite instruments are less effective at captur-
ing high NO, events near localized sources like traffic. The
distributional alignment improves in non-roadway monitors
(JSD = 0.009), where NO; levels are lower, and there are
usually fewer localized sources of pollution. The lower pol-
lution levels in these areas allow TROPOMI to more accu-
rately reflect the conditions captured by ground-based moni-
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tors, leading to lower JSD values and therefore better align-
ment. This trend suggests that TROPOMI may be particu-
larly useful for monitoring air quality in rural or less-polluted
regions where ground monitors are sparse or absent.

Seasonality plays a critical role in the similarity of satel-
lite and monitor data. Winter consistently shows the best
alignment (JSD = 0.010), with the TROPOMI distribution
capturing nearly the full gradient of NO, seen within the
ground-based monitor distribution. This probably reflects the
longer atmospheric lifetime of NO; in winter, which allows
for better vertical mixing and less spatial variability (Harkey
et al., 2015; Boersma et al., 2009; Shah et al., 2020). In
contrast, summer shows the worst alignment (JSD = 0.035),
which is probably due to the shorter lifetime of NO; and in-
creased photochemical activity during warmer months, caus-
ing greater discrepancies between localized surface measure-
ments and the satellite column. Similar conclusions were
reached by previous studies (Shah et al., 2020; Karagkiozidis
et al., 2023), indicating that seasonality is a crucial factor
in assessing satellite performance for regulatory purposes.
These seasonal differences underscore the need for consid-
ering temporal factors when evaluating the use of satellite
data for monitor siting and NO; regulation.

The integration of TEMPO data in this study highlights
TEMPO’s potential to advance our understanding of NO,
distributions, especially when compared with TROPOMI.
TEMPO’s ability to provide hourly measurements at a finer
spatial resolution offers significant advantages in captur-
ing diurnal NO, patterns and detecting localized pollution
events. Our findings from December 2023 and July 2024
at the TROPOMI overpass time (*13:30 LST) demonstrate
that TEMPO captures the wide range of surface NO;
measurements better than TROPOMI, especially at higher
NO; levels. TEMPO’s JSDs are almost always lower than
TROPOMTI’s, with JSDs ranging from 0.005 to 0.151 and
TROPOMI’s JSDs ranging from 0.012 to 0.265. This im-
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provement in alignment with ground monitors could be at-
tributed to TEMPO’s better spatial and temporal resolution.
We also find that TEMPO is best at capturing ground-level
NO;, amounts around midday (*10:00 to ~14:00LT). This
could be due to the lower traffic levels and therefore lower
pollution levels during this time period, as well as a lower
solar zenith angle, allowing TEMPO to have more accurate
measurements. However, challenges remain in completely
capturing high NO» levels during peak traffic times and ac-
curately capturing NO; during high solar zenith angles in the
morning and evening across monitor classifications. These
results underscore the influence of spatial resolution, time of
day, and measurement frequency on the ability of satellite
instruments to align with ground-based NO; measurements.
Future research should build upon these insights by incorpo-
rating longer time periods and multiple years of data as more
TEMPO data become available to study long-term TEMPO
distributions. The enhanced temporal and spatial resolution
of TEMPO, alongside its comparison with other instruments
like TROPOMI, provides valuable context for understand-
ing the dynamics of NO, pollution, especially how it varies
throughout the day. Spatially contiguous satellite products
and our analysis of air quality variability offer the potential
to support air quality managers and public health analysis.

Code and data availability. All data used in this study are
open to the public. Hourly NO; data from AQS were obtained
from https://ags.epa.gov/agsweb/airdata/download_files.html#Raw
(EPA, 2025). Copernicus Sentinel 5P Level 2 TROPOMI
NO, data were processed by the ESA, Koninklijk Nederlands
Meteorologisch Instituut (KNMI; https://doi.org/10.5270/S5P-
s4ljg54, Copernicus Sentinel-5P, 2018), downloaded from
the NASA Goddard Earth Sciences Data and Information
Center (GES DISC) in January 2021, and gridded us-
ing WHIPS (https://sage.nelson.wisc.edu/data-and-models/
wisconsin-horizontal-interpolation- program-for-satellites- whips/,
Center for Sustainability and the Global Environment, 2024).
TEMPO Level 3 NO, data were downloaded from NASA’s
EarthData Search (https://doi.org/10.5067/1S-40E/TEMPO/NO2_
L3.003, Suleiman, 2024). The 2021 Primary and Secondary Roads
Tiger/Line state-level Shapefiles were downloaded from the US
Census Bureau (https://www.census.gov/cgi-bin/geo/shapefiles/
index.php?year=2021&layergroup=Roads, U.S. Census Bureau,
2025a). Since all of our data are publicly available and the methods
describe our calculations in detail, we did not make our code
publicly available. The Jensen—Shannon divergence was calculated
using the scipy.spatial.distance.jensenshannon Python package.
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