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Abstract. We apply a statistical model, two machine learning models, and three chemical transport models
to attribute the observed ozone increases over East and Southeast Asia (ESEA) to changes in anthropogenic
emissions and climate. Despite variations in model capabilities and emission inventories, all chemical transport
models agree that increases in anthropogenic emission are a primary driver of ozone increases in 1995–2019. The
models attribute 53 %–59 % of the increase in tropospheric ozone burden over ESEA to changes in anthropogenic
emissions, with emission within ESEA contributing by 66 %–77 %. South Asia has increasing contribution to
ozone increases over ESEA. At the surface, the models attribute 69 %–75 % of the ozone increase in 1995–2019
to changes in anthropogenic emissions. Climate change also contributes substantially to the increase in summer-
time tropospheric (41 %–47 %) and surface ozone (25 %–31 %). We find that emission reductions in China since
2013 have led to contrasting responses in ozone levels in the troposphere (decrease) and at the surface (increase).
From 2013 to 2019, the ensemble mean derived from multiple models estimate that 66 % and 56 % of the sum-
mertime surface ozone enhancement in the North China Plain and the Yangtze River Delta could be attributed
to changes in anthropogenic emissions, respectively, with the remaining attributed to meteorological factors. In
contrast, changes in anthropogenic emissions dominate summertime ozone increase in the Pearl River Delta and
Sichuan Basin (91 %–95 %). Our study underscores the need for long-term observational data, improved emis-
sion inventories, and advanced modeling frameworks to better understand the mechanisms of ozone increases in
ESEA.

1 Introduction

Ozone plays a crucial role in the atmosphere as a major
oxidant and a short-lived greenhouse gas. At ground level,
ozone poses significant risks to human health, harms vegeta-
tion, and reduces crop yields (Monks et al., 2015). Ozone in
the troposphere is chemically produced from nitrogen oxides
(NOx), carbon monoxide (CO), and volatile organic com-
pounds (VOCs) in the presence of sunlight. Transport from
the stratosphere is another source of tropospheric ozone.
Since the preindustrial era, tropospheric ozone burden has
risen by 45 %, contributing to a global effective radiative
forcing of 0.47 (0.24 to 0.70) W m−2 (including stratospheric
and tropospheric ozone, 1750–2019), with a continuous in-
crease since the 1990s (IPCC, 2021).

Ozone concentrations are increasingly rapidly over the
densely populated regions of East and Southeast Asia
(ESEA). Analysis from aircraft observations from the In-
service Aircraft for a Global Observing System database (IA-
GOS) demonstrates increase in tropospheric ozone column
(950–250 hPa) at a rate of 2.5–5.0 ppbv decade−1 from 1995
to 2017 in these areas (Gaudel et al., 2020; Wang et al.,
2022a). This increase rate is among the highest when com-
pared to other regions in the Northern Hemisphere, with even
more substantial growth observed in the lower troposphere
(below 850 hPa). The reported increasing trends derived from
IAGOS observations are consistent with ozonesonde obser-
vations in Japan (Wang et al., 2022a) and Beijing (Zhang et
al., 2020) and Hong Kong SAR (Wang et al.,2019) in China.
They also align with trends derived from satellite products

(Ziemke et al., 2019; Gaudel et al., 2020). The ozone increase
in the lower troposphere over Southeast Asia can signifi-
cantly impact global tropospheric chemistry and ozone dis-
tribution, through frequent deep convection and subsequent
atmospheric circulations (Lawrence and Lelieveld, 2010; Lu
et al., 2018b).

At ground level, present-day ozone concentrations in East
Asia (including China, Japan, and the Korean Peninsula)
have been shown to be distinctly higher than those in the
USA and Europe, as reported by the Tropospheric Ozone
Assessment Report Phase I (TOAR I) and subsequent stud-
ies (Gaudel et al., 2018; Lu et al., 2018a, 2020; Lyu et al.,
2023). Both Japan and South Korea have documented sub-
stantial surface ozone increases since the 1990s (Akimoto et
al., 2015; Seo et al., 2014; Nagashima et al., 2017; Yeo and
Kim, 2020; Kim et al., 2023). For instance, Kim et al. (2023)
reported an ozone increase across all urban and background
sites from 2000 to 2021. However, a recent study demon-
strates that the increase rate in warm-season daily maxi-
mum 8 h average (MDA8) ozone in Japan and South Korea
decelerated after 2010 compared to the preceding decades
(Wang et al., 2024a). Long-term surface ozone measure-
ments are relatively scarce in China. Several studies have
reported notable ozone increases at background sites in the
North China Plain and the Pearl River Delta, moderate in-
creases at a global baseline site in western China, and de-
creases at a site in northwestern China (Sun et al., 2016; Ma
et al., 2016; Xu et al., 2016; Wang et al., 2019; Xu et al.,
2020). The national network established in 2013 to monitor
air quality in major Chinese cities has recorded a significant
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rise in April–September MDA8 ozone, with an increase of
2.4 ppbv yr−1 from 2013 to 2019 (Lu et al., 2020). This surge
occurs despite substantial reductions in anthropogenic NOx

emissions. Surface observations have also documented ozone
increases over Peninsular Southeast Asia and the Maritime
Continent (Wang et al., 2022b). For example, studies have
shown notable enhancement in ozone concentrations ranging
from 0.09 to 0.21 ppbv yr−1 during 1997–2016 at four sites
in western Peninsular Malaysia (Latif et al., 2016; Ahamad
et al., 2020).

Quantification of the underlying causes of ozone increases
is essential for developing effective ozone mitigation strate-
gies in ESEA. Tropospheric ozone trends are driven by vari-
ations in anthropogenic emissions of its precursors and are
also influenced by climate change, which modulates ozone
by affecting the natural sources, photochemistry, and trans-
port of ozone even in the absence of trends in anthropogenic
emissions (Lu et al., 2019a; Fiore et al., 2022). On a global
scale, studies have revealed the dominant role of shifts in an-
thropogenic emissions, including contributions from aircraft
emissions and background methane, in tropospheric ozone
increases since 1980 (Zhang et al., 2016; Wang et al., 2022a).
Factors contributing to ozone changes in the USA and Eu-
rope are extensively studied and quantified (e.g., Lin et al.,
2017; Yan et al., 2018). However, in ESEA where rapid tro-
pospheric ozone growth is occurring, it remains largely un-
quantitative to what extent ozone trends at different times and
spatial scales can be attributed to trends in anthropogenic
emissions of ozone precursors within or outside of ESEA
and to climate change. This limitation partly arises from
the scarcity of observations for constraining the long-term
trends, uncertainties in emission inventory, and the compu-
tational costs for conducting chemical model simulations
over multiple decades. Specifically, in attributing the post-
2013 surface ozone trends in China, modeling studies have
revealed significant discrepancies in how these trends are
linked to changes in anthropogenic emissions and meteoro-
logical conditions, both in their direction and magnitude (Li
et al., 2020; Liu and Wang, 2020a, b; Dang et al., 2021; Weng
et al., 2022; Liu et al., 2023). These discrepancies reflect the
differences in modeling approaches (statistical models, ma-
chine learning methods, versus three-dimensional chemical
transport models), model capabilities (chemical mechanisms
and resolution), input data (meteorological and emission),
and time frames, which can confuse the attribution of ozone
trends.

Building upon the observational basis and identified scien-
tific gaps, the East Asia Working Group in TOAR Phase II is
dedicated to exploring three key questions: (1) what are the
spatiotemporal distributions and trends of tropospheric ozone
in East Asia, (2) what drives tropospheric ozone trends over
East Asia, and (3) how does ozone change over ESEA influ-
ences downwind ozone air quality, global ozone budgets, and
other atmospheric constituents?

This study aims to answer the second question. Acknowl-
edging the surging ozone level in Southeast Asia, our study
expands the spatial coverage to include both East and South-
east Asia (Fig. 1). We apply diverse methodologies to at-
tribute long-term and short-term ozone trends, spanning from
the surface to the tropopause across ESEA. We focus on the
boreal summertime (June, July, and August) when most re-
gions in East Asia show peak ozone concentrations in the
year, but it does not cover the ozone season in some regions
in Southeast Asia where ozone typically peaks in boreal au-
tumn or winter (e.g., Latif et al., 2016). We choose 1995–
2019 for the long-term trend analysis, as ozone measure-
ments in the free troposphere over ESEA become increas-
ingly accessible in this period. For short-term trends, we fo-
cus on the years from 2013 to 2019, as nationwide surface
ozone measurement in China starts from 2013 and shows
significant ozone increase in this period. A distinctive fea-
ture of this study is the integrated application of a statisti-
cal model, two machine learning models, and three chemical
transport models, each with unique characteristics, to eval-
uate the consistency and discrepancies among these mod-
els in reproducing current levels and trends in tropospheric
ozone across East Asia. This enables us to quantify the un-
certainty in ozone trend attributions, taking into account the
variations in model capabilities, meteorological inputs, and
emissions data. In relation to this study, a companion paper
(Li et al., 2025) delves deeper into the contemporary levels
and trends of ozone from the surface to the tropopause over
ESEA (Question 1), and a separate study will examine the
implications of tropospheric ozone and its precursors over
ESEA on the global atmospheric chemistry (Question 3).

The study is structured as follows: Sect. 2 outlines the ob-
servations and models applied in this work. Section 3 briefly
examines trends in meteorological parameters and anthro-
pogenic and natural sources of ozone precursors. Section 4
evaluates the capability of chemical models to reproduce cur-
rent ozone levels, spatial patterns, and trends. Section 5 at-
tributes the factors influencing long-term (1995–2019) and
short-term (2013–2019) ozone trends. Conclusions and dis-
cussions are summarized in Sect. 6.

2 Observations, model descriptions, and
experiment design

2.1 Observational data

2.1.1 Surface measurement network

We collect hourly ozone observations from 1995 to 2019
from national surface monitoring networks and individual
sites, covering major developed and developing regions in
ESEA (Fig. 1a, Table 1). The national monitoring network
is from China, Japan, South Korea, Malaysia, and Thai-
land. We analyze the data in Japan (1995–2019), South
Korea (2001–2019), Hong Kong SAR, China (2001–2019),
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Figure 1. Tropospheric and surface ozone observations from the IAGOS, ozonesonde, and surface monitoring networks used in this study
in summertime 1995–2019. Panel (a) shows the location of surface monitoring sites (red) and ozonesonde sites (blue). The small red dots
represent monitoring sites from the national network; the large red dots represent the five monitoring sites in China with long-term ozone
observations. Numbers of available profiles (N ) for ozonesonde measurements are shown in the inset. Panel (b) shows the IAGOS flight
tracks in the troposphere. The boxes indicate the region of East Asia (103–137° E, 27–46° N) and Southeast Asia (90–123° E, 10–27° N).
Numbers of available profiles (N) for flight tracks are shown in the inset. Detailed information of the observations is summarized in Table 1.
Areas with grey shadings in panel (a) denote ESEA countries defined in this study (Mongolia, China, Democratic People’s Republic of
Korea, Republic of Korea, Japan, Myanmar, Thailand, Laos, Viet Nam, the Philippines, Cambodia, Malaysia, and Indonesia).

Thailand (2005–2019), mainland China (2013–2019), and
Malaysia (2017). Five additional monitoring sites in China
with more than 11 years of available observations are also
included (Xu et al., 2020). Detailed descriptions of the mon-
itoring networks and data quality control measures will be
given in the companion paper (Li et al., 2025).

2.1.2 Ozonesonde observations

We utilize measurements of vertical ozone profiles from
seven ozonesonde sites documented in the World Ozone and
Ultraviolet Radiation Data Centre (WOUDC) (Fig. 1a). The
four sites in East Asia, i.e., Pohang, Naha, Sapporo, and
Tateno (Tsukuba), record over 230 ozone profiles during
June, July, and August from 1995 to 2019, with an aver-
age of approximately 3–4 profiles per month. In contrast, the
three sites in Southeast Asia have significantly fewer avail-
able ozone profiles of around 100 per site, except for King’s
Park site in Hong Kong SAR, China. Here, we categorize
the seven stations into two groups (East Asia and Southeast
Asia), ensuring an adequate number of data samples to bet-
ter characterize the tropospheric ozone profiles and trends in
both regions.

2.1.3 IAGOS observations

We apply measurements of tropospheric ozone profiles in
1995–2019 from the In-service Aircraft for a Global Observ-
ing System database (IAGOS) program. The IAGOS pro-
gram was initiated in 1994 (Thouret et al., 1998) to mea-
sure multiple atmospheric compositions including ozone,
with instruments on board commercial aircraft (Nédélec et
al., 2015). Details on the measurements and validation are
extensively documented in previous studies (Thouret et al.,
1998; Nédélec et al., 2015; Blot et al., 2021). Measurements
of tropospheric ozone are available during takeoff and land-
ing and during the cruise portion of the flight at any time of
the day. The sampling frequency varies depending on the air-
line schedule. Figure 1b summarizes available IAGOS pro-
files over East Asia (103–137° E, 27–46° N, N = 2584) and
Southeast Asia (90–123° E, 10–27° N, N = 2059). The IA-
GOS flight height typically reaches up to 200 hPa, which
can attain or exceed the tropopause in East Asia, yet re-
mains within the upper troposphere in tropical Southeast
Asia. Analyses of IAGOS data indicate their consistency
with ozonesonde records in the upper troposphere–lower
stratosphere above western Europe (Staufer et al., 2013) and
their representation of ozone in the lower troposphere (Pe-
tetin et al., 2018; Cooper et al., 2020). The IAGOS data have
been applied to derive robust tropospheric ozone trends on a
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regional scale from the northern mid-latitudes to the tropics
(Cohen et al., 2018; Cooper et al., 2020; Gaudel et al., 2020;
Wang et al., 2022a).

2.2 Statistical and machine learning models

Figure S1 in the Supplement provides an overview of the
application of three statistical and machine learning models
used in this study for attribution of ozone trends. The overall
strategy is to apply these approaches to develop a predictive
model for surface ozone concentrations using meteorological
variables and from which to separately quantify the role of
meteorology and other factors (ideally linked to emissions)
in ozone variability and trends. We adopt one conventional
statistical method, i.e., the multiple linear regression (MLR)
method, and two machine learning models, i.e., the ridge re-
gression (RR) and random forest regression (RFR) methods.

We use a backward stepwise MLR modeling approach,
starting with all 11 meteorological variables (see below) as
predictors and iteratively remove the least significant ones
until five remain. MLR then models only relying on these
five predictors, thereby reducing potential collinearity and
the risk of overfitting that are often associated with conven-
tional MLR, in which all predictors are considered. We also
apply the variance inflation factors (VIF; the inverse of tol-
erance) to measure the collinearity of the MLR models. The
ridge regression in this study is a linear regression in essence,
but with its cost function augmented with L2 regularization,
which can also effectively improve collinearity and overfit-
ting in conventional MLR (McDonald, 2009). RFR, on the
other hand, is an ensemble decision tree approach that can
adaptively model both linear and nonlinear relationships be-
tween predictors and the dependent variable (Breiman, 2001;
Grange et al., 2018). Its use of bootstrap sampling and ran-
dom feature subsets in each regression tree makes it more re-
sistant to overfitting than a single tree prediction (Altman and
Krzywinski, 2017). These three models have been applied
to assess the contributions of meteorology and emission on
ozone variabilities in China (Li et al., 2019b, 2020; Weng et
al., 2022). Our application here, with consistent time frame,
and data process (e.g., deseasonalization, as documented be-
low), allows a direct comparison of results from the three
approaches.

We obtain the meteorological variables from the fifth-
generation European Centre for Medium-Range Weather
Forecasts atmospheric reanalysis of the global climate
(ERA5, horizontal resolution of 0.25°× 0.25°, latitude ×
longitude) and Modern Era Retrospective analysis for Re-
search and Application version 2 (MERRA-2, 0.5°× 0.625°)
reanalysis datasets in turn. Specifically, 11 meteorological
variables (Table S1 in the Supplement) are selected from
each dataset (i.e., ERA5 and MERRA-2 in turn) as predictors
for these algorithms to model ozone. The selected meteoro-
logical variables include temperature, solar radiation, wind
speed, and others that have been widely recognized to modu-

late daily ozone variability (Li et al., 2019b; Gong and Liao,
2019; Weng et al., 2022; Yang et al., 2024). We perform the
analyses at the city level by averaging ozone concentrations
across monitoring sites within the same city to represent the
average air quality of that city. To spatially align the grid-
ded meteorological data with the in situ MDA8 measure-
ments, we extract the meteorological data from the reanaly-
sis datasets at the grid point corresponding to the city center.
Following Weng et al. (2022), we then deseasonalize both
MDA8 ozone and daytime (06:00–18:00 local time) mete-
orological data by subtracting the multi-year averaged 15 d
moving mean window from each corresponding data point,
based on the same date in month–day format. This step is to
prevent ozone predictions from being influenced by inherent
seasonality rather than daily variability in meteorology. Fi-
nally, these 11 deseasonalized meteorological variables serve
as predictors fed into the stepwise MLR (termed “MLR”
hereafter), RR, and RFR to predict the dependent variable,
namely, deasonalized surface MDA8 ozone.

We follow standard machine learning practices by splitting
the dataset into training and testing sets for MLR, RR, and
RFR. Specifically, the entire dataset is randomly split into
two parts: a training set comprising 80 % of the data and the
rest 20 % for testing. We utilize a two-stage 5-fold random
partition method. The first stage, as mentioned above, is de-
signed to randomly partition the dataset, with each of the five
subsets (20 % of the entire dataset) taking turns serving as
the test set. When one subset acts as the test set, the remain-
ing four subsets (80 % of the data) constitute the training set.
In the second stage, a similar random partition is applied to
the training set, acting as a cross-validation method. During
the cross-validation, we perform a grid search over ranges
of different hyperparameters for RR and RFR. For RR, the
strength of L2 regularization (i.e., alpha) is set to range from
1 to 399, with an incremental step of 2. For RFR, the hy-
perparameters used in this study is consistent with those of
Weng et al. (2022). Finally, the modeled values of the test sets
are used to reflect meteorologically driven ozone variabili-
ties. Trends estimated from the predicted ozone are therefore
indicative of meteorologically driven ozone trends, while
the trends of residuals between observed and predicted val-
ues (observed minus predicted values) can reflect emission-
driven ozone trends (Li et al., 2019b). We conduct the above
analyses for the summertime period of 2013–2019 to quan-
tify the attribution of surface ozone trends in China. The
model performance and interpretations will be discussed in
Sect. 5.2.

2.3 Chemical transport model

In this study, we employ four simulations generated from
three chemical transport models, two on a global scale
(GEOS-Chem with coarse resolution and CAM4-chem) and
two on a regional scale (GEOS-Chem with fine resolu-
tion and WRF-CMAQ), to quantify the impact of emission
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changes and meteorology on the trend of tropospheric ozone
over ESEA. Section 2.3.1 to 2.3.3 describe the configurations
of the three models; Sect. 2.3.4 compares the key differences
in capability and configuration among the models.

2.3.1 GEOS-Chem

GEOS-Chem is a state-of-the-art global to regional three-
dimensional chemical transport model (Bey et al., 2001).
We apply GEOS-Chem version 13.3.1 (available at https://
github.com/geoschem/GCClassic/tree/13.3.1, last access: 23
July 2024). The model is driven by MERRA-2 re-analysis
meteorological fields. In short, GEOS-Chem describes a
comprehensive stratosphere–troposphere coupled ozone–
NOx–VOCs–aerosol–halogen chemistry scheme (Eastham et
al., 2014) and includes online calculation of dry and wet de-
positions of gases and aerosols. More detailed descriptions
of the GEOS-Chem chemistry, transport and mixing scheme,
and deposition are provided by Wang et al. (2022a).

Global anthropogenic emissions used in our GEOS-Chem
simulations are from Community Emissions Data System
inventory (CEDSv2), which builds on the extension of the
CEDS system to 2017 as described in McDuffie et al. (2020)
(O’Rourke et al., 2021). Emission estimates in the CEDSv2
inventory (Fig. 2) are scaled to existing authoritative in-
ventories as a function of emission sector and fuel type
where available. In Asia, the authoritative emission inventory
employed for this scaling procedure includes the Regional
Emission inventory in Asia (REAS) over Asia (Kurokawa
et al., 2013), the Multi-resolution Emission Inventory model
for Climate and air pollution research (MEIC) over China
(Zheng et al., 2018), the NIER inventory over South Korea,
and the SMoG-India inventory (Venkataraman et al., 2018)
over India. We also include yearly global aircraft emissions
from the CEDSv2 inventory to account for their impacts on
tropospheric chemistry following Wang et al. (2022a). For
natural emissions, GEOS-Chem includes online calculation
of biogenic VOC emissions (Guenther et al., 2012) and NOx

emissions from soil (Hudman et al., 2012; Lu et al., 2021a)
and lightning (Murray et al., 2013). Biomass-burning emis-
sions are from the BB4CMIP inventory (van Marle et al.,
2017), in which the emissions for years after 1997 are identi-
cal to the Global Fire Emissions Database version 4 (GFED4;
van der Werf et al., 2017). Surface methane concentration
in GEOS-Chem is prescribed based on spatially interpo-
lated monthly mean surface methane observations from the
NOAA Global Monitoring Division, while the transport and
chemistry of methane are simulated interactively. The use of
methane boundary conditions instead of methane emissions
is to ensure a realistic methane distribution in the model, as
there are significant uncertainties associated with bottom-up
methane emission inventories (Lu et al., 2021b).

We apply the GEOS-Chem model to simulate tropospheric
ozone change from 1995 to 2019 on both global and regional
scales. For the global scale, we run the model at a horizon-

tal resolution of 4°× 5°, with 72 vertical layers extending
from the surface to 0.01 hPa. The three-hourly global con-
centrations of atmospheric compositions are then archived
as boundary conditions to drive the nested model simulation
over the nested East and Southeast Asia domain (60–150° E,
11° S–55° N) at the horizontal resolution of 0.5°× 0.625°.
Three-dimensional ozone concentrations are output hourly
to allow the co-sampling with IAGOS and ozonesonde mea-
surement.

The simulation strategy for quantifying the attribution of
ozone trends mostly follows Wang et al. (2022a) (Table 2).
We conduct the standard simulation (BASE) from 1995 to
2019 using year-specific meteorology fields and emissions
as described above. In the Fix_Globe_AC simulation, we
fix global anthropogenic emissions (including aircraft emis-
sions) and methane concentration at their 1995 levels. As a
result, ozone changes in the Fix_Globe_AC simulation only
reflect variations in natural emissions and climate conditions,
so it estimates the climatic influence on tropospheric ozone
trends. The difference in ozone trends between the BASE and
Fix_Globe_AC simulation can be used to quantify the con-
tribution of global anthropogenic emissions of tropospheric
ozone precursors to ozone trends. We also conduct a simu-
lation Fix_ESA_A by fixing anthropogenic emissions over
ESEA countries (Fig. 1a) at their 1995 levels. We use the ini-
tial chemical fields archived in Wang et al. (2022a) to drive
the model simulation from 1995, in which the initial chem-
ical fields have been spun up for 10 years to ensure the ad-
equate distributions of chemical species in the stratosphere.
For global simulations at a 4°× 5° resolution, our simulation
spans the entire year from 1995 to 2019. For regional simula-
tions at a 0.5°× 0.625° resolution, we constrain our simula-
tions to boreal summer (June, July, August, with simulation
in May as spin-ups) and conduct simulations for the years
1995, 2000, 2005, 2010, 2013, 2015, 2017, and 2019.

2.3.2 CAM4-chem

We perform two 19-year-long simulations (2000–2018) with
the Community Atmosphere Model version 4 with chem-
istry (CAM4-chem), a component of the Community Earth
System Model version 1.2.2 (CESM; Lamarque et al., 2012)
aided with the TOAST ozone tagging technique as described
in Butler et al. (2018, 2020). The two simulations attribute
the simulated ozone in terms of its NOx and reactive car-
bon (RC, NMVOC+CO+CH4) sources respectively. A 1-
year spin-up was performed for the NOx-tagged simulations
and a 2-year spin-up for the RC-tagged simulations.

Anthropogenic emissions of NOx , CO, non-methane
volatile organic compounds (NMVOCs), NH3, SO2, and PM
are taken from the recently launched Hemispheric Trans-
port of Air Pollution version 3 (HTAPv3; Crippa et al.,
2023) emissions inventory. We specify aircraft emissions
at three sets of altitude ranges representing the different
flight phases (landing/takeoff, ascent/descent, and cruising).
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Figure 2. Spatial distributions and long-term trends in summertime anthropogenic emissions of NOx , CO, and NMVOC in East and South-
east Asia. Emission estimates are from the CEDSv2 inventory. Panels (a1)–(a3) show mean emissions averaged over years 2015, 2017, and
2019. Panels (b1)–(b3) show the 1995–2019 trends. Black dots denoted linear trends with a p value < 0.05. Panels (c1)–(b3) show the time
series of emission ratio relative to 1995 level for different regions, in which CHN stands for China, JP stands for Japan, S.K. stands for South
Korea, SEA includes Myanmar, Thailand, Laos, Viet Nam, Cambodia, and Philippines, I/M stands for Indonesia and Malaysia.

Table 2. Configuration of simulations used in this study.

Simulation name Description

BASE Simulations with year-specific anthropogenic emissions, methane concentrations, and
meteorological fields. Conducted with the GEOS-Chem and WRF-CMAQ model.

Fix_Globe_AC Same as BASE, but with global anthropogenic emissions and methane concentration fixed at
their 1995 levels.
Conducted with the GEOS-Chem and WRF-CMAQ model.

Fix_ESA_A Same as BASE, but with anthropogenic emissions fixed at their 1995 levels.
Conducted with the GEOS-Chem and WRF-CMAQ model.

NOx -tagged and RC-tagged Simulations with year-specific anthropogenic emissions, methane concentrations, and
meteorological fields, at the same time attribute the simulated ozone in terms of its NOx and
reactive carbon (RC, NMVOC+CO+CH4) sources. Conducted with the CAM4-chem model.

Biomass-burning emissions are from GFED-v4 inventory
(van der Werf et al., 2010). The biogenic NMVOC emissions
are from CAMS-GLOB-BIO-v3.0 (Sindelarova et al., 2021),
and biogenic NOx (from soil) is prescribed as in Tilmes et
al. (2015). Same as GEOS-Chem, methane concentration is
imposed as a surface boundary condition.

The chemical mechanism applies the MOZART-4 tropo-
spheric chemical mechanism (Emmons et al., 2010), which
is modified to include tagged ozone tracers as described in
Butler et al. (2018). The mechanism contains detailed chem-
istry of methane and NMVOC oxidation but does not contain
any halogen species. Stratospheric ozone is formed through
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photolysis of molecular oxygen and is fixed at the upper
model boundary based on output from CESM2-WACCM6
(Emmons et al., 2020).

Separate tag identities are specified for regional land-
based emissions and for global biogenic, biomass burning,
aircraft and shipping emissions of ozone precursors, as well
as for ozone from production in the stratosphere (Nalam et
al., 2025). A total of 13 regions are tagged for NOx emis-
sions, including East Asia and Southeast Asia (Fig. S2). The
NOx-tagged simulations also contain a tag for ozone pro-
duced from lightning NOx , and the RC-tagged simulations
contain an additional tag for ozone produced from methane
oxidation. In both NOx- and RC-tagged simulations, the sum
of tagged ozone contributions is equal to the total ozone sim-
ulated by the model.

The model is run at a horizontal resolution of 1.9°× 2.5°,
with 56 vertical levels (from surface to 1.86 hPa) for the
2000–2018 period driven by meteorological data from the
MERRA-2 reanalysis. The temperature, horizontal winds,
and surface fluxes from MERRA-2 reanalysis dataset are
nudged every time step (30 min) by 10 % towards analysis
fields.

2.3.3 WRF-CMAQ

We also apply the Community Multiscale Air Quality
(CMAQ) (version 5.2.1) three-dimensional regional air qual-
ity model. Meteorological input of the CMAQ model is pro-
vided by the Weather Research and Forecasting (WRF v3.9)
model. The initial and boundary conditions of meteorolog-
ical fields are generated from the ERA5 reanalysis dataset
for years before 2000 and from the National Center for
Environmental Prediction (NCEP) FNL Operational Model
Global Tropospheric Analyses with a horizontal resolution
of 1°× 1° for years after 2000.

The physical schemes used in the WRF simulation is sum-
marized in Table S2. We use SAPRC07TIC (Carter, 2010;
Hutzell et al., 2012) for gas-phase chemistry and AERO6i
(Murphy et al., 2017; Pye et al., 2017) for aerosols. However,
the model does not include specified stratospheric chemistry.
Anthropogenic emissions are derived from the MIX inven-
tory (Li et al., 2017) as of the 2010 level, with interannual
variations being scaled in accordance with the CEDSv2 in-
ventory. Biomass-burning emissions are identical to those
used in the GEOS-Chem model. In addition, we also add
hourly soil emissions of NOx calculated online from the
GEOS-Chem model to the CMAQ simulations as offline
emissions. The biogenic emissions are calculated using the
Model of Emissions of Gases and Aerosols from Nature
(MEGAN) (Guenther et al., 2012) driven by the meteoro-
logical outputs from the WRF model. However, the model
does not consider emissions in the upper troposphere, such
as lightning emissions and aircraft emissions. Methane con-
centration is a fixed value of 1850 ppbv in the simulation.

The WRF-CMAQ model domain covers ESEA at a hor-
izontal resolution of 36 km× 36 km, as shown in Fig. S3.
We set 23 vertical layers extending from the surface to the
height of ∼ 22 km. In particular, the chemical boundary con-
ditions are generated from the GEOS-Chem simulation us-
ing the newly developed GC2CMAQ tool (Zhu et al., 2024).
As such, the boundary conditions used in the GEOS-Chem
nested model and CMAQ model are largely reconciled.

We conduct WRF-CMAQ simulations for the months of
June, July, and August for the years 1995, 2000, 2005, 2010,
2013, 2015, 2017, and 2019. These simulation years align
with the GEOS-Chem simulations at a nested grid. The initial
11 d before each June are considered as the spin-up time for
the simulations. We also perform four sensitivity simulations
following the same strategy as the GEOS-Chem simulations.

2.3.4 Comparison of GEOS-Chem, CAM4-chem, and
WRF-CMAQ model characteristics and
configuration

One of the main purposes for employing three chemical
models with distinct model characteristics is to assess the
consistency and discrepancies among these models in re-
producing current levels and trends in tropospheric ozone
across East Asia, using the same observational dataset as
a benchmark. Additionally, it allows us to quantify the un-
certainty of ozone trend attributions, considering variations
in the model’s spatial resolution, meteorological input, and
emission data. Table 3 compares the key differences between
GEOS-Chem, CAM4-chem, and WRF-CMAQ simulations
used in this study.

First, the three models use different meteorological fields.
GEOS-Chem and CAM4-chem do not simulate meteorologi-
cal fields; rather, they use MERRA-2 re-analysis data assim-
ilated from multiple observations. CMAQ model uses WRF-
simulated meteorological fields as input. All models are of-
fline and do not account for the interactions between atmo-
spheric chemistry and meteorology.

Second, the chemical schemes among the three mod-
els are largely different. The GEOS-Chem version 13.3.1
describes a stratosphere–troposphere coupled ozone–NOx–
VOCs–aerosol–halogen chemistry scheme. In particular, the
model includes a detailed halogen chemistry that tends to
provide additional ozone chemical loss especially in the
free troposphere. CAM4-chem applies the MOZART-4 tro-
pospheric chemical mechanism but does not contain halo-
gen species. Stratospheric chemistry is also simplified by
only considering the ozone formed through photolysis of
molecular oxygen, with a fixed upper boundary condition
for ozone as described in Nalam et al. (2025). CMAQ
used SAPRC07TIC for gas-phase chemistry and AERO6i
for aerosol mechanism. It does not consider stratospheric
chemistry. Both GEOS-Chem and CAM4-chem consider the
interannual variation of methane concentrations, while the
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Table 3. Summary of the characteristics of the three chemical transport models used in this study.

GEOS-Chem CAM4-chem WRF-CMAQ

Meteorology Using MERRA-2 reanalysis
data as offline input

Driven by meteorological data
from the MERRA-2 reanalysis,
with some variables from
MERRA-2 reanalysis dataset
being nudged every time step
(30 min) by 10 % towards
analysis fields

Using WRF simulated
meteorological fields as offline
input

Chemistry UCX scheme, with full
tropospheric and stratospheric
chemistry.
Methane boundary conditions
from observations with
interannual variability

MOZART-4 tropospheric
chemical mechanism,
simplified stratospheric
chemistry.
Methane concentrations
imposed as boundary
conditions

SAPRC07TIC for gas-phase
chemistry and AERO6i for
aerosol mechanism, no
stratospheric chemistry.
Methane concentration fixed as
a constant

Emissions CEDSv2 anthropogenic
emissions, including aircraft
emissions.
Natural emissions include
biogenic VOCs, soil NOx ,
lightning NOx . BB4CMIP6
inventory for biomass-burning
emissions (1997–2017 same as
GFED4)

CEDSCMIP anthropogenic
emissions,
Natural emissions include
biogenic VOCs, soil NOx ,
lightning NOx . GFED4
inventory for biomass-burning
emissions

MIX inventory with
interannual variations being
scaled by the CEDSv2
inventory. No aircraft
emissions.
Natural emissions include
biogenic VOCs, soil NOx .
GFED for biomass-burning
emissions. No lightning NOx

emissions

Resolution and domain Global: 4°× 5°, with 72
vertical layers extending to
0.01 hPa
East and Southeast Asia:
0.5°× 0.625°, with 72 vertical
layers

1.9°× 2.5°, with 56 vertical
levels

36 km× 36 km, with 23
vertical layers extending to the
height of ∼ 22 km

Simulation time 1995–2019 for BASE
simulation, June, July, and
August in 1995, 2000, 2005,
2010, 2013, 2015, 2017, 2019
for sensitivity simulations

2000-2018 June, July, and August in 1995,
2000, 2005, 2010, 2013, 2015,
2017, 2019 for sensitivity
simulations

CMAQ model treats methane concentration as a fixed level
for all years.

Third, the three models do not share the same emission
input. For anthropogenic emissions, GEOS-Chem model ap-
plies the CEDSv2, CAM4-chem applies the HTAPv3 inven-
tory, and CMAQ applies the MIX inventory with interannual
variations being scaled by the CEDSv2 inventory. Addition-
ally, the models differ in their consideration of natural emis-
sions. All the models incorporate biogenic VOC emissions
from the MEGAN algorithm; however, due to variations in
meteorological fields, the emission amounts are expected
to differ. The GEOS-Chem and CMAQ models utilize the
same soil NOx emission inventory, whereas the CAM4-chem
model employs a different approach for estimating soil NOx

emissions. The CMAQ model does not account for lightning
emissions and aircraft emissions.

Fourth, the horizontal and vertical resolutions differ
among the three models. GEOS-Chem utilizes two horizon-
tal resolutions in this study of 4°× 5° and 0.5°× 0.625°;
CAM4-chem operates at 1.9°× 2.5°; and WRF-CMAQ em-
ploys the finest resolution of 36 km× 36 km. In terms of ver-
tical resolution, GEOS-Chem comprises 72 layers extending
from the surface to 0.01 hPa, CAM4-chem includes 56 verti-
cal levels, and WRF-CMAQ has the coarsest vertical resolu-
tion with 23 layers extending to 50 hPa.
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2.4 Trend estimation

2.4.1 Generalized least-squares method for surface
measurements

For surface measurement, we derive the parametric linear
ozone trend at each monitoring site using the generalized
least-squares method. As ozone has a strong seasonal cycle,
estimating trends based on monthly mean anomalies is more
accurate than using the monthly mean data, if there were
missing data (Cooper et al., 2020; Lu et al., 2020). We first
derive the monthly mean anomalies of ozone by subtracting
the original values from the monthly mean data. We then esti-
mate linear trends using the generalized least-squares method
and report the linear trend coefficient and corresponding p

values.

2.4.2 Quantile trend estimation for IAGOS and
ozonesonde observations

For IAGOS and ozonesonde observations, we use the quan-
tile regression method (Koenker and Bassett, 1978) to de-
rive tropospheric ozone trends following the methodology
outlined by Gaudel et al. (2020). This method is advanta-
geous for trend estimates for time series with intermittent
missing values and temporal discontinuities, as it relies on
the rank value of the sample distributions rather than mean
value (Koenker and Xiao, 2002; Chang et al., 2021). We
apply the same procedures, such as deseasonalization, de-
tailed in Sect. 2.4 of Wang et al. (2022a). Linear trends
(in ppbv decade−1) of ozone at the 50th percentile (median)
for the period 1995–2019 are reported with a corresponding
p value.

3 Trends in emissions and meteorological variables
over East and Southeast Asia

3.1 Trends in anthropogenic emissions of ozone
precursors

Figure 2 shows the spatial distribution (averaged over 2015,
2017, and 2019, in accordance with the model simulation
years) and trends (1995–2019) in summertime anthropogenic
NOx , CO, and NMVOC emissions derived from the CEDSv2
inventory. The spatial distributions of these emissions of
ozone precursors are similar, with high emissions concen-
trated in the populated regions over the ESEA region, in-
cluding the North China Plain (NCP), Yangtze River Delta
(YRD), Pearl River Delta (PRD), the Sichuan Basin (SCB),
South Korea, Japan, southern Thailand, southern Viet Nam,
and central Indonesia.

Figure 2b and c illustrate the emission trends from 1995 to
2019. Anthropogenic emissions of NOx , CO, and NMVOCs
have increased by 129 %, 17 %, and 50 % from 1995 to
2019, averaged over the continental ESEA, respectively.
NOx emissions in China, Southeast Asia, Indonesia, and In-

dia have increased during this period, contrasting with a de-
cline in relatively developed countries such as South Korea
and Japan. In China, NOx emissions surged by 4.7 times
from 1995 to 2011, followed by a 29 % reduction from 2011
to 2019 due to the implementation of stringent emission con-
trol measures. Emissions in Indonesia and Southeast Asia
have grown by 3.7 and 2.1 times over these 25 years, respec-
tively, while South Korea and Japan have reduced their NOx

emissions by 20 % and 60 % since 1995, respectively.
CO emissions show similar trends to NOx . In China, CO

emissions increased by 80 % from 1995 to 2008, followed
by a 33 % decrease by 2019. Emissions in Southeast Asia
continued to rise by approximately 50 % from 1995 to 2019.
In Indonesia, emissions peaked with a 67 % increase in 2013
relative to 1995 level, followed by a 15 % reduction by 2019.
In South Korea and Japan, CO emissions decreased by 45 %
and 56 % in 2019 compared to 1995, respectively.

NMVOC emissions show a different trend. Most countries
in the ESEA region have experienced an increase in NMVOC
emissions, with an exception of Japan, where emissions de-
creased by approximately 40 % from 1995 to 2011 and have
remained stable. NMVOC emissions in China, South Korea,
and Southeast Asia have increased by 51 %, 47 %, and 67 %
from 1995 to 2019, respectively. However, emissions in these
three countries have changed little in the last decade.

3.2 Trends in meteorological variables and natural
emissions

Figure S4 shows the trends in key meteorological parameters
relevant to ozone natural sources, chemistry, and transport
from 1995 to 2019 over ESEA, derived from the MERRA-2
reanalysis dataset. A notable upward trend in surface down-
ward solar radiation is discernible across Southeast Asia,
whereas a decline is evident in most parts of China. These
shifts in solar radiation align with trends in total cloud cov-
erage. The decline in surface downward solar radiation in
eastern China is also attributable to increase in aerosol load-
ing (He et al., 2018). In terms of temperature, the ESEA re-
gion has witnessed widespread warming, with an exception
of decreasing temperatures in Myanmar. Specific humidity
exhibits an increasing trend across most of the ESEA re-
gion, with largest increases observed in China and Myan-
mar. Trends in surface wind speed vary across regions. East-
ern China and South Korea have experienced a decrease in
wind speed, which may be attributed to rapid urbanization in
these areas. In contrast, wind speed over the South China Sea
shows an increasing trend.

Figure S5 displays the spatial distribution of summer-
time mean emissions of biogenic volatile organic compounds
(BVOCs), soil NO, lightning NO, and biomass-burning CO
across ESEA, averaged over the years 2015, 2017, and
2019. Emissions from vegetation, soil, and lightning are
calculated by the parameterization schemes implemented
in GEOS-Chem driven by MERRA-2 meteorological data,
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while biomass-burning emissions are derived from the in-
ventory (Sect. 2.3.1). BVOC emissions are high in southern
China, Southeast Asia, and central Indonesia, where vege-
tated and forested areas are most prominent. Soil NO emis-
sions are high in regions with intensive agricultural fertil-
izer application and nitrogen deposition, such as the NCP in
China and Indo-Gangetic Plain in India (Lu et al., 2021a).
High lightning NO emissions are concentrated over northern
China and regions near Mongolia, reflecting a larger amount
of NO released per flash (500 mol) for the lightning north
of 35° N in Eurasia and compared to 260 mol for other re-
gions used in the parameterization scheme (Lu et al., 2019b).
Biomass-burning emissions are the most intensive in Indone-
sia during boreal summer.

Figure S5 also illustrates the temporal trends in these natu-
ral emissions. Significant positive trends in BVOC emissions
are shown in eastern China, Southeast Asia, and parts of In-
dia, in contrast to a significant decline in Myanmar. This is
most likely driven by temperatures, which rise in most re-
gions in ESEA but decrease in Myanmar (Fig. S4b). Soil
NO emissions show large interannual variability. Here we do
not consider changes in fertilizer applications so that trends
are mainly driven by meteorological conditions such as soil
moisture and temperature. Increases in lightning NO emis-
sions in northern China and Mongolia are likely linked to
the intensification of thunderstorm activity. Biomass-burning
emissions show substantial interannual variability. For exam-
ple, in the year 1997, biomass-burning emissions are ∼ 100
times higher than the year 1995. These trends are expected
to influence the ozone trend and variability on the top of an-
thropogenic emission-driven trends.

4 Evaluation of the capability of chemical transport
models in reproducing ozone and trends

4.1 Present-day level of ozone vertical profile and
surface concentration

Figure 3 compares the simulated summertime tropo-
spheric ozone profiles with observations from IAGOS and
ozonesonde measurements for the present-day period (2015–
2019). We sample hourly three-dimensional ozone con-
centrations from the GEOS-Chem (at both 4°× 5° and
0.5°× 0.625° resolution) and the WRF-CMAQ models along
the IAGOS flight tracks and at ozonesonde sample time for
the years 2015, 2017, and 2019. For comparison with IA-
GOS profiles, we average all profiles for the East Asia (103–
137° E, 27–46° N) and Southeast Asia (90–123° E, −10–
27° N) domains. For comparison with ozonesonde observa-
tions, we average ozone profiles at sites of Pohang, Sap-
poro, Tateno (Tsukuba), and Naha to represent East Asia and
King’s Park, Hanoi, and Kuala Lumpur to represent South-
east Asia. As hourly output of three-dimensional ozone con-
centrations from the CAM4-chem model is not available,
we indirectly evaluate its performance by comparing vertical

ozone distributions averaged over the East Asia and South-
east Asia domains in CAM4-chem to GEOS-Chem simula-
tion at 0.5°× 0.625° resolution.

Observations from the IAGOS database show an ozone
peak near the 900 hPa level in both East Asia and South-
east Asia, indicative of elevated ozone concentrations in the
boundary layer above densely populated areas with high an-
thropogenic activities. Above the 900 hPa level, ozone con-
centrations initially decrease and then increase with altitude.
Southeast Asia exhibits a less pronounced vertical gradient in
ozone concentrations compared to East Asia, reflecting the
more convective environment prevalent in tropical regions,
which facilitates vertical transport and mixing of ozone in
the troposphere. In addition, the more active stratosphere–
troposphere ozone transport in the midlatitudes also con-
tributes to the larger ozone vertical gradient in East Asia.
Similar vertical ozone structures are evident in ozonesonde
observations.

We find that, overall, all models applied in this study
capture the observed ozone vertical profiles over East
Asia and Southeast Asia. The GEOS-Chem model at fine
(0.5°× 0.625°) resolution (hereafter referred to as GC05)
effectively replicates the ozone peak observed in the IA-
GOS profiles at near the 900 hPa level above both East Asia
and Southeast Asia, with a small bias of 6–8 ppbv, respec-
tively. It shows no prominent ozone bias when compared
to the IAGOS profiles in the middle and upper troposphere
in East Asia, but it underestimates ozone concentrations by
10–15 ppbv in the upper troposphere over Southeast Asia. It
also reproduces the ozone vertical structure observed from
ozonesonde measurement, yet it displays a high bias in the
lower troposphere of 10–20 ppbv and a low bias of 15 ppbv
in the upper troposphere across both East Asia and South-
east Asia. We also find that GEOS-Chem simulations at both
coarse (4°× 5°) and fine (0.5°× 0.625°) resolutions show no
significant discrepancies in ozone concentrations in the free
troposphere. This can be attributed to the sufficiently long
chemical lifetime of ozone in the free troposphere as such
ozone is relatively well mixed (Petetin et al., 2018; Wang
et al., 2022a). The WRF-CMAQ model shows comparable
ability to capture the observed ozone vertical structure in
East Asia and Southeast Asia, but it shows an excessively
high bias in Southeast Asia and in the upper troposphere and
lower stratosphere, due to the lack of a detailed description
of stratospheric chemistry. Overall, we find that the GC05
model shows better agreement with the observed distribu-
tion in tropospheric ozone compared to the WRF-CMAQ
model, as indicated by the higher correlation coefficients and
smaller relative bias to observations (Fig. S6). The CAM4-
chem model results are overall consistent with the GC05
model in simulating ozone vertical profiles across both East
Asia and Southeast Asia.

Figure 4 evaluates the simulated summertime surface
MDA8 ozone concentrations across ESEA for 2017, when
observations in all regions and output from all three mod-
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Figure 3. Evaluation of GEOS-Chem, WRF-CMAQ, and CAM4-chem model-simulated summertime tropospheric ozone distributions over
IAGOS regions and at ozonesonde sites. Results are presented as averages for June, July, and August in 2015 and 2017 (representing present-
day level), when output is available from all three models. Panels (a) and (b) are comparisons for the IAGOS regions defined in Fig. 1b.
The solid lines are observed and simulated ozone profiles along the IAGOS flight tracks. The dash lines (only shown for CAM4-chem and
GEOS-Chem at 0.5°× 0.625° resolution) are regional means over the East Asia and Southeast Asia domains (Fig. 1b), as CAM4-chem does
not output hourly ozone for direct comparison with the IAGOS observations. Panels (c) and (d) are comparisons for the ozonesonde profiles.
Horizontal bars represent standard deviation from observations at each vertical layer with an interval of 25 hPa. Numbers of available profiles
(N ) for comparison are shown in the inset.

els are available. Observations indicate high summertime
MDA8 ozone concentrations in the NCP (73± 21 ppbv),
YRD (59± 15 ppbv), and SCB (56± 14 ppbv) in China, re-
flecting intensive emissions of ozone precursors and active
photochemistry in these populous city clusters, followed by
South Korea (48±15 ppbv) and Japan (45±10 ppbv). In com-
parison, the PRD region in China, Thailand, and Malaysia
show relatively low summertime MDA8 ozone of 37± 17,
25±3 and 31±8 ppbv due to the effect of the summer mon-
soon (Zhou et al., 2013; Lu et al., 2018a; Gao et al., 2020b).

Ozone concentrations in the PRD region typically peak in
boreal autumn.

As shown in Fig. 4, the WRF-CMAQ model shows a rel-
atively good agreement with observed MDA8 ozone lev-
els, exhibiting a moderate overestimation of 3–8 ppbv in the
NCP, YRD, and Japan, and Thailand. However, the overes-
timation is more pronounced over the PRD (10 ppbv) and
Malaysia (20 ppbv). The CAM4-chem model well captures
surface ozone concentrations in the NCP and SCB in China
and Japan, while it shows a slight high bias of 8–10 ppbv
in the PRD region and South Korea. In comparison, the
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Figure 4. Evaluation of GEOS-Chem, WRF-CMAQ, and CAM4-chem model-simulated summertime surface MDA8 ozone concentrations.
Results are presented as averages for June, July, and August in 2017 (representing present-day level). Panel (a) shows the distributions
of observed ozone. Panels (b)–(d) are the same as panel (a) but for simulated ozone GEOS-Chem at fine (0.5°× 0.625°) resolution, the
WRF-CMAQ model, and the CAM4-chem model, respectively. Mean values ± standard deviation across different regions are shown in the
inset. The spatial correlations (r) between the observation and simulation are also shown for GEOS-Chem (0.5°× 0.625°) and WRF-CMAQ
models, while for the CAM4-chem models r is not shown as the spatial resolution is too coarse to resolve the ozone deviation at different
sites.

GC05 model demonstrates a substantial overestimation of 9–
20 ppbv across all examined regions.

Overall, all models capture the spatial distributions of sur-
face ozone over ESEA, as indicated by the high spatial cor-
relation coefficients between the observed and simulated val-
ues ranging from 0.50–0.78 (except for Thailand, where only
11 sites are available), but they tend to overestimate sur-
face ozone concentrations over ESEA, as also indicated in
Fig. S7. This overestimation highlights a recurring challenge
for models operating at relatively coarse resolutions (30 km
or coarser) in accurately representing surface ozone levels
in densely populated regions, characterized by intense an-
thropogenic emissions and rapid chemical conversion. Such
a high bias reflects a complex combination of multiple fac-
tors (Li et al., 2019c; Yang and Zhao, 2023). A model grid
with a horizontal resolution of 30 km or coarser may not re-
solve the heterogeneity of anthropogenic emissions and thus

lead to artificial mixing of ozone precursors, causing either
higher or lower ozone production efficiency and ozone bi-
ases (Yu et al., 2016; Young et al., 2018). In addition, with
coarser model resolution, representative issues emerge when
comparing gridded simulated results to site-level observa-
tions, and the model has increasing difficulty to present-
ing local meteorological conditions particularly over com-
plex terrain. Yang and Zhao (2023) provided clear evidence
that correlation coefficients between simulated and observed
ozone concentrations in China decrease with decreasing hor-
izontal resolution in air quality models. Here, we also find
smaller model-to-observation bias from the same GEOS-
Chem model configuration but at 0.5°× 0.625° compared
to that at 4°× 5° resolution (results not shown). However,
conducting fine-resolution (e.g., 10 km or higher) chemical
transport models in a large spatial domain (such as ESEA)
significantly enhances the computational costs.
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Our GEOS-Chem simulation configured for this study (us-
ing version 13.3.1 and CEDSv2 as anthropogenic emission
inventory) shows particularly prominent high summertime
ozone bias in city clusters in China. This high bias is not
found or at least not prominent in previous studies using
earlier GEOS-Chem model version (e.g., version 11) and
the MEIC inventory for anthropogenic emissions (Lu et al.,
2019b; Li et al., 2019b, c; Tan et al., 2023). A possible
reason for this discrepancy could be the integration of up-
dated aromatic chemistry in GEOS-Chem models from ver-
sion 13.0.0 onwards. This update has been shown to elevate
surface ozone concentrations by at least 5 ppbv in eastern
China (Bates et al., 2021). The use of the CEDSv2 inventory
in GEOS-Chem intends to standardize emissions inventories
across all countries. However, it might be less accurate for
simulating air pollution over China compared to the MEIC
inventory, which employs more localized data for activity
levels and emission factors (Zheng et al., 2018). Although it
is widely recognized that uncertainties in emission invento-
ries and meteorological fields contribute to simulated ozone
biases, conducting sensitivity simulations with a broader ar-
ray of emission inventories and meteorological fields to pin-
point and minimize these uncertainties would entail substan-
tially higher costs and is beyond the scope of this study.

4.2 1995–2019 ozone trends in the troposphere and at
the surface

We proceed to examine the capability of the models in re-
producing the long-term summertime ozone trends in ESEA
from 1995 to 2019. Figure 5 presents the observed ozone
trends at the 50th percentiles at each vertical layer (from
950 to 200 hPa at 50 hPa intervals) based on IAGOS and
ozonesonde measurements, estimated by the quantile re-
gression model as described in Sect. 2.4. Both IAGOS and
ozonesonde observations indicate increasing tropospheric
ozone over ESEA since 1995, consistent with previous stud-
ies (Gaudel et al., 2020; Wang et al., 2022a). However,
the structure of ozone trends differs between the IAGOS
and ozonesonde measurements, reflecting the difference in
the sampling regions and time. For IAGOS profiles in East
Asia, the rate of ozone increase reaches 8 ppbv decade−1 be-
low the 900 hPa level. The rate of increase decreases ini-
tially with altitude but rises again in the upper troposphere.
For ozonesonde observations, the ozone increasing rate rises
from 4 ppbv decade−1 below 900 hPa to 10 ppbv decade−1

in the upper troposphere. In Southeast Asia, increasing
ozone trends are evident along the IAGOS profiles, reach-
ing 10 ppbv decade−1 across the troposphere. In comparison,
trends measured at the three ozonesonde sites (King’s Park,
Hanoi, and Kuala Lumpur) have large uncertainty, highlight-
ing the challenges in ozone trend estimates with limited sam-
ples (Chang et al., 2022).

Since only GEOS-Chem is applied for the contin-
uous 1995–2019 simulation with full three-dimensional

hourly output of ozone concentrations, we rely on GEOS-
Chem simulation for direct comparison with IAGOS and
ozonesonde observations (Fig. 5) and use the GEOS-Chem
result as an intermediary platform to indirectly evaluate the
overall ozone variation since 1995 from the CAM4-chem
and CMAQ models (Fig. S8). We find that GC05 mostly re-
produces the notable tropospheric ozone increase in ESEA
as well as the different structure measured from the IAGOS
and ozonesonde profiles. In East Asia, it aligns closely with
the observed ozone trends for the IAGOS profiles but un-
derestimates the rate of ozone increase at ozonesonde sites.
In Southeast Asia, although GC05 model does simulate the
overall ozone increase in the troposphere from 1995 to 2019
(Fig. 5), it underestimates the rate in the lower troposphere
compared to both IAGOS and ozonesonde profiles. In gen-
eral, we find that the GC05 outperforms GC45 in reproducing
tropospheric ozone increases in ESEA, except for the lower
troposphere over Southeast Asia.

Figure S8 compares simulated tropospheric ozone trends
averaged over East Asia and Southeast Asia from GEOS-
Chem, CAM4-chem, and WRF-CMAQ. All models con-
cur on the notable tropospheric ozone increases in the pe-
riod of 1995–2019. Even though GEOS-Chem underesti-
mates ozone trends measured in the IAGOS and ozonesonde
profiles (Fig. 5), it simulates the largest ozone increases
compared to the CAM4-chem and WRF-CMAQ model re-
sults. These results highlight a common difficulty in chem-
ical models to capture long-term tropospheric ozone trends
in ESEA, especially Southeast Asia (Wang et al., 2022a,
Wang et al., 2022b). Wang et al. (2022b) show that con-
straining NOx emissions from satellite observations can im-
prove GEOS-Chem’s ability to reproduce the observed ozone
trends over Peninsular Southeast Asia during 2005-2016, in-
dicating that NOx emission growth may have been underes-
timated in the current emission inventory. Shah et al. (2024)
show that increasing nitrate photolysis in the free tropo-
sphere could substantially address the underestimation of tro-
pospheric ozone trends in chemical models.

Figure 6 presents the observed and simulated mean sum-
mertime surface ozone variations at available monitoring
sites from 1995–2019. For Japan and South Korea, we an-
alyze ozone trends from 1995 (295 sites with at least 20
years with available observations in 1995–2019) and 2001
(87 sites with at least 16 years with available observations
in 2001–2019) from their respective national monitoring net-
work. For Thailand and Hong Kong SAR, China, 6 and 9
long-term monitoring sites are available. A nationwide ozone
monitoring network in mainland China was not available be-
fore 2013. We apply observations at five individual stations
with different time span (Xu et al., 2020) (Table 1). The
Chinese Meteorology Administration (CMA) and Gucheng
(GCH) sites are in close proximity and share similar ozone
variation characteristics; therefore, they are grouped. Simu-
lated ozone concentrations at corresponding time and model
grid at individual monitoring sites from the GC05, CAM4-
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Figure 5. Evaluation of GEOS-Chem’s ability to capture summertime tropospheric ozone trends over IAGOS regions and at ozonesonde
sites. Panel (a) shows trends of the 50th percentiles of IAGOS observed and GEOS-Chem simulated summertime ozone trends (ppbv per
decade) at intervals of 50 hPa in 1995–2019. The trends are calculated using the quantile regression method (Sect. 2.4). Filled circles indicate
trends with p value < 0.05. Horizontal bars represent trends at 95 % confidence level from observations.

chem, and WRF-CMAQ are used to compare with the obser-
vations. We focus on the evaluation of long-term trends.

Observed summertime surface ozone concentrations have
increased at 2.4 ppbv decade−1 (p value≤ 0.05) in Japan
from 1995 to 2019 and at 6.9 ppbv decade−1 (p value≤ 0.05)
in South Korea from 2001 to 2019 (Fig. 6). The GC05 model
captures 55.0 % (3.8 ppbv decade−1) of the observed ozone
increases in South Korea but only shows a small rate of in-
crease at 0.60 ppbv decade−1 (25 % of the observed trend)
in Japan. Thailand and Hong Kong SAR, China, exhibit
surface ozone increases of 3.2 and 3.7 ppbv decade−1 (p
value≤ 0.05), respectively, and these trends are also cap-

tured by the GC05 model (46 % for Thailand and 81 % for
Hong Kong SAR, China). The CAM4-chem results are avail-
able for 2000–2018 and show similar underestimation of sur-
face ozone trends. Both models largely reproduce the ob-
served interannual variability in surface ozone concentra-
tions in Japan, South Korea, Thailand, and Hong Kong SAR,
China, as indicated by temporal correlation coefficients rang-
ing from 0.59 to 0.84 for GC05 and from 0.45 to 0.85 for
CAM4-chem. The WRF-CMAQ model is only run for seven
years during the 1995–2019 period, which is insufficient for
deriving long-term trends. As shown in Fig. 6, it still sim-
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Figure 6. Evaluation of GEOS-Chem, WRF-CMAQ, and CAM4-chem model ability to capture 1995–2019 summertime surface ozone
trends. The selected periods for each region/site correspond to the overlapping years of available observations and simulations. Ozone trends
derived from the observations and different models, the associated p values, and the correlation coefficients between the observed and
simulated values are shown in the inset.

ulates an increase in surface ozone concentrations in these
regions, although it similarly underestimates the trends.

Observed trends in summertime surface ozone concen-
trations are not consistent among the five sites in main-
land China. Ozone concentrations show significant increases
in northeastern China (LFS site) and in the NCP region
(SDZ, CMA, and GCH sites). Both GC05 and CAM4-
chem models reproduce these ozone increases but sig-

nificantly underestimate the trends at the SDZ and LFS
sites (1.7–5.3 ppbv decade−1 in the simulations versus 9.7–
12.5 ppbv decade−1 in the observations), while they match
the trends at the CMA ad GCH sites (6.7–7.4 ppbv decade−1

in the simulations versus 6.0 ppbv decade−1 in the obser-
vation). At the LA site in eastern China, observations in-
dicate a slight increase (0.2 ppbv decade−1), whereas both
CAM4-chem and GC05 models simulate a notable increase
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of 3.3–4.4 ppbv decade−1, although they do capture the in-
terannual variability. Overall, all models indicate long-term
increases in summertime mean surface ozone concentrations
since 1995 or the early 2000s at most sites across ESEA,
although the magnitudes are biased compared to the obser-
vations.

5 Attribution of tropospheric ozone trends over East
and Southeast Asia

5.1 1995–2019 trends

5.1.1 Tropospheric (950–200 hPa) ozone

We quantify the factors contributing to summertime tropo-
spheric ozone changes in ESEA from 1995 to 2019 using
model sensitivity simulations. Figure 7 displays the spatial
difference in tropospheric (950–200 hPa) column ozone mix-
ing ratio (TCO) in 2005, 2013, and 2019 relative to the 1995
level from GEOS-Chem (hereafter referred to as GEOS-
Chem at 0.5° resolution) and the WRF-CMAQ model. Figure
8 summarizes the impact of anthropogenic emissions and cli-
mate change on the variation of tropospheric ozone burden
over ESEA (including the East Asia domain of 80–145° E,
30–53° N and Southeast Asia domain of 92.5–135° E, 10° S–
30° N). Our base simulation from GEOS-Chem indicates a
tropospheric ozone burden of 24 Tg over the ESEA during
JJA 2019, representing a 16 % increase from 1995.

Both GEOS-Chem and WRF-CMAQ agree that change in
anthropogenic emissions is a key driver of the tropospheric
ozone increase over ESEA from 1995 to 2019. GEOS-
Chem (WRF-CMAQ) quantifies that shifts in global anthro-
pogenic emissions enhance TCO averaged across continen-
tal ESEA (ocean area excluded) by 2.3 (2.9), 4.2 (5.2), and
4.2 (5.7) ppbv in 2005, 2013, and 2019, respectively, rela-
tive to the 1995 level (Fig. 7b). These increases account for
47 % and 71 % respectively of the simulated TCO enhance-
ment from the GEOS-Chem and WRF-CMAQ model be-
tween 1995 and 2019. In terms of the tropospheric ozone
burden, GEOS-Chem and WRF-CMAQ estimate that 53 %
and 59 % of the increase over ESEA from 1995 to 2019 can
be attributed to increasing global anthropogenic emissions,
respectively (Fig. 8).

A comparison of Fig. 7c and d reveals that the increase
in emission-driven tropospheric ozone over ESEA is primar-
ily attributed to changes in emissions within, rather than out-
side, ESEA. GEOS-Chem estimates that the increase in TCO
driven by emission changes inside ESEA is 2.8 ppbv (66 %
of the emission-driven TCO change), compared to those
outside ESEA of 1.5 ppbv, in 2019 relative to 1995 level.
The CMAQ model simulates a more pronounced partition-
ing of the ozone increase towards emissions within ESEA
(4.4 ppbv, 77 % of the emission-driven TCO change) versus
those outside (1.3 ppbv). The TCO increase contributed by
emissions within ESEA also exhibits notable spatiotemporal

variations. From 1995 to 2013, anthropogenic emissions of
ozone precursors in ESEA increase steadily (Fig. 2), leading
to notable TCO enhancement in eastern and central China
(6–10 ppbv from GEOS-Chem and 12–15 ppbv in CMAQ),
on the Korean Peninsula (3–6 ppbv from both models), and
in Indonesia (2–5 ppbv). However, the emission-driven TCO
increase decelerates or even reduces thereafter (Fig. 7c), co-
inciding with the reduction in anthropogenic emissions of
NOx and CO from 2013 (Fig. 2). This reduction in emis-
sion largely reflects the enactment of the Action Plan on Air
Pollution Prevention and Control in China initiated in 2013.
Figure 8 further illustrates that ESEA emissions have slightly
reduced the tropospheric ozone burden after 2013 by 0.2 Tg,
suggesting that efforts to mitigate air pollution in China have
slowed or even halted the tropospheric ozone rise in ESEA.

Figure 7d illustrates the continuous rise in ozone enhance-
ment due to emissions originating outside of ESEA from
1995 to 2019. It also shows distinct spatial distributions that
are significantly different from those driven by emissions
within ESEA (Fig. 7c). Both GEOS-Chem and CMAQ mod-
els simulate an ozone enhancement attributable to emissions
outside ESEA ranging from 3–5 ppbv in Tibet, China, and
Southeast Asia relative to the 1995 level, with smaller en-
hancements in other regions. We also find that changes in
impact of emission changes outside of ESEA becomes in-
creasingly important at higher altitudes (Fig. 9), consistent
with the findings from previous studies (Ni et al., 2018). With
the overall decline in anthropogenic emissions in Europe and
North America, South Asia has emerged as a key region in-
fluencing the tropospheric ozone trend in ESEA, as also indi-
cated by Fig. 7. Prior studies have documented significant in-
creases in tropospheric ozone since the 1990s over India, pro-
pelled by rising anthropogenic emissions of pollutants (Lu et
al., 2018a; Wang et al., 2022a). The South Asian monsoon is
anticipated to transport ozone and its precursors from South
Asia to the downwind ESEA region, thereby contributing to
the ozone enhancement there.

The tagged ozone module in CAM4-chem offers an inde-
pendent assessment of the regional anthropogenic contribu-
tion to ozone concentration in East Asia and Southeast Asia
(Fig. 10 for ozone produced from NOx emissions, Fig. S9 for
reactive carbon emissions). We note here that the definition
of region (Fig. S3) in the CAM4-chem tagged simulation is
not consistent with the region defined in this study. Focusing
on East Asia, we find that tropospheric ozone produced from
anthropogenic NOx emissions within East Asia increases by
4 ppbv from 2000 to 2012, acting as the main region con-
tributing to anthropogenic ozone enhancement in this pe-
riod (Fig. 10a). The ozone enhancement then decreases after
2013, consistent with the GEOS-Chem and CMAQ model
estimation, and again reflects the emission change in China.
Emissions outside East Asia also contribute to tropospheric
ozone increases. The combined ozone produced by anthro-
pogenic NOx emissions in Southeast Asia and South Asia
contributed to a rise of 3 ppbv in TCO over East Asia from
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Figure 7. Factors contributing to changes in summertime tropospheric ozone column (represented as column-averaged in units of ppbv)
in East Asia and Southeast Asia estimated from the GEOS-Chem and WRF-CMAQ models. Results are ozone differences between the
corresponding year and 1995. Ozone differences contributed by changes in global anthropogenic emissions (including surface emissions,
aircraft emissions, and methane) (b), anthropogenic emissions from ESEA (c), anthropogenic emissions from outside ESEA (d), and climate
(including biomass burning and stratospheric influences) relative to 1995 (e) are estimated. Numbers are mean values across the continental
ESEA.

2000 to 2018, indicating increasing import of ozone pol-
lution from these regions to East Asia. In contrast, contri-
butions from Europe and North America decreased by 2–
3 ppbv from 2000 to 2018. This is an expected result of an-
thropogenic emission controls of ozone precursors in Europe
and North America. Results from the RC-tagged simulation
(Fig. S9) show similar patterns. For Southeast Asia, ozone
enhancements are mostly driven by emissions within South-
east Asia, but we also see increasing contribution from South
Asia (Fig. 10c).

Climate change from 1995 to 2019 contributes substan-
tially to the increase in tropospheric ozone over ESEA, as
indicated by both GEOS-Chem and CMAQ model (Fig. 7e).
GEOS-Chem estimates that climate change has elevated the
tropospheric ozone burden over ESEA by 1.5 Tg, account-
ing for 47 % of the difference between 2019 and 1995. How-
ever, the magnitude of climate-driven TCO enhancement ex-

hibits considerable variability in terms of spatial distribution
and temporal evolution. Spatially, both models show that the
largest climate-driven TCO increases are over the Qinghai–
Tibet Plateau, in central and southern China, and in Indone-
sia. This spatial distribution is largely consistent with the
spatial distribution of climate-driven surface ozone changes
(Fig. 11e), indicating that ground-level processes triggered
by shifts in surface meteorological conditions (such as rise in
surface temperature) play a crucial role in the climate-driven
TCO changes. These surface processes will be described
in the next section. Nevertheless, the TCO increase over
Qinghai–Tibet Plateau implies that stratosphere–troposphere
exchange (STE) of ozone, the key natural source of ozone in
this region (Lu et al., 2019b; Chen et al., 2024), may have
increased during 1995–2019, which contributes to increase
tropospheric ozone over ESEA. We also find that the light-
ning NO emissions, the crucial natural ozone sources in the

https://doi.org/10.5194/acp-25-7991-2025 Atmos. Chem. Phys., 25, 7991–8028, 2025



8010 X. Lu et al.: Tropospheric ozone trends and attributions in Asia

Figure 8. Attribution of summertime tropospheric ozone (repre-
sented as tropospheric ozone burden in unit of Tg) in ESEA (includ-
ing East Asia domain of 80–145° E, 3–53° N and Southeast Asia
domain of 92.5–135° E, 10° S–30° N). Results are estimated from
the GEOS-Chem and WRF-CMAQ model. Tropospheric ozone bur-
den from the BASE simulation (left y axis) is in absolute val-
ues from 1995 to 2019. Changes in tropospheric burden attributed
to global anthropogenic emissions (including surface emissions,
aircraft emissions, and methane), anthropogenic emissions from
ESEA, anthropogenic emissions from other regions, and climate
(including biomass burning and stratospheric influences) are values
relative to 1995 (right y axis).

free troposphere, have been escalating by 17 % over ESEA
from 1995 to 2019 (Fig. S5). Stauffer et al. (2024) proposed
that decreases in convective intensity and frequency facili-
tated ozone buildup in the free troposphere over equatorial
Southeast Asia in the boreal spring. The ozone accumula-
tion driven by changes in transport patterns is also possible
to propagate into summer and contributes to ozone increase.

While both the GEOS-Chem and WRF-CMAQ models
demonstrate a consistent increase of tropospheric ozone bur-
den and their attribution from 1995 to 2019 (53 % in GEOS-
Chem and 59 % in WRF-CMAQ attributable to anthro-
pogenic emissions, 47 % in GEOS-Chem and 41 % in WRF-
CMAQ attributable to climate change), differences in the
magnitude and regional responses reflect the distinct char-
acteristics between the two models. GEOS-Chem tends to

attribute a larger portion of ozone change to climate factors,
including its influence on STE and natural emissions. This is
partly due to GEOS-Chem’s detailed representation of strato-
spheric chemistry, whereas WRF-CMAQ does not explicitly
simulate stratospheric chemistry but instead applies chemical
boundary conditions as inputs. Additionally, GEOS-Chem
incorporates a parameterization for lightning NOx emissions
based on cloud-top height, a feature absent in WRF-CMAQ.
Furthermore, the two models utilize different meteorological
fields to drive their chemical modules. These factors likely
contribute to their differing attributions of tropospheric col-
umn ozone (TCO) changes to climate. Regarding the attribu-
tion to emissions, although both models show similar trends
in total anthropogenic emissions of ozone precursors over
ESEA (Table 3), differences in spatial resolution and chem-
ical mechanisms are expected to influence their respective
contributions to ozone. These discrepancies underscore the
importance of employing multiple chemical models to quan-
tify ozone trend attributions robustly.

5.1.2 Ground-level ozone

We now investigate the quantitative contribution of emis-
sion changes to summertime surface ozone trends from 1995
to 2019. As illustrated in Fig. 11a, both the GEOS-Chem
and WRF-CMAQ model simulate substantial surface ozone
increases over continental ESEA in 2019 compared to the
1995 level, with an averaged enhancement of 7.8 ppbv in
GEOS-Chem and 6.8 ppbv in WRF-CMAQ. Both models
further confirm the dominant role of anthropogenic emis-
sions in the surface ozone enhancement (Fig. 11b). The
GEOS-Chem and WRF-CMAQ models simulate an ozone
enhancement attributed to anthropogenic emission changes
of 5.4 and 5.1 ppbv in 2019 compared to the 1995 level, aver-
aged over continental ESEA, accounting for 69 % and 75 %
of simulated ozone difference, respectively. This result in-
dicates that the GEOS-Chem and WRF-CMAQ models ex-
hibit higher consistency in attributing surface ozone trends
in the ESEA region compared to their attribution of tropo-
spheric ozone trends. Spatially, the emission-driven surface
ozone enhancement can reach 10–20 ppbv in eastern and cen-
tral China, the Malay Peninsula, and the Korean Peninsula.
These emission-driven ozone enhancements are also more
pronounced at the surface compared to emission-driven TCO
enhancement (Fig. 7).

Emission change within the ESEA appears to be the dom-
inant driving factor of the rise in surface ozone levels across
the region. As illustrated in Fig. 11c, emission change within
ESEA leads to substantial and continuous ozone enhance-
ments in most regions in China. The only exception is the
NCP region, where both models indicate weak surface ozone
increase in 2005 and 2013 compared to the 1995 level,
and then ozone increase accelerates after 2013. This con-
trasts with the analysis for TCO, which shows that anthro-
pogenic emissions consistently contribute to TCO increases
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Figure 9. Vertical distribution of ozone difference contributed by anthropogenic emissions from ESEA (black) and from outside ESEA
(grey) between 2019 and 1995 level, estimated from GEOS-Chem and WRF-CMAQ models. Panels (a), (b), and (c) show the results average
over the ESEA domain (including East Asia domain of 80–145° E, 30–53° N and Southeast Asia domain of 92.5–135° E, 10° S–30° N), East
Asia domain, and Southeast Asia domain, respectively.

over NCP from 1995 to 2013, while the increase slows down
thereafter (Fig. 7).

The modest increase or even decline in summertime sur-
face ozone concentrations, despite a significant rise in emis-
sions in the NCP from 1995 to 2013, can be attributed to the
NOx-saturated regime for ozone production in this region.
We examine the simulated changes in the ratio of surface
H2O2 to HNO3 concentrations (H2O2 / HNO3) as indicators
of the ozone chemical formation regime during 1995–2019
(Sillman, 1995; Wang et al., 2021). Figure 12 reveals that
the NCP region has the lowest H2O2 / HNO3 ratio values in
ESEA due to the substantial anthropogenic and agricultural
soil emissions, with values reaching their nadir in 2010 as
anthropogenic NOx emissions began to decrease afterward
(Fig. S10). As ozone chemical production is significantly re-
strained in such a NOx-rich environment, as indicated by the
low H2O2 / HNO3 ratio, the rapid and sustained increases in
anthropogenic NOx emissions in the NCP region from 1995
to 2013 result in a much smaller ozone increase or even an
ozone decrease compared to other regions such as the YRD.
After 2013, the decrease in anthropogenic NOx emissions,
coupled with a slight rise in anthropogenic NMVOC emis-
sions, tends to elevate surface ozone levels, as will be dis-
cussed in Sect. 5.2. However, at higher altitudes over the
NCP, ozone chemical production is more sensitive to NOx

compared to that at the surface; hence ozone trends align
with trends in anthropogenic NOx emissions. Our analysis

clearly illustrates that emission changes in the NCP lead to a
contrasting change in surface and tropospheric ozone, mod-
ulated by the chemical regime. This is also consistent with a
recent study by Han et al. (2024), which shows a contrasting
response of surface and tropospheric ozone over China to the
emission reductions in 2013–2020.

There are also significant and sustained surface ozone in-
creases driven by rising regional emissions in the Malay
Archipelago, as simulated by both the GEOS-Chem and
WRF-CMAQ models. In the Korean Peninsula and Japan,
changes in anthropogenic emissions lead to an increase
in mean surface ozone by approximately 3–4 ppbv and 1–
2 ppbv, respectively, from 1995 to 2019, according to esti-
mates from both models. These contributions are likely un-
derestimated because the models tend to underestimate long-
term trends in surface ozone in both Japan and South Korea
(Fig. 6). However, this enhancement slows down after 2013,
coinciding with the observed ozone trends (Fig. 6), which
may reflect the combined effect of emission changes at both
the domestic level and in the upwind NCP region.

Anthropogenic emissions originating from outside the
ESEA also play a role in the surface ozone increase, resulting
in an averaged ozone enhancement of 0.8–1.1 ppbv across
continental ESEA, 1–3 ppbv in western China, and 3–6 ppbv
in the Malay Archipelago (Fig. 11d). A significant contribut-
ing source region appears to be India. Our analysis reveals
that changes in anthropogenic emissions outside ESEA lead
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Figure 10. Regional contribution to tropospheric ozone column and surface ozone in East Asia and Southeast Asia in 2000–2018. Results
are estimated from a tagged module implemented in the CAM4-chem model (2.3.2). Definitions of the regions are shown in Fig. S3. Panels
(a) and (b) are for tropospheric column ozone and surface ozone, respectively. Each line represents the ozone contribution to East Asia
from ozone produced by anthropogenic nitrogen oxide emissions in a specific region. Panels (c) and (d) are the same as (a) and (b) but for
Southeast Asia.

to a summertime ozone increase of 6 ppbv in 2019 compared
to the 1995 level over India, and these increases are then
transported to western China. However, the impact of anthro-
pogenic emissions from outside the ESEA on surface ozone
is less pronounced than on tropospheric ozone (Fig. 7) over
eastern China, the Korean Peninsula, and Japan, highlighting
the shorter chemical lifetime of ozone in the polluted bound-
ary layer compared to that in the free troposphere. This is
also supported by the analysis from the CAM4-chem tagged
simulations (Fig. 10).

Climate change explains about 25 %–30 % of the simu-
lated surface ozone difference averaged over the continen-
tal ESEA between 1995 and 2019, as indicated by both
the GEOS-Chem and WRF-CMAQ models (Fig. 11e). It in-
creases surface ozone over central and southern China, the
Korean Peninsula, and Indonesia by 6–10 ppbv in GEOS-
Chem and 3–6 ppbv in WRF-CMAQ from 1995 to 2019,
effectively worsening surface ozone air quality in these re-
gions. The analysis in Sect. 3.1 shows that temperature has
risen over the continental ESEA. The rise in temperature
is anticipated to increase surface ozone concentrations by
boosting biogenic VOC emissions (Fig. S5), accelerating
ozone chemical formation, and hindering dry deposition. De-
crease in wind speed is also favorable for ozone accumula-
tion and contributes to increase in surface ozone concentra-

tions. The influence of climate change on surface ozone also
shows significant interannual variability, as well as variations
across the GEOS-Chem and WRF-CMAQ model that could
be attributed to the differences in meteorological variables
used to drive the chemical model. For example, the GEOS-
Chem model simulates a larger surface ozone enhancement
from 1995 to 2019 over eastern China than WRF-CMAQ
(Fig. 11(e3) vs. Fig. 11(e6)), which can be explained by the
larger increase in temperature and decrease in wind speed
from the MERRA-2 reanalysis dataset than the WRF simu-
lation (Fig. S11). Differences in temperature, solar radiation,
and specific humidity between the two meteorological fields
can also explain the climate-driven ozone difference between
GEOS-Chem and WRF-CMAQ over Malaysia and surround-
ing areas.

5.2 2013–2019 ozone variability

Section 5.1 discusses the factors contributing to tropospheric
and surface ozone trends over ESEA in the long-term pe-
riod of 1995–2019 based on chemical transport models. The
same modeling framework can also be applied to investigate
the attribution of short-term interannual variability. However,
since the interannual variability (IAV) tends to be more pro-
nounced than long-term trends, it is typically a challenge for
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Figure 11. Same as Fig. 7 but for surface ozone.

chemical models to capture the observed magnitude of IAV.
In this section, we introduce statistical and machine learn-
ing models to attribute short-term ozone variability to an-
thropogenic emissions and meteorological changes and com-
pare the results estimated from the GEOS-Chem and WRF-
CMAQ chemical transport models. We focus on our analysis
in major Chinese city clusters, where summertime surface
ozone shows extremely rapid increases in 2013–2019, de-
spite the significant reduction in nationwide anthropogenic
emissions of primary pollutants following the implementa-
tion of the Chinese Action Plan on Air Pollution Prevention
and Control since 2013. We focus on the MDA8 ozone in the
following discussion as it is one of the ozone air quality stan-
dard metrics in China and also an important metric of human
health exposure.

5.2.1 Results from statistical and machine learning
models

We start by examining the extent of ozone variability that
can be captured using meteorological variables as predictors
in three statistical and machine learning models (Sect. 2.2)

in 74 cities in China with continuous monitoring sites since
2013. Figure 13 summarizes the coefficient of determination
(R2) from all these algorithms using two sets of meteoro-
logical data. R2 measures the proportion of the variance in
daily ozone concentrations that is explained by the meteoro-
logical parameters in the model. It should be noted that our
purpose is not to build a model that perfectly reconstructs
observational ozone variabilities (i.e., striving for the highest
R2 and lowest biases), as this is not feasible given that the
meteorological variables are the sole predictors in this model
framework. Instead, we aim to estimate the portion of ozone
variability that can be explained by meteorological variables.

Overall, we find that the RFR model outperforms RR and
MLR as evidenced by its relatively higher R2 (0.46± 0.16,
mean± standard deviation across 74 cities, using ERA5 me-
teorological fields as predictors; see Fig. 13c). This reflects
the stronger capability of the RFR model to adaptively cap-
ture both linear and nonlinear relationships between mete-
orological variables and ozone, compared to the other two
models. We also find that, across all models, using ERA5
meteorological data as input yields higher predictive ca-
pability compared to MERRA-2 when averaged across all
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Figure 12. Changes in surface ozone chemical formation regime at the surface in summer 1995–2019. Ozone chemical formation regime is
examined using the ratio of H2O2 to HNO3 concentration at the surface. Panels (a1) and (b1) show the spatial distributions in summer 2013
for GEOS-Chem and WRF-CMAQ, respectively, and the rest of the panels show the difference relative to 2013 level.

Figure 13. Predictive skills of daily MDA8 ozone in Chinese cities during June to August from 2013 to 2019 by the multiple linear regression
(MLR) method, the ridge regression (RR) method, and the random forest regression (RFR) methods, using the meteorological parameters
from two re-analysis dataset (ERA5 and MERRA-2). The predictive skills are presented by the coefficient of determination (R2). Values are
the mean± standard deviation across 74 cities. See Sect. 2.2 for the descriptions of the three models.
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cities. This may partly be attributed to the higher spatial
resolution of ERA5 (0.25°× 0.25°) compared to MERRA-2
(0.5°× 0.625°) for resolving the relationship between mete-
orological variables and ozone concentrations. However, R2

is higher with MERRA-2 than with ERA5 in southwestern
China, including the SCB city clusters.

We also find noticeable spatial variability in R2 among
cities. From all models using ERA5 data as input, R2 is
higher in the NCP (0.38–0.43), YRD (0.42–0.55), and PRD
(0.52–0.64), while it is much smaller in the SCB (Table S3).
This suggests that the observed ozone variability in eastern
and southern China is, relatively, more strongly influenced
by meteorological variables compared to the western regions,
where high background ozone levels may be less directly
driven by local meteorology conditions (Lu et al., 2019b;
Ye et al., 2024). Furthermore, complex terrain that is com-
monly found in these western regions, such as the SCB, may
pose a greater challenge for models to achieve predictive skill
equivalent to that in eastern and southern China.

Key meteorological variables influencing ozone variabil-
ities of China are identified as temperature at 2 m above
the ground, relative humidity, solar radiation, and planetary
boundary height (Fig. S12), with the most dominant variable
expectedly varying across cities, in line with previous stud-
ies (Li et al., 2019b; Weng et al., 2022). Additional discrep-
ancies in the identified key variables between models using
ERA5 and MERRA-2 are observed. For example, the pre-
dictor importance of solar radiation is less pronounced when
using MERRA-2 (Fig. S12). The importance of predictors
and the predictive performance of MLR, RR and RFR, as
reflected by their overall R2, are generally consistent with
Weng et al. (2022), which employs a similar modeling frame-
work to fit surface ozone concentrations in China but for the
warm season (April–October) of 2015–2019 and only uses
ERA5 data as input. Our analysis here focuses exclusively
on the summertime period (June, July, August) while extend-
ing the study years to 2013–2019 and using both ERA5 and
MERRA-2 datasets (in separate regressions).

Figure 14 shows the 2013–2019 time series of both ob-
served and modeled monthly MDA8 ozone anomalies in four
city clusters, calculated as the differences between monthly
values and their corresponding 2013–2019 monthly aver-
ages. The linear trends derived from the observations are
2.89, 1.72, 1.24, and 1.37 ppbv yr−1 averaged over all cities
in the NCP, YRD, PRD, and SCB regions, respectively. We
also see large month-to-month variability superimposed on
the trends. Much of the month-to-month variability can be
captured by the statistical and machine learning model pre-
dictions, relying only on the meteorological variables. Here,
we quantify ozone trends attributable to meteorological fac-
tors by calculating the linear trends of ozone concentrations
predicted exclusively from meteorological variables using
statistical or machine learning models. We then obtain the
ozone residual by subtracting the meteorologically predicted
ozone from the observed ozone concentrations. The trends

in these residuals are interpreted as ozone trends driven
by changes in anthropogenic emissions. This strategy fol-
lows the previous studies of Li et al. (2019b) and Weng et
al. (2022).

We find that despite differences in predictive skills and
the resulting key meteorological variables, all three mod-
els consistently point to the dominant role of anthropogenic
emissions in driving the 2013–2019 summertime surface
ozone trend in the NCP, YRD, and PRD region. Our six
estimates – three models with predictions from two me-
teorological inputs in turn – show that changes in me-
teorological conditions contribute to ozone increases of
0.48± 0.07 ppbv yr−1 (mean± standard deviation across six
estimates) in the NCP, accounting for 17 % of the observed
ozone. Changes in anthropogenic emissions contribute to
the remaining 2.41± 0.07 ppbv yr−1 (83 %). Similar results
are found in YRD, where the analysis attributes 82 %
(1.40± 0.10 ppbv yr−1) of the ozone increases to anthro-
pogenic emission changes. The use of ERA5 or MERRA-
2 data only leads to slight differences (∼ 0.1 ppbv yr−1) in
trend attribution. Compared to the MLR results of Li et
al. (2020), our study attributes a greater portion of the ozone
increase to changes in anthropogenic emissions in the NCP
and YRD regions (82 %–83 % in our study for all six esti-
mates, 73 %–88 % specifically for MLR, versus 56 %–58 %
in Li et al., 2020) for the same period. The primary reason
for the disparity between the two studies lies in the differ-
ence in temporal resolution of the data used for modeling.
Li et al. (2020) conducted MLR fitting based on a monthly
anomaly data, whereas our study operates on a daily scale,
which utilizes many more records to fit ozone concentrations.
In the PRD region, our results attribute 66 % and 34 % of the
ozone increases to changes in anthropogenic emissions and
meteorology, respectively.

For the SCB region, all estimates concur that anthro-
pogenic emissions are the predominant contributors to the
ozone increases, but the magnitude is largely different be-
tween ERA5 and MERRA-2 datasets. Our method estimates
that anthropogenic emissions account for an ozone increase
of 1.09 ppbv yr−1, representing 80 % of the observed trend
when using ERA5, but attribute all ozone increases to anthro-
pogenic emissions when using MERRA-2 as input. These
results highlight the challenges and uncertainties associated
with using meteorological fields to forecast ozone fluctua-
tions in the SCB region with complex terrain. This difficulty
is further evidenced by the relatively low predictive skills in
the region (Fig. 13).

5.2.2 Results from chemical transport model and
comparison with statistical/machine learning
approaches

Next, we examine the attribution of surface MDA8 ozone
changes from 2013 to 2019 from GEOS-Chem and WRF-
CMAQ chemical transport models and compare the results
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Figure 14. Trends in observed summertime ozone and model-derived meteorologically driven trends in key city clusters in China. Results are
MDA8 ozone anomalies for individual JJA months averaged over the cities relative to the 2013–2019 mean. Observed trends are compared
to the meteorologically driven trends diagnosed by the MLR, RR, and RFR, using ERA5 and MERRA-2 meteorological data, respectively.
The observed trends and mean estimates of the trends driven by meteorology and emissions averaged over the three methods are shown in
the inset, with the trends estimated by individual methods shown in parentheses. Meteorologically driven ozone trends are estimates as the
linear trends of ozone concentrations predicted exclusively from meteorological variables using statistical or machine learning models. The
trends of ozone residuals (subtracting the meteorologically predicted ozone from the observed ozone concentrations) are interpreted as ozone
trends driven by changes in anthropogenic emissions.

with those obtained from statistical and machine learning
models. Given that linear summertime trends derived from 4-
year simulations (2013, 2015, 2017, 2019) may not be robust,
the results are presented as the difference in ozone concen-
trations between two temporal segments, that is, the average
of simulated values in summer of 2017 and 2019 compared
to that of 2013 and 2015.

Figure 15 illustrates the spatial distributions of simulated
ozone differences between the two periods (2017–2019 mi-
nus 2013–2015) and those contributed by meteorology and
anthropogenic emissions, using the simulated ozone differ-

ence between the BASE and Fix_Globe_AC simulations.
Both the GEOS-Chem and WRF-CMAQ models indicate an
ozone increase in 2017–2019 compared to 2013–2015, yet
both models underestimate the magnitude of this increase
(Table 4). Specifically for the city clusters, observations re-
veal an ozone enhancement of 14.3, 8.6, 4.5, and 4.5 ppbv in
the NCP, YRD, PRD, and SCB city clusters, respectively. In
contrast, the GEOS-Chem simulation only shows ozone in-
creases of 3.3, 6.3, 1.5, and 1.9 ppbv for the four city clus-
ters, capturing only about 23 %–73 % of the observed en-
hancement. The WRF-CMAQ model demonstrates a better
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ability by capturing 45 % and 83 % of the observed ozone
enhancement in the NCP and YRD and fits well with the ob-
served trends in SCB, but it also poorly captures only 24 %
of the observed ozone enhancement in PRD. This discrep-
ancy underscores a significant challenge for chemical trans-
port models in accurately capturing short-term ozone inter-
annual variability, partly due to uncertainties in emission in-
ventories and an underestimation of the model’s sensitivity
to meteorological parameters, as will be discussed later. In
particular, we find that the WRF-CMAQ model better cap-
tures (compared to GEOS-Chem) the ozone increases in SCB
(104 % vs. 42 %), possibly due to its finer resolution to re-
solve fine-scale meteorology in complex terrain. Finally, it
is well-known that differences in the chemical mechanisms
embedded in these two models will likely also contribute to
the discrepancies found here (e.g., Archibald et al., 2020; Li
et al., 2019a; Weng et al., 2023).

Both the GEOS-Chem and WRF-CMAQ models indicate
that changes in meteorological fields from 2013–2015 to
2017–2019 alone have resulted in a notable ozone enhance-
ment of 2–6 ppbv in eastern and northern China (Fig. 15b,
e). These increases are linked to a rise in surface temperature
and solar radiation, coupled with a decrease in cloud cover,
which are conducive to ozone chemical formation and accu-
mulation (Fig. S13). Both models also demonstrate that shifts
in meteorological conditions lead to a decrease in ozone
levels over Southeast Asia. In terms of emissions, both the
GEOS-Chem and WRF-CMAQ models concur on the ozone
enhancement attributed to changes in anthropogenic emis-
sions in eastern China, including the NCP and YRD regions,
as well as in Southeast Asia (Fig. 15c, f).

Figure 16 and Table 4 provide a summary of surface
MDA8 ozone changes and their attribution across the city
clusters from the two chemical models and the comparison
with the results from statistical and machine learning mod-
els. In the NCP region, the GEOS-Chem and WRF-CMAQ
models attribute 55 % and 34 % of the simulated ozone in-
crease to changes in meteorological conditions, respectively.
In comparison, the statistical and machine learning models
estimate a mean contribution of only 14 % averaged over six
estimates (three models run with two input meteorological
data in turn). Correspondingly, contributions from changes
in anthropogenic emissions are estimated as 45 %, 66 %,
and 86 % from the GEOS-Chem, the WRF-CMAQ, and the
mean of statistical and machine learning model results, re-
spectively. In the YRD region, contributions from changes in
meteorological conditions to ozone enhancement are 65 %,
44 %, and 24 % from the three estimates, with the remain-
ing 35 %, 56 %, and 76 % contributed by changes in anthro-
pogenic emissions. Thus, we find that all models consistently
agree that the meteorological conditions from 2013 to 2019
have become more conducive to ozone formation in the NCP
and YRD city clusters, thus enhancing the positive trend. The
statistical and machine learning models and WRF-CMAQ
tend to attribute more ozone enhancement to changes in an-

thropogenic emissions compared to meteorological drivers,
while GEOS-Chem results in a slightly higher attribution to
meteorology, proportional to the ozone trends realized in the
model in the first place. We will discuss the potential impli-
cations to the results later in this session.

We conclude that averaged over the three methods, an-
thropogenic emissions contribute to 66 % and 56 % of the
summertime surface ozone enhancement during 2013–2019
in the NCP and YRD region, respectively, indicating that an-
thropogenic emissions are the primary driver of the recent
ozone increase in these two city clusters.

In the PRD and SCB regions, we find that the GEOS-
Chem, WRF-CMAQ, and the mean of statistical and ma-
chine learning models agree that changes in anthropogenic
emissions make a larger contribution to ozone enhancement
between 2017–2019 and 2013–2015, compared to contribu-
tions from meteorology. A summary of the three methods
indicates that meteorology contributes to 5 % and 9 % of the
ozone enhancement in the PRD and SCB regions, with the
remaining 95 and 91 % attributable to changes in anthro-
pogenic emissions. This is evident by changes in meteoro-
logical patterns. Figure S10 shows that there is a much less
notable enhancement in temperature and solar radiation in
the PRD and SCB region between the 2017–2019 and 2013–
2015 period, compared to the NCP and YRD region, sug-
gesting that meteorological conditions have conditions have
smaller impacts on ozone difference.

We raise a number of factors that must be taken into ac-
count when interpreting the disparities in ozone change at-
tribution between statistical/machine learning and chemical
models. Similar to other studies using chemical transport
models for separating the impact of emission and meteo-
rology on ozone concentration, our study attributes ozone
change driven by meteorological variables by fixing the an-
thropogenic level at the same year (1995 in this case) while
using year-specific meteorological fields to drive the model.
While this is a widely used approach, it assumes that the
chemical model can accurately simulate ozone sensitivity
to changes in meteorological variables. However, the valid-
ity of this assumption is questionable. For examples, Yin et
al. (2021) compare the correlation coefficients (r) between
key meteorological variables and ozone concentration from
observations and GEOS-Chem model prediction in China.
They find that although the model can successfully capture
the sign of correlation coefficients between ozone and these
variables, there are large discrepancies in terms of the abso-
lute values. Studies have shown that chemical transport mod-
els may underestimate the surface ozone–temperature sensi-
tivity (e.g., Li et al., 2025; Wu et al., 2024). This indicates
that the model may lead to very incorrect estimates concern-
ing the sensitivity of ozone to meteorological factors. An al-
ternative way to attribute ozone concentration to emissions
and meteorological changes is to use a machine learning
modeling approach to correct the observation-to-simulation
bias before attribution of ozone change (Keller et al., 2021;
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Figure 15. Differences in simulated June–August mean MDA8 ozone concentrations between 2017–2019 and 2013–2015 (2017–2019 minus
2013–2015). Panels (a), (b), and (c) show the difference-simulated surface MDA8 ozone concentration, contribution from meteorological
conditions, and contribution from anthropogenic emissions, respectively, from the GEOS-Chem model. Panels (d), (e), and (f) are the same
as (a), (b), and (c) but for the WRF-CMAQ model.

Figure 16. Summary of the meteorology-driven and anthropogenic
emission-driven surface MDA8 ozone difference between 2017–
2019 and 2013–2015 from the statistical model, machine learning
model, and chemical models. Results are summarized from Table 4.
The circles and triangles represent result from GEOS-Chem and
WRF-CMAQ, respectively. The diamond symbols represent the av-
erage of six estimates from the statistical and machining learning
model, including three models (MLR, RR, and RFR) with predic-
tions from two meteorological inputs (MERRA-2 and ERA5) in
turn. Horizontal bars then represent the mean of the statistical and
machining learning model (the ensemble mean from six estimate),
GEOS-Chem, and WRF-CMAQ model. See the text for the detailed
calculation.

Yin et al., 2021). In addition, the interannual variability in
emission inventory may have large uncertainty that also in-
fluence the ozone attribution by chemical transport models.
Such uncertainties might also be reflected in the fact that both

GEOS-Chem and WRF-CMAQ substantially underestimate
the observed rapid enhancement of surface ozone concentra-
tion in China during 2013–2019.

In contrast to numerical models, statistical or machine
learning methods aim to approximate the relationship be-
tween local meteorological factors and ozone. By design, a
key challenge is to estimate the importance of meteorology
through proxy variables that cannot be interpreted as true
causal relationships, which will integrate a number of direct
(e.g., temperature dependence of ozone chemistry) and in-
direct (e.g., temperature dependence of precursor emissions)
effects. Similarly, they cannot resolve processes that are av-
eraged out over the course of a day when using daily meteo-
rological variables that are derived from the daytime window
(06:00 to 18:00 local time). Additionally, given that only lo-
cal meteorological variables are considered here, the impact
from larger-scale circulation or weather patterns may not be
effectively captured by these methods. Nonetheless, despite
these uncertainties, such approaches have the advantage of
learning directly from observations, whereas numerical mod-
els may be difficult to achieve precise reconstruction due to
their inherent uncertainties. Furthermore, statistical or ma-
chine learning methods are more computation-friendly, par-
ticularly because they do not require running perturbation
simulations like numerical models here, which may also be
subject to uncertainties.

Overall, it should be emphasized that there is no “best”
model for trend attribution, as intrinsic uncertainties exist
in both numerical models and the data-driven statistical or
machine learning methods. Nonetheless, by using a wide
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Table 4. Meteorological and anthropogenic emission-driven summertime ozone difference between 2017–2019 and 2013–2015 over the key
four city clusters in China.

MLR RR RFR GEOS-Chem WRF-CMAQ

NCP

Obs/Basea 14.3 14.3 14.3 3.3 6.5

Metb MERRA-2d 2.1 (14.7 %) 1.9 (13.3 %) 1.9 (13.3 %) 1.8 (54.5 %) 2.2 (33.8 %)
ERA5e 1.9 (13.3 %) 1.7 (11.9 %) 2.3 (16.1 %)

Anthc MERRA-2 12.2 (85.3 %) 12.4 (86.7 %) 12.4 (86.7 %) 1.5 (45.5 %) 4.3 (66.2 %)
ERA5 12.4 (86.7 %) 12.6 (88.1 %) 12.0 (83.9 %)

YRD

Obs/Base 8.6 8.6 8.6 6.3 7.1

Met MERRA-2 3.0 (34.9 %) 3.1 (36.0 %) 2.6 (30.2 %) 4.1 (65.1 %) 3.1 (43.7 %)
ERA5 0.8 (9.3 %) 0.9 (10.5 %) 1.8 (20.9 %)

Anth MERRA-2 5.6 (65.1 %) 5.5 (64.0 %) 6.0 (69.8 %) 2.2 (34.9 %) 4.0 (56.3 %)
ERA5 7.8 (90.7 %) 7.7 (89.5 %) 6.8 (79.1 %)

PRD

Obs/base 4.5 4.5 4.5 1.5 1.1

Met MERRA-2 1.8 (40.0 %) 1.4 (31.1 %) 0.9 (20.0 %) 0.3 (20.0 %) −0.3 (−27.3 %)
ERA5 0.7 (15.6 %) 0.7 (15.6 %) 0.7 (15.6 %)

Anth MERRA-2 2.7 (60.0 %) 3.1 (68.9 %) 3.6 (80.0 %) 1.2 (80.0 %) 1.4 (127.3 %)
ERA5 3.8 (84.4 %) 3.8 (84.4 %) 3.8 (84.4 %)

SCB

Obs/base 4.5 4.5 4.5 1.9 4.7

Met MERRA-2 −1.7 (−37.8 %) −1.3 (−28.9 %) −1.2 (−26.7 %) 0.6 (31.6 %) 0.6 (12.8 %)
ERA5 0.0 (0.0 %) −0.3 (−6.7 %) −0.4 (−8.9 %)

Anth MERRA-2 6.2 (137.8 %) 5.8 (128.9 %) 5.7 (126.7 %) 1.3 (68.4 %) 4.1 (87.2 %)
ERA5 4.5 (100.0 %) 4.8 (106.7 %) 4.9 (108.9 %)

a For MLR, RR, and RFR models, values are observed ozone difference between the two periods. For GEOS-Chem and CMAQ models, values are
simulated ozone difference between the two periods. b Met represents the meteorology-driven ozone difference. See the text for the calculation method.
The values in parentheses are the percentage of the observed or simulated total ozone difference. c Anth represents the anthropogenic emission-driven
ozone difference. See the text for the calculation method. The values in parentheses are the percentage of the observed or simulated total ozone difference.
d Results using MERRA-2 meteorological fields as input. e Results using ERA5 meteorological fields as input.

range of models with significantly different characteristics,
our study provides multiple lines as evidence, which, in our
view, is a good practice to address the uncertainty associated
with any single method or model.

5.2.3 Review of the mechanisms contributing to
summertime surface ozone increase in China
from 2013 to 2019

Previous studies elucidated the mechanisms through which
changes in anthropogenic emissions across China have con-
tributed to the enhancement of ozone levels in 2013–2019
(Wang et al., 2022d). Since 2013, the Chinese government
has implemented the Air Pollution Prevention and Control
Action Plan (2013–2017) and the Three-Year Action Plan for

Winning the Blue Sky Defense Battle (2018–2020). These
initiatives have led to prominent reductions in anthropogenic
emissions of NOx (21 % between 2013–2017 and 25 % be-
tween 2013–2019) and CO. In contrast, NMVOC emissions
showed a slight increase (7 %) from 2013–2015, followed
by a minor decline (4 %) from 2015, resulting in an over-
all flat trend between 2013–2019 (−1 %). The simultaneous
decrease in NOx and increase in NMVOC emissions are ex-
pected to elevate ozone concentrations in regions such as the
NCP, where ozone chemical productions are prone to being
VOC-limited or mixed-sensitive (Wang et al., 2023a, b). In
the PRD region where NOx emissions began to decline ear-
lier than NCP and YRD, the study pointed out that long-term
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ozone trends were dominantly driven by the decreased titra-
tion effect by NO (Li et al., 2022).

Furthermore, the rapid decline in particulate matter (PM),
facilitated by policy-driven reductions in precursor emis-
sions, can increase ozone due to a reduced loss of hydroper-
oxy radicals (HO2) and increased photolysis (Gao et al.,
2020a). A number of studies show that the impact of re-
duced heterogeneous uptake of HO2 radicals on the ozone
trend is more significant than the effects of increased pho-
tolysis rate and reduced NOx concentration between 2013–
2017, although the dominant process may vary regionally (Li
et al., 2019b, c; Liu and Wang, 2020b; Shao et al., 2021;
Liu et al., 2023). However, several studies contend that there
is insufficient observation-based evidence to support the im-
portance of heterogeneous chemistry on radical concentra-
tions (e.g., Tan et al., 2019). A recent study also pointed out
that increased ozone production efficiency from agriculture
soil emissions with the reduced anthropogenic NOx emis-
sions may have also contributed to the ozone increase in the
NCP region (Tan et al., 2023). A key policy-relevant conclu-
sion drawn from these studies is that, while nationwide con-
trol measures from 2013 to 2017 have successfully alleviated
PM2.5 pollution, they have also led to increased O3 concen-
trations in urban areas of China, due to the non-linear depen-
dence of O3 on NOx and aerosol feedbacks. A new analysis
of ozone trends after 2018 suggests that synergistic control of
VOC and NOx has started to be effective to mitigate ozone
pollution, as PM2.5 has become much lower compared to the
2013–2017 level (Yin et al., 2021; Liu et al., 2023; Wang et
al., 2023a, 2024a).

The mechanisms by which changes in atmospheric cir-
culation or local meteorological elements since 2013 exac-
erbated summertime surface ozone pollution in China have
been extensively studied (e.g., Lu et al., 2019b; Liu and
Wang, 2020a; Dang et al., 2021; Gong et al., 2022; Weng
et al., 2022; Kou et al., 2023). Summertime meteorological
conditions trend towards rising temperatures and increased
solar radiation since 2013 (Fig. S10). These changes in me-
teorological variables are highly conducive to ozone forma-
tion by enhancing photochemical production and suppress-
ing ozone ventilation. The dominant meteorological drivers,
as well as the weather system and synoptic patterns they re-
flect, vary in different regions of China. For instance, Li et
al. (2020) show that rising summertime temperatures asso-
ciated with increased foehn winds are the main drivers of
O3 increase over the NCP. On a regional scale, the favorable
meteorological conditions are controlled and modulated by
specific weather systems, such as the Western Pacific Sub-
tropical High, the periphery of tropical cyclones, and anti-
cyclone (Gong et al., 2019; Shu et al., 2020; Wang et al.,
2022c; Hu et al., 2024). For example, in the PRD region,
Liu et al. (2025) show that the increased frequency of ozone-
favorable weather patterns, including the periphery of tropi-
cal cyclones and the influence of the WPSH, has significantly
contributed to the observed ozone trends. These findings un-

derscore the importance of both large-scale atmospheric cir-
culation changes and local meteorological factors in driving
short-term interannual variability in ozone pollution.

6 Discussion and conclusions

Observations have revealed substantial ozone increases both
in the free troposphere and at the surface over most regions
in East and Southeast Asia from 1995. In this study, we ap-
ply a statistical model (multiple linear regression), two ma-
chine learning models (ridge regression and random forest
regression), and three chemical transport models (GEOS-
Chem, CAM4-chem, and WRF-CMAQ) to attribute long-
term (1995–2019) and/or short-term (2013–2019) ozone
trends to changes in anthropogenic emissions and climate,
spanning from surface to tropopause across ESEA. An-
thropogenic emissions of NOx , CO, and NMVOCs have
increased by 129 %, 17 %, and 50 % from 1995 to 2019
over the continental ESEA, respectively. Summertime sur-
face temperature has increased by 1.5 %, which enhances
biogenic VOC emissions by 13 %. The comparison with ob-
servations indicates that the GEOS-Chem model fits well
with the tropospheric ozone profiles but severely overesti-
mates surface ozone. The WRF-CMAQ model performs well
in simulating surface ozone concentration levels but has sig-
nificant biases in tropospheric ozone simulation. The CAM4-
chem model provides satisfactory results for both tropo-
spheric and surface ozone simulations, albeit with a coarser
resolution. These three chemical transport models have re-
produced the observed tropospheric ozone increases from
1995 but underestimate the magnitude of trends.

We find that all three chemical transport models, albeit
with varied characteristics in the model capability and emis-
sion inventory, agree that changes in anthropogenic emission
drive ozone increases both in the free troposphere and at the
surface from 1995 to 2019. In the free troposphere, GEOS-
Chem and WRF-CMAQ models attribute a 53 % and 59 %
increase in tropospheric ozone burden to changes in anthro-
pogenic emissions from 1995 to 2019. Emission changes in-
side ESEA contribute to 66 %–77 % of the emission-driven
TCO increases over ESEA. However, after 2013, TCO pro-
duced from ESEA anthropogenic emissions flattens or even
decreases, largely due to emission reduction in China. In
contrast, emissions outside ESEA continue contributing to
TCO increases in ESEA, with ozone contributions being
larger with higher altitudes. The tagged simulation in CAM4-
chem confirms that South Asia, in particular India, has an in-
creasing contribution to TCO increases in ESEA, while Eu-
rope and North America show decreasing contribution due
to the control of anthropogenic emissions in these regions.
At the surface, the GEOS-Chem and WRF-CMAQ model
attribute a 69 % and 75 % ozone increase to changes in an-
thropogenic emissions, mostly from anthropogenic emission
changes within ESEA. In particular, we find that emission
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reduction in China after 2013 has led to a different response
of ozone at the surface (increase) and in the troposphere
(decrease). Climate change from 1995 to 2019 also con-
tributes substantially to the increase in summertime tropo-
spheric (41 %–47 %) and surface ozone (25 %–31 %) over
ESEA. These climate-driven ozone increases may be asso-
ciated with surface warming that triggers more active natural
emissions and photochemistry.

Multiple methods have been applied to attribute the sur-
face ozone change from 2013 to 2019 in China, where ob-
served ozone shows rapid increases during the period in ma-
jor city clusters (1.24–1.89 ppbv yr−1). In the NCP region,
the mean of statistical and machine learning model results,
GEOS-Chem, and WRF-CMAQ model estimate that 86 %,
45 %, and 66 % of the surface ozone increase is attributed to
anthropogenic emissions changes. While the overall direc-
tion is consistent, the range of the estimates reflects discern-
able uncertainty from each model. We conclude that aver-
aged over the three methods, anthropogenic emissions con-
tribute to 66 % and 56 % of the summertime surface ozone
enhancement from 2013–2019 in the NCP and YRD region,
respectively, indicating that anthropogenic emissions are the
key driver of the recent ozone increase in China. The rest of
the ozone increases are contributed by meteorological pat-
terns, supported by the enhanced surface temperature and
solar radiation. In contrast, we find that changes in anthro-
pogenic emissions dominate summertime surface ozone in-
crease in the PRD (95 %) and SCB (91 %) regions, with mi-
nor contributions (5 %–9 %) from changes in meteorological
conditions.

Our study thus provides a quantitative attribution of tropo-
spheric ozone trends ESEA over both long-term (1995–2019)
and short-term (2013–2019) periods. These results highlight
significant ozone increases contributed by enhanced anthro-
pogenic emissions, with additional contribution from climate
change. The quantitative ozone response to precursor emis-
sions and climate change, as simulated by multi-models in
this study, holds significant implications for future ozone
projections. In the free troposphere, our results have shown
that ozone changes largely aligned with trends in NOx emis-
sions over the ESEA. In the future, continued reductions in
NOx and VOC emissions in China are expected to further
decrease its contribution to global tropospheric ozone burden
(Han et al., 2024). At the surface, although emission control
measures since 2013 have contributed to ozone enhancement
in China, they are projected to reduce ozone as emission re-
ductions deepen (Li et al., 2019c; Lu et al., 2021a). In other
parts of ESEA, while future emission scenarios will be highly
dependent on policy decisions, it is apparent that emissions
from Southeast Asia will significantly affect both local ozone
air quality and global tropospheric ozone burden due to the
high efficiency of ozone chemical production and strong ver-
tical transport in this region. Our simulations also capture
the positive response of surface ozone concentrations over
the ESEA to global warming. Consistently, multiple model

results predict that the positive slope of surface ozone con-
centration with increasing temperature (also known as the
ozone climate penalty) will persist in this heavily polluted
region under future scenarios, in contrast to the ozone de-
crease in remote regions (Zanis et al., 2022), although such
a penalty effect is expected to diminish as emission reduc-
tions progress (Chang et al., 2025; Li et al., 2025). The ozone
climate penalty effect requires further reduction in anthro-
pogenic emissions of ozone precursors.

There are notable limitations in this project that require
substantial future efforts.

First, we note that chemical transport models struggle
to reproduce long-term trends and short-term variability in
ozone over ESEA, especially at the surface level. This re-
mains a major limitation in this study and leads to significant
uncertainties in the attribution of ozone trends. The mod-
els tend to overestimate ozone concentrations, in particular
at the lower troposphere. From an observational perspective,
we call for increased availability of stable and long-term ob-
servations over ESEA, where ozone concentrations exhibit
intense spatial and temporal heterogeneity and variability,
to provide sufficient information for validating the perfor-
mance of chemical models, thereby facilitating the improve-
ment of these models. From a modeling perspective, there is
a need for more precise and higher-resolution emission in-
ventories of ozone precursors, particularly those that better
constrain anthropogenic emissions in Southeast Asia before
2010. Additionally, increasing the spatial resolution of chem-
ical model is crucial for simulating ozone distributions over
urban clusters in ESEA.

Second, inherent limitations within each model contribute
to substantial variations in the attribution of ozone trends. It
is also challenging to assess what causes the inconsistencies
between models. This difficulty primarily reflects the cou-
pled nonlinear impact of emissions, chemistry, and meteo-
rology on ozone. Therefore, considering the combination of
different modeling approaches, such as integrating process-
based chemical models with data-driven deep learning meth-
ods, is a viable option for providing a more robust ozone
attribution (Keller et al., 2021; Yin et al., 2021; Liu et al.,
2022). Future efforts should also be placed on incorporat-
ing more numerical models with unified emission datasets
to better specify the causes of model inconsistency in trend
attribution.

Third, although our work has quantified the contributions
of emissions and meteorology to rising ozone levels, it has
not conducted an in-depth analysis of the mechanisms that
have been proposed in existing studies. Future work needs to
combine more observational data (such as concentrations of
ozone precursors, particularly VOCs) and model analyses to
disentangle the mechanisms driving ozone increases in dif-
ferent regions, including the transboundary transport within
ESEA.

Fourth, due to significant computational costs, this study
focused only on summertime ozone trends. However, ob-
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servational data indicate that tropospheric ozone increases
in East Asia during the cold season have also been signif-
icant in recent years (Gaudel et al., 2020). At the surface
level, several studies have reported increases in springtime
surface ozone levels in China (Li et al., 2021; Cao et al.,
2024). In addition, our focus has been placed on surface
MDA8 ozone concentrations, yet recent studies have also re-
vealed increased nighttime atmospheric oxidation capacity
and ozone concentration especially in China (He et al., 2022;
Wang et al., 2023b; He et al., 2023). Further research and
attention are needed in these contexts in the future.
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