
Atmos. Chem. Phys., 25, 7485–7498, 2025
https://doi.org/10.5194/acp-25-7485-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Technicalnote

Technical note: Reconstructing missing surface aerosol
elemental carbon data in long-term series with ensemble

learning

Qingxiao Meng1, Yunjiang Zhang1, Sheng Zhong2, Jie Fang1, Lili Tang1, Yongcai Rao3, Minfeng Zhou4,
Jian Qiu5, Xiaofeng Xu6, Jean-Eudes Petit7, Olivier Favez8, and Xinlei Ge1

1Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key
Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science

and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
2Jiangsu Environmental Monitoring Center, Nanjing, Nanjing 210019, China

3Xuzhou Environmental Monitoring Center of Jiangsu, Xuzhou 221018, China
4Suzhou Environmental Monitoring Center of Jiangsu, Suzhou 215000, China

5Zhenjiang Environmental Monitoring Center of Jiangsu, Zhenjiang 212000, China
6Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, School of

Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing 210044, China
7Laboratoire des Sciences du Climat et de l’Environnement, CEA/Orme des Merisiers,

Gif-sur-Yvette, 91191, France
8Institut National de l’Environnement Industriel et des Risques, Verneuil-en-Halatte, 60550, France

Correspondence: Yunjiang Zhang (yjzhang@nuist.edu.cn)

Received: 4 September 2024 – Discussion started: 25 November 2024
Revised: 6 April 2025 – Accepted: 10 April 2025 – Published: 15 July 2025

Abstract. Ground-based measurements of elemental carbon (EC) – classified under thermal–optical methods
and considered a surrogate for black carbon – are essential for assessing air quality and evaluating climate im-
pacts. However, data gaps caused by technical challenges impede comprehensive analyses of long-term trends.
This study proposed an ensemble learning modeling method to address these challenges. The model used read-
ily accessible ground observation air pollutant data as proxies for EC-related tracers, along with meteorological
parameters, to enhance prediction accuracy. It integrated outputs from Gradient Boosting Regression Trees, eX-
treme Gradient Boosting, and random forest models, combining them through ridge regression to produce robust
predictions. We applied this approach to reconstruct hourly EC concentrations from 2013–2023 for four cities in
eastern China, filling 45 %–79 % of missing data and improving prediction performance by 8 %–17 % compared
to individual models. Over the 11-year period, EC exhibited an overall decline (− 0.20 to −0.14µgm−3 a−1),
with a more significant decrease from 2013–2020 (−0.24 to −0.15µgm−3 a−1). During this time, the average
EC concentration in the four cities dropped from 3.26 to 1.59 µgm−3, followed by a noticeable slowdown in
the rate of decline from 2020–2023 (−0.12 to −0.04µgm−3 a−1). Additionally, a fixed emission approximation
method based on ensemble learning was proposed to quantitatively analyze the drivers of long-term EC trends.
The analysis revealed that anthropogenic emission controls were the predominant contributors, accounting for
approximately 92 % of the changes in EC trends from 2013–2020. However, their influence weakened post-2020,
contributing approximately 80 %. These findings highlighted that while China’s Clean Air Actions implemented
since 2013 have substantially reduced black carbon concentrations, sustained and enhanced strategies are still
necessary to further mitigate black carbon pollution.
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1 Introduction

Black carbon (BC), derived from the incomplete combustion
of fossil or biomass fuels (Bond and Bergstrom, 2006), is a
significant component of fine particulate matter (PM2.5) in
the troposphere. BC has a strong capacity to absorb visible
light (Bond et al., 2013), which can directly or indirectly
affect global climate change (Ramanathan and Carmichael,
2008) and influence the structure of the urban boundary
layer, exacerbating regional air pollution formation (Ding
et al., 2016). Additionally, BC particles, which are small
in size and rich in toxic substances on their surfaces, pose
significant health risks (Valavanidis et al., 2013), leading to
respiratory and cardiovascular diseases (Wei et al., 2023).
Therefore, establishing long-term trends of BC is crucial for
studying its climate, environmental, and health impacts.

Methods for determining ground-level BC concentrations
and long-term trends generally include ground-based in situ
observations (Peng et al., 2019; Wei et al., 2020), satellite re-
trievals (Yu et al., 2024; Zhao et al., 2021), and atmospheric
chemical transport model simulations (Yang et al., 2021).
Satellite-based retrieval methods are often used to charac-
terize ground-level BC concentrations. For instance, Li et al.
(2022) used multi-angle polarization satellite observations to
retrieve the spatiotemporal distribution of global BC concen-
trations. However, satellite data are susceptible to noise orig-
inating from clouds and other factors, leading to data gaps
and large uncertainties (Bao et al., 2019; Zhao et al., 2021).
For example, Gogoi et al. (2023) compared in situ BC obser-
vations in India from 2019–2020 with BC concentrations re-
trieved by the Cloud and Aerosol Imager-2 (CAI-2) on board
the Greenhouse gases Observing Satellite-2 (GOSAT-2) and
found a 33 % bias. Beyond measurement uncertainties, satel-
lite retrieval techniques also generally cannot provide long-
term, continuous high-time-resolution (e.g., hourly) datasets.

To address the limitations of satellite retrievals, reanaly-
sis datasets have developed, combining various in situ, satel-
lite observations and short-term numerical weather predic-
tion products through data reanalysis techniques. Notable
datasets include the ECMWF Re-Analysis Interim (ERA-
Interim) (Dee et al., 2011), MODIS Atmosphere and Land
Reanalysis (MODIS) (Levy et al., 2013), and Modern-Era
Retrospective Analysis for Research and Applications, ver-
sion 2 (MERRA-2) (Randles et al., 2017). MERRA-2, in par-
ticular, offers convenient high-time-resolution datasets for at-
mospheric pollutants, including BC (Bali et al., 2017). How-
ever, there are uncertainties when comparing ground-based
observations to reanalysis data. For instance, several stud-
ies found that MERRA-2 overestimated BC concentrations
at most Chinese stations by approximately 30 % (Ma et al.,
2021; Xu et al., 2020; Yu et al., 2024). Atmospheric chemical
transport models are also commonly used to simulate the spa-
tiotemporal distribution of BC concentrations. For example,
Matsui (2020) used the Community Atmosphere Model Ver-
sion 5 (CAM5) and the Aerosol Two-dimensional bin mod-

ule for foRmation and Aging Simulation (ATRAS) model
to simulate the increase in global BC concentrations from
pre-industrial times to the present. However, uncertainties
in parameterization schemes for some physical and chem-
ical processes in numerical models remain (Ervens, 2015;
Harrison, 2018). Additionally, emission inventories used in
models have inherent uncertainties and may not be updated
promptly, affecting simulation results (Xu et al., 2021).

In situ observations remain the most direct and effective
method for quantifying BC concentrations. In practice, ele-
mental carbon (EC), measured using thermal–optical meth-
ods, is often employed as a surrogate for BC (Bond et al.,
2013), especially in cases where optical methods are unavail-
able. These ground-based measurements (EC and/or BC) are
central to long-term observational networks worldwide, such
as the Atmospheric Science and Chemistry Measurement
Network (ASCENT) in the United States (Ng et al., 2022);
the Aerosol, Clouds, and Trace Gases Research Infrastruc-
ture (ACTRIS) in Europe (Laj et al., 2024); and the China
Atmosphere Watch Network (CAWNET) in China (Zhang
et al., 2014). While these methods enable the establishment
of time series for BC or EC concentrations, they lack the
capacity to provide historical data without prior measure-
ments. Furthermore, practical challenges such as instrument
malfunctions, routine maintenance, and hardware limitations
at observation sites often lead to data gaps. These interrup-
tions hinder the continuity and completeness of long-term
datasets, posing significant challenges for trend analysis and
comprehensive assessments.

This study introduces an ensemble learning method lever-
aging ground-based observational data (including in situ
EC and air pollutant measurements), BC column concen-
tration assimilation data, and meteorological datasets. Ap-
plying this approach, we successfully reconstructed hourly
EC concentration time series for four representative cities in
the Yangtze River Delta region in eastern China from 2013–
2023. Furthermore, an ensemble learning model was devel-
oped to evaluate the drivers of EC trends, enabling a quanti-
tative analysis of the relative contributions of anthropogenic
emission reductions and meteorological variations to the EC
trends in these cities over the 11-year period.

2 Data and methods

2.1 Air pollutant and meteorological data

The observation sites for this study are located in the repre-
sentative cities of Nanjing, Suzhou, Xuzhou, and Zhenjiang
within the Yangtze River Delta city cluster in eastern China.
All these sites are urban monitoring stations, and the coor-
dinates of the sampling sites are provided in Table S1 in the
Supplement. Gaseous pollutants at the corresponding sites in
the four cities, including carbon monoxide (CO), sulfur diox-
ide (SO2), and nitrogen dioxide (NO2), were sourced from
the corresponding sampling sites. The meteorological data
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used in this study are listed in Table S2 in the Supplement.
These meteorological conditions are derived from the ERA5
reanalysis dataset from the European Centre for Medium-
Range Weather Forecasts (ECMWF). The spatial and tem-
poral resolutions of ERA5 data are 0.25°×0.25° and 1 h, re-
spectively. To represent the meteorological conditions at the
observation sites, we extracted data from the ECMWF Re-
analysis v5 (ERA5) grid cells that correspond to the coordi-
nates of the monitoring stations.

2.2 Measurements and inter-comparison of BC and EC

In this study, long-term measurements of EC were conducted
across four cities (i.e., Nanjing, Suzhou, Xuzhou, and Zhen-
jiang), using the Sunset Laboratory semi-continuous OC/EC
analyzer (Model-4), which provided hourly time resolution.
The analysis employed the National Institute for Occupa-
tional Safety and Health (NIOSH) thermal–optical transmit-
tance (TOT) method to quantify EC. The thermal–optical
approach, which forms the basis of the OC/EC analyzer,
is detailed extensively in previous studies (Arhami et al.,
2006; Birch and Cary, 1996; Jung et al., 2011; Zheng et al.,
2014). In addition to EC measurements, refractory black car-
bon (rBC) data from our previous study in Nanjing (Yang
et al., 2019) were used for inter-comparison with EC data.
The rBC measurements were obtained using a single-particle
soot photometer (SP2) (Liu et al., 2010; Cross et al., 2010).
Briefly, the SP2 operates on the principle of laser-induced
incandescence (Liu et al., 2010), which involves heating in-
dividual rBC particles to high temperatures using a focused
laser beam. The incandescence signal emitted during this
process is then used to quantify rBC concentration, based on
the characteristic heating curve of rBC particles (Liu et al.,
2010). Figure S1 in the Supplement shows the relationship
between rBC and EC mass concentrations for the Nanjing
dataset in this study, along with those from previous work
(Pileci et al., 2021). The results revealed a good agreement
between rBC and EC (slope= 1.01) in Nanjing, which is
consistent with the range reported by Pileci et al. (2021).

2.3 BC data from reanalysis or simulation dataset

The black carbon column mass density (BCC) and black car-
bon surface mass concentration (BCS) data used in this study
were obtained from MERRA-2 (M2T1NXADG, V5.12.4).
MERRA-2 is a new reanalysis dataset that was released
by the NASA Global Modeling and Assimilation Office
(GMAO) in 2017. The spatial resolution of the data used
in this study is 0.5°× 0.625°, and the temporal resolution
is 1 h. The BC concentrations in MERRA-2 are estimated
by assimilating satellite-derived aerosol optical depth (AOD)
into an atmospheric chemical transport model (Gelaro et al.,
2017). Since satellite retrievals are based on optical proper-
ties, the inferred BC concentrations can be affected by optical
effects, such as the “lensing effect” (Liu et al., 2015), which

could potentially lead to an overestimation of BC concen-
trations. To compare this with the BC concentration simu-
lated by the atmospheric chemical transport model approach,
we used the Tracking Air Pollution in China (TAP) dataset
(http://tapdata.org.cn/, last access: 20 August 2024) (Geng
et al., 2021). In brief, the TAP dataset includes the surface BC
concentration data, which is simulated by the Community
Multiscale Air Quality (CMAQ) model and machine learn-
ing method (Geng et al., 2021; Liu et al., 2022). For simplic-
ity, TAP BC did not account for methodological differences
between BC and EC measurements (Liu et al., 2022). As a
result, these BC data could be influenced by factors such as
model assumptions, emission inventories, and meteorologi-
cal conditions (Yu et al., 2024; Liu et al., 2022).

2.4 Ensemble learning model

In this study, we applied the ensemble learning model (EL)
approach to address the two major issues. First, we developed
a model to reconstruct long-term trend of EC at urban obser-
vation sites, filling in missing data. Second, we proposed an
ensemble learning approach to evaluate the driving factors
of EC trends, which can quantify the contributions of emis-
sion reduction and meteorological variation to the EC trends.
The two modeling methodologies integrate the predictions
of Gradient Boosting Regression Trees (GBRTs), eXtreme
Gradient Boosting (XGBoost), and random forest (RF) us-
ing ridge regression. GBRTs and XGBoost iteratively train
decision tree models, respectively, which reduces residuals
step by step to make predictions. The final prediction results
are weighted sums of the predictions from each tree model,
with different weights for each tree. The RF model consists
of multiple decision trees, each of which provide a predic-
tion. The prediction method averages the results from each
decision tree to obtain the prediction output, with each tree
having equal weight.

For multivariate regression analysis, we chose ridge re-
gression over traditional multiple linear regression to account
for multicollinearity among the three model outputs. Ridge
regression is particularly effective in handling multicollinear-
ity by introducing a regularization term that improves com-
putational stability and reduces the risk of overfitting (Kid-
well and Brown, 1982; Hoerl and Kennard, 1970). The fi-
nal ensemble learning model, integrating the results through
ridge regression to determine coefficients (m1, m2, and m3)
for each machine learning model, is given by Eq. (1):

fEL =m1fGBRTs+m2fXGBoost+m3fRF . (1)

2.4.1 Reconstructing missing data of EC

Reconstructing long-term EC data involved integrating
hourly meteorological variables and emission indicators into
an ensemble learning model. Individual ensemble learning
models were established for each city. As shown in Table S2,
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the meteorological variables include 18 factors. The emission
indicators include BCC and in situ surface observations of
CO, SO2, and NO2. These air pollutants, along with EC, are
mainly associated with fuel combustion processes: CO con-
centration is closely linked to combustion source activities
(such as agricultural crops, forest fires, and fossil fuel) (Reid
et al., 2005; Wang et al., 2011). SO2 is generally associated
with industrial activities (such as coal combustion) (Wang
and Chen, 2016), while NO2 primarily originates from vehi-
cle emissions (Carslaw, 2005). All of them could thereby be
indirectly indicating EC sources.

In this modeling approach, available in situ EC observa-
tion data for each city, along with corresponding meteorolog-
ical and emission indicator variables, were used to construct
the training and testing datasets. The training set was used to
develop the ensemble learning model for data reconstruction,
while the testing set served to validate model performance
and determine optimal model parameters. Once the model
was optimized, all input parameters from 2013–2023 were
fed into the ensemble learning model to reconstruct long-
term EC data. As shown in Fig. S2 in the Supplement, EC
observations in Nanjing included approximately 49 000 valid
data points, while approximately 90 000 points were recon-
structed, resulting in a data completion rate of approximately
47 %. The completion rates for the other cities were approx-
imately 45 % for Suzhou, 50 % for Xuzhou, and 79 % for
Zhenjiang, respectively.

2.4.2 Driver analysis of long-term trends

The analysis of drivers behind EC trends differs from the re-
construction of missing EC data by excluding emission indi-
cator variables from the prediction features. To quantify the
factors influencing long-term reconstructed EC trends, we
developed a machine-learning based fixed emission approx-
imation (FEA) method. Using the reconstructed long-term
EC data, we assume each year i (i = 2013, 2014, . . . , 2023)
could serve as a baseline year for the initial anthropogenic
emission conditions, with data from the chosen year used
to train the model. Reconstructed EC data and meteorolog-
ical variables from the selected baseline year are employed
as training and testing datasets to build ensemble learning
models specific to individual cities. These models are sub-
sequently applied to predict EC concentrations for the en-
tire period from 2013–2023. The resulting predictions re-
flect variations driven solely by meteorological conditions,
assuming fixed emissions at baseline-year levels. This ap-
proach effectively isolates the contributions of meteorolog-
ical variations from changes driven by emissions.

The difference in the observed EC concentrations
(1OBS(j,k)) between 2 different years (j,k) is jointly in-
fluenced by the inter-annual relative changes in EC concen-
trations driven by meteorological variables (1MET(j,k)) and
anthropogenic emissions (1ANT(j,k)). This relationship is

described mathematically in Eq. (2) as follows:

1OBS(j,k) =1ANT(j,k)+1MET(j,k) . (2)

This equation (Eq. 2) assumes that changes in meteorol-
ogy and emissions are the primary factors affecting the ob-
served EC concentration variations between years, allowing
for a decomposition of their respective contributions to the
trends. The 1MET(j,k) can be estimated by comparing the
predicted EC concentrations for 2 different years (CMET(i,j )
and CMET(i,k)), where j and k represent the years for which
predictions are made using the model trained with data from
baseline year i. Specifically, j = 2013,2014, . . .,2022, and
k = 2014,2015, . . .,2023, and k > j . This relationship is ex-
pressed in Eq. (3), which isolates the influence of meteoro-
logical variations on inter-annual differences in EC concen-
trations, assuming emissions at the baseline year i level.

1MET(j,k) = CMET(i,k)−CMET(i,j ) . (3)

Thus, the impact of anthropogenic emission controls on
changes in EC concentrations can be determined by subtract-
ing 1MET(j,k), which reflects the contribution of meteoro-
logical variations, from 1OBS(j,k), the observed inter-annual
EC concentration change. This relationship is expressed in
Eq. (4):

1ANT(j,k) =1OBS(j,k)−1MET(j,k). (4)

Here, 1ANT(j,k) represents the portion of the EC concentra-
tion change attributable to anthropogenic emission controls
during the period between years j and k.

Based on the FEA method, we further proposed an ana-
lytical approach to assess the impact of short-term pandemic
lockdowns. Specifically, we analyzed the relative contribu-
tion of the COVID-19 lockdown (LD) period, which lasted
from 26 January–17 February 2020 (Huang et al., 2021). The
calculation of the impact of the 2020 LD on pollutant con-
centrations is determined by the proportion of the LD pe-
riod samples within the entire year of 2020 (rLD), as well
as the difference between observed values (OBSLD) and pre-
dicted values (CMET(i,LD)) during the pandemic period. This
allows us to calculate the total contribution of the COVID-19
lockdown and the emission control effects between 2020 and
the baseline modeling year on pollutants. Assuming that the
contribution of anthropogenic emissions to pollutants dur-
ing the winter of 2019 and other years remains stable, this
can be calculated by the difference between observed values
(OBSNLD) and predicted values (CMET(i,NLD)) during the re-
maining time in 2020. Therefore, the contribution of the 2020
LD to pollutants is represented by Eq. (5):

COVID-19(i,LD) =rLD(OBSLD−CMET(i,LD))

− rLD(OBSNLD−CMET(i,NLD)).
(5)

2.4.3 Model evaluation and uncertainty analysis

In this study, the model performance was assessed by com-
paring the reconstructed results for the test set with observa-
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tional data. To evaluate the deviation between the observed
ground-based values (yobs) and the reconstructed predicted
values (ypre), we used several statistical metrics: root mean
square error (RMSE), mean squared error (MSE), mean ab-
solute error (MAE), and the correlation coefficient (R), as
defined by the following equations.

RMSE=

√
1
n

∑n

i=1
(yobs− ypre)2 , (6)

MSE=
1
n

∑n

i=1
(yobs− ypre)2 , (7)

MAE=
1
n

∑n

i=1
|yobs− ypre| . (8)

To validate and assess the model’s performance in recon-
structing missing data, we evaluated the prediction error met-
rics on the test set, including RMSE, MSE, MAE, and R.
Figures 1 and Fig. S3 in the Supplement summarize the per-
formance metrics for individual models, including XGBoost
(R = 0.81± 0.05), GBRTs (R = 0.84± 0.03), and RF (R =
0.87± 0.03), as well as for the ensemble learning model.
The ensemble machine learning model exhibited a notable
improvement, achieving R = 0.94± 0.01, which represents
a 17 % enhancement over the XGBoost model. Addition-
ally, MAE, MSE, and RMSE decreased by 47 %, 67 %, and
42 %, respectively. These results highlight the superior per-
formance of the ensemble machine learning model, show-
casing its robustness and accuracy in reconstructing miss-
ing data. As shown in Table S3 in the Supplement, the en-
semble model also yielded the best performance within the
FEA framework. We further evaluated the importance of the
MERRA-2 black carbon concentration (BCC) as a predictor
by testing the model’s performance both with and without
this variable (see Fig. S4 in the Supplement). Inclusion of
MERRA-2 BCC significantly improved the model’s perfor-
mance across all evaluation metrics, confirming it as a key
contributor to model accuracy.

To further assess the influence of emission changes and
test model robustness, we trained an alternative version of the
model excluding all emission indicator variables. Compared
to the full model, this version showed a marked degradation
in performance (see Fig. S5 in the Supplement). This result
highlights the critical role of including emission-related vari-
ables in ensuring accurate and reliable predictions. Addition-
ally, as illustrated in Fig. S6 in the Supplement, the CO/NO2
ratio during periods with valid EC observations closely re-
sembled that during periods with missing EC data. This con-
sistency suggests that interannual variation in these emis-
sion indicator ratios likely exerted minimal influence on the
model’s predictive performance. Finally, long-term trends in
monthly mean EC or BC concentrations were assessed using
the non-parametric Mann–Kendall (MK) trend test. To ac-
count for seasonal variability, trend slopes were derived us-
ing the seasonal Theil–Sen estimator, enhancing robustness
in the presence of periodic fluctuations.

To evaluate the relative difference in the analysis of EC
trend change drivers, we proposed a method for quantifying
the relative difference in the FEA. The term 1ANT(i,j ) is de-
termined by subtracting 1MET(i,j ) from 1OBS(i,j ). By sub-
stituting Eq. (3) from this paper into this calculation, the rela-
tionship is expressed as shown in Eq. (9). The term CMET(i,i)
was the self-prediction for the year i based on the training
year i. This formulation allows for a systematic evaluation of
the uncertainties associated with the FEA approach, ensuring
robust attribution of trends to anthropogenic emission con-
trols and meteorological variations. Similarly, by substituting
results for the 2 years i and j , we can obtain 1ANT(j,i), as
shown in Eq. (10).

1ANT(i,j ) =1OBS(i,j )− (CMET(i,j )−CMET(i,i)) (9)
1ANT(j,i) =1OBS(j,i)− (CMET(j,i)−CMET(j,j )) (10)

If the FEA method were entirely free of relative differ-
ence, the relationship (CMET(i,j )−CMET(i,i))+ (CMET(j,i)−

CMET(j,j ))= 0 would hold true, implying that 1ANT(i,j )+

1ANT(j,i) = 0. However, as with any method, some degree
of relative difference could be unavoidable. To account for
this, the relative difference of the data for year j , predicted
using year i as the training data (Yi(j )), was determined by the
absolute value of the sum of 1ANT(i,j ) and 1ANT(j,i), and
then normalizing by CMET(i,j ). This calculation is expressed
in Eq. (11):

Yi(j ) =
|1ANT(i,j )+1ANT(j,i)|

CMET(i,j )
. (11)

This approach provided a quantifiable measure of relative
difference inherent in the FEA method, facilitating a more ro-
bust evaluation of the predictions. When i = j , 1ANT(i,j ) =

1ANT(j,i) = 0, and the relative difference calculation at this
point is expressed by Eq. (12).

Yi(i) =
|OBSi −CMET(i,i)|

CMET(i,i)
(12)

As shown in Fig. 2, the average relative difference across
the four cities over the 11-year period is approximately 4±
4%. The lowest relative difference was observed in Xuzhou,
with 3±3%, while the highest was in Suzhou, with 6±5%.
Because this study incorporates reconstructed EC data, po-
tential discrepancies between model-derived training data
and actual observations may introduce additional uncertainty
into the results. To assess this, we selected Nanjing as a repre-
sentative test case. Specifically, we reconstructed the 2013–
2023 EC dataset using training data from two distinct time
periods: 2013–2020 and 2014–2019. We then applied the
FEA method to both reconstructions and compared the out-
comes. As shown in Fig. S7 in the Supplement, while some
variations exist between the two sets of results, the average
difference remains within approximately 10 %. This finding
suggests that the choice of training dataset can introduce a

https://doi.org/10.5194/acp-25-7485-2025 Atmos. Chem. Phys., 25, 7485–7498, 2025



7490 Q. Meng et al.: Reconstructing missing surface aerosol elemental carbon data

Figure 1. Performance evaluation of the models for reconstructing hourly EC concentration. (a–d) Comparison of the ensemble learning
model-predicted concentration and observed EC concentration. The legend indicates the number of data points at each binning interval,
which is approximately 0.25 µgm−3. (e–h) Comparison of the model performance parameters for four cities, i.e., Nanjing (NJ), Suzhou
(SZ), Xuzhou (XZ), and Zhenjiang (ZJ).

moderate degree of uncertainty to the FEA results – an inher-
ent characteristic of ensemble learning and other statistical
modeling approaches. Nonetheless, the relatively small mag-
nitude of this difference reinforces the reliability and gen-
eralizability of the machine-learning-based FEA framework.
In Sect. 3.2, we further compare the FEA method with the
widely used de-weathered approach proposed by Grange et
al. (2018), to evaluate the consistency and applicability of
different trend attribution frameworks.

3 Results and discussion

3.1 Reconstruction of missing data of EC and
comparison

As illustrated in Fig. 3a–d, the reconstructed EC concentra-
tions in all four cities closely track the trends observed in
the ground-based measurements. These reconstructed val-
ues also exhibit strong agreement with the temporal pat-
terns of TAP-derived BC concentrations. Over the 11-year
study period, both reconstructed EC and TAP BC showed
statistically significant and consistent decreasing trends, with
rates ranging from −0.20 to −0.14µgm−3 a−1 and −0.22 to
−0.14µgm−3 a−1, respectively (P < 0.05). In contrast, the
MERRA-2 BC product displays weaker or non-significant
declining trends, particularly in Suzhou and Xuzhou, where
the trend was not statistically significant (P > 0.05). To in-
vestigate this inconsistency, we applied the FEA method
to isolate the meteorological contributions to the observed
trends in MERRA-2 BC. As shown in Fig. S8 in the
Supplement, MERRA-2 BC trends exhibit good agreement

with the meteorological-driven BC trend derived from the
FEA method, suggesting that the interannual variability in
MERRA-2 BC was largely driven by meteorological fac-
tors. In contrast, the TAP BC dataset showed clear down-
ward trends that were more closely aligned with the changes
observed in our reconstructed EC data (Fig. 3b and c).
This indicated that the TAP dataset for the two cities was
more sensitive to the anthropogenic emission reductions and
better captured their influence on BC concentration trends
in recent years. Additionally, MERRA-2 BC consistently
overestimates EC concentrations compared to both ground-
based measurements and reconstructed data. This overesti-
mation has also been reported in previous studies (e.g., Xu
et al., 2020), which documented substantial overpredictions
of MERRA-2 BC in urban areas in the Yangtze River Delta
of eastern China, such as Shanghai and Hangzhou.

Figure 3e–h further demonstrate that the reconstructed EC
data capture monthly variations with high fidelity relative to
in situ observations. All four datasets exhibit a pronounced
seasonal cycle, characterized by elevated concentrations in
autumn and winter and lower levels in spring and summer.
This seasonal pattern highlights the need for more strin-
gent BC emission controls during the cold months. Among
the datasets, TAP-derived BC closely tracks the monthly
variability observed in ground-based measurements, whereas
the MERRA-2 BC significantly overestimates concentra-
tions – by approximately 147 % on average. The discrepan-
cies in MERRA-2 estimates likely arise from two key factors.
First, the relatively coarse spatial resolution of MERRA-2
(0.5°× 0.625° ; Randles et al., 2017) means that a grid cell
may span diverse land-use types – including urban, subur-
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Figure 2. Cross-matrix relative difference analysis of the FEA method: (a) Nanjing, (b) Suzhou, (c) Xuzhou, and (d) Yangzhou. The relative
difference here refers to the relative difference of the results obtained from different year to train the model and different year for prediction
by the model.

ban, and background regions – thereby smoothing out lo-
calized pollution signals and/or inflating background contri-
butions. Second, uncertainties associated with satellite data
assimilation – particularly under conditions of severe pol-
lution, cloud cover, or precipitation – may introduce biases
in MERRA-2 estimates (Xu et al., 2020), thereby limiting
their accuracy in reproducing station-scale EC variability. As
shown in Fig. 3i–l and detailed in Table S4 in the Supple-
ment, MERRA-2 BC still maintains a moderate correlation
with in situ observations (R = 0.65± 0.05), despite its sub-
stantial overestimation. In contrast, the TAP BC exhibited
better agreement with ground-based data (R = 0.69± 0.04).
The highest correspondence, however, was observed for the
reconstructed dataset, which achieved an exceptional corre-
lation coefficient of R = 0.97. This result could highlight the
high fidelity and robustness of the reconstruction approach
during periods with available observations.

To assess the quality of the reconstructed missing data, we
analyzed its correlation with co-located air pollutants (CO
and NO2). As shown in Fig. S9 in the Supplement, the ob-
served EC concentrations exhibit strong correlations with
CO (R = 0.66± 0.10) and NO2 (R = 0.71± 0.06) over the
entire study period. Similarly, the reconstructed EC concen-
trations for the missing data demonstrate even better correla-
tions, with R values of 0.80± 0.06 for CO and 0.85± 0.04

for NO2 (Fig. S10a–h in the Supplement), respectively. Fur-
thermore, the correlation between the TAP BC and the ob-
served EC concentrations (R = 0.65± 0.05) was stronger
than that observed for MERRA-2. As shown in Fig. S10m–
p, the reconstructed EC concentrations for the missing data
also exhibit a good correlation (R = 0.72± 0.04) with the
TAP BC, with an approximately 11 % difference between
the two datasets. The slope between TAP and observed EC
was 0.60± 0.20, while the slope between TAP and the re-
constructed EC was 0.68± 0.06 (see Table S4). These com-
parisons suggest that the reconstructed data were reasonably
accurate when compared to ground-based observations.

Using the reconstructed EC data, we analyzed the trends in
EC concentrations across the four cities from 2013–2023 (see
Table S5 in the Supplement). The EC concentrations have
significantly decreased, with reductions of 61 % in Nanjing
and Suzhou, 59 % in Xuzhou, and 47 % in Zhenjiang com-
pared to 2013 levels. Specifically, in Nanjing and Xuzhou,
the annual average EC concentrations decreased by 2.60 and
1.88 µgm−3, respectively, over the 11-year period. This trend
aligns with findings by Zhou et al. (2024), who reported sim-
ilar reductions from 2013–2020 based on observational data.
These reductions highlighted the effectiveness of China’s
emission reduction policies in mitigating BC in the Yangtze
River Delta. In Suzhou and Zhenjiang, EC concentrations
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Figure 3. Comparison of EC or BC concentration from different datasets. (a–d) Trends in EC or BC concentration from the four datasets
(EL, MERRA-2, TAP, and observation). (e–h) Monthly variations. (i–l) Relationship of reconstructed, MERRA-2, and TAP-modeled EC or
BC with observed EC.

decreased by 1.84 and 1.17 µgm−3, respectively. The aver-
age EC concentrations over the 11-year period were 2.01±
0.77µgm−3 in Suzhou and 1.98±0.50µgm−3 in Zhenjiang,
which were significantly lower than those in the more indus-
trialized cities of Nanjing and Xuzhou.

As shown in Fig. S11a–d in the Supplement, the diur-
nal variations in EC concentrations in the four cities have
significantly decreased over the 11-year period, with peaks
during the morning and evening rush hour, primarily due
to vehicle emissions. Notably, the rate of EC reduction
from 2020–2023 (−0.12 to −0.04µgm−3 a−1) was signifi-
cantly lower than the overall rate from 2013–2023 (−0.20 to
−0.14µgm−3 a−1). Zhao et al. (2024) observed a slowdown
in the decline of CO/CO2 concentrations in the Yangtze
River Delta, attributing this trend to limited improvements
in the combustion efficiency of anthropogenic sources in re-

cent years. Figures 3a–d and S11a–d further reveal that EC
concentrations in the four cities were substantially lower dur-
ing the COVID-19 pandemic (2020–2022). This aligns with
findings by Cui et al. (2021), who reported significant reduc-
tions in BC concentrations during the pandemic due to lock-
down measures. However, EC concentrations in Nanjing and
Suzhou rebounded in 2023, likely due to a resurgence of an-
thropogenic emissions. Similarly, Liu et al. (2024) observed
that global carbon emissions, which temporarily decreased
during the pandemic in 2021, rebounded and exceeded pre-
vious levels in 2022 and 2023. Despite the significant reduc-
tions in EC concentrations across the Yangtze River Delta
over the past 11 years, the rate of decrease has slowed in re-
cent years.
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3.2 Drivers of the EC trends

To disentangle the effects of meteorology and anthropogenic
emissions on EC trends, we also applied a machine-learning-
based meteorological normalization method, also known as
the de-weathered method (Grange et al., 2018). This method
has been widely used to assess the drivers of trends in air
pollutants and aerosol chemical composition (Li et al., 2023;
Vu et al., 2019; Zhang et al., 2019b; Zhou et al., 2022). The
normalization approach developed by Grange et al. (2018)
adjusts pollutant concentrations by removing the influence
of meteorological variability, thereby isolating the effects of
emission control measures. Specifically, the method builds
a statistical model to quantify the relationship between pol-
lutant concentrations and meteorological and temporal vari-
ables. It then performs 1000 resamplings of historical mete-
orological data while holding temporal variables constant at
their observed values. The model calculates pollutant con-
centrations across all resampled meteorological scenarios,
and the ensemble average of these predictions represents the
meteorologically normalized (i.e., de-weathered) concentra-
tion. This process enables a more accurate attribution of ob-
served trends to changes in emissions. Detailed methodology
can be found in Grange et al. (2018) and related studies (Vu
et al., 2019; Zhang et al., 2019b; Zhou et al., 2022). This
method can effectively separate the impacts of emissions
and meteorology on these trends. Detailed methodologies of
this meteorological normalization can be found in previous
studies (e.g., Grange et al., 2018; Vu et al., 2019; Zhang
et al., 2019b; Zhou et al., 2022). To further validate our pro-
posed FEA method, we compared its results against those
from the traditional meteorological normalization approach.
As shown in Fig. 4, both methods yielded highly consistent
anthropogenic emission-driven trends in EC across the four
cities. Additionally, Table S6 in the Supplement shows that
all emission-driven trends derived from both methods passed
the Mann–Kendall test (P < 0.05), with slope differences of
less than approximately 8 %. The discrepancies between the
two methods remained within approximately 10 %, demon-
strating strong agreement and supporting the robustness of
the emission-driven trends derived from our FEA method.

To quantify the driving factors behind the observed trends
in elemental carbon (EC) – specifically anthropogenic emis-
sions and meteorological variations – we conducted a com-
prehensive attribution analysis. As shown in Fig. S12 in
the Supplement, EC concentrations exhibited a significant
decreasing trend from 2013–2023. Meteorological factors
played only a minor role, contributing 9± 1% to the ob-
served decline, while anthropogenic emission control mea-
sures accounted for the remaining 91± 1%. As illustrated in
Fig. S13 in the Supplement, we estimated the meteorology-
driven component of EC trends using both the conventional
de-weathering method and our proposed FEA method. The
results from both approaches indicated that meteorology-
driven EC trends remained relatively flat over the 11-year pe-

riod, further confirming that interannual variations in meteo-
rological conditions had limited impact on the long-term EC
trend. This also reinforces the reliability of the FEA method.
Table S7 in the Supplement presents additional evidence:
concentrations of co-emitted pollutants such as CO, SO2,
and NO2 also declined significantly across all four cities
from 2013–2023, corroborating that the downward trend in
EC was predominantly driven by emission control efforts
rather than meteorological variability. Diurnal patterns of
EC, shown in Fig. S11a–d, consistently revealed peak con-
centrations during the morning and evening rush hour. How-
ever, the magnitude of these peaks has declined markedly in
recent years. Correspondingly, Fig. S11e–h show the diurnal
profile of emission control-driven EC relative to 2013, high-
lighting substantial reductions during rush-hour periods –
a clear indication of the effectiveness of vehicle emission
control policies.

Figure S6a–d and Table S7 further demonstrate strong cor-
relations between EC and NO2 concentrations, suggesting
that vehicle emissions are a major contributor to urban BC
levels. The observed reductions in NO2 in all four cities un-
derscore the impact of transportation-related emission con-
trol measures on declining EC concentrations. We further ex-
amined rush-hour EC trends in Figs. S14 and S15 in the Sup-
plement and found more pronounced declines during these
periods compared to the interannual average, indicating that
targeted control strategies for mobile sources have been par-
ticularly effective. This finding aligns with previous work
(e.g., Zheng et al., 2018), which reported substantial reduc-
tions in BC emissions from the transportation sector in China
between 2010 and 2017.

Following the launch of China’s Air Pollution Prevention
and Control Action Plan in 2013, significant advances in
air quality management were achieved. For example, Zhang
et al. (2019a) attributed substantial decreases in PM2.5 con-
centrations between 2013 and 2017 mainly to reductions in
anthropogenic emissions. To assess the impact of different
policy phases (Geng et al., 2024; Zhang et al., 2019a), we
divided the 11-year study period into three stages: 2013–
2017, 2018–2020, and 2021–2023 (see Fig. 5). During the
first stage (2013–2017), cities in the Yangtze River Delta im-
plemented targeted control strategies. Nanjing and Suzhou,
as economically developed industrial centers, prioritized the
management of industrial parks and vehicle emission stan-
dards. Xuzhou, dominated by coal and heavy industries,
emphasized curbing coal consumption and industrial emis-
sions (Guo et al., 2022; Zhang et al., 2018). These coor-
dinated efforts led to considerable reductions in EC: con-
centrations decreased by 36 % in Nanjing, 21 % in Suzhou,
18 % in Xuzhou, and 6 % in Zhenjiang. The smaller reduc-
tion observed in Zhenjiang may be attributed to its lower ini-
tial EC levels, limiting the absolute effect of control mea-
sures. Nonetheless, anthropogenic emissions remained the
dominant driver of EC reductions, contributing 96 %, 99 %,
96 %, and 98 % of the observed changes in the four cities,
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Figure 4. Trend in emission-driven EC from 2013–2023. Comparison of the results obtained from two different methods, including the FEA
method developed in this study and the widely used de-weathered method.

respectively. During the second stage (2018–2020), further
progress was achieved under the Three-Year Action Plan for
Clean Air. EC concentrations declined by 24 % (Nanjing),
47 % (Suzhou), 44 % (Xuzhou), and 34 % (Zhenjiang). Av-
erage EC reductions attributed to anthropogenic emissions
were−0.82µgm−3 in Nanjing and−1.25µgm−3 in Xuzhou.
These reductions were likely amplified by the COVID-19
lockdowns, which significantly curtailed industrial activities
and transportation in these cities. As shown in Fig. 5, we
quantified the impact of the lockdown on EC levels, esti-
mating that the pandemic contributed 3 %–10 % of the total
EC reduction from 2017 to 2020 – an effect stemming from
both emission reductions and changes in human activity. This
is consistent with Zheng et al. (2021), who reported large-
scale BC emission reductions during the lockdowns of early
2020, especially from industrial, residential, and transporta-
tion sources. In the third stage (2021–2023), the rate of EC
decline began to slow. Reductions were 20 % in Nanjing, 7 %
in Suzhou, 11 % in Xuzhou, and 14 % in Zhenjiang, primarily
due to diminishing marginal returns from existing emission
control measures. Meteorological influences during this pe-
riod remained consistent with their contribution over the full
11-year span. Nevertheless, anthropogenic emissions still ac-
counted for 93 % (Nanjing), 68 % (Suzhou), 67 % (Xuzhou),
and 86 % (Zhenjiang) of the EC decline from 2020–2023.

4 Conclusion and implications

This study developed an ensemble learning approach to re-
construct hourly long-term in situ elemental carbon (EC) data
using meteorological parameters and co-emitted source in-

dicators. Applied to four cities in the Yangtze River Delta
(YRD) region of eastern China, the ensemble model demon-
strated superior performance compared to individual algo-
rithms – outperforming XGBoost, GBRT, and random for-
est by 17 %, 13 %, and 8 %, respectively. On average, the
reconstructed dataset successfully filled 55 % of the miss-
ing EC observations. Its reliability was validated through
consistency with ground-based EC, CO, and NO2 measure-
ments, as well as with TAP BC observations. The proposed
approach provides an efficient and scalable solution to ad-
dress missing EC data in long-term observational records.
It also offers a means to reduce uncertainties in satellite-
derived and reanalysis-based BC datasets. Over the 11-year
study period, EC concentrations exhibited an overall declin-
ing trend, ranging from −0.20 to −0.14µgm−3 a−1. A more
rapid decline was observed during 2013–2020 (−0.24 to
−0.15µgm−3 a−1), followed by a notable deceleration be-
tween 2020 and 2023 (−0.12 to −0.04µgm−3 a−1).

To disentangle the drivers of EC trends, we developed
the FEA method based on the ensemble model to quantify
the respective contributions of anthropogenic emissions and
meteorological variability. The results indicate that emission
controls accounted for 91 % of the overall EC decline from
2013–2023, underscoring their dominant role. The slowed
decline during 2020–2023 was mainly attributed to weak-
ened contributions from anthropogenic emission reductions,
which ranged from 67 % to 93 % across the four cities. The
ensemble learning framework proposed in this study offers a
robust and generalizable tool for reconstructing incomplete
air quality datasets, with potential applications to a broad
range of atmospheric pollutants. Furthermore, the integra-
tion of machine-learning-based reconstruction with the FEA
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Figure 5. Drivers of the EC trend from 2013–2023. (a–d) The contributions of anthropogenic emission control, meteorological variations,
and COVID-19 lockdown on the trends in EC concentration in the four cities (the values in parentheses represent the minimum to maximum
values of the driving contributions analyzed by the FEA method).

method presented an effective approach for trend attribu-
tion – particularly for long-term observational records. While
this method has proven effective for trend analysis of primary
particulate matter, such as EC, in this study, its applicabil-
ity to other atmospheric constituents with different sources
and data characteristics remains to be evaluated. Future work
could explore its performance and quantify associated uncer-
tainties across diverse species and datasets.

Overall, our findings highlight the substantial impact of
emission control policies on mitigating urban particulate EC
pollution in the YRD. To sustain and accelerate reductions in
EC and broader black carbon concentrations, continued en-
hancement of emission control measures, technological in-
novations, and policy enforcement will be essential. These
efforts will be crucial not only for improving urban air qual-
ity but also for mitigating associated climate impacts.

Data availability. The MERRA-2 (M2T1NXADG, V5.12.4) data
can be downloaded at https://goldsmr4.gesdisc.eosdis.nasa.gov/
data/MERRA2/M2T1NXAER.5.12.4/ (Gelaro et al., 2017).

The ERA5 reanalysis data can be downloaded at
https://doi.org/10.24381/cds.bd0915c6 (Hersbach et al., 2023).

The TAP data are from http://tapdata.org.cn/ (Geng et al.,
2021). The additional data will be made available upon request
(yjzhang@nuist.edu.cn).
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