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Abstract. This study presents aerosol iron isotopic compositions (δ56Fe) in the western and central equato-
rial and tropical Pacific Ocean. Aerosols supply iron (Fe), a critical element for marine primary production, to
the open ocean. Particulate aerosols, > 1 µm, were sampled during the EUCFe (Equatorial Undercurrent Fe)
cruise (RV Kilo Moana, PI: James W. Murray, 2006). One aerosol sample was isotopically lighter than the
crust (δ56Fe=−0.16± 0.07 ‰, 95 % confidence interval), possibly originating from combustion processes. The
nine other aerosol samples were isotopically heavier than the crust, with a rather homogeneous signature of
+0.31± 0.21 ‰ (2 SD, n= 9). Given (i) this homogeneity compared to the diversity of their modeled geo-
graphic origin and (ii) the values of the Fe/Ti ratios used as a lithogenic tracer, we suggest that these heavy
δ56Fe signatures reflect isotopic fractionation of crustal aerosols caused by atmospheric processes. Using a frac-
tionation factor of 1solution− particle =−1.8 ‰, a partial dissolution of ≈ 13 % of the initial aerosol iron content,
followed by the removal of this dissolved fraction, would explain the observed slightly heavy Fe isotope signa-
tures. Such fractionation has been observed previously in laboratory experiments but never before in a natural
environment. The removal of the dissolved fraction of the aerosols has not been previously documented either.
This work illustrates the strong constraints provided by the use of iron isotopes for atmospheric process studies.

Key points.

– Iron isotope fractionation of particle aerosol during atmo-
spheric transport

– Aerosol partial dissolution and subsequent removal of the dis-
solved fraction

1 Introduction

Iron (Fe) is an essential micronutrient for phytoplankton,
playing a key role in primary production, nitrogen fixation,
and community structures (Boyd and Ellwood, 2010; Morel
et al., 2020). Availability and speciation of this micronutrient
impact the global carbon cycle and climate. In some areas
of the open ocean, low concentrations of Fe can limit pri-
mary production (Martin, 1992). Five predominant sources

of bioavailable Fe to the global ocean are currently thought
to be aerosol dissolution (Duce and Tindale, 1991; Jickells
et al., 2005; Moore and Braucher, 2008), sediment dissolu-
tion and resuspension (Elrod et al., 2004; Radic et al., 2011;
Labatut et al., 2014), fluvial inputs (Poulton and Raiswell,
2002), hydrothermal vents (Tagliabue et al., 2010; Resing et
al., 2015), and local ice melting (Raiswell et al., 2008). Iron
sources to the open ocean remain insufficiently understood.

Over the past 2 decades, it has become possible to measure
iron isotopes in the environment. The isotopic composition is
expressed by δ56Fe in per mil (‰), which shows the devia-
tion of the sample’s 56Fe/54Fe ratio relative to the reference
material IRMM-14 (Eq. 1):

δ56Fe =

(56Fe/54Fe
)

sample(
56Fe/54Fe

)
IRMM-14

− 1. (1)
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With this definition, the upper continental crust is charac-
terized by a homogeneous signature of δ56Fe=+0.07 ‰
(Poitrasson, 2006). Iron isotope measurements have led to
significant advances in our understanding of the cycle of this
element (Radic et al., 2011; John et al., 2012; Conway and
John, 2014; Ellwood et al., 2015; Abadie et al., 2017; Klar et
al., 2018; Chen et al., 2020; Homoky et al., 2021). However,
isotopic studies on aerosols in marine environments are still
very rare.

Aerosols can be of natural or anthropogenic origins, each
associated with variable ranges of Fe isotope signatures
(Wang et al., 2022). Natural sources of aerosols are rocks,
soils, loess, seawater, river water, volcanoes, plants, and
biomass burning. For instance, lithogenic Fe isotopic compo-
sitions are in a narrow range between−0.11 ‰ and+0.12 ‰
(Beard et al., 2003). Anthropogenic aerosols are mainly de-
rived from combustion processes such as coal combustion,
metallurgy, waste incineration, and vehicle exhaust (Kom-
malapati and Valsaraj, 2009). These aerosols have been
found to span a large range of δ56Fe values, from −3.91 ‰
(Kurisu et al., 2016b) to +0.80 ‰ (Flament et al., 2008).
Therefore, iron isotopes can be used to identify aerosol
sources. Nevertheless, initial aerosol isotope signatures may
be modified through isotope fractionations during atmo-
spheric transport. Such fractionation can complicate the in-
terpretation of isotopic signatures as source tracers. Labora-
tory experiments have documented Fe isotope fractionation
due to aerosol partial dissolution (Mulholland et al., 2021;
Maters et al., 2022). However, such fractionation has not
been evidenced from in situ data. This is only one poten-
tial explanation among others to understand the iron isotope
signature of aerosols during field study (Kurisu et al., 2021).
Aerosol Fe isotopic data are scarce in oceanic environments,
and no data have been reported in the equatorial Pacific, de-
spite the important role of iron as a limiting micronutrient in
the eastern equatorial Pacific.

This article presents iron isotope data from these aerosols
collected in the equatorial and tropical Pacific. Combined
with elemental concentration data and modeled back trajec-
tories, these isotopic data provide new constraints on the pro-
cesses involved in the aerosol iron cycle during atmospheric
transport.

2 Sampling locations and methods

2.1 Aerosol sampling

Atmospheric particles were sampled during the EUCFe
cruise (August–October 2006, R/V Kilo Moana, chief scien-
tist James W. Murray). This cruise was carried out to study
the iron cycle, including atmospheric deposition, in the equa-
torial and tropical Pacific (Slemons et al., 2009, 2010, 2012;
Radic et al., 2011; Labatut et al., 2014). Samples were col-
lected along the cruise track with a small volume collector
equipped with 1 µm porosity, 47 mm diameter PTFE mem-

Figure 1. Location of aerosol samples. Aerosol sampling transects
are shown by the thick lines. The Fe isotopic compositions are indi-
cated by the color bar and under the sample names. PNG stands for
Papua New Guinea. BS stands for Bismarck Sea.

branes, placed in a Millipore® polycarbonate filter holder.
The membranes were pre-cleaned in ultrapure HNO3 for 2 d
and stored in clean plastic Petri dishes. The collector was lo-
cated on the top deck and equipped with a control system to
stop pumping when the wind came from a direction greater
than 60° from the bow to prevent ship smoke collection. To
protect the samples from rain, the filter support was angled
downward and covered with a plastic protector. A flow meter
provided information on the pumped airflow: 8 L min−1 for
A281 and A284 samples and 28 L min−1 for the eight other
samples. Each sample was collected over a duration of 3 d on
average for sample size ranging between 9 and 93 m3 (from
coastal to open-ocean areas). The sampling locations are re-
ported in Fig. 1. The sampling area is more than 8000 km
wide.

Three samples previously published close to the Bismarck
Sea and in the equatorial Pacific are reported to enrich the
discussion: A269, A266, and A259 (Fig. 1 and Table 3) (La-
batut et al., 2014).

2.2 Analytical procedure

The elemental concentrations and iron isotopic composi-
tions were measured at the LEGOS laboratory (Observa-
toire Midi-Pyrénées, Toulouse, France) in the years 2009 to
2012. The analytical procedure was described by Labatut et
al. (2014) and is summarized here. A trace metal clean labo-
ratory, an ISO4 laminar flow hood, high-purity reagents, and
acid-cleaned labware were used for all chemical procedures.
The particles were totally digested using a mixture of 5 M
HCl, 2.1 M HNO3, and 0.6 M HF at 130 °C. To check that
the procedure was quantitative, some filters were digested
twice, and no particulate Fe was detected in the second leach.
A 57Fe–58Fe double spike was added to the leachates. 2 %
aliquots were taken for multi-elemental concentration deter-
mination on a ThermoScientific Element-XR HR-ICPMS.
Na, Mg, Al, Ca, Ti, Fe, V, Rb, Sr, Ba, and Pb concentrations
were quantified. Fe was purified from the remaining 98 %
with an AG® 1-X4 anionic resin, and its isotopic composi-
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tion and concentration were measured on a ThermoScientific
Neptune MC-ICPMS.

Throughout this article, uncertainties are given at a 95 %
confidence level. For the Fe concentration and isotope mea-
surements on the Neptune MC-ICPMS, the total procedu-
ral recovery was 93± 25 %. The total procedural blank, in-
cluding contamination from the sampling filter, was 3.0 ng,
which was 3.8 % and 14.7 % of the average and small-
est sample, respectively. Repeatability was not determined
on aerosol samples (due to limited sample sizes) but was
quantified during the same measurement sessions from du-
plicate analyses, including distinct chemical treatments, of
four seawater suspended particle samples. It was 4 % and
0.04 ‰ for concentration and isotopic composition, respec-
tively. This repeatability for δ56Fe is better than the long-
term external precision of 0.07 ‰ of our measurements,
determined from repeated analysis of a secondary isotopic
standard (an in-house “ETH-Hematite” standard). The un-
certainties characterizing our Fe isotope data are therefore
0.07 ‰ or the internal measurement uncertainty (2 standard
errors), when the latter is larger. The iron isotope proto-
col at LEGOS has been validated through intercalibration
and intercomparison exercises (Boyle et al., 2012; Conway
et al., 2016) and described in Lacan et al. (2008, 2010,
2021). The in-house “ETH-Hematite” standard displayed
an isotopic composition of +0.52± 0.08 ‰ (2 SD, n= 81),
which was perfectly consistent with the recommended value
of +0.53± 0.06 ‰ (2 SD, n= 6) (Lacan et al., 2010). We
also measured the sediment geostandard GBW 07315 with
δ56Fe=+0.04± 0.046 ‰. Unfortunately, it is not certified
for Fe isotopes, and we could not find Fe isotope values re-
ported in the literature. We still report it here as it could
be useful in the future. The trueness of concentrations de-
termined by HR-ICPMS analysis was verified using certi-
fied SLRS-5 river water material and GBW 07315 sediment
material. The accuracy (trueness and repeatability) of our
HR-ICPMS concentration determination was also validated
through intercalibration exercises (Yeghicheyan et al., 2013,
2019). Blanks were quantified for Fe only. Based on the latter
and assuming a crustal composition, they were estimated for
the other elements. This assumption is supported by the lack
of contamination discussed in Sect. 3.1 below. This leads to
blank levels always lower than 15 % of each sample and all
elements, except for Ca, for which it was 11.8 % on average
and 35.7 % at maximum.

2.3 HYSPLIT model

To identify the origin of sampled aerosols, air mass back
trajectories were calculated using the NOAA Hybrid Single-
Particle Lagrangian Integrated Trajectory (HYSPLIT) model
(Stein et al., 2015; Rolph et al., 2017). The meteorological
data selected were from the Global Data Assimilation System
(GDAS). Trajectories were computed at 50 m above ground
level with a 7.5 d run time. Aerosol samplings were con-

ducted between 22 August and 12 October 2006. In order
to represent spatial and temporal variabilities and to present
a synthetic overview, we divided the cruise track into four
areas (Fig. 2).

For each area from which back trajectories are simulated,
the starting points of back trajectories were chosen as a grid
for representativity and clarity purposes. The grid points are
not precisely sampling locations, but they are close to them.
The starting times were chosen as the central dates between
the sampling period of each area (Table 1).

3 Results

Elemental concentrations are presented in Table 2. Isotopic
compositions of Fe in aerosols are reported in Table 3 and in
Fig. 1. Fe concentration and isotope data are available in the
SEANOE data repository (https://doi.org/10.17882/107774,
Lacan et al., 2025) and will also be included in the GEO-
TRACES Data Product.

3.1 Elemental concentrations

Aerosol iron concentrations ranged from 0.38± 0.02 to
7.22± 0.28 ng m−3 (Table 2). Excluding aerosol sample
A266 close to the Bismarck Sea (5.56± 0.22 ng m−3), con-
centrations vary from low values (< 1 ng m−3) between
140° E and 160° W along the Equator to large values (> 1.5
and < 8 ng m−3) in the tropical North Pacific region and be-
tween 160 and 140° W along the Equator. There was no cor-
relation between distance from land and concentration. A
major volcanic eruption of Tavurvur (Papua New Guinea)
occurred on 7 October 2006 (Wunderman, 2006). Samples
A233 to A269 were collected prior to this event and are
therefore unaffected. While it is theoretically possible that
samples A281 and A284 could have been influenced by the
eruption, they were collected over 1500 km away from the
volcano. A simulation of the forward trajectory of air masses
confirms that samples A281 and A284 were not affected by
the eruption (Figs. A1 and A2). Additionally, their concen-
trations are consistent with those of samples collected before
the eruption, confirming that they were not impacted.

Aerosol Fe concentrations in EUCFe samples are con-
sistent with the literature in the central equatorial Pa-
cific for particulate Fe: 2.01± 1.56 ng m−3 (2 SD, n= 11)
(GEOTRACES GP15 cruise: between 20° N and 20° S
and along the 152° W meridian) (Marsay et al., 2022)
and 5.60± 5.65 ng m−3 (2 SD, n= 8) (P16 cruise of the
CLIVAR/CO2 Repeat Hydrography Program: between 9° N
and 2° S and along the 151° W meridian) (Landing et al.,
2013). The range of EUCFe values was also similar to con-
centrations in Alaskan coastal and pelagic regions in the sub-
arctic North Pacific, in the North Pacific, and in the South
Pacific (Buck et al., 2019; Kurisu et al., 2021, 2024; Marsay
et al., 2022; Sakata et al., 2022). EUCFe data are lower than
aerosol iron concentrations reported in the coastal northwest
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Figure 2. Air mass back trajectories (colors lines) calculated with the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYS-
PLIT, NOAA, and GDAS meteorological data). Trajectories were conducted at the height of 50 m (a.g.l.) with a 7.5 d run time. Each color is
associated with an area from which back trajectories are simulated.

Table 1. Parameters selected for the HYSPLIT model simulations and the aerosol sample names within areas from which back trajectories
are simulated.

Area Area – lower- Area – upper- Number of starting Starting Aerosol samples
number left grid point right grid point points within the area time within the area

1 142° E 4° S 154° E 2° N 9 25 Sep 2006, 16:00:00 UTC A266, A269
2 164° E 3° N 160° W 21° N 15 11 Oct 2006, 16:00:00 UTC A281, A284
3 164° E 3° S 180° 3° N 9 13 Sep 2006, 16:00:00 UTC A252, A259
4 155° W 1° S 139° W 15° N 12 26 Aug 2006, 16:00:00 UTC A233, A235, A238, A243

Pacific, closer to industrialized areas (Kurisu et al., 2021;
Sakata et al., 2022).

The concentrations of the major elements of seawater (Na,
Mg, Ca, Sr) depend on the height of sampling, wave height,
and wind intensity (Bruch et al., 2021; Madawala et al.,
2024). Therefore, comparing Na, Mg, Ca, and Sr concentra-
tions in EUCFe samples with those measured in other Pacific
samples is not meaningful. However, we can compare Al, Ti,
V, and Pb elements with the literature. Their concentrations
are in the same order of magnitude as those found previously
in the atmosphere over the North Pacific (Kurisu et al., 2021,
2024). To the best of our knowledge, the EUCFe Rb and
Ba concentrations are the first measurements over the Pacific
Ocean. Their concentrations are similar to those of aerosols
over the Atlantic Ocean (Landing and Shelley, 2014; Shel-
ley et al., 2017). Given that V can be used as a tracer of the
ship’s exhaust (Duce and Hoffman, 1976), the lack of corre-
lation between V concentrations and δ56Fe (Fig. B2) ruled
out the possibility of contamination from the ship’s exhaust.

Overall, these comparisons are consistent with previous
values for these elements and validate the analytical proce-
dure, from sampling to final concentrations.

3.2 Iron isotopic compositions

EUCFe aerosols have Fe isotopic ratios ranging from
−0.16 ‰ to +0.47 ‰ (Table 3, Figs. 1 and 3). Those sam-
pled along the Equator and near the Bismarck Sea exhibit
similar, slightly heavy signatures, ranging from +0.26 ‰
to +0.43 ‰. Those sampled in the tropical North Pacific
present more variable signatures but are still positive from
+0.14 ‰ to+0.47 ‰. One sample, the southeasternmost one
(A238), differed significantly from the others in the equato-
rial Pacific with the lightest value, −0.16 ‰.
δ56Fe aerosol values from the EUCFe cruise can be com-

pared with three other cruises in the Pacific: KH-13-7 and
KH-14-3 in the North Pacific (Kurisu et al., 2021) and
GP02 in the subarctic North Pacific (Kurisu et al., 2024)
(Fig. 3). In these previous studies, all δ56Fe values below
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Table 2. Aerosol elemental concentrations from the EUCFe cruise. Concentration uncertainty was 4 % (95 % confidence level). Some con-
centrations were found below quantification limits. In that case, they are reported after the “<” symbol. The mean concentrations do not take
into account samples with a concentration below the quantification limits. Al concentration for the A252 sample (reported in brackets in the
table) was suspected to be contaminated; it is not included in the mean calculation and in the discussion. UCC stands for upper continental
crust. Note that the different detection limits for the same element are due to different sample volumes (m3).

Samples [Na] [Mg] [Ca] [Sr] [Ba] [Al] [Ti] [V] [Fe] [Rb] [Pb]
ng m−3 ng m−3 ng m−3 pg m−3 pg m−3 ng m−3 ng m−3 pg m−3 ng m−3 pg m−3 pg m−3

A233 135 17.5 13.4 170 37.4 2.42 0.30 5.91 1.71 < 22.3 11.1

A235 1085 128 64.9 1144 28.2 1.90 0.73 7.09 7.22 13.5 14.4

A238 3031 323 126 2169 272 20.3 0.59 13.4 3.81 58.7 17.2

A243 1021 114 49.0 730 372 26.1 0.50 < 49.9 2.28 45.5 < 63.2

A252 2432 223 85.4 1552 68.2 (188) 0.22 64.9 0.99 20.5 13.9

A259 809 77.6 36.1 520 < 40.9 0.76 0.20 4.77 0.38 < 28.8 10.7

A266 224 20 8.93 < 91.4 < 18.6 1.28 0.12 < 12.6 5.56 < 13.1 < 16.0

A269 121 12.5 4.94 84.6 17.9 2.19 0.11 < 16.6 0.54 < 17.2 19.9

A281 653 58.6 26.0 373 75.0 9.15 0.42 20.9 2.42 < 41.1 29.5

A284 1072 97.7 41.5 652 418 23.5 0.45 28.4 5.17 50.3 41.8

Mean concentrations 1058 107 45.6 822 161 9.7 0.36 20.8 3.01 38 19.8
of samples

Mean UCC in g g−1 2.43× 10−2 1.50 2.57 3.20× 10−4 6.24× 10−4 8.15× 10−2 3.84× 10−3 9.70× 10−5 3.92× 10−2 8.40× 10−5 1.70× 10−5

(Rudnick and Gao, 2014)

Typical North Pacific 1.08× 1010 1.28× 109 4.12× 108 7.80× 106 1.50× 104 30.0 6.50 2.00× 103 30.0 1.20× 105 2.70
concentrations in filtered
seawater in ng kg−1

(Nozaki, 1997)

Table 3. Aerosol Fe isotopic compositions during the EUCFe cruise. U95 stands for measurement uncertainty at the 95 % confidence level.

Samples Location Sampling δ56Fe δ56Fe U95
ID date (‰) (‰)

A233 from 12.39° N, 149.54° W to 06.01° N, 143.42° W 21–23 Aug 2006 +0.14 0.07
A235 from 06.01° N, 143.42° W to 01.07° N, 140.00° W 23–25 Aug 2006 +0.31 0.07
A238 from 00.0° N, 140.0° W to 00.52° S, 144.15° W 26–28 Aug 2006 −0.16 0.07
A243 from 01.02° N, 154.60° W to 01.31° S, 155.00° W 31 Aug–1 Sep 2006 +0.43 0.07
A252 from 02.02° N, 180.00° E to 01.22° S, 178.16° E 9–11 Sep 2006 +0.26 0.07
A259∗ from 01.48° N, 167.31° E to 01.06° N, 164.59° E 16–17 Sep 2006 +0.27 0.15
A266∗ from 02.32° S, 153.56° E to 01.18° N, 146.34° E 23–25 Sep 2006 +0.35 0.07
A269∗ from 01.18° N, 146.33° E to 03.21° S, 143.52° E 26–28 Sep 2006 +0.38 0.08
A281 from 03.39° N, 167.55° E to 13.02° N, 175.06° W 8–11 Oct 2006 +0.22 0.09
A284 from 14.20° N, 173.5° W to 20.20° N, 160.50° W 11–14 Oct 2006 +0.47 0.08

∗ Identifies data previously published by Labatut et al. (2014).

0 ‰ were measured in samples taken less than 1500 km from
the Japanese and Alaskan coasts (Fig. 3). In the open ocean,
they also reported positive δ56Fe values as for EUCFe sam-
ples (apart from sample A238). South of the Tropic of Can-
cer, Kurisu et al. (2021) reported bulk aerosol heavy δ56Fe
values, between +0.04 ‰ and +0.42 ‰, with a mean value
of +0.27± 0.26 ‰ (2 SD, n= 7). In the subarctic North Pa-
cific, the pelagic and Alaskan areas have δ56Fe values be-
tween −0.07 ‰ and +0.45 ‰ (Kurisu et al., 2024). Overall,
EUCFe δ56Fe values are in excellent agreement with these
previous works.

4 Discussion

All our aerosol samples, except the southeastern one
(A238), are enriched in heavy isotopes relative to the
crustal value. On average those are characterized by
δ56Fe≈+0.31± 0.21 ‰ (2 SD, n= 9) (average value except
A238, Table 3 and Fig. 1). The value for sample A238 was
δ56Fe=−0.16 ‰.
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Figure 3. δ56Fe (‰) of sampled aerosols during EUCFe in the
equatorial and tropical Pacific, GP02 in the subarctic North Pa-
cific (Kurisu et al., 2024), and KH-13-7 and KH-14-3 cruises in the
North Pacific (Kurisu et al., 2021). Error bars represent 2 SD (‰)
for EUCFe and GP02 cruises and 2 SE (‰) for KH-13-7 and KH-
14-3 cruises. 2 SE only reflects the dispersions of the MC-ICPMS
treatment. The vertical brown line indicates the upper crust value,
+0.07 ‰ (Poitrasson, 2006).

4.1 Sources signatures

First, we will discuss the possibility that aerosol signatures
correspond to unmodified source signatures. We will explore
three hypotheses: contributions (i) from sea spray, (ii) from
crustal sources, and (iii) from anthropogenic sources.

A first hypothesis is a contribution from seawater, i.e., sea
spray. Based on the assumptions that all Na in EUCFe sam-
ples comes from seawater and that the chemical composition
of sea spray is that of North Pacific seawater (Nozaki, 1997),
the contribution of sea spray to our samples can be estimated
with the following equation (Eq. 2):[
EIsea spray

]
=

[
Nasample

] [EISW-ref]
[NaSW-ref]

, (2)

where EI is the element of interest (Fe for instance) and SW-
ref is the seawater used as a reference (Nozaki, 1997) for Na
and EI (Table 2).

This leads to insignificant contributions from seawater to
the Fe content of all our samples (lower than 10−5 % of the
total Fe content) (Table C1). On the other hand, the estimated
sea spray contribution for Mg, Ca, and Sr was > 89 % for all
samples.

A second hypothesis is a source from the erosion products
of crustal rocks. The crustal signature, δ56Fe=+ 0.07 ‰,
has been characterized in granites (Poitrasson, 2006), but
other materials, such as volcanic rocks, exhibit similar iso-
topic composition. Desert dust, e.g., of Saharan origin (Beard
et al., 2003; Waeles et al., 2007; Mead et al., 2013; Con-
way et al., 2019), and basalts (Poitrasson, 2006; Craddock
et al., 2013; Teng et al., 2013) display the same signa-
ture. Accordingly, runoff water collected from the flanks of
volcano Rabaul in the Bismarck area has been character-
ized by δ56Fe=+0.07± 0.03 ‰ (2 SD, n= 2) (Labatut et
al., 2014). Therefore, EUCFe aerosol sample isotopic signa-

tures, whether those in the group of nine samples slightly en-
riched in heavy isotopes or that of the A238 sample slightly
enriched in light isotopes, do not directly reflect a crustal
source.

A third hypothesis is an anthropogenic origin. Human ac-
tivities emit aerosols within a wide range of δ56Fe. On the
one hand, vehicle exhaust, steel manufacturing, and solid
waste incineration have been characterized by negative δ56Fe
signatures (Kurisu et al., 2016a). On the other hand, coal fly
ash, metallic brake dust, and steel manufacturing have been
characterized by positive δ56Fe signatures (Flament et al.,
2008; Majestic et al., 2009; Mead et al., 2013; Li et al., 2022).
Biomass burning can be characterized by both negative δ56Fe
signatures (Mead et al., 2013) and positive δ56Fe signatures,
with the latter due to the presence of suspended soil particles
(Kurisu and Takahashi, 2019).

Sample A238 (δ56Fe=−0.16 ‰) is located in the south-
ern part of the Pacific around 140° W (Figs. 1 and 3, Ta-
ble 3). The air mass back trajectories (Fig. 2) suggest that
aerosols collected in this area originated from the South Pa-
cific or the South American coast. As stated above, sev-
eral anthropogenic sources, biomass burning, vehicle ex-
haust, steel manufacturing, and solid waste incineration have
been characterized by negative signatures (Mead et al., 2013;
Kurisu et al., 2016a; Kurisu and Takahashi, 2019). Combus-
tion processes from South America are therefore a potential
explanation for the A238 sample.

The remaining of the discussion will focus on the group
of nine samples, characterized by slightly heavy Fe iso-
topic composition (δ56Fe=+0.31± 0.21 ‰, 2 SD, n= 9;
Figs. 1 and 3, Table 3). From a purely isotopic signature
point of view, anthropogenic sources, e.g., coal combus-
tion and steel manufacturing, possibly mixed with crustal
sources, could explain these slightly heavy signatures (Wei et
al., 2024). Nevertheless, there are several arguments contra-
dicting this hypothesis: demography, modeled atmospheric
back trajectories, aerosol size (> 1 µm), and elemental ra-
tios such as Fe/Ti. While discussing similar slightly heavy
aerosol isotopic signatures in the Bismarck Sea, a possi-
ble anthropogenic pollution contribution was excluded (La-
batut et al., 2014) given the very low demography of the
surrounding lands such as Papua New Guinea (Brunskill,
2004). Back trajectories presented in Fig. 2 reveal that the
sampled air masses had a wide variety of geographic ori-
gins. The fact that aerosols have variable sources but simi-
lar isotope signatures does not support the hypothesis of an
anthropogenic source such as coal fly ash, metallic brake
dust, and steel manufacturing, which are not expected to
be widely and homogeneously distributed around our study
area. The separation between fine and coarse aerosol par-
ticles is 2 to 2.5 µm (Whitby, 1978; Seinfeld and Pandis,
2006). Nevertheless, fine particles do not ordinarily grow
larger than 1 µm (Whitby, 1978). The EUCFe samples are
mainly coarse aerosols, a size fraction associated with crustal
sources (Mead et al., 2013). The Fe fractional solubility of
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Figure 4. Enrichment factors for Fe relative to Ti in the EUCFe
samples, in the UCC reference (dashed line) (Rudnick and Gao,
2014), and in eight UCC types of rocks (gray band) (Hu and Gao,
2008).

aerosols was not measured. While this would have been in-
teresting, it is not critical, as this information alone is not
necessarily indicative of aerosol sources (Baker and Jickells,
2006; Conway et al., 2015).

The enrichment factor (EF) in an element of interest rela-
tive to the crust (Zoller et al., 1974) can be defined as (Eq. 3):

enrichment factor (EF)=

(
element of interest
lithogenic tracer

)
sample(

element of interest
lithogenic tracer

)
UCC

. (3)

UCC stands for upper continental crust (Rudnick and Gao,
2014) (Table 2). Ti and Al are often used as lithogenic tracers
(Dammshäuser, 2012). Because one sample (A252) is sus-
pected to be contaminated in Al (Table 2), we chose Ti to
calculate the EF relative to the crust in the following. Average
UCC concentrations are often used as a reference (Rudnick
and Gao, 2014). Nevertheless, the UCC exhibits variability
in its elemental concentrations, which accounts for the range
of Fe/Ti ratios depicted as a gray band in Fig. 4 (Hu and Gao,
2008). This range reflects eight types of rocks (n= 40), of-
fering a non-exhaustive but more representative overview of
the UCC.

Eight of the EUCFe samples fall within the UCC range
(Fig. 4). However, two samples exhibit slightly lower (A259)
and higher (A266) ratios. Their concentrations of anthro-
pogenic tracers (Pb, V) do not suggest stronger anthro-
pogenic contributions than in the other samples. The Fe/Ti
ratios, which fall slightly outside the classical range (Hu and
Gao, 2008) in samples A259 and A266, can nonetheless be
explained by ultramafic rocks (e.g., pyroxenites), volcanic
rocks (e.g., basalts and andesites), metamorphic rocks (e.g.,
gneiss), or plutonic rocks (e.g., diorite) (Turekian and Wede-
pohl, 1961; Canil and Lacourse, 2011). These rock types
are present around the study area, notably the widespread
volcanic rocks (Nusantara, 2000; Neall and Trewick, 2008;
Ramos, 2009; Canil and Lacourse, 2011). Thus, despite the
variable Fe/Ti ratios in our ten samples, they are all consis-
tent with a crustal origin. Although it is common practice to

use Pb or V enrichment factors relative to lithogenic tracers
(such as Al or Ti) to trace anthropogenic sources, we chose
not to do so because anthropogenic enrichments in Pb or V
do not necessarily imply a significant anthropogenic enrich-
ment in Fe (Table D1). Their use may therefore be misleading
when studying the Fe cycle specifically.

Note that while the Fe/Ti A238 ratio is consistent with a
crustal origin, it is also consistent with, for example, biomass
burning (Zhai et al., 2021).

Based on the assumptions that all Ti in EUCFe samples
comes from the UCC and that the chemical composition of
crustal aerosol is that of UCC (Rudnick and Gao, 2014) (Ta-
ble 2), the lithogenic contribution to our samples can be es-
timated (adjusting Eq. 2 to the case of a lithogenic source).
For Fe, this leads to high lithogenic contributions (123 % on
average). The fact that this calculation leads to contributions
larger than 100 % likely reflects source ratios which differ
from that chosen above (UCC) and/or Fe removal during
transport.

These arguments suggest that the slightly heavy iron iso-
topic compositions are unlikely to be explained by anthro-
pogenic sources but mainly by crustal ones. We will discuss
below if our observations (δ56Feaverage=+0.31 ‰) can be
explained by aerosols of crustal origin (+0.07 ‰) whose iso-
topic signature has been modified by isotopic fractionation
during atmospheric transport.

4.2 Isotopic fractionation during atmospheric processes

A major process influencing aerosol chemistry, during at-
mospheric transport, is partial dissolution during conden-
sation/evaporation cycles in clouds (Lelieveld and Crutzen,
1991; Desboeufs, 2001). Atmospheric aerosol Fe dissolution
is mainly due to dissolution by low-pH cloud water and ef-
fects of solar irradiation. Different dissolution mechanisms
exist, including proton-promoted (Chapman et al., 2009;
Kiczka et al., 2010), ligand-promoted (Chapman et al., 2009;
Kiczka et al., 2010; Mulholland et al., 2021; Maters et al.,
2022), and reductive ligand-promoted dissolution (Mulhol-
land et al., 2021; Maters et al., 2022). These processes frac-
tionate iron isotopes (Mulholland et al., 2021; Maters et al.,
2022). In most studies, light iron isotopes are preferentially
dissolved, and the isotopic composition of the remaining par-
ticulate iron becomes gradually heavier (Maters et al., 2022)
(Fig. 5). In the following, the notation 156Fesolution− particle
is used to denote the isotopic fractionation characterizing a
given dissolution process, also named the initial fractiona-
tion step or the enrichment factor (also note ε, Wiederhold et
al., 2006; Maters et al., 2022).

The magnitude of the isotope fractionations,
156Fesolution− particle, were found between −0.3 ‰ and
−2.0 ‰ for biotite and chlorite mineral dissolution (Kiczka
et al., 2010) and at −1.95 ‰ for granite dissolution by
hydrochloric acid (Chapman et al., 2009). An experiment
dissolving anthropogenic aerosols with a synthetic cloud
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Figure 5. Path of an aerosol during atmospheric transport undergoing partial dissolution. Partial dissolution and subsequent separation of the
leached fraction lead the residual particle to an enrichment in heavy and light iron isotopes in the particles and leached fraction, respectively.

water solution showed a preferential release of light isotopes
with156Fesolution− particle=−1 ‰ (Mulholland et al., 2021).
Another experiment of mineral dust and industrial ash disso-
lution in simulated cloud water also showed an enrichment
in light Fe isotopes in solution, with an isotope fractionation
156Fesolution− particle of −1.8 ‰ for ash and dust (Maters et
al., 2022). Thus, mineral dissolution appears to favor light
isotopes, thereby enriching the remaining solid fraction in
heavy isotopes. Therefore, we will assess whether partial
dissolution during clouds transport can produce aerosols
with a heavier iron isotopic composition. Some authors have
suggested that the observed isotopic compositions may be
partly due to isotopic fractionation during transport (Kurisu
et al., 2021, 2024; Wang et al., 2022).

Considering that the leachate is isolated from the solid
fraction of the aerosol, the system can be modeled as a
Rayleigh distillation. The isotope composition of the solid
fraction of the aerosol is calculated according to Eqs. (4) and
(5):

(δ56Feparticle)f ≈ (δ56Feparticle)f=1

+156Fesolution− particleln(f ), (4)

where the particle is the solid fraction of the aerosol, the so-
lution is the leached solution, and f is the remaining fraction
of Feparticle (when f = 1 all Fe is in the particle; no Fe has
been leached).

For the particle value, we assume an initial crustal signa-
ture for EUCFe aerosols, (δ56Feparticle)f=1=+0.07 ‰
(Poitrasson, 2006). For the isotopic fractionation,
156Fesolution− particle, although the experiments described
above document values ranging between −2.0 ‰ and
−0.3 ‰, we choose−1.8 ‰ (Maters et al., 2022). This value
was measured during a laboratory experiment on dust with
simulated cloud water, i.e., a similar situation to the EUCFe
field study (Maters et al., 2022). Equation (5) (derived from
Eq. 4) allows us to estimate the fractions of the particles that

have to be dissolved (1− f ) in order to reach the slightly
heavy isotope composition measured.

1− f = 1− e
(δ56Feparticle)f=1 −(δ56Feparticle)f

156Fesolution− particle (5)

Based on these calculations, we estimate Fe dissolution per-
centages varying from 4 % to 20 % with an average value
of 13 % (Table 4). This is the first estimate of this kind to
our knowledge. A comparison can be made with Fe frac-
tional solubility of aerosols measured during seawater or ul-
trapure deionized water leaching experiments (Sholkovitz et
al., 2012; Buck et al., 2013; Shelley et al., 2018; Kurisu et
al., 2021, 2024; Desboeufs et al., 2024), keeping in mind that
clouds are slightly acidic with a pH around 5 in the equato-
rial Pacific (Shah et al., 2020). Locally, Fe fractional solu-
bility can reach 23 % in the northwestern Pacific (Kurisu et
al., 2021) and 29 % in the Pacific Ocean (3 cruises) (Buck et
al., 2013) during leaching experiments with ultrapure deion-
ized water. Mean Fe fractional solubility has been reported
as the highest in the world in the equatorial Pacific, with
mean values ranging from 12 % to 20 % (Hamilton et al.,
2019). Fe fractional solubility depends on numerous fac-
tors such as aerosol size and origin, as well as atmospheric
processes (pH, solar irradiation, composition of the solu-
tion). Crustal aerosols collected during dust events in coastal
Namibia (aerosols< 10 µm) can reach high Fe fractional sol-
ubilities of 20 % (Desboeufs et al., 2024). Therefore, a 13 %
dissolution is a realistic value for crustal aerosols.

An isotopic fractionation by partial dissolution of crustal
origin aerosols could therefore explain the slightly heavy sig-
natures observed (Fig. 5). This would require that the leached
fraction, enriched in light isotopes, is separated from the
solid fraction. In the absence of separation, the effect of iso-
tope fractionation would not have been measured in our sam-
ples. This process has not yet been demonstrated, but the
hypothesis has already been proposed in two publications
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Table 4. Percentage of Fe dissolution (1− f ) necessary to explain
the observed EUCFe δ56Fe through atmospheric isotopic fraction-
ation from initial isotope signature of the upper crust (+0.07 ‰).
Calculations are performed for all our samples except A238.

Samples (δ56Feparticle)f 1− f
(‰) (%)

A233 +0.14 4
A235 +0.31 12
A243 +0.43 18
A252 +0.26 10
A259 +0.27 11
A266 +0.35 14
A269 +0.38 16
A281 +0.22 8
A284 +0.47 20
Average of all the above samples +0.31 13

(Kurisu et al., 2021, 2024). The processes that could lead to
such separation are difficult to identify. They are, however,
necessary to explain our observations, provided that aerosol
original signatures were crustal. Shattering or ice breaking
are two ways to separate the leached fraction and the resid-
ual particle of the aerosols. Their occurrence is understud-
ied, especially regarding shattering process. The enrichment
of light isotopes in the leached fraction was not observed in
this study. This is likely due to the presence of this fraction in
aerosols smaller than 1 µm produced by ice-breaking or shat-
tering processes (or its removal by wet deposition), which
were not sampled during the EUCFe cruise. The Fe iso-
topic composition of fine aerosols, often negative, is mostly
attributed to anthropogenic sources (Conway et al., 2019;
Kurisu et al., 2021). However, this study proposes a new pos-
sible cause for the light Fe isotopic composition of aerosols
smaller than 1 µm: the residual leached fractions of crustal
aerosols. In the above model, isotopic fractionation applies
to the whole particle (its entire mass), whereas in reality it is
a surface process that only affects a peripheral layer. Taking
into account surface processes would lead to smaller isotopic
effects (Wiederhold et al., 2006). Our approximation led to
an overestimation of the effect of isotope fractionation and
therefore an underestimation of the leached fraction.

5 Conclusion

Fe isotope compositions (δ56Fe) and elemental concentra-
tions (Na, Mg, Al, Ca, Ti, Fe, V, Rb, Sr, Ba, and Pb) were
analyzed in atmospheric particles collected during the EU-
CFe expedition in the equatorial and tropical Pacific, between
Hawaii, the Equator, and Papua New Guinea. In all aerosol
samples, with one exception, Fe is enriched in heavy isotopes
relative to the crustal value, with an average δ56Fe value of
+0.31± 0.21 ‰ (2 SD, n= 9). The simulation of air mass
back trajectories, the size of particles, their chemical com-
position compared to potential sources (enrichment factors),
and the geographic environment were used to help explain
the enrichment in heavy Fe isotopes. An anthropogenic ori-
gin is unlikely due to (i) the homogeneity of aerosol delta val-
ues despite a wide variety of modeled geographic origin and
(ii) the aerosol chemical composition. We conclude that these
observations are best explained by crustal aerosols, with an
initial isotope signature of δ56Fe=+0.07 ‰, modified dur-
ing atmospheric transport by partial dissolution followed by
the removal of the leached fraction. Although such removal
had not been previously reported, such Fe isotope fractiona-
tion has been documented in controlled experiments (Mul-
holland et al., 2021; Maters et al., 2022) and has already
been suggested as one of several explanations for in situ data
(Kurisu et al., 2021, 2024). The extent of Fe isotope fraction-
ation during atmospheric transport requires the dissolution
and removal of 4 % to 20% – 13 % on average – of the initial
aerosol Fe contents.

One aerosol sample stands out by a slightly light isotopic
composition of −0.16 ‰, possibly emitted from combustion
processes in South America.

This highlights the challenging use of iron isotopes to trace
the origin of the aerosols. It also highlights the unique and
strong constraints brought by these isotopes on the Fe cycle
in atmospheric aerosols. Further studies are needed to con-
firm the main conclusion of this study, namely the existence
of processes leading to the removal of a significant fraction of
the iron content of atmospheric aerosols during atmospheric
transport.
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Appendix A

Figure A1. Air mass forward trajectory (red line) calculated with
the Hybrid Single-Particle Lagrangian Integrated Trajectory model
(HYSPLIT, NOAA, and GDAS meteorological data). The trajec-
tory was conducted at the height of 50 m (a.g.l.) with a 7.5 d run
time. The starting point of the trajectory is the Tavurvur volcano
at 09:00 PGT (UTC+ 10) on 7 October 2006, when the eruption
began (Wunderman, 2006).

Figure A2. Reproduction of the forward trajectory (Fig. A1) on the
aerosol sampling map. The starting point of the forward trajectory is
the Tavurvur volcano at 09:00 PGT (UTC+ 10) on 7 October 2006,
when the eruption began (Wunderman, 2006). The ending point of
the trajectory is on 15 October 2006. Aerosol samples on dashed
lines (A281 and A284) are the only samples collected after the erup-
tion, between 8 and 14 October 2006. PNG stands for Papua New
Guinea. BS stands for Bismarck Sea.

Appendix B

Figure B1. Fe isotopic composition (δ56Fe) and Vanadium (V)
concentrations of EUCFe aerosol samples. Measurement uncertain-
ties can be found in Tables 2 and 3.

Appendix C

Table C1. Na concentrations (ng m−3) and contribution of sea
spray (%) to the Fe content of EUCFe samples.

Samples [Na] Fe from sea
ID (ng m−3) spray (%)

A233 17.5 2.19× 10−7

A235 128 4.18× 10−7

A238 323 2.21× 10−6

A243 114 1.25× 10−6

A252 223 6.84× 10−6

A259 77.6 5.92× 10−6

A266 20 1.12× 10−7

A269 12.5 6.23× 10−7

A281 58.6 7.51× 10−7

A284 97.7 5.77× 10−7
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Appendix D: Calculation of the relative contribution
of two sources from elemental mass ratios (e.g.,
Pb/Fe)

In the hypothesis of a two-end-member mixing, when the
mass ratios of two elements are known in the two sources
and in the mixture, then the contribution of each source to
the mixture can be calculated for the two elements.

Below, the two sources are named “source 1” and “source
2” and the mixture is named “sample”.

QPb and QFe are quantities (ng) and [Pb] and [Fe] are con-
centrations (ng m−3). QPb

QFe sample
, QPb

QFe source 1
, and QPb

QFe source 2
are known.

Two-end-member mixing implies

QPb
QFe sample

=
QPb source 1 + QPbsource 2

QFesource 1 + QFesource 2
.

This is equivalent to

QPb
QFe sample

=

QFesource 1 ×
QPbsource 1
QFesource 1

+ QFesource 2 ×
QPbsource 2
QFesource 2

QFesource 1 + QFesource 2
,

with x = QFesource 1
QFesource 2

the mass ratio in the sample.

QPb
QFe sample

=

QFesource 1 ×
QPbsource 1
QFesource 1

+
QFesource 1

x
×

QPbsource 2
QFesource 2

QFesource 1 +
QFesource 1

x

This is equivalent to

QPb
QFe sample

=

QPbsource 1
QFesource 1

+
1
x
×

QPbsource 2
QFesource 2

1 + 1
x

.

Therefore,

x =

(
QPb
QFe

)
sample−

(
QPb
QFe

)
source2(

QPb
QFe

)
source 1 −

(
QPb
QFe

)
sample

.

With this formula, we can calculate the anthropogenic and
crustal contributions for both Fe and Pb in our samples given
that the ratios are known in the two sources.

Below we illustrate our point with an example. For the
anthropogenic source, we used data from Hao et al. (2007).
This study was chosen for three main reasons: (1) the study
area is relevant to our research – Qingdao, China (550 km
from Beijing), a city with 2.3 million inhabitants; (2) the au-
thors explicitly identify Pb as representing pollution and Fe
as indicative of soil sources; and (3) the study provides el-
emental concentrations for each sample, allowing us to cal-
culate Pb/Fe mass ratios, unlike most studies that only re-
port mean concentrations. For the crustal source, we used
the average of ratios found in eight different types of rocks
from the UCC (Hu and Gao, 2008). The element ratios of
these sources are 0.00095 g g−1 for the crustal source and
0.182 g g−1 for the anthropogenic source (roughly 200 times
higher than the UCC). We applied these calculations to EU-
CFe samples, and results are shown in Table D1.
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Table D1. Contribution of the anthropogenic source to the Fe and Pb content of EUCFe samples (%w w−1). The Pb/Fe ratios are
0.00095 g g−1 for the UCC source (Hu and Gao, 2008) and 0.182 g g−1 for the anthropogenic source (Hao et al., 2007). ND: not deter-
mined.

Contribution (%w w−1) EUCFe samples
of the anthropogenic source
to the content of

A233 A235 A238 A243 A252 A259 A266 A269 A281 A284 Average

Fe 3 % 1 % 2 % ND 7 % 15 % ND 20 % 6 % 4 % 7 %
Pb 86 % 53 % 79 % ND 94 % 97 % ND 98 % 93 % 89 % 86 %
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