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Abstract. We use 2021 TROPOMI and GOSAT satellite observations of atmospheric methane in an analyti-
cal inversion to quantify national methane emissions from South America at up to 25 km× 25 km resolution.
From the inversion, we derive optimal posterior estimates of methane emissions, adjusting a combination of
national anthropogenic emission inventories reported by individual countries to the United Nations Framework
Convention on Climate Change (UNFCCC), the UNFCCC-based Global Fuel Exploitation Inventory (GFEIv2),
and the Emissions Database for Global Atmospheric Research (EDGARv7) as prior estimates. We also evalu-
ate two alternative wetland emission inventories (WetCHARTs and LPJ-wsl) as prior estimates. Our best pos-
terior estimates for wetland emissions are consistent with previous inventories for the Amazon but lower for
the Pantanal and higher for the Paraná. Our best posterior estimate of South American anthropogenic emis-
sions is 48 (41–56) Tg a−1, where numbers in parentheses are the range from our inversion ensemble. This is
55 % higher than our prior estimate and is dominated by livestock (65 % of anthropogenic total). We find that
TROPOMI and GOSAT observations can effectively optimize and separate national emissions by sector for 10
of the 13 countries and territories in the region, 7 of which account for 93 % of continental anthropogenic emis-
sions: Brazil (19 (16–23) Tg a−1), Argentina (9.2 (7.9–11) Tg a−1), Venezuela (7.0 (5.5–9.9) Tg a−1), Colombia
(5.0 (4.4–6.7) Tg a−1), Peru (2.4 (1.6–3.9) Tg a−1), Bolivia (0.96 (0.66–1.2) Tg a−1), and Paraguay (0.93 (0.88–
1.0) Tg a−1). Our estimates align with the prior estimates for Brazil, Bolivia, and Paraguay but are significantly
higher for other countries. Emissions in all countries are dominated by livestock (mainly enteric fermentation)
except for oil–gas in Venezuela and landfills in Peru. Methane intensities from the oil–gas industry are high in
Venezuela (33 %), Colombia (6.5 %), and Argentina (5.9 %). The livestock sector shows the largest difference
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between our top-down estimate and the UNFCCC prior estimates, and even countries using complex bottom-up
methods report UNFCCC emissions significantly lower than our posterior estimate. These discrepancies could
stem from underestimations in IPCC-recommended bottom-up calculations or uncertainties in the inversion from
aggregation error and the prior spatial distribution of emissions.

1 Introduction

Methane (CH4) is a potent greenhouse gas with a rela-
tively short atmospheric lifetime of 9.1± 0.9 years (Szopa
et al., 2021). Methane atmospheric concentrations have
nearly tripled since pre-industrial times, resulting in an
emission-based radiative forcing of 1.21 W m−2 compared to
2.16 W m−2 for CO2 (Naik et al., 2021). Here we use satel-
lite observations to quantify and attribute methane emissions
from South American countries, which have been estimated
to contribute 14 % of global anthropogenic methane emis-
sions (Worden et al., 2022) and are thought to be a major
contributor to the methane rise over the past decade (Zhang
et al., 2021).

The 194 parties to the Paris Agreement, including all 12
South American countries, must regularly submit nation-
ally determined contributions (NDCs) outlining their plans
to reduce greenhouse gas emissions. These NDCs are based
on national emission inventories constructed using bottom-
up methods that combine activity data for individual sec-
tors with emission factors, sometimes supplemented by di-
rect measurements of individual sources. Bottom-up inven-
tories tend to have large uncertainties because emission fac-
tors (and sometimes the activity data) can be poorly quan-
tified (Saunois et al., 2020), and even direct emission mea-
surements may not capture source variability. Atmospheric
observations of methane concentrations can offer additional
top-down information to reduce these uncertainties through
inverse analyses with an atmospheric transport model, using
the bottom-up inventories as prior estimates in the inversion
(Jacob et al., 2022).

Anthropogenic emissions of methane come from many
sectors, including oil–gas, coal, livestock, rice cultivation,
landfills, and wastewater treatment. Natural emissions are
from wetlands, fires, termites, and geological seeps. In South
America, wetlands are a major natural methane source but
again with large uncertainty (Zhang et al., 2017). South
American anthropogenic methane emissions are heavily
dominated by livestock. Of particular importance is Brazil,
which is estimated to be the third-highest anthropogenic
methane-emitting country globally (Worden et al., 2022) and
has been identified as a major contributor to the recent global
rise in methane through livestock and wetland emissions
(Zhang et al., 2021; Qu et al., 2024). Venezuela, Colom-
bia, and Argentina also have high emissions (Worden et al.,
2022).

Satellite observations in the shortwave infrared (SWIR)
are particularly attractive for top-down emission estimates
due to their global coverage and sensitivity down to the sur-
face. Inversions of data from the Greenhouse Gases Observ-
ing Satellite (GOSAT, 2009–present) (Parker et al., 2020a)
have been used to infer the distribution of methane emis-
sions globally (Maasakkers et al., 2019; Janardanan et al.,
2020; Qu et al., 2021) and regionally for South America
(Tunnicliffe et al., 2020; Wilson et al., 2021). These inver-
sions have identified significant discrepancies between top-
down estimates and bottom-up emission inventories across
South America. However, GOSAT observations are sparse,
separated by about 250 km, which limits the spatial resolu-
tion that can be achieved, increasing uncertainties in attribut-
ing the top-down emissions to countries and sectors. The
TROPOspheric Monitoring Instrument (TROPOMI) (2018–
present) provides global continuous daily mapping of atmo-
spheric methane at 7 km× 5.5 km nadir resolution (Lorente
et al., 2023). This coverage in combination with high resolu-
tion provides TROPOMI with a unique capability for quanti-
fying national emissions and attributing emissions to sectors.
This has recently been demonstrated for the United States
(Nesser et al., 2024), the Middle East and North Africa (Chen
et al., 2023), China (Chen et al., 2022; Liang et al., 2023), and
Venezuela (Nathan et al., 2024).

Here we use TROPOMI observations in an inverse anal-
ysis of 2021 methane emissions over South America at up
to 25 km resolution, using as prior estimates the national
anthropogenic inventories reported to the United Nations
Framework Convention on Climate Change (UNFCCC) un-
der the Paris Agreement for the livestock, waste, and rice sec-
tors. We use two alternative bottom-up wetland emission in-
ventories as prior estimates. We use a new TROPOMI satel-
lite product that corrects surface, aerosol, and cloud artifacts
with a machine learning algorithm trained by GOSAT data
(Balasus et al., 2023). We also use GOSAT data, which,
though sparse, provides unique information over wetlands.
We quantify emissions by country and by sector and begin to
identify causes for discrepancies between our estimates and
those of the bottom-up inventories.

2 Data and methods

We use methane observations from GOSAT and TROPOMI
(Sect. 2.1) with the GEOS-Chem chemical transport model to
optimize a state vector of mean methane emissions for 2021
over a rectilinear inversion domain covering South America
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(−57.5 to 13.25° latitude, −82.8125 to −33.75° longitude)
at up to 0.25°× 0.3125° resolution (∼ 25 km× 25 km). We
use a combination of countries’ UNFCCC reports and global
inventories as prior estimates of anthropogenic emissions in
our inversion (Sect. 2.2). We obtain posterior estimates of
the state vector and the associated error covariance matrix
though analytical solution for the minimum of the Bayesian
cost function with lognormal prior errors (Sect. 2.3). We at-
tribute inversion results to different methane emission sectors
with the methodology described in Sect. 2.4. We conduct an
ensemble of sensitivity inversions varying inversion parame-
ters, including the choice of wetland prior estimate, to char-
acterize related errors in the posterior estimate (Sect. 2.5).

2.1 TROPOMI and GOSAT satellite observations

GOSAT, launched in 2009, has a 13:00 local overpass time
and 10 km diameter pixels separated by about 250 km along-
track and cross-track (Parker et al., 2020a). Dry-column
methane mixing ratios (XCH4) are retrieved in the 1.65 µm
absorption band with a CO2 proxy method (Parker et al.,
2011). The observations include a glint mode over the
oceans. The CO2 proxy method corrects for most surface and
aerosol artifacts, yielding a global retrieval success rate of
23.5 % (28.4 % over South America) limited by cloud cover
(Parker et al., 2020a). We use the GOSAT v9.0 proxy re-
trieval from Parker and Boesch (2020), which is available
at https://doi.org/10.5285/18ef824. We remove GOSAT ob-
servations in mountainous areas defined by a standard devia-
tion of surface altitude greater than 25 m within a pixel as re-
ported in the GOSAT product. We also subtract 9.2 ppb from
all GOSAT observations following Balasus et al. (2023) to re-
move the global mean bias versus ground-based methane col-
umn measurements from the Total Carbon Column Observ-
ing Network (TCCON). This subtraction is intended to en-
force consistency with the blended TROPOMI product used
as boundary conditions in the inversion. Although there are
no TCCON observations in South America, the bias subtrac-
tion is of little importance because the boundary conditions
are corrected anyway. This yieldsmGOSAT = 29233 observa-
tions for 2021 used in our inversion.

TROPOMI is on board the polar sun-synchronous
Sentinel-5 Precursor satellite launched in 2017 with a 13:30
local overpass time, providing full global daily coverage with
a spatial resolution of 7 km× 5.5 km in the nadir (Veefkind
et al., 2012). It retrieves XCH4 with a full-physics algo-
rithm in the 2.3 µm absorption band in combination with
the NIR (757–774 nm) band. Again, the observations in-
clude a glint mode over the oceans. The global success
rate is 3 % over land limited by dark or heterogeneous sur-
faces and cloud cover (Hasekamp et al., 2022). Mountain-
ous scenes in South America have been previously found to
be a challenge for TROPOMI ozone retrievals (Cazorla and
Herrera, 2022), but the methane retrieval would be unsuc-
cessful for such scenes in any case. It is well known that

the TROPOMI XCH4 data can be affected by retrieval ar-
tifacts correlated with SWIR surface albedo (Lorente et al.,
2023). Here we use the TROPOMI product from Balasus
et al. (2023), which uses a machine learning model to cor-
rect the TROPOMI v02.04.00 operational product of Lorente
et al. (2023) by reference to the GOSAT v9.0 proxy re-
trieval. The blended product is available at https://registry.
opendata.aws/blended-tropomi-gosat-methane, last access:
1 January 2024. There are 7 264 168 successful TROPOMI
retrievals over the inversion domain during 2021. We average
them over GEOS-Chem 0.25°× 0.3125° grid cells to pro-
duce 885 957 super-observations (Chen et al., 2023). We fil-
ter out TROPOMI observations in grid cells that have fewer
than 30 individual TROPOMI retrievals in 2021. This yields
mTROPOMI = 853599 super-observations for 2021 used in
the inversion.

Figure 1 shows the resulting data for TROPOMI and
GOSAT in 2021 as the mean XCH4 enhancements after sub-
tracting the time- and latitude-dependent background over
the oceans used as boundary conditions in the inversion
(Sect. 2.3). Subtracting the background is needed for visual-
ization because of its 100 ppb latitudinal difference between
the northern and southern tips of South America, but this
subtraction is not applied in the inversion. We see signifi-
cant XCH4 enhancements over wetlands, livestock regions,
and urban areas. There are few observations over the moun-
tainous Andes, affecting much of Chile and Peru, so that
the inversion for those countries relies significantly on glint
observations offshore and on observations of transported
methane. We also see that because of its use of the CO2 proxy
method, GOSAT is of particular value over the Amazon,
where TROPOMI data are almost absent because of clouds
and dark surfaces. GOSAT does not provide much additional
coverage over the Andes because we filter out GOSAT ob-
servations over mountainous regions. Satellite observations
are distributed throughout the year but are densest during the
Southern Hemisphere dry season (June–September) (Fig. 1)
due to a reduction of coverage over the Amazon in the wet
season (Fig. S1). We account for errors in the satellite re-
trievals ingested into the inversion as described in Sect. 2.3.

2.2 Prior emissions

Figure 2 shows the spatial distribution of prior emissions by
sector on the 0.25°× 0.3125° grid. Table 1 lists continental
totals. Oil, gas, and coal emissions are from the Global Fuel
Exploitation Inventory (GFEIv2) of Scarpelli et al. (2022),
which uses detailed infrastructure data to spatially allo-
cate emissions from countries’ UNFCCC reports. Because
GFEIv2 may not use emissions from countries’ most recent
reports, we list it separately from the other UNFCCC emis-
sions, which were obtained directly from countries’ reports.
National livestock, waste, and rice emissions are taken from
each country’s latest UNFCCC report (Table 2) and spatially
distributed following the Emissions Database for Global At-
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Figure 1. Atmospheric methane enhancements observed by TROPOMI and GOSAT over South America relative to the latitudinal back-
ground. The figure shows the mean 2021 dry-column methane mixing ratios (XCH4) after subtraction of time- and latitude-dependent
background values over the oceans used as boundary conditions in the inversion. TROPOMI observations are on the native grid of the inver-
sion (0.25°× 0.3125°), and GOSAT points are shown on a 0.5°× 0.625° grid for visibility. GOSAT samples repeatedly at the same locations,
partly accounting for the apparent sparsity. Also shown in (c) is the distribution of GOSAT observations and TROPOMI super-observations
over the course of the year.

mospheric Research (EDGARv7) inventory for 2021 (Crippa
et al., 2022). Other minor anthropogenic emissions includ-
ing industry, stationary combustion, mobile combustion, air-
craft, composting, and field burning of agricultural residues
are taken from EDGARv7. Anthropogenic emissions are as-
sumed aseasonal except for rice, for which we use month-to-
month variability from EDGARv6 (Monforti Ferrario et al.,
2021) (EDGARv7 does not provide monthly sectoral emis-
sion maps).

UNFCCC national totals for livestock, waste, and rice
for Brazil, Guyana, Paraguay, and Uruguay are from the
UNFCCC GHG data interface (https://di.unfccc.int/detailed_
data_by_party, last access: 20 January 2023). All other coun-
tries have produced more recent reports that are unavail-
able in the UNFCCC GHG data interface, so we inspect re-
ports submitted by each country including national commu-

nications (https://unfccc.int/non-annex-I-NCs, last access:
20 January 2023) and biennial update reports (https://unfccc.
int/BURs, last access: 20 January 2023), to obtain the most
recent emission estimates as detailed in Table S1. French
Guiana is not independently reported, and we use GFEIv2
for fuel and EDGARv7 for all other sectors.

Two alternative monthly wetland emission inventories for
2021 with 0.5°× 0.5° spatial resolution are used as prior esti-
mates: WetCHARTs and LPJ-wsl. WetCHARTs is an ensem-
ble of parameterized inventories applying different inunda-
tion data, temperature dependence, and other factors (Bloom
et al., 2017). We use the mean emissions from the nine high-
performance members of the WetCHARTs v1.3.1 ensemble
found by Ma et al. (2021) to best fit the results from a global
GOSAT inversion and refer to it as WetCHARTs in what
follows. LPJ-wsl is based on the dynamic global vegetation
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Table 1. Methane emissions in South America (Tg a−1).

Priora Posteriorb

Total 96 121 (109–137)
Anthropogenic (UNFCCC) 31 48 (41–56)
Livestock 21 31 (27–37)
Wastec 5.7 7.8 (6.5–9.5)
Rice 0.68 0.86 (0.74–1.4)
Oil–gas 2.4 6.2 (5.2–7.9)
Coal 0.40 0.59 (0.42–1.4)
Otherd 1.0 1.3 (1.1–1.5)
Natural 56–74 74 (68–83)
Open fires 2.4 2.6 (2.4–3.0)
Wetlands 52–68e 67 (62–75)
Seeps 0.09 0.22 (0.17–0.30)
Termites 2.6 3.8 (3.2–5.1)

a Prior emission estimates used in the inversion. Livestock, waste, and rice
emissions are from national reports to the UNFCCC for years ranging from
2004 to 2020 (see Table S1 for individual countries). Oil–gas and coal are
from GFEIv2 (Scarpelli et al., 2022). Wetland and open fire emissions are for
2021 (inversion year). b Median best estimates from the inversion of
TROPOMI and GOSAT data for 2021 and ranges from the inversion ensemble.
c Including landfills and wastewater treatment d Including industry, stationary
combustion, mobile combustion, aircraft, composting, and field burning of
agricultural residues. Taken from EDGARv7. e Prior estimates for the
inversion are taken either from the mean of the high-performing subset of the
WetCHARTs ensemble (52 Tg a−1) or from LPJ-MERRA2 (68 Tg a−1).

model (Zhang et al., 2016) driven here with NASA MERRA-
2 meteorological data (Zhang et al., 2018) and is henceforth
referred to as LPJ-MERRA2. East et al. (2024) found that
LPJ-MERRA2 could reproduce seasonal variations of atmo-
spheric methane concentrations better than other wetland in-
ventories, including WetCHARTs.

Other natural sources in our prior estimates include daily
open-fire emissions for 2021 from the Global Fire Emissions
Database version 4s (GFED4s) (van der Werf et al., 2017),
termite emissions from Fung et al. (1991), and geological
seepage emissions from Etiope et al. (2019) with global scal-
ing to 2 Tg a−1 (Hmiel et al., 2020).

Figure 2 shows that South American emissions in
the prior estimate are dominated by wetlands (62 % of
continental emissions averaged across LPJ-MERRA2 and
WetCHARTs), mainly over the Amazon region but also
extending into Paraguay (Pantanal) and Argentina (Paraná
River basin). Livestock (22 %), mainly enteric fermentation
from cattle, is the largest anthropogenic source for almost
all countries and is spatially distinct from wetlands. Land-
fills and wastewater treatment, collectively referred to as
waste (5.9 %), follow population density and are large in
all countries. Fossil fuel emissions are mostly from oil–gas
(2.5 %) and are concentrated in Venezuela and Argentina.
Coal emissions are small (0.4 %) and concentrated in Colom-
bia. Rice emissions are also small (0.7 %) and concentrated
in southernmost Brazil. Open fires are a large seasonal source
(2.5 %) concentrated along the southern edge of the Amazon
in Brazil and northern Bolivia.

2.3 Analytical inversion

We use the Integrated Methane Inversion workflow (IMI
1.1) (Varon et al., 2022) with modifications as described
below. The forward model for the inversion is the nested
version of the GEOS-Chem 14.1.1 chemical transport
model (https://doi.org/10.5281/zenodo.4618180, Developers
of GEOS-Chem, 2021), which relates methane emissions
to atmospheric concentrations through atmospheric trans-
port (Maasakkers et al., 2019). GEOS-Chem is driven by
meteorological fields from NASA GEOS-FP analyses at
0.25°× 0.3125° resolution. We use this native resolution in
GEOS-Chem over South America and adjacent oceans (do-
main in Fig. 1) with dynamic boundary conditions outside the
inversion domain updated every 3 h from a global archive of
smoothed TROPOMI observations (Varon et al., 2022). That
same archive is used as initial conditions so that the simula-
tion is initially unbiased relative to TROPOMI observations.
The GEOS-Chem methane simulation includes chemical loss
from oxidation by tropospheric OH with a corresponding
methane lifetime of 10.8 years, consistent with the lifetime of
11.2± 1.3 years inferred from the methyl chloroform proxy
(Prather et al., 2012). It also includes minor losses from oxi-
dation by tropospheric Cl, oxidation in the stratosphere, and
uptake by soils (Murguia-Flores et al., 2018). The lifetime
of methane against all sinks is 9.1± 0.9 years (Szopa et al.,
2021). We do not optimize these sinks here.

We select the state vector x for the inversion with the
Gaussian mixture model (GMM) of Turner and Jacob (2015)
modified to include satellite observation density as a sim-
ilarity criterion. The GMM selects emission patterns that
the TROPOMI observations can effectively constrain, aim-
ing to preserve native (0.25°× 0.3125°) resolution for strong
sources with high observation density while smoothing the
solution in regions with low observation density or weak
prior emissions. Similarity vectors defining proximity and
commonality in sectoral emissions (as defined by the prior
estimate) as well as the density of TROPOMI observations
are used to construct Gaussian state vector elements. We use
600 Gaussian functions as state vector elements to balance
aggregation and smoothing errors (Wecht et al., 2014), fol-
lowing the precedent of past regional inversions of similar
domain size (Maasakkers et al., 2021; Chen et al., 2022;
Chen et al., 2023). We also optimize boundary conditions for
each quadrant (north, south, west, east) and for each season,
for a total of n= 616 state vector elements.

We perform the inversion with lognormal error probability
density functions (PDFs) for prior emissions. This prevents
unphysical negative emissions and better captures the heavy
tail of the emission distribution than a normal error assump-
tion. Specifically, we optimize ln(x) instead of x, such that
the prior errors on ln(x) (henceforth denoted as x′) follow
a normal distribution. We optimize the boundary condition
elements of the state vector assuming normal error distribu-
tions.
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Figure 2. Bottom-up methane emission inventories used as prior estimates for the inversion. Panels show annual mean methane emissions
for major sectors with continental totals inset. Wetland emissions for 2021 (inversion year) are shown for both WetCHARTs (mean of the
nine members of the high-performing ensemble) and LPJ-MERRA2. Coal, oil, and gas emissions are from the GFEIv2 gridded version of
the national inventories from individual countries reported to the UNFCCC. Other anthropogenic emissions are from countries’ most recent
UNFCCC reports with spatial allocation from EDGAR v7.

The inversion finds the optimal estimate x̂′ of x′ assuming
normal error distributions (lognormal in emission space) by
minimizing the Bayesian cost function J (x′) (Brasseur and
Jacob, 2017):

J
(
x′
)
=
(
x′− x′a

)T S′a
−1 (

x′− x′a
)

+ γ
(
y−K′x′

)T S−1
o
(
y−K′x′

)
, (1)

where x′ = ln(x) and x′a = ln(xa), xa (n× 1) is the prior
emission estimate (n= 616), and y (m× 1) is the ensem-
ble of TROPOMI super-observations and GOSAT observa-
tions. S′a (n× n) is the prior error covariance matrix, and
So (m×m) is the observational error covariance matrix. We
assume S′a and So to be diagonal in absence of better ob-
jective information. K′x′ =Kx is the GEOS-Chem forward
model simulation of XCH4, which is constructed from the
GEOS-Chem vertical profiles of dry-column methane mix-

ing ratios by applying TROPOMI or GOSAT averaging ker-
nel vectors and prior vertical profiles. K= ∂y

∂x
(m× n) is the

Jacobian matrix that describes the linear sensitivity of y to
x and is constructed column by column by perturbing in-
dividual elements of x in GEOS-Chem. K′ = ∂y

∂x′
(m× n)

describes the sensitivity of y to x′, which is nonlinear but
derived immediately from K with matrix elements k′i,j =
∂yi

∂ln(xj ) = xj
∂yi
∂xj
= xjki,j , where i and j are indices of the

observations and the state vector elements, respectively. The
regularization factor γ is used to prevent overfitting to obser-
vations caused by missing covariant structure (off-diagonal
terms) in So (Chevallier, 2007). Following the method of
Lu et al. (2021), we determine an optimal γ value such
that

(
x̂′− x′a

)T S′a
−1 (

x̂′− x′a
)
≈ n±

√
2n, the expected value

(± 1 standard deviation) of the chi-squared distribution with
n degrees of freedom. This yields γ = 0.05 here.
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We solve the nonlinear optimization problem iteratively
using the Levenberg–Marquardt method (Rodgers, 2000):

x′N+1 =x′N +
(
γK′N

T S−1
o K′N + (1+ κ)S′a

−1
)−1

(
γK′N

T S−1
o (y−KxN )−S′a

−1 (
x′N − x′a

))
, (2)

where the coefficient κ is fixed at 10 following Chen et
al. (2022), who found that using κ = 10 converges faster
with no difference in results compared to other methods. N
is the iteration number with x′0 = x′a, and K′N is evaluated
for x′ = x′N . We iterate on Eq. (1) until the differences of all
state vector elements between two consecutive iterations (x′N
and x′N+1) are smaller than 0.5 % and then take x̂′ = x′N+1
as the optimal posterior estimate. The posterior error covari-
ance matrix Ŝ′ on the optimal posterior estimate is given by
Rodgers (2000):

Ŝ′ =
(
γK′T S−1

o K′+S′a
−1
)−1

, (3)

where K′ =K′N+1 is evaluated for the posterior estimate.
The averaging kernel matrix A defining the sensitivity of the
solution to the true value is given by

A=
∂x̂′

∂x′
= In− Ŝ′S′a

−1
, (4)

where In is the n× n identity matrix. The trace of A, which
is called the degrees of freedom for signal (DOFSs), indi-
cates the number of independent pieces of information on x,

obtained from the observations. We will refer to the averag-
ing kernel sensitivity for individual state vector elements as
the corresponding diagonal element of the averaging kernel
matrix.

An implication of using lognormal error statistics for emis-
sions is that the prior estimate xa is the median (not the mean)
of a lognormal error PDF, and the inversion correspondingly
optimizes the median of the lognormal emission PDF. But
the UNFCCC national reports should be viewed as best prior
estimates of the means of the emission PDFs since they are
to be added across countries for the Global Stocktake. The
median and the mean of a lognormal PDF are related by

xmedian = xmean exp
[
−
s′

2

]
, (5)

where s′ = (lnσg)2 is the error variance in normal space, and
σg is the geometric error standard deviation. Here we as-
sume that the prior emissions are log-normally distributed
with a geometric standard deviation of 2 (σg = 2); therefore
xmedian = 0.79xmean. We apply these corrections to the prior
emission estimates from Sect. 2.2 for use in the inversion as
xa , with the prior error covariance matrix S′a taken as a diag-
onal matrix of the error variances sa = (ln2)2.

The same operation in reverse is needed for interpreting
the posterior emission estimates, which the inversion returns

as the medians of the posterior lognormal error PDF with
posterior error covariance matrix Ŝ′. From the posterior error
variances ŝ′j given by the diagonal elements of Ŝ′ for the in-
dividual state vector elements j , we apply for each element
the conversion x̂j,mean = x̂j,median exp[ŝ′j/2]. The mean pos-
terior estimates are therefore related to the mean prior esti-
mates by

x̂j,mean =

(
x̂j

xj, a

)
inversion

exp

[
ŝ′j − s

′

j, a

2

]
xj, a,mean, (6)

where (x̂j/x̂j, a)inversion is the ratio of medians returned by
the inversion. All results presented here are for the mean pos-
terior estimates, which allows for the summing of inversion
results geographically to obtain regional or national totals for
comparison to the mean prior estimates. We set the prior error
standard deviation on the boundary conditions to be 10 ppb,
which is typical of the root mean square error (RMSE) of
GEOS-Chem simulations using posterior emission estimates
(Chen et al., 2022).

We use the residual error method (Heald et al., 2004) to es-
timate observational error variances including contributions
from the TROPOMI and GOSAT instruments, the retrieval,
and the forward model. This method takes the residual er-
ror between the observations and the forward model simu-
lation with prior estimates (after removing the mean bias,
to be corrected in the inversion) as a measure of the obser-
vational error on the forward model grid. We do this sepa-
rately for GOSAT and TROPOMI. The resulting mean obser-
vational error standard deviation for GOSAT is 11.2 ppb. To
account for the error reduction resulting from averaging P
individual TROPOMI retrievals into the super-observations
y on the GEOS-Chem 0.25°× 0.3125° grid, we employ the
residual error method for super-observations developed by
Chen et al. (2023). This method derives the observational
error variance of the super-observations (σ 2

super) by separat-
ing the contributions in the individual observations from the
transport error variance σ 2

transport (perfectly correlated for the
individual observations within a GEOS-Chem grid cell) and
the satellite single-retrieval error variance (σ 2

retrieval):

σ 2
super = σ

2
retrieval

(
1− rretrieval

P
+ rretrieval

)
+ σ 2

transport, (7)

where rretrieval is the error correlation coefficient for the in-
dividual observations in a 0.25°× 0.3125° grid cell aver-
aged into a super-observation. Chen et al. (2023) obtained
σtransport = 4.5 ppb, σretrieval = 16.5 ppb, and rretrieval = 0.55
for TROPOMI observations over the Middle East and North
Africa. Our own fit of residual errors to Eq. (7) for South
America yields σtransport = 4.3 ppb, σretrieval = 14.8 ppb, and
rretrieval = 0.21. The average observational error standard de-
viation for the TROPOMI super-observations in the inversion
domain is 7.9 ppb.
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Figure 3. Optimization of methane emissions in South America on the 0.25°× 0.3125° grid. Posterior emissions are our best estimates from
the inversion of TROPOMI+GOSAT observations. Prior estimates are from UNFCCC reports (country totals for livestock, waste, rice),
GFEIv2 (fuel), and EDGARv7 (other minor sources; spatial distribution for livestock, waste, and rice) for anthropogenic emissions and
either LPJ-MERRA2 or WetCHARTs for wetland emissions (Fig. 2: the average is shown here). The averaging kernel sensitivities indicate
the ability of the observations to quantify emissions independently of the prior estimates on the 0.25°× 0.3125° grid (1= fully; 0= not at
all) as given by the diagonal elements of the averaging kernel matrix.

2.4 Attributing posterior emissions to individual
countries and sectors

The posterior GMM state vector (n× 1) can be mapped onto
the native 0.25°× 0.3125° grid cells of the inversion domain
using the GMM-generated weighting of each Gaussian on
that grid as represented by a matrix WGMM (p × n). The
contributions from each of q emission sectors to the emis-
sions in individual grid cells are taken from the prior inven-
tories to produce a matrix Wsectors (pq × n). We then ap-
ply a summation matrix Wagg (r × pq) to aggregate emis-
sions over r countries or sectors of interest. The resulting

matrix W=WaggWsectors (r × n) represents the linear trans-
formation from the posterior GMM state vector (n× 1) to
a reduced state vector (r × 1) of sectoral or country-level
emissions. The reduced state vector (x̂red), posterior error co-
variance (Ŝred), and averaging kernel matrix (Ared) are com-
puted as

x̂red =Wx̂, (8)

Ŝred =WŜWT , (9)
Ared =WAW∗, (10)
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Figure 4. Differences between dry-column methane mixing ratios (XCH4) observed by TROPOMI+GOSAT and simulated by GEOS-
Chem with prior emissions (including wetland emissions averaged across WetCHARTs and LPJ-MERRA2) and posterior emissions (median
of the inversion ensemble). Legends give the mean bias and root-mean-square errors (RMSEs) for the prior and posterior.

where W∗ =WT
(
WWT

)−1
is the Moore–Penrose pseudo-

inverse of W (Calisesi et al., 2005). We either aggregate to-
gether or make note of sectors that have an error correlation
greater than 0.75 as given by Ŝred. The averaging kernel sen-
sitivities for the aggregated emissions are the diagonal ele-
ments of Ared and represent the ability of the inversion to
quantify the emissions independently of the prior estimate
(1= fully, 0= not at all).

This method assumes that the relative contributions of
each sector to the total emissions in a given grid cell are
correct, which introduces an additional source of uncertainty
in the sectoral attribution of inversion results. Although the
high resolution of our inversion reduces the impact of this
assumption compared to coarser-resolution approaches, our
ability to attribute posterior emissions to individual sectors is
dependent on the spatial allocation of emissions in the prior
inventories.

2.5 Inversion ensemble

Our inversion described above makes assumptions on the
values of inversion parameters including a geometric error
standard deviation of the lognormal prior error distribution
σg = 2, an error standard deviation σb = 10 ppb for bound-
ary conditions, and a regularization factor γ = 0.05 where

σg and σb are selected following Chen et al. (2023), and γ
is determined as described in Sect. 2.3. The posterior error
matrix of Eq. (3) represents the uncertainty in the analytical
solution given this choice of inversion parameters, but it does
not account for uncertainties in the parameters themselves,
including the prior emission estimate. The choice of wetland
emission inventory used as prior estimate for the inversion
could particularly affect results. To address this, we gener-
ate a 54-member ensemble of sensitivity inversions varying
the parameters following Chen et al. (2023). The inversion
ensemble includes (1) σg = 1.5, 2, or 2.5; (2) σb = 5, 10,
or 20 ppb; (3) WetCHARTs or LPJ-MERRA2 wetland prior
estimate; and (4) γ = 0.025, 0.05, or 0.1. Because the un-
certainty defined by the range of optimal estimates of this
ensemble is larger than the posterior error from any single
inversion, we report an uncertainty in posterior estimates as
the range of solutions given by the inversion ensemble. We
consider this to be a conservative uncertainty estimate given
that the ensemble covers a range of σg, σb, and γ values com-
parable to past work (Chen et al., 2023; Nesser et al., 2024);
we use the residual error method to account for errors in the
observing system; and we additionally test two prior wet-
land inventories. However, this range does not account for
uncertainty that can arise from parameters that are impossi-
ble to vary in the inversion without significant computational
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Figure 5. Evaluation of inversion results with independent in situ observations from the Amazon Tall Tower Observatory (ATTO; Sierra
et al., 2024). The figure compares weekly average methane mixing ratios from GEOS-Chem simulations using prior or posterior emissions
to weekly averages of ATTO measurements. Observations from January to May and September to December are taken from 79 and 321 m
altitude, respectively, and compared to the corresponding GEOS-Chem altitudes and times of day. Reduced-major-axis (RMA) linear regres-
sions and the 1 : 1 line are also shown. The mean biases and correlation coefficients (r) are given in the inset. Four outliers in the observations
are not shown.

expense, such as the prior distribution of emissions and the
spatial aggregation in the state vector. Unless stated other-
wise, we report the best posterior estimate of emissions as
the median of this inversion ensemble (for each state vec-
tor element, prior emissions are scaled by the median poste-
rior / prior emissions ratio across the ensemble).

3 Results and discussion

3.1 Continental-scale results

Figure 3 shows the prior and posterior emission estimates
over the continental scale for the median of the inversion en-
semble, along with the median averaging kernel sensitivities.
The median DOFSs (sum of the averaging kernel sensitivi-
ties) are 144, out of a maximum of 616 defined by the state
vector dimension. Low averaging kernel sensitivities over the
Amazon and the Andes reflect the sparsity of observations.

The inversion effectively fits the emissions to the satellite
data, as shown in Fig. 4 where posterior emissions decrease
the mean GEOS-Chem model bias relative to the observa-
tions over the inversion domain from 3.04 to −0.03 ppb. The
RMSE decreases from 9.65 to 8.53 ppb, with improvement
limited by the observational error (7.9 ppb for TROPOMI
and 11.2 ppb for GOSAT). Figure S1 shows that this bias de-
creases in all seasons, but the extent of this decrease varies by
both season and region; the remaining bias in the posterior is

highest (2.34 ppb) in December through February when the
observation count is lowest.

We also compare our results with in situ data from the
Amazon Tall Tower Observatory (ATTO) (Sierra et al.,
2024), located in the center of the Amazon in northern Brazil.
Figure 5 shows that the posterior emissions decrease the
mean GEOS-Chem model bias relative to the ATTO mea-
surements from −12.6 to 2.7 ppb, with a modest increase in
correlation coefficient (0.75 to 0.79). While this bias reduc-
tion shows improvement in our posterior emissions, future
work would greatly benefit from a higher density of in situ
measurements over South America. The Global Atmospheric
Watch (GAW) Programme provides in situ data in Chile and
southern Argentina, but these sites are in low-emission areas
where the sensitivity to satellite observations in the inversion
is very small. The lack of validation with surface observa-
tions, not only of our inversion results but of the TROPOMI
and GOSAT data over South America, should be considered
when interpreting the results that follow.

Table 1 compares total prior and posterior emission esti-
mates for South America. Posterior emissions are 121 (109–
137) Tg a−1, where the parentheses indicate the range from
the inversion ensemble. This represents a significant in-
crease from the prior estimate of 96 Tg a−1. Most of that in-
crease is from anthropogenic emissions, which increase from
31 Tg a−1 in the prior estimate to 48 (41–56) Tg a−1. All sec-
tors show emission increases, with the largest for oil–gas
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Figure 6. Adjustment to wetland emissions from inversion of TROPOMI and GOSAT data. The top panels show the differences between pos-
terior and prior wetland emissions when either WetCHARTs or LPJ-MERRA2 wetland emissions are used as prior estimates with γ = 0.05,
σg = 2, and σb = 10. The bottom panels show the prior and posterior wetland emissions for different regions. Ranges from the inversion
ensembles are in parentheses. Boundaries of each region are defined using a combination of hydrological basin data from the FAO’s AQUA-
STAT (AQUASTAT database, available at https://data.apps.fao.org/aquastat/?lang=en, last access: 1 February 2024) and terrestrial ecoregions
from the World Wildlife Fund (Olson et al., 2001).

(158 %). On a regional scale, our estimate is comparable with
those of Saunois et al. (2024) and Worden et al. (2022) for
Brazil and southwestern South America but larger in north-
ern South America (Fig. S2). Further discussion of emissions
by sector and country is presented below.

3.2 Wetland emissions

Figure 6 shows the difference between posterior and
prior wetland emissions over South America from the
WetCHARTs and LPJ-MERRA2 inversions with γ = 0.05,
σg = 2, and σb = 10 ppb. Inversion results are sensitive to
the choice of prior estimate, even though the averaging ker-
nel sensitivity is high, because of large differences in the
prior spatial distributions (Fig. 2). While the continental-
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scale adjustment to wetland emissions from the inversion is
smaller for LPJ-MERRA2 (+0.5 Tg a−1) than WetCHARTs
(+15.9 Tg a−1), the sum of the absolute value of spatial
differences is larger for LPJ-MERRA2 (46 Tg a−1) than
WetCHARTs (36 Tg a−1) (Fig. 6). East et al. (2024) found
that LPJ-MERRA2 better matched zonal mean atmospheric
observations than WetCHARTs, but we find here that the
WetCHARTs spatial distribution over South America better
matches our posterior emission estimate.

Further examination of wetland emissions is shown in
Fig. 6 for four major regions: the Amazon Basin, the Bo-
livian Amazon, the Pantanal, and the Paraná. These re-
gions constitute 68 % and 83 % of South American wetland
emissions according to WetCHARTs and LPJ-MERRA2, re-
spectively. We find emissions from the Amazon Basin of
32 (29–44) Tg a−1, aligning with the WetCHARTs estimate
and within the range of uncertainty of other estimates (31–
56.5 Tg a−1) (Wilson et al., 2016, 2021; Ringeval et al., 2014;
Pangala et al., 2017; Basso et al., 2021). The Bolivian Ama-
zon is a region of interest because of recent aircraft measure-
ments showing methane emissions of 3.6 Tg a−1 (France et
al., 2022). Our best posterior estimate is 2.8 (1.6–4.4) Tg a−1,
again more consistent with WetCHARTs (1.9 Tg a−1) than
LPJ-MERRA2 (7 Tg a−1).

The Pantanal, located below the Amazon Basin in Brazil,
Bolivia, and Paraguay, is the largest seasonally flooded trop-
ical grassland in the world. We estimate emissions from the
Pantanal to be 1.5 (1.2–1.8) Tg a−1 with downward adjust-
ment from both LPJ-MERRA2 and WetCHARTs (1.8 and
2.0 Tg a−1) and a lower estimate than the range of uncer-
tainty of previous estimates (1.9–3.3 Tg a−1) (Bastviken et
al., 2010; Marani and Alvalá, 2007; Gloor et al., 2021).

The Paraná River wetland region extends from north-
ern Argentina to the la Plata River delta, which feeds into
the Atlantic Ocean. We estimate emissions from this re-
gion to be 2.0 (1.8–2.2) Tg a−1, a narrow range reflecting
the high averaging kernel sensitivity. This is larger than
WetCHARTs (0.87 Tg a−1) and LPJ-MERRA2 (1.4 Tg a−1).
Parker et al. (2020b) found that WetCHARTs underestimated
Paraná emissions in comparison to GOSAT due to wetland
extent underestimation.

3.3 Anthropogenic emissions from individual countries
and sectors

Figure 7 shows emissions by sector from the top seven an-
thropogenic emitting countries that make up 90 % of poste-
rior anthropogenic emissions over South America. Table 2
shows emissions for all countries. Posterior error correla-
tions between countries are all less than 0.25, indicating the
inversion’s ability to effectively separate emissions between
countries, but averaging kernel sensitivities are low (< 0.3)
for Ecuador, French Guiana, and Suriname because of a low
density of observations and low prior emissions. Chile and
Peru, despite lacking observations over the Andes, have mod-

Figure 7. National anthropogenic methane emissions from the top
seven emitting countries in South America. Posterior estimates
from inversion of 2021 TROPOMI and GOSAT observations are
compared to countries’ UNFCCC reports (livestock, waste, rice),
GFEIv2 (coal, oil–gas), and EDGARv7 (other anthropogenic),
which are taken as prior estimates for the inversion (Table 2). Waste
includes emissions from landfills and wastewater treatment, which
cannot be separated by the inversion. Vertical lines show the range
of posterior estimates from our inversion ensemble.

erately high averaging kernel sensitivities (0.61 and 0.46, re-
spectively), indicating that the inversion is able to constrain
emissions using glint observations offshore. We aggregate
emissions from oil and gas as well as wastewater and landfills
since posterior errors for these sectors are highly correlated.
Posterior error correlations between other major sectors are
generally low (< 0.25). Livestock has higher error correla-
tions with rice (0.42) and biomass burning (0.44), but these
are small sources.

We find that prior anthropogenic emissions for Brazil,
Bolivia, and Paraguay are within the range of our inver-
sion ensemble, while Argentina, Venezuela, Colombia, and
Peru have significantly higher top-down emissions. Live-
stock emissions in particular are much higher in all four of
these countries. Argentina and Venezuela also have higher
top-down oil–gas emissions than in the UNFCCC-based
GFEIv2 prior estimate. Peru has a large contribution from
waste emission that is underestimated in its UNFCCC report.
Nathan et al. (2024) conducted a regional TROPOMI in-
version over Venezuela and found total anthropogenic emis-
sions in 2019 to be 3.6 (2.0–5.3) Tg a−1. This is much lower
than our estimate of 7.0 (5.5–9.9) mainly from differences in
emissions from livestock (1.2 (0.9–1.6) Tg a−1 vs. our pos-
terior 2.8 (2.0–4.5) Tg a−1) and oil–gas (1.8 (0.9–2.7) Tg a−1

vs. 3.4 (3.1–5.5) Tg a−1). Their lower estimate may be due to
differences in the inversion setup, particularly their higher-
resolution state vector over northern Venezuela, which could
reduce the impact of aggregation error.

Waste (landfills and wastewater) is a large emission sec-
tor across South America that has a 50 % higher top-down
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Table 2. National anthropogenic emissions (Tg a−1) by country and sectora.

Country Total Livestock Waste Rice Oil–gas Coal Otherb Averaging kernel
anthropogenic sensitivityc

Argentina

Prior 4.3 2.7 0.73 0.02 0.36 < 0.01 0.12
Posterior 9.2 (7.9–11) 6.1 (5.1–7.1) 1.3 (1.1–1.6) 0.02 (0.02–0.03) 1.5 (1.4–1.6) < 0.01 0.21 (0.18–0.25) 0.94

Bolivia

Prior 0.75 0.56 0.09 0.02 0.05 < 0.01 0.01
Posterior 0.96 (0.66–1.2) 0.61 (0.47–0.77) 0.18 (0.11–0.20) 0.02 (0.01–0.02) 0.13 (0.07–0.19) 0.18 (0.11–0.19) 0.02 (0.01–0.02) 0.6

Brazil

Prior 16 12.5 2.8 0.46 0.18 0.04 0.68
Posterior 19 (16–23) 14 (12–18) 2.8 (2.4–3.3) 0.49 (0.42–0.61) 0.16 (0.13–0.17) 0.04 (0.03–0.05) 0.68 (0.58–0.84) 0.75

Chile

Prior 0.67 0.23 0.29 < 0.01 0.04 < 0.01 0.04
Posterior 0.88 (0.69–0.96) 0.36 (0.26–0.41) 0.41 (0.34–0.44) 0.01 (< 0.01–0.01) 0.05 (0.04–0.15) < 0.01 0.05 (0.04–0.05) 0.61

Colombia

Prior 3.0 1.6 0.69 0.03 0.28 0.35 0.05
Posterior 5.0 (4.4–6.7) 3.0 (2.5–4.2) 0.91 (0.78–1.1) 0.04 (0.03–0.05) 0.48 (0.38–0.8) 0.53 (0.35–1.4) 0.08 (0.07–0.11) 0.39

Ecuador

Prior 0.55 0.39 0.09 0.02 0.04 < 0.01 0.01
Posterior 0.57 (0.55–0.70) 0.4 (0.39–0.48) 0.1 (0.1–0.12) 0.02 (0.02–0.02) 0.04 (0.03–0.07) 0.04 (0.03–0.07) 0.01 (0.01–0.02) 0.16

French Guiana

Priord < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
Posterior < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 0.052

Guyana

Prior 0.05 0.02 < 0.01 0.02 < 0.01 < 0.01 < 0.01
Posterior 0.07 (0.05–0.46) 0.03 (0.02–0.13) < 0.01 0.03 (0.03–0.28) < 0.01 < 0.01 < 0.01 0.52

Paraguay

Prior 0.86 0.74 0.05 0.02 < 0.01 < 0.01 0.03
Posterior 0.93 (0.88–1) 0.80 (0.76–0.86) 0.06 (0.05–0.07) 0.03 (0.03–0.03) < 0.01 < 0.01 0.04 (0.03–0.04) 0.83

Peru

Prior 1.1 0.46 0.44 0.05 0.09 0.01 0.04
Posterior 2.4 (1.6–3.9) 0.89 (0.64–1.5) 1.1 (0.69–1.7) 0.1 (0.07–0.19) 0.22 (0.1–0.4) 0.02 (0.01–0.03) 0.07 (0.05–0.13) 0.46

Suriname

Prior 0.03 < 0.01 < 0.01 0.01 0.01 < 0.01 < 0.01
Posterior 0.03 (0.03–0.04) < 0.01 < 0.01 0.01 (0.01–0.01) 0.01 (< 0.01–0.01) 0.01 (< 0.01–0.01) < 0.01 0.28

Uruguay

Prior 0.77 0.69 0.05 0.01 < 0.01 < 0.01 0.01
Posterior 1.1 (1.0–1.2) 0.93 (0.8–1.0) 0.14 (0.07–0.21) 0.03 (0.03–0.03) < 0.01 < 0.01 0.02 (0.02–0.03) 0.91

Venezuela

Prior 2.5 0.89 0.25 0.02 1.3 < 0.01 0.02
Posterior 7.0 (5.5–9.9) 2.8 (2.0–4.5) 0.67 (0.45–1.2) 0.06 (0.04–0.10) 3.4 (3.1–5.5) < 0.01 0.06 (0.04–0.12) 0.68

a Prior estimates are from the latest country reports to the UNFCCC (see Table S1 for details) and the UNFCCC-based GFEIv2 inventory for fuel. Posterior results are from the inversion of TROPOMI and GOSAT data for 2021 and are
shown as the median of the inversion ensemble, with ranges from the inversion ensemble in parentheses. b Minor sources including industry, stationary combustion, mobile combustion, aircraft, composting, and field burning of agricultural
residues. These minor sources are taken from EDGAR v7. c Ability of observations to quantify national anthropogenic emissions independently of the prior estimate (1= fully, 0= not at all) as measured by the diagonal terms of the
averaging kernel matrix. Values are the median sensitivities across the inversion ensemble. d There is no UNFCCC report for French Guiana, and our prior estimate is taken from a combination of GFEI v2 and EDGAR v7 (see text).

emission estimate than the UNFCCC prior estimate. Coun-
tries estimate waste emissions using country-specific data on
populations, waste generation rates, and landfill monitoring
along with IPCC parameters for methane yield (IPCC, 2019).
Our waste estimate for Brazil is consistent with its UNFCCC
report, but all other countries have higher posterior waste es-
timates than their UNFCCC reports. Argentina (+59 % in the
top-down estimate relative to the prior estimate) and Peru
(+150 %) see the largest discrepancies. Despite significant
efforts in Peru to improve their landfilling infrastructure, dis-

posal of about 50 % of the country’s solid waste is still done
improperly (Peru Ministerio del Ambiente, 2024), much of
which ends up in open dumpsites and could be unaccounted
for in bottom-up estimates (Ziegler-Rodriguez et al., 2019).
In Argentina, TROPOMI has been used previously to iden-
tify a strongly emitting landfill in Buenos Aires (Maasakkers
et al., 2022), where we also find high posterior emissions.

Figure 8 compares the prior and posterior oil–gas methane
intensity for each country defined as the total emissions from
the oil–gas sector per unit of natural gas produced as methane
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(OGCI, 2022). We use national production data from EIA
(EIA, 2023) and assume 90 % of natural gas to be produced
as methane as in Shen et al. (2023). We compare our posterior
intensities to those inferred from Shen et al. (2023) for indi-
vidual countries worldwide and from Nathan et al. (2024) for
Venezuela in their inversions of TROPOMI data. Nathan et
al. (2024) define methane intensity as the amount of methane
emitted per unit of combined oil and gas production, rather
than just gas production. We find that Venezuela, Peru, and
Colombia have comparable posterior methane intensities to
these previous studies, but Argentina’s intensity is higher
(5.9 (5.3–6.2) %) than the intensity inferred from Shen et
al. (2023) (1.5 %). The large difference between our poste-
rior and prior estimates for Argentina may be due to our
prior estimate from GFEIv2 not accounting for recent de-
velopments, particularly the substantial expansion of oil and
gas extraction in the Neuquén Basin in central-western Ar-
gentina over the past 5 years (Forni et al., 2021). All coun-
tries except Venezuela have methane intensities of magni-
tudes comparable to the global average of 2.4 % inferred by
Shen et al. (2023) from inversion of TROPOMI data and
much higher than the industry target of 0.2 % (OGCI, 2022),
indicating a large potential to decrease emissions. Venezuela
has the highest posterior methane intensity (33 (29–54) %)
in South America, which can be explained by leakage from
abandoned infrastructure as its oil production has declined
(Nathan et al., 2024). Shen et al. (2023) found Venezuela to
have the highest methane intensity of any country globally.

3.4 Livestock emissions

Livestock accounts for over 65 % of anthropogenic methane
emissions in South America (Table 1), and over 90 % of
this source is from enteric fermentation by cattle (FAO-
STAT database, available at https://www.fao.org/faostat/en/
{#}data, last access: 1 February 2024). Bottom-up invento-
ries estimate emissions from enteric fermentation by multi-
plying cattle populations by an emission factor per head. The
emission factor depends on age, size, feed, cattle type, and
environment. The IPCC (2019) gives different tiers of guide-
lines to incorporate this information into countries’ bottom-
up estimates. Tier 1 guidelines are to multiply cattle pop-
ulations by emission factors that represent averages across
all of Latin America. Tier 2 requires countries to calculate
their own emission factors based on country-specific data on
feed, size, productivity, and amount of movement for differ-
ent types of cattle. Tier 3 guidelines are not specific but could
include the development of sophisticated models considering
diet composition or the fermentation process in more detail
(Bannink et al., 2011).

Tier 1 emission factors for Latin America are calculated by
the IPCC (2019) using data from 52 publications, of which
32 are for Brazil. These emission factors are 58 and 55 kg of
CH4 per head per year for non-dairy cattle and 78 and 103 kg
of CH4 per head per year for dairy cattle in low-productivity

Figure 8. Oil and gas methane intensities for major producing
countries in South America. The methane intensity is defined as
the amount of methane emitted per unit of methane gas produced
for our posterior result and that of Shen et al. (2023). Nathan
et al. (2024) define methane intensity as the amount of methane
emitted per unit of combined oil and gas production, rather than
just gas production. Methane intensities computed from the prior
and posterior emissions are compared to values inferred from
Shen et al. (2023) in a previous inversion of TROPOMI data for
May 2018–February 2020 (they only report an upper emission es-
timate of 1 Tg a−1 for Bolivia) and from Nathan et al. (2024) in
a TROPOMI inversion over Venezuela for 2019. Horizontal lines
indicate the ranges from our inversion ensemble. The vertical line
shows the global mean methane intensity of 2.4 % reported by Shen
et al. (2023).

and high-productivity systems, respectively. Because these
values are presented as averages across Latin America, coun-
tries for which livestock is a dominant emission source are
encouraged by IPCC (2019) to use Tier 2 or Tier 3 methods
instead.

Many South American countries describe using a com-
bination of Tier 1 and Tier 2 methods in their UNFCCC
reports with varying degrees of complexity. Argentina and
Colombia, for example, both use complicated Tier 2 methods
considering livestock breed and temperature. Despite their
complex bottom-up reporting, Argentina and Colombia see
some of the largest discrepancies between their UNFCCC
reports and our top-down estimate, indicating that the dif-
ference is not due to a lack of thoroughness in bottom-up
calculations. The mismatch could be because IPCC Tier 2
methods can underestimate emission factors; Salas-Riega et
al. (2022) showed that measured enteric emissions for both
lactating and non-lactating cattle in the Peruvian high Andes
were higher than those derived from IPCC Tier 2 methods
(119 and 97 kg of CH4 per head per year for lactating and
non-lactating cattle, respectively). It could also be because
bottom-up methods are unable to capture the spatial and tem-
poral variability of emission factors; Benaouda et al. (2020)
reviewed daily measurements of cattle enteric fermentation
in Latin America and found a wide range of emission fac-
tors, from 18 to 239 kg of CH4 per head per year with an
average of 68 kg of CH4 per head per year.
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Figure 9. Satellite-informed spatial distribution of enteric fermentation emissions from feedlots and dairies in southern Brazil and northern
Argentina from Climate TRACE (Davitt et al., 2023). Panel (a) shows the distribution of emissions from individual feedlots averaged onto
the native 0.25°× 0.3125° grid cells of our inversion. Panel (b) compares our prior and posterior emissions to the Climate TRACE data for
grid cells where the inversion has averaging kernel sensitivities greater than 0.5, fewer than 50 grid cells aggregated within the state vector
element, and more than 50 % of prior emissions from livestock. Reduced-major-axis linear regressions are also shown.

One possible weakness in our inversion is the reliance
on EDGAR v7 for the prior spatial distribution of livestock
emissions on the 0.25°× 0.3125° grid. EDGAR spatially al-
locates emissions by using an array of proxy datasets in-
cluding animal density and global land cover data (Crippa
et al., 2024). Errors in this spatial distribution would prop-
agate to inversion results by affecting both the optimal so-
lution to the inverse problem (Yu et al., 2022) and the at-
tribution of 0.25°× 0.3125° posterior emissions to specific
sectors (Shen et al., 2021). Figure 9 shows 2021 emissions
from 779 individual feedlots and dairies in northern Ar-
gentina and southern Brazil estimated by Climate TRACE
by using artificial intelligence to identify facility locations in
PlanetScope (Planet Team, 2021) satellite imagery, assum-
ing livestock numbers to be proportional to facility area, and
applying 2006 IPCC emission factors (Davitt et al., 2023).
The high emissions in northern Argentina do not match the
spatial distribution from EDGAR (Fig. 2). The right panel of
Fig. 9 compares our prior and posterior emission estimates
to the Climate TRACE values for inversion grid cells dom-
inated by livestock. Our values are higher because Climate
TRACE estimates are limited to larger feedlots visible in
PlanetScope imagery. However, we find better spatial corre-
lations between Climate TRACE and our posterior emissions
(r = 0.44, p = 0.0004) than our prior emissions (r =−0.11,
p = 0.42). The Climate TRACE database could be useful as
a prior estimate for future inversions but would need to be
more comprehensive. Another possible source of error is the
overlap between livestock activities and agricultural burning,
particularly in Argentina (Puliafito et al., 2020). Small fires,

often set to clear waste and prepare fields for planting, may
be too small to be captured accurately in the prior inventories
(Randerson et al., 2012).

Future inversions could be improved by using country-
specific, spatially distributed emission inventories as prior
estimates when available. Argentina, for example, offers a
spatially gridded agriculture-specific emission inventory in
which livestock emissions are much more concentrated than
in EDGAR (Puliafito et al., 2020), which may not have as
precise, country-specific data to spatially allocate emissions.
Using national, gridded inventories as prior estimates when
available would not only reduce a major source of uncer-
tainty in the inversion but would also make top-down results
more policy-relevant.

4 Conclusions

We used 2021 TROPOMI and GOSAT satellite observations
of atmospheric methane (XCH4) in a high-resolution analyti-
cal inversion to infer methane emissions from South America
at up to 25 km× 25 km resolution. The goal of this work was
to use the national inventories submitted to the United Na-
tions Framework Convention on Climate Change (UNFCCC)
under the Paris Agreement in tandem with satellite methane
observations to begin to identify reasons for the mismatch be-
tween top-down and bottom-up estimates over South Amer-
ica.

We used national emission inventories reported by indi-
vidual countries to the UNFCCC, gridded using EDGARv7,
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as the prior estimate for livestock, waste, and rice in the
inversion; for fossil fuel sources, we used GFEIv2 as the
prior estimate. For wetlands we used two alternative prior
estimates, from WetCHARTs and LPJ-MERRA2, with dif-
ferent spatial distributions. We obtained best posterior es-
timates of emissions analytically through Bayesian synthe-
sis of these prior estimates with the information from the
TROPOMI and GOSAT observations. We used a blended
TROPOMI+GOSAT product that corrects spatially variable
biases and artifacts in the TROPOMI data using information
from GOSAT. Although TROPOMI data are in general much
denser than GOSAT, GOSAT provides unique coverage over
the Amazon where TROPOMI data are sparse. The inver-
sion used variable resolution with a Gaussian mixture model
(GMM) state vector that enforces native 25 km resolution in
source regions with high observation density. Analytical so-
lution to the inversion enabled the creation of an inversion
ensemble with 54 members for conservative uncertainty es-
timates on posterior emissions.

Total posterior emissions for South America are 121 (109–
137) Tg a−1, where the best estimate is the median of our in-
version ensemble, and the range is in parentheses. This is sig-
nificantly higher than the prior estimate of 96 Tg a−1. Most of
the increase is from anthropogenic emissions, which increase
from 31 Tg a−1 in the prior estimate to 48 (41–56) Tg a−1.
Anthropogenic emissions are dominated by livestock (65 %),
followed by waste (16 %) and oil–gas (13 %). Total anthro-
pogenic emissions in South America are 55 % higher than
in the prior estimate, reflecting increases in emissions from
oil–gas (+158 %), livestock (+48 %), and waste (+37 %).

We obtain best posterior estimates of wetland emissions
from the Amazon (32 (29–44) Tg a−1), the Bolivian Amazon
(2.8 (1.6–4.4) Tg a−1), the Pantanal (1.5 (1.2–1.8) Tg a−1),
and the Paraná (2.0 (1.8–2.2) Tg a−1). Our estimate for the
Amazon is consistent with past estimates, but our estimate
for the Pantanal is lower. Emissions from the Paraná are
much higher than in either WetCHARTs or LPJ-MERRA2.
Posterior wetland continental total emissions agree better
with LPJ-MERRA2 than WetCHARTs, but the posterior spa-
tial distribution better matches WetCHARTs.

We compare the bottom-up estimates of anthropogenic
emissions from individual countries to our best sector-
resolved posterior estimates. We find that TROPOMI and
GOSAT observations can effectively resolve emissions from
individual countries except Ecuador and Suriname. The
top seven emitting countries including Brazil, Argentina,
Venezuela, Colombia, Peru, Bolivia, and Paraguay make up
93 % of the total anthropogenic emissions in the region, with
Brazil contributing the highest amount (40 %). All countries
except Bolivia, Brazil, and Suriname show larger top-down
anthropogenic emission estimates than the prior estimate.
Waste emissions are higher in the posterior estimate than
the prior estimate, particularly in Peru. Oil–gas emissions are
also higher in the posterior in all producing countries except
Brazil. We find high methane intensities from the oil–gas sec-

tor in Venezuela (33 (29–54) %), Colombia (6.5 (5.1–10.8)
%), and Argentina (5.9 (5.3–6.2) %).

We examine livestock emissions and their reporting to
UNFCCC in more detail. These emissions are over 90 %
from enteric fermentation by cattle. We find that even coun-
tries with complex Tier 2 reporting methods report livestock
emissions much lower than our posterior estimate. These dif-
ferences may stem from underestimations in IPCC Tier 2
methods or the inability of bottom-up approaches to cap-
ture spatial and temporal variability in emission factors. They
may also be the result of uncertainty in the inversion arising
from aggregation error or the prior spatial distribution of live-
stock emissions.

South America is a heterogenous continent with a com-
plex range of drivers of emissions and methodologies used
to calculate them. Future work would benefit from partner-
ship with local experts to make stronger connections between
top-down estimates and bottom-up data in specific countries.
Top-down estimates can provide additional information to
improve our understanding of methane emissions, but attri-
bution to sectors is dependent on the choice of prior distribu-
tion of emissions; country-specific information can improve
this prior estimate and thus the inversion results. Further,
satellite observations of methane are validated by in situ data
primarily from the Northern Hemisphere. The credibility of
future inversion results over South America would be greatly
enhanced by comprehensive and systematic in situ methane
observations across the region.
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