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Abstract. The IPCC’s assessment report shows that the radiative forcing of aerosol–radiation interactions still
involves significant uncertainty. The commonly used method for factor uncertainty estimation is the one-at-
a-time (OAT) method, which evaluates factor sensitivity by controlling the change in a single variable while
keeping others constant. The outcomes from the OAT method require high data quality to ensure accuracy, and
the results are only valid near the selected constant. This study proposes a new method called the Constrained
Parameter (CP) method to quantify the uncertainty contribution of factors in a multi-factor system. This method
constrains the uncertainty of a single factor between two Monte Carlo simulations and evaluates its sensitivity
by analyzing how this change affects output uncertainty. The most significant advantage of the CP method is
that it can be applied to any data distribution, and its results can reflect the overall data characteristics. The
proportion of factor interactions in the factor uncertainty contributions can be obtained by comparing the results
calculated by the CP method and the OAT method. As an application of the CP method, it performs a detailed
analysis of aerosol–radiation interaction factors’ uncertainty contributions. The top three most sensitive factors
are the complex refractive index of aerosol shell materials, light-absorbing carbon parameters, and Mie theory
parameters. Due to their high sensitivity and low observational precision, these factors represent significant
sources of uncertainty in aerosol–radiation interactions. These factors need to be prioritized for operational
observation programs and model parameter inputs.

1 Introduction

Aerosol–radiation interaction (ARI) refers to the direct scat-
tering and absorption of solar radiation by aerosols, and it
is a key component of aerosol radiative forcing that can
have a significant influence on the climate system (Forster
et al., 2021). In recent years, numerous studies have fo-
cused on radiative forcing of ARI (RFari) and its associated
impacts. According to the Intergovernmental Panel on Cli-
mate Change (IPCC) Sixth Assessment Report (Forster et
al., 2021), the estimated RFari is−0.22[−0.47–0.04]W m−2,
a value comparable to the radiative forcing of N2O at
0.21[0.18–0.24]W m−2 and second only to that of CO2
at 2.16[1.90–2.41]W m−2, CH4 at 0.54[0.43–0.65]W m−2,
and O3 at 0.47[0.24–0.71]W m−2. Despite the estimated
RFari having undergone substantial revisions across suc-
cessive IPCC reports, its uncertainty has not notably de-

creased (Houghton, 1996, 2001; Solomon, 2007; Stocker,
2014; Forster et al., 2021). Furthermore, significant discrep-
ancies exist between RFari estimates derived from surface
temperature changes and those from model simulations (An-
derson et al., 2003; Hansen et al., 2023), suggesting that the
cooling effect of aerosols may be underestimated, potentially
due to the omission of key factors in current models. To ad-
dress these issues, it is crucial to conduct a thorough and pre-
cise uncertainty analysis of ARI factors and improve routine
aerosol observation projects and model settings to better cap-
ture the contributions of critical factors.

The sensitivity of a factor can reflect the influence of the
factor on the system output, and the product of the factor and
the uncertainty of the factor itself can reflect the uncertainty
contribution of the factor to the output to a certain extent. At
present, research on assessing the uncertainty contributions
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of ARI factors has primarily focused on the sensitivity of
these factors (McComiskey et al., 2008; Loeb and Su, 2010;
Lee et al., 2011; Srivastava et al., 2011; Thorsen et al., 2020).
The commonly used sensitivity analysis method is the one-
at-a-time (OAT) method. The fundamental principle of this
method is the control variable technique, wherein a pertur-
bation dx is applied to a specific factor, while other factors
are held constant, and the resulting change in the output dy
is observed.

The main advantage of the OAT evaluation method is its
computational efficiency, as it requires only two experiments
to determine the sensitivity of a factor, making it particu-
larly suitable for large-scale ensemble models where com-
putational costs are high. To ensure the accuracy of the sen-
sitivity analysis results of the OAT method, two conditions
must be met: (1) the covariance among the observed data of
each factor must be zero, and (2) the sensitivity results ob-
tained are only valid near the selected constant value. For the
ARI system, these conditions may not be strictly fulfilled, a
discussion that will be elaborated upon in Sect. 2. Several
studies have enhanced evaluation methods to improve the
credibility of results. These improvements include replacing
satellite remote sensing data with more accurate AERONET
global ground-based observation data (Thorsen et al., 2021)
and utilizing Monte Carlo simulations to assess the impact of
disturbances due to factor uncertainty on system output (Lee
et al., 2016; Elsey et al., 2024). Proposing a new method that
integrates these improvements to overcome the limitations of
OAT analysis could lead to a more accurate understanding of
ARI.

In addition to the possible errors caused by the evaluation
method, the factors discussed in the current assessment work
exhibit certain limitations. Due to limitations in observation
methods, the evaluation models of ARI typically focus on
aerosol optical parameters (AOPs), such as the aerosol opti-
cal depth (AOD), single scattering albedo (SSA), and asym-
metry factor (g). Numerous studies have demonstrated that
AOPs are the most direct factors influencing RFari (Andrews
et al., 2006; McComiskey et al., 2008; Loeb and Su, 2010;
Chung, 2012; Zhao et al., 2018). However, AOPs are sig-
nificantly influenced by various aerosol and environmental
parameters, which, in turn, indirectly affect RFari (Stock et
al., 2011; Fierce et al., 2016; Kuang et al., 2016; Liu et
al., 2017; Zhao et al., 2019a, 2021a, b, 2023). With the grow-
ing availability and accuracy of aerosol optical property ob-
servation methods, it is essential to analyze the uncertainty
of these factors to more comprehensively assess and identify
the sources of ARI uncertainty. The absence of a compre-
hensive evaluation may result in the underestimation of the
importance of certain factors.

The uncertainty in RFari assessment results is also signif-
icantly influenced by the model used (Thorsen et al., 2021).
To reduce computational costs, large ensemble models of-
ten rely on numerous parameterization processes that sim-
plify the physical mechanisms, which limits their ability to

fully and accurately represent the ARI mechanism. Addition-
ally, there can be considerable differences in model settings.
When the IPCC conducts ensemble statistics on assessment
results across different models, the uncertainty may largely
stem from discrepancies between the models themselves,
leading to reduced accuracy in the conclusions. Therefore,
a more effective approach would be to use a radiation mech-
anism model that more accurately captures the ARI physical
processes to calculate RFari and conduct factor uncertainty
contribution analysis.

This study proposes a new method for factor uncertainty
contribution analysis, which employs Monte Carlo simula-
tions to assess the contribution of various uncertainties. As
a case study, field observation data on aerosol optical prop-
erties from north China are utilized, along with the radia-
tion transfer model SBDART and the Mie theory model, to
evaluate RFari and AOPs. The analysis examines the uncer-
tainty contributions of aerosol and environmental parameter
factors. The high-importance factors identified in the analysis
should be prioritized in future routine observation efforts and
model configurations to reduce uncertainty in the evaluation
results. Section 2 provides a detailed introduction to the new
method, while Sect. 3 presents the analysis results of RFari
factor uncertainty contributions, along with a comparison to
the results from the OAT method.

2 Analysis method of factor uncertainty
contributions

This section will provide a comprehensive analysis of the
most commonly used method for assessing factor uncertainty
contributions through control variables. Additionally, it will
introduce a new method for analyzing factor uncertainty con-
tributions, aiming to address potential issues associated with
the traditional control variable method.

2.1 OAT method

For a multi-factor system, it can be expressed as

y = f (X) . (1)

Here, y represents the output variable, and X denotes the set
of input variables, which can be expressed as

X = [x1,x2, . . .,xn]T . (2)

The superscript T denotes the transpose of the matrix. Given
that interactions may exist between factors, the input vari-
ables satisfy the functional relationship g as follows:

xi = gi (X) , (3)

∂X

∂xi
=

[
∂g1

∂xi
,
∂g2

∂xi
, . . .,

∂gn

∂xi

]T
. (4)
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The Taylor expansion of Eq. (1) gives

f (X)= f (A)+
[
∇f (A)

]T (X−A)

+
1
2!

[X−A]TH (A) [X−A]+ . . . , (5)

where A is a fixed value of X, ∇f (A) represents the first-
order derivative of f (X) at A, and H (A) is the Hessian ma-
trix of f (X) at A. As X approaches A, i.e., as X→A, the
higher-order terms beyond the second order tend to zero, sat-
isfying

f (X)X→A = f (A)+
[
∇f (A)

]T (X−A)+O2. (6)

If the X→A condition cannot be met, the influence of the
higher-order terms in the equation cannot be ignored. Taking
the partial derivative of Eq. (6) concerning the input variable
xi , we obtain

∂f (X)
∂xi X→A

=
∂
[
∇f (A)

]T (X−A)
∂xi

=

∑n

j=1

∂f (A)
∂xj

∂gj (X)
∂xi

. (7)

When the variables are independent of each other,

∂gj (X)
∂xi

= 1, j = i , (8)

∂gj (X)
∂xi

= 0, j 6= i. (9)

The sensitivity analysis results of the OAT method can be
obtained as follows:

SOAT =
∂f (X)
∂xi X→A

=
∂f (A)
∂xi

. (10)

There is a linear relationship between the output variable and
all variables:

y|X→ A=KX+C , (11)

where K =
[
∇f (A)

]T ; C = f (A)−A
[
∇f (A)

]T ; and the
uncertainty of each input variable and output variable has a
transfer relationship,

Dσ 2
y
=KTDσ 2

xi
K . (12)

Here, σy and σxi are the standard deviations of the output
variable and each input variable, respectively, and D repre-
sents a diagonal matrix. Under these conditions, the uncer-
tainty of the output can be decomposed into factor sensitivity
and factor uncertainty, expressed as follows:

U2
y =6S

2
i ×U

2
xi
. (13)

When the variables are not independent, we have

SOAT−
∂f (A)
∂xi

=

∑n

j=1,j 6=i

∂f (A)
∂xj

∂gj (X)
∂xi

. (14)

It can be concluded that the sensitivity analysis results ob-
tained by the OAT method are valid only when two condi-
tions are fulfilled:

1. X→A.

2. The variables are independent of each other.

When these two conditions are met, the analysis results of the
OAT method can strictly reflect the sensitivity of the input
variable xi to the output y.

2.2 Applicability of the OAT method in the ARI system

For the ARI system, meeting these two conditions is chal-
lenging for the following reasons:

1. In aerosol observations, inaccuracies in certain instru-
ments or uncertainties arising from the inversion pro-
cess of the joint observation system can lead to signifi-
cant uncertainties in the generated observation data. As
a result, the statistical average of the measurement re-
sults may not accurately reflect the true properties of
aerosols. This discrepancy means that there can be a
considerable deviation between the calculated A value
Acal and the actual A value Areal, resulting in obtained
results that are not entirely accurate.

2. Due to the influence of multiple factors, such as aerosol
sources, aging processes, and changes in the atmo-
spheric environment, it is essential to consider that the
observed values of the physical and chemical proper-
ties of aerosols exhibit significant variability over time
(e.g., diurnal, seasonal, and interannual changes) and
space (e.g., coastal vs. inland, urban vs. rural, bound-
ary layer vs. free atmosphere). This variability can lead
to inhomogeneity in aerosol optical properties, resulting
in trends or patterns in the observed data rather than a
strict normal distribution. When using the OAT method
for sensitivity analysis, the statistical mean may not ac-
curately represent the data, thus introducing additional
sources of error. To address this, it is necessary to first
eliminate the influence of trends in the data. Overcom-
ing this challenge requires analyzing the actual physi-
cal environment, which may involve additional time and
computational costs.

3. For ARI, the interactions between factors are signifi-
cant, and it is not feasible to assume that all the fac-
tors discussed are strictly independent. The covariance
between the observed data may not be zero. When us-
ing the OAT method to analyze factor sensitivity, it is
crucial to consider the relative magnitude of the covari-
ance between the observed data of each factor. When
the covariance between the data is large, applying a dis-
turbance to one factor while holding the others constant
does not reflect the actual physical situation and thus
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fails to satisfy the strict conditions required for the OAT
method. As a result, the final analysis may contain er-
rors in the factor interaction terms.

4. The outcome of sensitivity analysis is to ascertain the
uncertainty contribution of various factors. It is essen-
tial to perform separate statistical analyses on the sensi-
tivity of these factors and observational uncertainty. To
address the challenge of high uncertainty in the evalua-
tion results of RFari, a more practical discussion should
focus on how constraints imposed by observations, or
improvements in observational accuracy, can enhance
the reliability of the results. While sensitivity analysis
does not directly answer this question, it offers valu-
able insights into the significance of each factor from
a different perspective, guiding future efforts to reduce
uncertainty.

In summary, when employing the OAT method to analyze
factor sensitivity within the ARI system, there are strict re-
quirements and numerous limitations regarding data quality.
Forced application of this method may lead to discrepancies
between the results and actual conditions. Besides the OAT
method, various sensitivity analysis techniques have been
widely utilized across many fields (Hamby, 1995; Christo-
pher Frey and Patil, 2002; Saltelli et al., 2005; Marino et
al., 2008). Each of these methods also has specific require-
ments for data quality. Therefore, to enhance the reliability
of the evaluation results for RFari, it is crucial to adopt a more
suitable analysis method to assess the uncertainty contribu-
tions and significance of the influencing factors.

2.3 CP method

Building on the history match method (Edwards et al., 2011;
Williamson et al., 2013; Lee et al., 2016), this study intro-
duces the Constrained Parameter (CP) method to quantita-
tively rank the uncertainty contributions of various factors.
The central concept of the CP method is to define the im-
portance of a variable’s uncertainty by constraining the value
range of the input variable and observing how this constraint
affects the standard deviation of the output variable. The spe-
cific analytical approach includes the following steps:

1. 1.] A Monte Carlo (MC) simulation is conducted on the
system, where the range of each input parameter is de-
termined based on the distribution of actual measure-
ment results. The initial MC simulation allows for the
exploration of all possible states of the system given the
input variable distribution, enabling the calculation of
the standard deviation σy of the output variable. To en-
hance the efficiency of the MC simulation, Latin hyper-
cube sampling is employed for data sampling.

2. For a specific input variable, the distribution range is
constrained, reducing its standard deviation from σx to

σ ′x while keeping the standard deviation of the other in-
put variables unchanged. However, when the factors are
not independent, constraining the distribution of one in-
put variable may also alter the distributions of the other
input variables.

3. Another MC simulation is conducted using the updated
range of input variables to obtain the new standard de-
viation σ ′y of the output variable.

4. The sensitivity of the input variable to the output vari-
able is defined as

SCP =

√√√√σ 2
y − σ

′
y

2

σ 2
x − σ

′
x

2 =

√
dσ 2
y

dσ 2
x

. (15)

Since only a specific input variable is constrained while
the standard deviations of the distributions of the other input
variables remain unchanged, the change in the distribution of
the output variable is solely influenced by the alteration in
the uncertainty of the constrained input variable. Therefore,
the definition of SCP is specifically related to the uncertainty
of the data, and it can also be referred to as the sensitivity
of uncertainty. This method is not limited to specific system
equations and can be applied to all multi-factor systems.

When the factors are strictly independent of each other, the
covariance between the observed data is equal to zero, which
can be expressed mathematically as

cov
(
xi,xj

)
= E

(
xixj

)
−E (xi)E

(
xj
)
= 0. (16)

Satisfying the error transfer formula, we obtain

σ 2
y =

∂f (X)
∂x2

1
· σ 2
x1
+ . . .+

∂f (X)
∂xi

2
· σ 2
xi

+ . . .+
∂f (X)
∂xn

2
· σ 2
xn
. (17)

For the CP method, we can get

σ ′y
2
=
∂f (X)
∂x1

2
· σ 2
x1
+ . . .+

∂f (X)
∂xi

2
· σ ′xi

2

+ . . .+
∂f (X)
∂xn

2
· σ 2
xn
, (18)

dσ 2
y =

∂f (X)
∂xi

2
· dσ 2

xi
, (19)

SCP =

√
dσ 2
y

dσ 2
x

=
∂f (X)
∂xi

= SOAT. (20)

Thus, when the factors are independent of one another, the
sensitivity analysis results obtained using the CP method will
align with those obtained through the OAT method. Conse-
quently, the difference between the results of the CP method
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and the OAT method highlights the effects of factor inter-
actions, providing insights into how these interactions may
affect factor uncertainty contributions.

The advantages of the CP method are as follows:

1. To ensure accuracy, the OAT method must strictly sat-
isfy the condition of X→A, meaning that the sensitiv-
ity analysis results are only valid near the value of A.
In contrast, the CP method examines the relationship
between factor uncertainty and output uncertainty. The
sensitivity results derived from this method reflect the
overall data distribution rather than focusing on a spe-
cific fixed value. Consequently, the analysis results ob-
tained from the CP method are more representative and
applicable.

2. When the distribution of one factor is constrained, it in-
fluences the distributions of other interacting factors as
well. Consequently, any changes to the constraints of
the input variable will also lead to alterations in the dis-
tributions of these other variables. Different constraints
include two categories: one is the difference in data dis-
tribution types, such as uniform distribution and normal
distribution, and the other is the difference in data stan-
dard deviation, which is reflected in different degrees of
improvement in observation accuracy. As a result of this
influence, the output distribution will be affected by the
level of constraint applied to the factor, leading to dif-
ferent sensitivity outcomes. Therefore, the results of the
CP method can reflect the impact of different data con-
straints on the uncertainty of the output, which cannot
be reflected in the OAT method.

3. The analytical method is used to obtain the quantitative
ranking results of factor uncertainty contributions, aim-
ing to solve the problem of large output uncertainty by
focusing on high-uncertainty contribution factors. The
sensitivity analysis result SCP illustrates the relation-
ship between factor uncertainties and output uncertain-
ties. The resulting ranking provides a direct response
to this issue. The high-uncertainty contribution factors
identified by the CP method are essential elements in
observation and model design that require our attention
and enhancement. In contrast, the results from the OAT
method represent statistical sensitivity concepts, serving
as indirect indicators of factor uncertainty contributions,
and lack robust physical grounding.

Therefore, the CP method is employed to quantify the con-
tribution of factor uncertainty, and the results obtained offer
a more accurate representation of each factor’s importance in
practical physical terms. This approach enhances our under-
standing of how various factors influence the overall uncer-
tainty, enabling more informed decision-making in observa-
tion projects and model development.

3 Calculation of uncertainty contribution of RFari
factors

In this section, the uncertainty analysis method proposed in
this paper is applied to the ARI system to verify its feasibility.
A detailed discussion is provided regarding the importance
of each factor within the ARI system, highlighting how this
method enhances our understanding of their contributions to
overall uncertainty.

3.1 Analysis of ARI factors

Aerosol particles in the environment exhibit complex char-
acteristics influenced by multiple factors. To effectively sim-
ulate the ARI system and minimize excessive parameteri-
zation, this study employs the radiative transfer mechanism
model to calculate RFari. The model used is SBDART (Santa
Barbara DISORT Atmospheric Radiative Transfer), devel-
oped by Ricchiazzi et al. (1998), which is capable of simu-
lating and calculating radiation processes involving aerosols,
the atmosphere, surfaces, clouds, and solar spectra. Addition-
ally, the Mie theory (Mie, 1908) is utilized to characterize
the radiative properties of individual aerosol particles, allow-
ing for the calculation of aerosol optical parameters (AOPs)
such as aerosol optical depth (AOD), single scattering albedo
(SSA), and asymmetry factor (g). These parameters serve as
a critical input for the SBDART model. The results of the
factor analysis are presented in Fig. 1.

In this analysis, we adopt a core–shell model assumption
for aerosol particles, assuming that the core–shell composi-
tion is uniform. Specifically, the shell material is primarily
composed of scattering materials, while the core consists of
light-absorbing carbon (LAC). The radiative characteristics
of individual aerosol particles are determined by the com-
plex refractive index of the core–shell material, CRIshell,dry,
CRILAC, and the size of the core–shell particles. LAC is mod-
eled as a combination of dense elemental carbon (EC) and
hollow air (Zhao et al., 2020). By measuring the densities
of EC and LAC, denoted as ρEC and ρLAC, we can calcu-
late the complex refractive index of LAC through a weighted
approach.

For a group of particles, it is essential to consider the
size spectrum distribution of the aerosol particles and the
LAC size spectrum distribution, PNSDdry and LACPNSD,
respectively, to perform weighted calculations of the radia-
tive characteristics of the aerosol ensemble. Additionally,
aerosol particles absorb moisture from the environment, in-
fluenced by the hygroscopic parameter (Kappa) and the am-
bient relative humidity (RH). This moisture absorption leads
to changes in the complex refractive index of the shell ma-
terial, CRIshell,amb, and alters the ambient particle size spec-
trum distribution, PNSDamb.

The strict assumptions of Mie theory often diverge from
real-world conditions, resulting in discrepancies between
theoretical calculations and observed phenomena. Numer-
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Figure 1. Analysis of ARI factors.

ous studies have explored these discrepancies (Volten et
al., 2001; Cappa et al., 2012; Fierce et al., 2016; Zhang et
al., 2017; Freedman, 2020). To better understand the impact
of these Mie theory assumptions on RFari, we will analyze
the uncertainty contributions of several key factors, including
the mixing state of aerosols (MS), LAC absorbing enhance-
ment (LACAE), and coating thickness (CT).

In the real atmospheric environment, aerosols and envi-
ronmental parameters exhibit a vertical profile distribution,
leading to significant variations in aerosol radiative capabili-
ties at different altitudes. To investigate the impact of differ-
ent vertical distribution types (VD) on RFari, we employ the
vertical distribution parameterization scheme developed by
Liu et al. (2009), which is grounded in aircraft observations.
Using this scheme, we calculate the vertical distribution of
PNSDamb and LACPNSD. Additionally, the vertical distri-
bution of environmental parameters is established based on
reanalysis data.

According to the categories, all factors are divided into
four categories:

1. aerosol physical and chemical property parameters, in-
cluding CRIshell,dry, PNSDdry, and Kappa;

2. LAC parameters, including the real part nLAC and imag-
inary part kLAC of CRILAC, ρLAC, and LACPNSD;

3. Mie theory parameters, including MS, CT, and LACAE;

4. environmental parameters, including VD, RH, and
albedo.

The uncertainty contributions of the four types of factors are
discussed separately to determine the type of factors with the
strongest impact.

All the factors depicted in Fig. 1 influence RFari. We evalu-
ate the uncertainty contributions of each factor using both the
OAT method and the CP method, comparing the differences
between the two approaches. Additionally, since AOD, SSA,
and g are direct input parameters for SBDART and have the
most immediate effects on RFari, we also discuss the sensi-
tivity of each factor in relation to these AOPs.

3.2 Data sources and mode environment settings

In the simulation experiment, aerosol and environmental pa-
rameters are derived from a combination of field obser-
vations, previous research summaries, and instrument ob-
servation network data. Typical aerosol and environmen-
tal data representative of north China are utilized for the
simulation. The calculation of RFari incorporates integrated
results across the full solar spectrum (0.25–4.00 µm), fo-
cusing specifically on the instantaneous results at noon on
the summer solstice. Aerosol data are sourced from the
Peking University observation station (40° N, 116° W) and
the Taizhou observation station (33° N, 120° W). Environ-
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mental data are drawn from the fifth-generation ECMWF
reanalysis data (ERA5) provided by the European Centre
for Medium-Range Weather Forecasts (ECMWF), as well as
Moderate Resolution Imaging Spectroradiometer (MODIS)
observation data collected from the Terra and Aqua satellites.
The details are summarized in Table 1.

3.3 Quantitative ranking results of ARI factor uncertainty
contributions

The sensitivity analysis of the factors affecting RFari and
AOPs was conducted using both the OAT method and the CP
method. The results of this analysis are illustrated in Figs. 2
and 3.

3.3.1 ARI factor uncertainty contribution ranking results

The results indicate that among the four parameter cate-
gories, the aerosol physical and chemical property param-
eters exhibit the most significant sensitivity. Specifically,
CRIshell,dry demonstrates the highest sensitivity across all five
sensitivity analyses. Besides, PNSDdry shows strong sensitiv-
ity to both AOD and SSA, while Kappa exhibits pronounced
sensitivity to g. When the core–shell structure model of the
Mie theory is not considered, these three parameters suf-
ficiently characterize the complex refractive index, parti-
cle number size distribution, and hygroscopic properties of
aerosols. They are thus crucial for understanding the radia-
tive forcing characteristics of aerosols.

The Mie theory parameters exhibit the second highest sen-
sitivity. Due to the fact that changes in the aerosol mixing
state can strongly influence both AOPs and RFari, CT demon-
strates significant sensitivity across all parameters. The LA-
CAE primarily affects the aerosol’s absorption characteris-
tics, leading to strong sensitivity to SSA, which results in
high sensitivity to both RFari,top and RFari,bottom. Addition-
ally, MS influences the ratio of LAC to coating materials, sig-
nificantly affecting the shape of the aerosol particle number
size distribution; consequently, it shows considerable sensi-
tivity to g.

The sensitivity of LAC parameters ranks third. Specif-
ically, the parameters nBC, kBC, and ρBC influence the
aerosol’s CRI, while LACPNSD affects both the LAC par-
ticle size spectrum distribution and the aerosol mixing state.
The results indicate that, as the primary absorptive compo-
nent of aerosols, the complex refractive index of LAC sig-
nificantly impacts aerosol absorption characteristics, lead-
ing to a pronounced effect on SSA. This, in turn, results in
strong sensitivity of both RFari,top and RFari,bottom. Further-
more, LACPNSD exhibits the highest sensitivity among the
LAC parameters, highlighting the substantial influence of the
aerosol mixing state on RFari. Notably, the limited availabil-
ity of observations for LAC parameters may contribute to
considerable evaluation errors.

This study also examines the influence of environmen-
tal factors on RFari,top and RFari,bottom. Three environmen-
tal parameters are discussed: VD, RH, and albedo. Among
these, both RH and albedo demonstrate significant sensitivity
to RFari,top and RFari,bottom. These environmental parameters
effectively characterize the impact of boundary layer char-
acteristics, vertical humidity profiles, and surface conditions
on RFari. The results indicate that the effects of environmen-
tal factors on RFari are comparable to those of the aerosol’s
radiative characteristics and should not be overlooked in re-
search calculations. Notably, the sensitivity of VD to radia-
tive forcing differs markedly between the top of the atmo-
sphere and the surface. While VD has minimal impact on
RFari,top, it exhibits considerable sensitivity to RFari,bottom,
suggesting that the type of boundary layer significantly in-
fluences surface heating rates but has a lesser effect on the
overall ground–atmosphere radiation budget.

3.3.2 Comparison of results between CP method and
OAT method

The sensitivity analysis results indicate that the OAT method
overlooks the impact of factor interactions, while the CP
method accounts for these interactions. Consequently, the
differences between the results from the two methods pro-
vide a measure of the influence of factor interactions on
the sensitivity outcomes. In the analysis of RFari,top and
RFari,bottom, the proportion of interaction effects ranges from
1.1 % to 91 %, with an average of 25 %. After weighting ac-
cording to sensitivity, the average difference is calculated to
be 10 %. For AOPs, the proportion of interactions varies from
0.33 % to 386 %, with an average of 56 % and a weighted av-
erage of 25 %. This variability suggests that different factors
experience varying degrees of influence from interactions,
with some factors significantly affected. Therefore, using the
OAT method for sensitivity analysis may lead to an average
relative error of 10 % for RFari and 25 % for AOPs, due to the
neglect of factor interactions.

The CP method enables sensitivity analysis for data with
varying degrees of factor constraints and non-normal distri-
butions. The OAT method’s sensitivity results are only valid
near the chosenA value, meaning that changes in the A value
may significantly impact the results. Additionally, the choice
of dx in the dy

dx calculation can also influence outcomes. To
explore these aspects, we computed results for the following
seven sensitivity analysis cases:

1. Using the CP method, when the data are normally dis-
tributed, constrain the data distribution of a certain fac-
tor so that the standard deviation is reduced from σxi to
σ ′xi , and perform sensitivity analysis.

2. Using the CP method, when the data are normally dis-
tributed, constrain the data distribution of a certain fac-
tor so that the standard deviation is reduced from σxi to
2σ ′xi , and perform sensitivity analysis.
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Table 1. Data sources and SBDART environment parameter settings. The aerosol optical properties represent urban–industrial aerosols
observed in East Asia.

Properties Values Data source

CRIshell (1.58 ± 0.2)+ 1e−3j Peking University observation site
CRILAC (1.67 ± 0.36)+ (0.67 ± 0.35)j Zhao et al. (2020)
CRIEC 2.26+ 1.26j Taylor et al. (2015)
CRIair 1+ 1e−3j Zhao et al. (2020)
ρEC 1.8 Bond and Bergstrom, 2006
ρLAC 0.95± 0.3 Zhao et al. (2019b)
Kappa 0.22± 0.2 Peking University observation site
MS 0.7± 0.3 Gong et al. (2016)
PNSDdry / Taizhou observation site
LACPNSD / Taizhou observation site
VD / Liu et al. (2009)
RH / ERA5 data
Albedo / MODIS data
Location settings 40° N, 116° W /

Date settings 1 April /

Time settings 12:00 local time /

/: the values are for two-dimensional or higher-dimensional results. For detailed results, please refer to the data support.

Figure 2. The factor uncertainty contribution analysis results of RFari. The results from the CP method are represented by color bars, while
the differences between the CP method and the OAT method are indicated by white bars.

3. Using the CP method, when the data are uniformly dis-
tributed, constrain the data distribution of a certain fac-
tor so that the standard deviation is reduced from σxi to
σ ′xi , and perform sensitivity analysis.

4. Using the OAT method, perform sensitivity analysis.

5. Using the OAT method, set the A value as 0.9 times that
of case (4), and perform sensitivity analysis.

6. Using the OAT method, set the A value as 1.1 times that
of case (4), and perform sensitivity analysis.

7. Using the OAT method, set the dx value as 0.5 times
that of case (4), and perform sensitivity analysis.

8. Using the OAT method, set the dx value as 2 times that
of case (4), and perform sensitivity analysis.

A sensitivity analysis of RFari,top was performed on all the
above situations, and the results are shown in Table 2.

In cases (1) and (2), we varied the standard deviations of
the constrained factors while applying the CP method, ensur-
ing that the data distribution remained consistent. The analy-
sis reveals a difference in results ranging from 1.7 % to 48 %,
with an average difference of 21 %. The weighted average
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Figure 3. The factor uncertainty contribution analysis results of AOPs. The results from the CP method are represented by color bars, while
the differences between the CP method and the OAT method are indicated by white bars.

Table 2. Comparison of the analysis results of the CP method and the OAT method under different scenario settings.

CPnormal−normal CP′normal−normal CPuniform−normal OAT OAT0.9A OAT1.1A OAT0.5dx OAT2dx

CRIshell,dry 14.8 15.7 14.6 14.2 8.90 19.3 14.9 14.08
PNSDdry 3.31 4.49 4.41 3.15 3.20 3.05 3.20 3.15
Kappa 0.71 0.59 0.37 0.20 0.20 0.15 0.20 0.18
nBC 1.17 1.19 1.20 0.10 0.30 0.10 0.40 0.20
kBC 1.65 1.99 0.90 1.20 1.40 1.45 1.60 1.43
ρBC 1.88 1.60 1.46 1.35 1.70 1.50 0.80 1.60
LACPNSD 2.43 2.59 2.70 2.30 2.25 2.80 1.80 2.53
MS 1.22 1.81 1.47 1.05 0.55 1.05 1.10 0.80
CT 3.78 4.99 4.36 4.00 5.00 3.30 3.60 4.15
LACAE 3.51 3.25 2.62 2.80 2.80 3.30 2.30 3.05
VP 1.31 0.71 0.06 0.20 0.20 0.30 0.70 0.05
RH 0.65 0.81 0.43 0.35 0.35 0.35 0.30 0.35
Albedo 8.87 8.24 8.50 8.00 8.15 8.35 7.90 8.25

calculated based on sensitivity is 14 %. Under varying con-
straints, factors exert different influences on one another due
to their interactions. Consequently, the final output is shaped
not only by the constraints imposed on individual factors
but also by these interactions, leading to differing sensitivity
analysis results. The results demonstrate that the CP method
can accurately quantify how factors contribute to the reduc-
tion of output uncertainty under varying levels of observation
accuracy improvement. In contrast, the OAT method over-
looks the influence of factor interactions on the outcomes,
making it incapable of performing differential analyses un-
der different observation constraints, which represents a sig-
nificant limitation.

In cases (1) and (3), we applied the CP method with save
standard deviations of the factors before and after the con-
straints. However, the differing data distributions lead to a
notable variation in analysis results, ranging from 1.3 % to
95 %, with an average difference of 15 % and a weighted av-
erage of 4.9 %. In scenarios where the volume of observa-
tional data is limited or influenced by external factors, the
data cannot be guaranteed to be strictly normally distributed,

and a linear trend may appear. The presence of this linear
trend, identified through the CP method, can cause substan-
tial variability among the factors, suggesting that the uncer-
tainty contributions of certain factors are significantly influ-
enced by the data distribution – an aspect not captured in the
OAT method’s analysis.

In cases (4), (5), and (6), we changed the selectedA values
for the OAT method vary from −10 % to +10 %. The differ-
ences in the analysis results vary from 0 % to 50 %, with an
average difference of 22 % and a weighted average difference
of 20 %. Some factors do not act linearly on the output, which
makes the sensitivity analysis results of such factors highly
dependent on the choice of A value. Consequently, even mi-
nor variations in the A value can result in significant errors.
Therefore, when employing the OAT method for sensitivity
analysis, careful attention must be given to the stability of the
results.

In cases (4), (7), and (8), we changed the selected dx val-
ues in the OAT method range from −50 % to +100 %. The
differences in the analysis results vary from 0 % to 300 %,
with an average difference of 37 % and a weighted average
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difference of 7.8 %. The sensitivity analysis outcomes for
certain factors are highly sensitive to the chosen dx value,
and different strategies for selecting dx can result in var-
ied analysis results. Mathematically, smaller dx values tend
to provide a more accurate reflection of the actual sensitiv-
ity. However, in practice, the choice of dx is influenced by
the model’s accuracy and the distribution of actual observed
data, necessitating certain trade-offs. This variability con-
tributes to the stability issues observed in the analysis results
produced by the OAT method.

A comprehensive comparison indicates that the CP
method yields results that are representative of the entire
data distribution. It effectively calculates differences in un-
certainty contributions under various factor constraints and
distinguishes between sensitivity results from non-normal
and normal data distributions. In contrast, the OAT method
provides results that are primarily relevant near a fixed value,
and when data quality standards are not met, its results may
exhibit poor stability.

4 Conclusions and discussions

The evaluation results of RFari indicate significant uncer-
tainty, with notable discrepancies between observational and
simulation outcomes. This discrepancy contributes to the
overall uncertainty in climate sensitivity assessments. This
study introduces a novel method for analyzing factor uncer-
tainty contributions, enabling a quantitative ranking of the
contributions from various factors and addressing the extent
to which enhancing observational accuracy can reduce result
uncertainty. Additionally, through a comprehensive analysis
of the factors of the ARI system, this research identifies sev-
eral previously overlooked factors of importance, providing
valuable insights for aerosol observation projects and model
settings.

This study analyzes the advantages and disadvantages of
the OAT method, which is currently the most commonly used
method in the ARI factor uncertainty contribution analysis.
While the OAT method facilitates rapid quantification of fac-
tor sensitivity, it also brings the defects of high data quality
requirements and poor stability. For ARI systems, the OAT
method faces challenges due to the low accuracy of obser-
vational data, potential linear trends in the data distribution,
and significant interactions among factors. Additionally, this
method only provides sensitivity results close to fixed val-
ues, making it less reliable both mathematically and physi-
cally. As a result, the OAT method may produce substantial
errors. To address these challenges, this study introduces a
new analysis method, CP, designed for sensitivity analysis of
both input and output uncertainties. This method is univer-
sally applicable to all multi-factor systems. Unlike traditional
methods that focus on sensitivity near specific values, CP is
based on collective data distribution, providing a more com-
prehensive representation. It directly addresses how improve-

ments in data accuracy can enhance result certainty, offering
practical insights. Additionally, CP can assess differences in
factor uncertainty contributions under various observational
constraints and with non-normally distributed data, broaden-
ing its applicability.

This study employs Mie theory to calculate the AOPs and
utilizes the SBDART radiative transfer model to simulate
RFari. The factors across all physical processes are catego-
rized based on their modes of influence into four groups:
aerosol physical and chemical property parameters, Mie the-
ory parameters, LAC parameters, and environmental param-
eters. Each category undergoes a separate uncertainty con-
tribution analysis. The results reveal that among all factors,
CRIshell,dry holds the highest importance. Additionally, both
the LAC parameters and Mie theoretical parameters demon-
strate high-uncertainty contributions, indicating that the scat-
tering and absorptive properties of aerosols, along with the
assumptions inherent in Mie theory, substantially influence
RFari. Due to the challenges associated with direct observa-
tion, these factors have been insufficiently addressed in rou-
tine observation projects and model settings. To mitigate the
high uncertainty associated with RFari evaluations, it is im-
perative to focus attention on these critical factors.

The quantitative ranking results of factor uncertainty ob-
tained in this study using the CP method are highly depen-
dent on the model employed and the distribution of input
aerosol optical property data. The more accurately the model
describes the actual physical processes and the higher the
precision of the aerosol optical property data, the closer the
evaluation results from the CP method will align with ob-
served values. Therefore, this study utilizes the Mie theo-
retical model and the SBDART radiation mechanism model,
which provide a more accurate representation of the single-
particle radiation process, along with field experimental data
from direct observations of aerosol optical properties. This
approach aims to minimize the uncertainty introduced by the
model and data accuracy. Using different model frameworks
or aerosol optical property data from polluted aerosols in
cities outside of north China to conduct the same factor sen-
sitivity analysis may yield significantly different results.
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