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Abstract. Modeling the dispersion of volcanic particles following explosive eruptions is critical for aviation
safety. To constrain the dispersion of volcanic plumes and assess hazards, calculations rely on the accurate
characterization of the eruption’s source term, e.g., variation in emission rate and column height with time and
the prevailing wind fields. This study introduces an inverse modeling framework that integrates a Lagrangian
dispersion model with lidar observations to estimate emission rates of volcanic particles released during an Etna
eruption. The methodology consists of using the FLEXPART model to generate source–receptor relationships
(SRRs) between the volcano and the lidar system that observed the volcanic plume. These SRRs are then used
to derive the emission rates based on observational data, including volcanic ash plume heights from the INGV-
EO observatory and PollyXT lidar retrievals. We leverage data from the ACTRIS PollyXT lidar that operates at
the PANhellenic GEophysical observatory of Antikythera of the National Observatory of Athens (PANGEA-
NOA). The inversion algorithm utilizes lidar observations and an empirical a priori emission profile to estimate
the volcanic particle source strength, accounting for altitude and time of the plume’s evolution. Additionally, to
study the impact that the wind fields have on volcanic ash forecasting, the experiment is repeated using fields
that assimilate Aeolus wind lidar data. Our approach applied to the 12 March 2021 Etna eruption and accurately
captures a dense aerosol layer between 8 and 12 km above the PANGEA-NOA station. Results show a minimal
difference of the order of 2 % between the observed and the simulated ash concentrations. Furthermore, the
structure of the a posteriori ash plume closely resembles the ash cloud image captured by the SEVIRI satellite
above Antikythera island, highlighting the novelty of the inversion results. The presented inversion algorithm,
coupled with Aeolus data, optimizes both the vertical emission distribution and Etna emission rates, advancing
our understanding and preparedness for volcanic events.
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1 Introduction

Volcanic ash constitutes a significant hazard to aviation when
it is emitted at aircraft cruising altitudes (9–11 km), with po-
tential consequences including aircraft engine failure (Guf-
fanti et al., 2005), inaccurate readings of critical navigational
instruments, and reduced visibility due to external aircraft
corrosion (Clarkson and Simpson, 2017; ICAO, 2016).

In the case of a volcanic eruption, urgent decisions are
necessary to determine safe flight routes and to ensure that
airborne aircraft land safely. While safety remains the top
priority, the grounding and rerouting of flights lead to large
financial losses, e.g., the 2010 eruption of Eyjafjallajökull in
Iceland reportedly cost the airline industry over USD 1 bil-
lion (Mazzocchi et al., 2010; Oxford Economics, 2012).

Information on volcanic ash dispersion after an eruption
is provided to operators by specialized early warning sys-
tems (EWSs) operated by the Volcanic Ash Advisory Cen-
ters (VAACs) (Fearnley et al., 2018). These systems typically
rely on deterministic volcanic ash transport and dispersion
models (VATDM) to offer short-term forecasts of the vol-
canic ash cloud. Although VAACs specify the expected loca-
tion of the ash cloud, usually they do not provide quantitative
information about ash concentration. In the spotlight of the
expected rise in the number of flights over volcanically active
regions in the near future (as indicated by EUROCONTROL,
2022), the probability of encountering volcanic ash at aircraft
cruising altitudes will proportionally increase. Consequently,
the challenge is to minimize uncertainties in short-term fore-
casts of volcanic ash dispersion.

The primary sources of uncertainties in deterministic
transport models originate from the eruption source param-
eters, the various model parameterizations (such as wet de-
position), and the driving meteorological conditions (Dacre
et al., 2011; Prata and Lynch, 2019; Stohl et al., 2011). Typ-
ically, volcanic ash transport and dispersion models (VAT-
DMs) require the specification of parameters about the vol-
canic event, including a vertical profile of ash emission rates,
particle size distribution, and ash density (Harvey et al.,
2020). The eruption start time can be estimated through satel-
lite observations or by local volcano observatories. Various
remote sensing techniques exist to estimate the height of the
ash plume (Petersen et al., 2012). It should be mentioned that
information that relies on observations from passive sensors
has limited sensitivity to the ash layer height. Mass eruption
rates are typically evaluated using empirical relationships
based on observed plume heights (Mastin et al., 2009). How-
ever, these empirical relationships often fail to consider sec-
ondary factors influencing plume height, such as meteorolog-
ical conditions. The long-range transport of volcanic parti-
cles is influenced by tropospheric and/or stratospheric winds,
particularly the vertical wind shear, which is frequently inac-
curately represented in numerous numerical weather predic-

tion (NWP) models (Harvey et al., 2020; Houchi et al., 2010;
Stoffelen et al., 2020).

Moreover, volcanic particles can influence the planetary
radiative balance through both direct and indirect effects, in-
troducing significant uncertainties in plume dispersion and
lifetime. The direct effect involves the scattering and absorp-
tion of solar and terrestrial radiation, where fine ash and sul-
fate aerosols contribute to surface cooling or atmospheric
warming depending on particle composition, size distribu-
tion, and injection plume height (Robock, 2000; Sicard et al.,
2025). The indirect effect relates to the role of volcanic parti-
cles in cloud micro- and macrophysical properties. Ash parti-
cles can act as cloud condensation nuclei (CCN), facilitating
water droplet formation and, under specific pressure and tem-
perature conditions, as ice nuclei (IN) (Guerrieri et al., 2023).
These processes can alter cloud optical and microphysical
properties, enhance cloud reflectivity, affect cloud lifetimes,
and increase the uncertainties in radiative transfer. Addition-
ally, volcanic ice clouds can hide possible ash layers and pose
a severe threat to aviation safety. Atmospheric transport mod-
els often struggle to account for these complex interactions,
leading to uncertainties in plume evolution, trajectory fore-
casts, and deposition estimates. Furthermore, the absence of
significant physical processes, dependence on empirical rela-
tions, and data from previous eruptions further contribute to
substantial uncertainties in estimates of the erupted mass.

Over the past two decades, significant progress has been
made in integrating remote sensing data into atmospheric
transport models to enhance the forecasting of volcanic emis-
sions and their dispersion. Satellite observations from both
polar-orbiting and geosynchronous thermal infrared instru-
ments have been used to retrieve ash mass loadings (Clarisse
et al., 2010; Pavolonis et al., 2013; Prata and Prata, 2012).
Additional sensors, including the Moderate Resolution Imag-
ing Spectrometer (MODIS), Second Generation Spinning
Enhanced Visible and Infra-Red Imager (SEVIRI), Atmo-
spheric Infra-Red Sounder (AIRS), Ozone Monitoring In-
strument (OMI), Multi-angle Imaging SpectroRadiometer
(MISR), and CALIOP lidar on board the CALIPSO have pro-
vided valuable data on volcanic ash detection and retrievals
(Eckhardt et al., 2008; Francis et al., 2012). A comprehen-
sive discussion on the application of satellite remote sensing
for volcanic ash monitoring in aviation hazard mitigation is
provided by Prata (2009).

In addition, ground-based lidar networks, such as the Eu-
ropean Aerosol Research Lidar Network (EARLINET), have
played a crucial role in validating the accuracy of transport
model outputs and improving dispersion simulations by pro-
viding high-resolution vertical profiles of volcanic aerosols
(Pappalardo et al., 2004).

Advancements in atmospheric transport and disper-
sion modeling have further facilitated the integration of
these observational datasets. Models like the Numerical
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Atmospheric-dispersion Modelling Environment (NAME;
Jones et al., 2007) (which is used operationally by the Lon-
don Volcanic Ash Advisory Centre, or LVAAC), the Hy-
brid Single-Particle Lagrangian Integrated Trajectory (HYS-
PLIT) model (Stein et al., 2015), and the FLEXible PARTi-
cle (FLEXPART) dispersion model (Eckhardt et al., 2008;
Kristiansen et al., 2010, 2012, 2014; Stohl et al., 2011) have
been extensively used for volcanic ash forecasting, often in-
corporating satellite and lidar data to refine model inputs and
improve predictive accuracy.

The integration of remote sensing data into atmospheric
transport models has been significantly advanced through in-
version algorithms. In previous studies (Eckhardt et al., 2008;
Kristiansen et al., 2010), inversion algorithms were devel-
oped using satellite column retrievals and tested to estimate
the vertical distribution of sulfur dioxide (SO2) emission
rates for quasi-instantaneous volcanic eruptions such as the
2007 Jebel at Tair and the 2008 Kasatochi eruptions. Seibert
et al. (2011) examined the uncertainties of the various con-
figurations for the 2008 Kasatochi case study and expanded
the method to estimate the uncertainty of the retrieved source
emissions (a posteriori uncertainties).

The inversion algorithm was further used by Stohl et al.
(2011) for volcanic ash emission rates as a function of alti-
tude and time, while Kristiansen et al. (2012) improved the
volcanic ash inversion techniques using various inputs to bet-
ter constrain the 2010 Eyjafjallajökull eruption.

Amiridis et al. (2023) demonstrated that volcanic ash early
warning systems can be significantly enhanced by the assim-
ilation of Aeolus wind fields. Notably, these improvements
are most pronounced over under-sampled geographical re-
gions, such as the Mediterranean Sea, as volcanoes are of-
ten situated in remote areas lacking surface-based observa-
tion networks. Moreover, the study indicates that the pos-
itive effect of Aeolus wind data assimilation is more pro-
nounced in the middle and upper troposphere (mostly be-
tween 7 and 15 km) compared to the lower troposphere. This
may highlight under-sampling issues, since the in situ ob-
servations (like radiosondes) traditionally used for data as-
similation exhibit lower vertical resolution in the upper tro-
posphere (Rennie et al., 2021). Considering that volcanic
ash plumes are typically injected into upper-tropospheric and
lower-stratospheric heights, their transport is largely influ-
enced by upper-tropospheric winds, hence accuracy in dis-
persion modeling is advanced from high-accuracy wind field
assimilation.

Building on these advancements, our study further inves-
tigates improvements in ash emission estimations by devel-
oping an inversion method that integrates Aeolus wind data,
ground-based lidar observations, and transport model simu-
lations. This approach aims to enhance the accuracy of vol-
canic emission source terms and to reduce uncertainties in
dispersion forecasting.

We specifically focus on the Etna eruption that occurred on
12 March 2021, coinciding with the investigations provided

by Amiridis et al. (2023) and Kampouri et al. (2023). During
this event, Aeolus had a close overpass to Etna, providing
valuable observations around the volcano. Additionally, the
transported volcanic plume was captured in the eastern re-
gion of the Mediterranean by the ground-based PollyXT lidar
system of the PANhellenic GEophysical observatory of An-
tikythera of the National Observatory of Athens (PANGEA-
NOA) in Greece, downwind of the Etna volcano. This allows
for direct comparisons of observations against forecasts, with
and without the assimilation of Aeolus data, denoted as “w”
and “w/o” Aeolus, respectively (as indicated in the studies by
Amiridis et al., 2023; Kampouri et al., 2023).

2 The case of the Etna volcanic eruption of
12–14 March 2021

2.1 Volcanic activity

Mt. Etna in Italy, recognized as one of the most active vol-
canoes on Earth, has undergone significant volcanic activity,
particularly since February 2021. During this period, the stra-
tovolcano experienced numerous paroxysmal episodes, lead-
ing to frequent tephra and SO2 emissions. A notable event
occurred on 12 March 2021, marking one of the most power-
ful lava fountain episodes observed at the southeastern crater
since 2020 (Calvari et al., 2021). The volcanic activity started
with Strombolian-type eruptions at around 02:35 UTC, esca-
lating in both frequency and intensity until 07:35 UTC, when
surveillance cameras from the Istituto Nazionale di Geofisica
e Vulcanologia, Osservatorio Etneo (INGV-OE) (Corradini
et al., 2018; Scollo et al., 2019) captured the formation of a
sustained lava fountain.

Throughout the paroxysmal phase, the eruptive column
gradually reached a height of 9 kma.s.l. (Fig. 1). The vari-
ation in the eruption column was detected by the visual
surveillance camera in the CUAD in Catania (ECV), cal-
ibrated by INGV-OE (Fig. 1). The volcanic plume drifted
eastwards under the influence of the prevailing westerly
winds dominant in the eastern Mediterranean region at the
time. According to the Volcano Observatory Notice for Avi-
ation (VONA) messages, the INGV-EO observatory (INGV,
2025; Corradini et al., 2018; Scollo et al., 2019) issued a red
warning alert, from 06:18 to 08:44 UTC, on 12 March 2021,
when the strongest ash emission was observed, while an or-
ange alert was issued at 12:30 UTC when the lava fountain
ceased, and the volcanic ash plume was dispersed into the
atmosphere (Calvari et al., 2021). Additionally, the eruptive
activity resulted in abundant tephra fallout, covering several
towns on the eastern flank of the volcano crater, with a lava
flow field expanding on the eastern and northeastern flank. In
this study, the cloud heights reported by VONA are used as
a priori information to initialize the volcanic ash dispersion
simulations, conducted with the FLEXPART (flexible parti-
cle dispersion) Lagrangian model (Brioude et al., 2013; Pisso
et al., 2019; Stohl et al., 2005). The FLEXPART ash trans-
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Figure 1. Etna activity on 12 March 2021 as seen from INGV-OE. Ash plume images from an ECV calibrated camera monitored the explosive
volcanic activity between 5 and 9 kma.s.l. (a) Weak ash plume at 06:30 UTC, with an upper part aligning more vertically. (b) Strong vertical
plume at 08:00 UTC, which shifted eastward. (c) Strong ash plume at 09:00 UTC, with a lower and more diluted cloud caused by the lava
flow expanding eastward. (d) Decrease in the explosive activity after 10:00 UTC. Figures are taken from the INGV-OE automatic system
described in Corradini et al. (2018) and Scollo et al. (2019).

port model is driven by wind fields simulated by the WRF
regional meteorological model (version 4) (Skamarock et al.,
2019), which, in turn, derives initial and boundary condi-
tions from the European Centre for Medium-Range Weather
Forecasts (ECMWF) Integrated Forecasting System (IFS)
(ECMWF, 2021a) global model (for additional information,
see Sect. 3.3).

3 Methods and data

The inverse method employed in this study to estimate vol-
canic ash emissions integrates a priori information on ash

emissions, ground-based lidar observations, and simulations
with a dispersion model, resulting in improved ash emission
estimates. Figure A1 presents a schematic workflow outlin-
ing the methodology followed in this study, providing a clear
overview of the steps involved in our approach. In this sec-
tion, we describe the datasets and methods employed in the
inverse modeling process.

3.1 PANGEA-NOA ground-based data (lidar PollyXT)

The PANGEA-NOA observatory established its first oper-
ations in June 2018 on the remote island of Antikythera,
Greece. The atmospheric circulation pattern at PANGEA-
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NOA favors the transport of air masses carrying an abun-
dance of different aerosol types such as windblown Sahara
dust, Etna volcanic aerosols, smoke from wildfires, and an-
thropogenic pollution from major cities. Hence, this coastal
site constitutes an ideal place to study natural aerosols under
the prevailing background conditions of the eastern Mediter-
ranean.

The Mediterranean region, particularly its eastern basin,
serves as a confluence of air masses originating from Eu-
rope, Asia, and Africa. In this region, anthropogenic emis-
sions from large urban centers interact with natural emis-
sions from the Saharan and Middle Eastern deserts, smoke
from frequent wildfires, and volcanic particles from erup-
tions, notably from Mt. Etna and Icelandic volcanoes. Addi-
tionally, the atmosphere over the eastern Mediterranean con-
tains background marine aerosols and pollen particles from
oceanic and vegetative sources. Aerosols exert a variety of
effects on the regional weather and climate, impacting solar
radiation, visibility, and human health, and they pose signifi-
cant concerns for aviation safety (WMO, 2024).

The eastern Mediterranean is characterized by a Mediter-
ranean climate, with hot, dry summers and mild, wet win-
ters. This seasonal variability is driven primarily by the
interaction between mid-latitude westerlies and subtropical
high-pressure systems (Lensky et al., 2018). During winter,
the region experiences the frequent passage of extratropical
cyclones originating from the North Atlantic and Mediter-
ranean storm tracks, bringing precipitation and colder tem-
peratures. In contrast, summer conditions are dominated by
the expansion of the subtropical height, leading to stable at-
mospheric conditions and minimal rainfall (ECMWF, 2010).

Synoptic-scale circulation in the eastern Mediterranean
plays a crucial role in shaping weather patterns and atmo-
spheric dynamics. The atmospheric circulation over the east-
ern Mediterranean is dominated by persistent northerly and
westerly winds, favoring the advection of volcanic products
from Etna to Greece (Kampouri et al., 2020; Scollo et al.,
2013). Research has identified several dominant synoptic
types that influence the region, including cyclonic systems,
anticyclonic patterns, and blocking heights (Rousi et al.,
2014). These circulation patterns significantly impact the
transport of aerosols, moisture, and pollutants, affecting re-
gional air quality and climate variability. Furthermore, the
region’s proximity to large-scale circulation features such as
the subtropical jet stream and the African monsoon system
contributes to complex seasonal interactions (Lensky et al.,
2018).

Currently, a PollyXT lidar system (Baars et al., 2017; En-
gelmann et al., 2016) and a sun–sky photometer of CIMEL
Electronique (Giles et al., 2019; Goloub et al., 2007) oper-
ate continuously at PANGEA-NOA to provide profiles and
columnar aerosol properties with high accuracy and resolu-
tion.

PollyXT is a multi-wavelength Raman polarization lidar
with 24/7 remote operation capability. The system operates

in 355, 532, and 1064 nm and is equipped with 12 detectors
to measure light elastically and inelastically (at 387, 407, and
607 nm), backscattered from atmospheric constituents. Po-
larization capability also enables the detection and vertical
separation of non-spherical (e.g., volcanic ash, dust) from
spherical aerosols (e.g., smoke, pollution, marine particles).

The CIMEL sun–sky photometer measures direct solar
and sky radiance at several wavelengths (340, 380, 440, 500,
675, 870, 1020, and 1640 nm) to derive column-integrated
aerosol optical and microphysical properties (Dubovik et al.,
2006).

Observations from both sensors are of strong inter-
est for Pan-European and global networks such as the
Aerosol, Clouds and Trace Gases Research Infrastructure
(ACTRIS-RI), the European Aerosol Research Lidar Net-
work (EARLINET), and the global AErosol RObotic NET-
work (AERONET: https://aeronet.gsfc.nasa.gov/, last access:
27 June 2025). In all of these networks, measurements taken
at PANGEA-NOA are submitted on a regular basis.

3.1.1 Ash mass calculations using remote sensing data

Volcanic ash mass estimates were derived from a combi-
nation of PollyXT lidar measurements and sun photometer
observations. First, the lidar measurements were averaged
over the 3 h period when the volcanic layer was observed
above Antikythera, and the standardized EARLINET algo-
rithm Single Calculus Chain (SCC) (D’Amico et al., 2015)
was used to derive the particle backscatter coefficient (βp)
and particle linear depolarization ratio (δp) profiles.

These profiles were then used to disentangle the contribu-
tion of large, non-spherical ash particles from the observed
volcanic plume and to calculate the ash mass concentra-
tion with the POlarization-LIdar PHOtometer Networking
(POLIPHON) method (Ansmann et al., 2012; Mamouri and
Ansmann, 2017), tailored for Etna ash, as described in Kam-
pouri et al. (2020).

More specifically, the following equation was used:

ma = ρa× cv,a(λ)×βp,a(h,λ)× Sp,a(h,λ), (1)

where m is the mass concentration, a indicates an aerosol
type, ρ represents the particle mass density (for volcanic ash
particles, this is 2.6± 0.6 gm−3 following the study of Ans-
mann et al., 2011a), λ is the wavelength, cv(λ) is the so-
called volume-to-extinction conversion factor (derived from
sun photometer measurements), h is the height above ground,
and Sp(λ,h) is the ratio of the particle extinction to particle
backscatter coefficient (lidar ratio).

As thema calculation is sensitive to the aerosol type, under
the simultaneous presence of multiple aerosol components
in the atmospheric column, a decomposition of the total par-
ticle backscatter coefficient βp is needed prior to the mass
concentration calculation. In POLIPHON, this decomposi-
tion is supported for up to two aerosol types, one exhibit-
ing large particle depolarization ratio values (usually dust
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Table 1. Parameters used for lidar profile decomposition and mass concentration calculation.

ρα [µmcm−3] cν,α,532 nm δp,α,532 nm(h) Sp,α,532 nm(h) [sr]

Ash particles 2.6± 0.6 0.6± 0.1 0.36± 0.02 50± 10
Sulfates 1.5± 0.3 0.18± 0.02 0.05± 0.01 60± 20

or volcanic ash) and one that does not (marine, continen-
tal, or tropospheric smoke and their mixtures). To separate
the contribution of the depolarizing (βp,d(h,λ)) and the non-
depolarizing (βp,nd(h,λ)) aerosol component from the total
particle backscatter coefficient, we apply the following equa-
tions:

βp,d(h,λ)= βp(h,λ)

×
(δp(h,λ)− δp,nd(h,λ))(1+ δp,d(h,λ))
(δp,d(h,λ)− δp,nd(h,λ))(1+ δp(h,λ))

(2)

βp,nd(h,λ)= βp(h,λ)−βp,d(h,λ). (3)

PollyXT lidar signals are sensitive to aerosol particles in
the radius range from about 50 nm to a few micrometers
(Weitkamp, 2005). For FLEXPART, the size range consid-
ered for volcanic ash particles is between 5 and 21 µm in
diameter and thus within the range that is detectable by
PollyXT. Uncertainties in the ash mass concentration calcu-
lation using the POLIPHON method arise from the input pa-
rameter errors that propagate into Eq. (1) and are expected to
be in the order of ∼ 40 % (Ansmann et al., 2011b). The tech-
nique has been validated against synergistic retrievals that
combine multi-wavelength lidar and sun–sky radiometer ob-
servations (sensitive up to 15 µm in particle radius (Lopatin
et al., 2013, 2021)) for dust and volcanic ash particles and
has been found to perform well (Konsta et al., 2021; Wagner
et al., 2013).

In Table 1, we summarize the values and uncertainties of
the parameters used as input for the above. The lidar ratio
of coarse-mode volcanic ash at 532 nm is reported to range
between 40 and 60 sr in the literature (see for example Groß
et al., 2012; Table 3 for particle extinction and backscatter
values in Floutsi et al., 2023; and Gasteiger et al., 2011).
For the fine-mode aerosols, we use a mean value of 60 sr,
following the values reported in the literature for particles
of a sulfuring nature (see for example Floutsi et al., 2023;
Müller et al., 2007). We also account for a lidar ratio re-
trieval uncertainty of ∼ 30 % to capture the measurement
range (Ansmann et al., 2012; Giannakaki et al., 2015; Groß
et al., 2013). The particle density values ρ follow from the
OPAC model for the coarse-mode mineral component and
the water-soluble component for ash and sulfate particles, re-
spectively (Hess et al., 1998; Koepke et al., 2015). For the
water-soluble component, we assume values at a relative hu-
midity of 0 %, which is considered representative of the al-
titudes of the volcanic layers. The coarse-mode component
is not considered to be hydrophilic. Finally, the extinction-

to-mass conversion factors cv are taken from Ansmann et al.
(2011a) for ash and fine-mode particles, respectively.

3.2 Aeolus high-spectral-resolution lidar (HSRL) data

Aeolus, the wind mission of the European Space Agency
(ESA), carried the world’s first high-spectral-resolution
Doppler wind lidar in space (Stoffelen et al., 2006; Straume-
Lindner et al., 2021). Launched in August 2018, Aeolus’s
aim was to retrieve horizontal wind profiles in the tropo-
sphere and lower stratosphere. The mission’s primary objec-
tive was to showcase this innovative technology in space to
enhance weather forecasts and to advance our understand-
ing of atmospheric dynamics, particularly in the tropics.
Additionally, Aeolus aimed to contribute valuable insights
into the intricate interactions between the atmospheric con-
stituents, water cycles, and broader climate system (Rennie
et al., 2021; Straume-Lindner et al., 2021). Aeolus wind data
demonstrated notable quality and coverage, leading to sub-
stantial enhancements in NWP forecasts, particularly within
the tropics and Southern Hemisphere. The improvement in
wind forecast ranges from 0.5 % to 2 %, in terms of root
mean square error, maintains a significant impact even in
medium-range weather forecasting. The most substantial im-
pact was observed at approximately 100 hPa in the tropics,
particularly over the eastern Pacific Ocean. This is attributed,
in part, to the tropics having a relatively limited coverage
of high-quality radiosonde wind profiles. Additionally, the
wind field in the tropics is less constrained by temperature
information from other satellites (Rennie et al., 2021). Fur-
thermore, Aeolus had the capability to retrieve aerosol and
cloud profiles, offering valuable data for assimilation or eval-
uation in volcanic ash dispersion modeling. It is essential to
note, however, that these retrievals face limitations due to
the absence of a dedicated lidar channel for detecting cross-
polarized light returns (with respect to the emitted radia-
tion). This absence is particularly crucial for capturing the
backscattered light from non-spherical particles like volcanic
ash. Consequently, caution is advised when utilizing Aeolus
observations in such cases. Despite this limitation, the Aeo-
lus mission demonstrated its efficacy in enhancing wind fore-
casts, particularly over under-sampled regions, such as the
tropics (Rennie et al., 2021). Similarly, Aeolus can be used
over under-sampled remote areas with active volcanoes, con-
tributing to improved simulations of volcanic ash dispersion
following eruptions.

Atmos. Chem. Phys., 25, 7343–7368, 2025 https://doi.org/10.5194/acp-25-7343-2025
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Table 2. Configuration of the PP schemes for the WRF-ARW simulations.

PP Schemes References

Microphysics (MP) Thompson Thompson et al. (2008)
Surface layer (SFL) Monin–Obukhov (Janjic Eta) Janjic (2002)
Planetary boundary layer (PBL) Mellor–Yamada–Janjic (MYJ) Janjic (2003)
Cumulus parameterization (CUM) Tiedtke Zhang et al. (2011)
Longwave and shortwave radiation (RAD) Rapid radiative transfer model (RRTM) Iacono et al. (2008)
Land surface (LSM) NOAH Chen and Dudhia (2001)

3.3 FLEXPART-WRF model setup

To perform meteorological simulations over the study re-
gion of the eastern Mediterranean, the Advanced Research
WRF model (version 4) (Skamarock et al., 2019) is used.
The spatial resolution of the model is 12 km× 12 km for a
total of 351× 252 grid points and 31 vertical levels (up to
50 hPa). The simulation period starts on 12 March 2021 at
00:00 UTC (6 h earlier than the FLEXPART runs to accom-
modate the model’s 12 h spin-up) and ends on 14 March 2021
at 18:00 UTC, with hourly outputs. Table 2 summarizes the
physics parameterization (PP) schemes for the WRF-ARW
simulations.

In the context of this study, two versions (ECMWF, 2021a)
of the initial and boundary condition fields from the IFS
were utilized. These fields, provided at a spatial resolution
of 0.125°× 0.125°, with 137 vertical model levels, serve as
inputs for the WRF-ARW regional model. One version incor-
porates assimilated Aeolus Rayleigh-clear and Mie-cloudy
horizontal line-of-sight (HLOS) L2B wind profiles (referred
to as the “w” Aeolus experiment), while the other version
is without Aeolus data (referred to as the “w/o” Aeolus ex-
periment). The initial conditions without Aeolus assimilation
adhere to the model setup utilized in the observing system
experiments (OSEs) conducted by Stoffelen et al. (2006).

The WRF-ARW runs rely on initial and boundary con-
ditions generated from ECMWF-IFS, with boundary condi-
tions updated at 6-hour intervals. Sea surface temperature
(SST) analysis data, obtained from the Copernicus Marine
Environment Monitoring Service (CMEMS) at a spatial res-
olution of 1/12° supplement these simulations. The WRF-
ARW model configuration utilized in this study is consistent
with that employed in the study of Amiridis et al. (2023).

The volcanic ash plume transport simulations were done
with the Lagrangian particle dispersion model FLEXPART
(Brioude et al., 2013; Pisso et al., 2019; Stohl et al., 2005) in
a forward mode. These simulations rely on hourly meteoro-
logical fields from the WRF-ARW model, initiated with IFS
datasets. The use of 1-hourly WRF meteorological fields at a
12 km× 12 km spatial resolution allows for a more detailed
representation of the volcanic plume dispersion. The initial
simulations, in which we used an a priori emission profile
for the eruption emissions taken from VONA alerts (from
now on referred to as “a priori volcanic ash plume trans-

port”), were initiated at the reported start time of the erup-
tion at 07:00 UTC on 12 March 2021 and were completed at
00:00 UTC on 14 March 2021, with a total of 100 000 parti-
cles released in each forecast. The model layers were divided
into 18 layers with 1 km vertical resolution in the range ex-
tending from 1 to 18 km above ground level (a.g.l.). We esti-
mate the a priori mass eruption rate (MER) for ash particles
following Mastin et al. (2009) and Scollo et al. (2019) by
inverting the observed plume heights over the Etna summit
crater from the VONA reports and field observations, as ob-
served by the INGV observatory, using the 1D plume model
of Degruyter and Bonadonna (2012). The initial injection
height in the model is set to the altitude of the Etna summit
craters (3.3 kma.s.l.) up to 9 kma.s.l., based on the VONA
reports (Corradini et al., 2018; Scollo et al., 2019) and field
observations. Also, the gravitational particle settling (Näs-
lund and Thaning, 1991) was determined assuming spherical
particles with a density of 2450 kgm−3. The particle den-
sity value used in the FLEXPART model differs slightly from
the density used in Table 1 (2.6± 0.6 gcm−3) due to differ-
ences in shape assumptions, size distributions, and literature
sources referenced in various calculations. The size distribu-
tion of volcanic ash particles was described using four size
bins (3, 5, 9, and 21 µm in diameter), as these cover the size
distribution relevant to long-range transport (≤ 25 µm diam-
eter) (Beckett et al., 2022; Dacre et al., 2011; Durant et al.,
2010).

To derive the source–receptor relationships (SRRs), the
FLEXPART-WRF model was used, once again in a forward
mode (see Appendix A, Fig. A2), considering the same four
ash size bins as those used in the a priori volcanic ash plume
transport. The SRR model data, which represent all poten-
tial dispersion scenarios of the ash plume, are compared with
the lidar retrievals at PANGEA-NOA. For each grid point
in the considered domain, the FLEXPART ash column load-
ings released from one particular emission time and height
are matched with the corresponding time and grid point of
the lidar ash mass retrieval.

The FLEXPART SRRs were driven by the same hourly
meteorological fields from the WRF-ARW model, utilizing
both control and assimilated datasets (ECMWF, 2021) to
quantitatively evaluate the impact of data assimilation. Sub-
sequently, these SRRs were used to initialize the inversion al-
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gorithm, constrained by the PollyXT ground-based lidar mea-
surements of volcanic particles.

It was assumed that the ash emissions occurred between
the ground and 16 kma.g.l. over the Etna volcano. The total
height range was discretized into 79 layers of 200 m thick-
ness. For each layer, 150 000 unit mass particle traces were
uniformly released along a vertical line source every 2 h
(from 04:00 to 06:00 UTC until 12:00 to 14:00 UTC). Ad-
ditionally, the model layers were divided into 74: 70 lay-
ers between 200 m and 14 km, with a vertical resolution of
200 m; 3 layers between 14 and 16 kma.g.l. (per 1 km); and
another layer from 22 to 50 kma.g.l. These model-derived
column values represent source–receptor relationships, since
they were obtained with a unit mass as the source. The actual
mass released at each level is determined through the inver-
sion. Following the inversion, a single, longer “posteriori”
simulation over the period 12 to 14 March 2021 was made,
releasing 200 000 particles according to the estimated emis-
sion profile. The output from this simulation was produced
at the same vertical and horizontal resolution as the a priori
FLEXPART simulation.

3.4 Inversion algorithm

The inversion method employed here for ash source esti-
mations is based on a cost function minimization approach.
Similar work has been done by Eckhardt et al. (2008), Kris-
tiansen et al. (2010), and Stohl et al. (2011). In these studies,
an inversion algorithm was developed to calculate the verti-
cal distribution of sulfur dioxide and the ash emission rates
for instantaneous volcanic eruptions. Satellite retrievals, typ-
ically of ash column loading, have been combined in those
analyses with VATDM simulations using inversion tech-
niques to provide time-evolving estimates of these significant
quantities.

In satellite retrieval techniques, numerous advantages ex-
ist where estimates of ash cloud top height and ash column
loading are typically available (Francis et al., 2012; Pavolo-
nis et al., 2013). Additionally, MER can be estimated through
empirical relationships under specific assumptions, which
are especially useful when satellite images are unavailable or
limited, such as during the early stages of an eruption (Pouget
et al., 2013; Prata et al., 2022). However, direct retrievals
of the vertical distribution within the eruption column are
not feasible. Ground-based and airborne radar observations,
which are sensitive to larger particles and can penetrate opti-
cally thick plumes, provide a complementary source of infor-
mation to retrieve near-source plume properties such as mass
eruption rate and column height.

The present study brings together (i) the inverse model-
ing by initiating the inversion simulations with mass concen-
trations derived from ground-based lidar observations down-
wind, combined with the source–receptor relationships cal-
culated from the FLEXPART-WRF model, and (ii) the in-
tegration of Aeolus meteorological wind fields (ECMWF,

2021a) into the FLEXPART-WRF model (for more detail,
see Sect. 3.3). The overarching goal is to optimize both the
vertical emission distribution and the ash emission rates near
the source, following the volcanic eruption. From the inver-
sion scheme, a total ash emission profile of the eruption is
obtained, which can be utilized to generate robust ash fore-
casts constrained by lidar observations.

We perform the inversion using a Bayesian approach to
provide the best estimate of the emissions profile for fine
ash (with particles 3, 5, 9, and 21 µm in diameter) that can
be transported over long distances. We follow the general
concept of source–receptor relationships (Seibert and Frank,
2004), where the relations between each measurement and
a potential source of the emission is calculated (here using
FLEXPART-WRF) and stored as the source–receptor matrix
(SRM) for each vertical level and for four ash size bins (as
described in Sect. 3.3). The n= 79 unknowns (source ele-
ments) are put into a state vector x while the observed values
m are put into a vector yo, where the subscript “o” stands
for the PollyXT lidar observations. Then, the state vector can
be calculated from the inversion of a forward model M that
connects yo and x, as follows:

yo =M(x)+ ey, (4)

implying a linear relationship in which yo is a vector of spa-
tiotemporal lidar measurements;M is the n×m SRM calcu-
lated by FLEXPART-WRF, describing the sensitivity of each
observation to a unit release rate; ey represents lidar measure-
ment errors, which are not accounted for in the algorithm;
and x is the ash emission vector to be estimated. M(x) is
equivalent to running a VATDM with x as the input release
profile. Since M is calculated using such a model, it inher-
its the biases that are inevitable in VATDMs. As a result, it
may diverge from the true dispersion and may not necessarily
align with the observations on the left-hand side of Eq. (4),
even if it is the true release profile (Fang et al., 2022). Given
that the problem is underdetermined, the solution of the lin-
ear inverse problem in Eq. (4) is not straightforward, and fur-
ther assumptions are needed.

The most common are assumptions imposed on the un-
known emission vector x such as the non-negativity of its
elements, smoothness of the emission (Fang et al., 2022),
or measurement/emission sparsity (Li et al., 2018) (e.g., the
assumption that the emission element remains zero unless
other evidence is present in measured and modeled data). Un-
der these assumptions, the problem in Eq. (4) can be solved
by minimizing the distance between the left and the right
sides of the equation. To enhance the stability of the inver-
sion outcome, a priori emissions are also used, representing
our best estimate of x before the observations are made (see
Sect. 3.4.1). Including an explicit a priori source vector xa,
we can express the equation as follows:

M(x− xa)≈ yo−Mxa, (5)
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and as an abbreviation

Mx̃ ≈ ỹ. (6)

The inversion scheme presented here is done by minimiz-
ing a cost function C, which comprises the following system
of equations:

C1 = yo−M
Tx (7)

C2 = x− xa (8)
C3 = εDx. (9)

C1 quantifies the difference between the modeled data and
the observations, C2 is the deviation from the a priori estima-
tions, and C3 imposes a smoothness regularization term.

The cost function C first calculates the misfit C1 between
the profiles at the receptor points, as observed by the lidar
(yo) and the data as modeled by FLEXPART (MTx).

The second term C2 (Eq. 8) accounts for the difference be-
tween the a posteriori estimates of the emission rates x and
the a priori estimates xa. (For details on the calculation of
the a priori vector, see Sect. 3.4.1.) To enforce smoothness in
the vertical profile of emissions, a regularization parameter
C3 is introduced, derived from a discrete second-order dif-
ference operatorD (Eq. 9).D represents a tridiagonal matrix
where the main diagonal elements are equal to −2, elements
of the diagonals above and below are equal to 1 (discrete rep-
resentation of the second derivative), and ε is a regularization
parameter that determines the weight of this smoothness con-
straint relative to the other two terms.

The final mass emission rates are obtained by minimizing
the total cost function C using a standard optimization rou-
tine with the a priori emission rates as the initial guess. This
approach ensures that the calculated ash emission rates are
consistent with both the observed data and the a priori emis-
sion estimates, while also favoring a smooth vertical distri-
bution of emissions.

The inversion scheme presented in this study is not lim-
ited to Mt. Etna but can be applied to other volcanic erup-
tions worldwide, provided that suitable observational data
are available. The methodology relies on ground-based li-
dar measurements, dispersion modeling (FLEXPART-WRF),
and an inversion algorithm to estimate volcanic ash emis-
sions. Therefore, it can be adapted to different volcanic set-
tings where lidar observations or other remote sensing data
like satellite-based lidars (CALIPSO, EarthCARE) and geo-
stationary satellites (SEVIRI) are available to constrain the
source term. Additionally, the approach can be extended to
a regional or global scale by integrating multiple observa-
tion sites from lidar networks such as ACTRIS/EARLINET
or incorporating additional satellite data. This would allow
for improved ash emission estimates for various volcanic
eruptions worldwide. Furthermore, the use of high-resolution
wind field data (such as Aeolus or future wind lidar missions)

can enhance the accuracy of dispersion forecasts in different
geographic regions (possibly lacking sufficient information
from radiosondes), making the methodology widely applica-
ble for volcanic ash monitoring and forecasting.

3.4.1 A priori source emissions xa

To constrain the variability of the retrieved parameters and to
enhance the stability of the inversion outcome, a priori emis-
sions are also used in the inversion scheme. We determine the
a priori MER for ash particles following the approach out-
lined by Scollo et al. (2019) by inverting the observed plume
heights over the Etna summit crater from VONA reports and
field observations as observed by the INGV observatory, us-
ing the 1D plume model (Degruyter and Bonadonna, 2012)
as described in Sect. 3.3. Additionally, the London VAAC
employs the same empirical relationship between observed
plume heights and eruptive mass, as proposed by Mastin
et al. (2009), assuming a uniform vertical ash distribution.

The column heights of the ash plume from 12 March
2021 were obtained from the ECV calibrated camera op-
erated by INGV-OE (Calvari et al., 2021; Corradini et al.,
2018; Scollo et al., 2019) during the time period of 06:30 to
10:30 UTC (see Table A1). The ash plume height reached
up to 9.0 kma.s.l. In order to calculate the a priori emis-
sions, the data were resampled at ∼ 2 h intervals, specifi-
cally at 06:00 (from 06:30 to 07:45 UTC), 08:00 (from 08:00
to 09:45 UTC), and 10:00 UTC (from 10:00 to 10:30 UTC).
During the initial hours of the eruption (06:30–07:45 UTC),
the ash plume was weak (Fig. 1a and Table A1) with an
average column injection height of 5.8 km, resulting in an
estimated MER of approximately 12 000 kgs−1 according
to the equation by Mastin et al. (2009) (Table 3). After
07:45 UTC, a stronger plume formed, extending vertically
above the vent (Fig. 1b and Table A1). The ash plume ex-
ceeded the ECV camera field of view (e.g., more than 9.0–
9.5 kma.s.l.) and was particularly strong between 08:00 and
09:45 UTC (Fig. 1c and Table A1). The MER during this pe-
riod averaged 58 800 kgs−1, with a mean plume height of
10 kma.s.l. The standard deviation of the mean MER in-
dicates considerable inconsistency in the emissions, as the
MER can change rapidly during an eruption due to fluc-
tuations in the eruptive dynamics, such as the collapse of
the eruption column (Table 3). The ash plume height be-
gan to decrease several minutes after the lava fountain ceased
(Fig. 1d and Table A1), with its disappearance becoming ev-
ident only after 10:15 UTC (Fig. 1d). The MER during this
phase (10:00–10:30 UTC) was approximately 6300 kgs−1

(Table 3). The maximum plume elevation was not recorded
by the ECV camera due to its limited field of view (approx.
9.0–9.5 kma.s.l. as noted by Scollo et al., 2014). However,
according to SEVIRI aboard the geostationary Meteosat Sec-
ond Generation satellite, the volcanic ash cloud top height
(ACTH) between 08:15 and 08:45 UTC was estimated at
11.5 kma.s.l. (Calvari et al., 2021). This higher SEVIRI-
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Table 3. A priori source vector xa.

Time (UTC) Mean column height Mean mass eruption rate Standard deviation (SD)
(m) (MER) (kgs−1) of mean MER (kgs−1)

12 Mar 2021 06:00:00 5850 12 000 10 200
12 Mar 2021 08:00:00 10 000 58 800 35 000
12 Mar 2021 10:00:00 5300 6320 5120

Figure 2. (a) The time–height curtain plot of the attenuated backscatter coefficient and (b) the volume linear depolarization ratio at 532 nm
based on PollyXT lidar observations at the PANGEA-NOA observatory during 12 March 2021 (18:30 to 21:30 UTC). Station elevation is at
193 ma.s.l. Altitude heights are given in kilometers above ground level. The blue vertical lines in panel (b) indicate negative values, which
arise due to a low signal-to-noise ratio (SNR) of the measurements, and they are masked before data averaging and final retrievals.

derived plume height was used in the calculations for the a
priori ash emissions during this time window, as it provides a
more accurate representation of the plume height at the peak
of the eruption (see Appendix Table A1).

4 Results

On 12 March 2021 the Etna volcanic plume was captured
over the PANGEA-NOA observatory by the PollyXT lidar
system. A 3 h time window from 18:30 to 21:30 UTC was se-
lected to calculate the aerosol optical properties using the Ra-
man method (Ansmann et al., 2011b). This time window was
chosen based both on the lidar observations and the FLEX-
PART simulations, which also indicated the presence of ash
particles over the PANGEA-NOA station. Figure 2 shows the
time–height evolution of the PollyXT lidar measurements, de-
picting a dense aerosol layer between 8 and 12 kma.g.l., with
the majority of the ash plume (large, depolarizing aerosols)
confined in the altitudes between 9 and 11 km approximately
11 h after the eruption (18:30–21:30 UTC). The layer is as-
sociated with volcanic ash advection from Etna, as indicated
by the high-volume linear depolarization ratios (40 %–50 %
at the center of the plume), which are typical of non-spherical
volcanic ash particles (Gasteiger et al., 2011; Groß et al.,
2013; Tackett et al., 2023; Wiegner et al., 2012) (Fig. 2b).

To further analyze the volcanic plume distribution, Fig. 3
presents the mass eruption rates in kgs−1 for both the a

priori (represented by circles) and a posteriori (represented
by stars) values, plotted as a function of ash plume height
(kma.s.l.) and eruption time (UTC). The a posteriori ash par-
ticle emissions in the “w” Aeolus simulation (Fig. 3a and b),
obtained through the inversion scheme presented herein,
were used as input for a new FLEXPART forward run. As
discussed in Sect. 3.4.1, the a priori MER (Fig. 3a and b) for
ash particles was determined using the approach outlined by
Scollo et al. (2019). The a priori MER was obtained by in-
verting the observed plume heights from the VONA reports,
based on data collected by calibrated cameras operated by
the INGV-EO observatory. The ash plume’s disappearance
becomes noticeable only after 10:15 UTC (Fig. 1d).

The a priori MER values represented by circles exhibit
significant variability throughout the eruption period on
12 March 2021, between 06:30 and 10:30 UTC. Peak MER
values approaching 80 000 kgs−1 are observed at approxi-
mately 12 km altitude between 09:30 and 09:45 UTC. Ad-
ditionally, notable peaks occur at lower altitudes between
08:15 and 09:00 UTC, where MER values reach approxi-
mately 45 000 kgs−1 at around 9 km altitude (Fig. 3a and b).

In contrast, the a posteriori MER values, denoted by
stars, display a more constrained and consistent pattern, with
lower magnitudes across most altitudes and times with re-
spect to the a priori estimates. The maximum a posteriori
MER reaches approximately 45 000 kgs−1 at an altitude of
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Figure 3. A priori and a posteriori ash emissions. (a) Comparison of temporally averaged vertical profiles of ash emissions used a priori
(circles) and obtained a posteriori by the inversion (stars). The color bar indicates the corresponding times of eruption (on 12 March 2021,
from 06:30–10:30 UTC), each color representing a specific time. (b) A priori (circles) and a posteriori (stars) MER (unit kgs−1) as a function
of altitude (km) and time (UTC) on 12 March 2021 from 06:30 to 10:30 UTC. The color bar indicates the corresponding MER values (from 0
to 90 000 kgs−1), each color representing a specific MER range. The time axis reflects the period during which the ash plume was recorded
by the ECV calibrated camera (06:30–10:30 UTC). (c) Relative differences (%) between a posteriori and a priori for ash emissions (orange
columns) and plume height (blue columns) as a function of time (UTC). All heights are given in kilometers above sea level.

10.5 km, occurring between 08:15 and 08:45 UTC (Fig. 3a
and b).

The eruption dynamics involve a complex evolution of the
volcanic plume, with phases of rising and collapsing. How-
ever, this dynamic behavior is not explicitly resolved in the
a posteriori simulations, which do not capture rapid fluctu-
ations in plume height and intensity. Instead, the inversion
algorithm adjusts the a posteriori MER at each altitude over
time, dynamically increasing or decreasing emission rates
to achieve the best agreement with available observations.
The most significant refinement occurs between 08:15 and
08:45 UTC, within the 8–12 km altitude range, where lidar
observations provide direct constraints on the plume’s verti-
cal structure. As a result, the inversion optimizes the emis-
sion estimates primarily within this altitude range, ensuring
the highest degree of agreement between observed and a pos-
teriori emissions.

A notable distinction between the two sets of emission es-
timates is the greater spread of the a priori emissions across
a wider range of altitudes, with values often exceeding those
of the a posteriori emissions. This is especially evident at
lower altitudes (below 7 km) (Fig. 3b and c), where rela-
tive differences range between 40 % and 80 % from 06:30 to

07:45 UTC. These differences suggest an overestimation of
the initial a priori emissions obtained by inverting observed
plume heights from the VONA reports, compared to the ash
emissions derived from the inversion scheme (Fig. 3c).

On the other hand, the a posteriori MER values present a
more refined and clustered distribution between 8 and 12 km
altitude (Fig. 3a), indicating a more constrained and likely
more accurate estimation of ash emissions. This contrast is
particularly evident when compared to the more scattered
and variable a priori estimates.

Between 10:00 and 10:30 UTC, both a priori and a posteri-
ori estimates indicate a distinct decline in MER, with values
dropping below 10 000 kgs−1 at lower altitudes (∼ 5 km).
During this period, the relative differences between plume
height and MER exceed 80 %, highlighting the divergence
between the initial and adjusted estimates (Fig. 3c).

Regarding the ash plume height, the a posteriori estimates
consistently indicate higher altitudes compared to the a priori
estimates, a discrepancy potentially attributed to the limited
field of view of the calibrated camera from the INGV-EO ob-
servatory. The camera’s restricted range (approximately 9.0–
9.5 kma.s.l., as noted by Scollo et al., 2014) may have failed
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Figure 4. Wind speed (ms−1) in WRF 18 h forecasts. Horizontal winds (a) “w” Aeolus assimilation, (b) “w/o” Aeolus assimilation, and
(c) wind speed differences (“w”− “w/o” Aeolus assimilation) at 300 hPa (∼ 9.6 km).

to capture the full extent of the plume, leading to underesti-
mations in the a priori estimates.

Additionally, Calvari et al. (2021) further indicate that the
observed plume column altitudes predominantly range be-
tween 6 and 9 km, which is the upper limit of the INGV-
OE camera system. As a result, column heights exceeding
9 kma.s.l. are likely limited, contributing to differences be-
tween a priori and a posteriori estimates.

The relative differences between the two estimates are no-
tably smaller, ranging from 10 % to 40 % between 08:00 and
09:00 UTC (Fig. 3c), suggesting a reasonable agreement be-
tween the a priori and a posteriori assessments for both emis-
sions and column heights during this time window of the
eruptive phase.

This improvement in the a posteriori profile underscores
the efficacy of the inversion algorithm in producing a more
reliable representation of the vertical distribution of the ash
emissions by improving the precision of eruption source pa-
rameters. The a posteriori MER profile alignment with the
observational data suggests that this method provides a ro-
bust and realistic assessment of ash emissions, particularly
in the critical altitude range where volcanic plumes typically

occur (Degruyter and Bonadonna, 2012; Mastin et al., 2009;
Scollo et al., 2019).

The transport and dispersion of volcanic ash particles are
strongly influenced by upper-air circulation patterns, which
play a crucial role in determining the trajectory and lifetime
of the volcanic plume. To assess the sensitivity of the vol-
canic ash transport to the driving meteorology, two simula-
tions were performed using the WRF regional model during
the study period. These simulations were driven by two ver-
sions of the ECMWF-IFS global model: one incorporating
the Aeolus wind profile assimilation (“w”) and one without
the Aeolus assimilation (“w/o”) (see Sect. 3.3). To evaluate
the influence of upper-level circulation on volcanic ash trans-
port, wind maps at 100, 200, 300, and 500 hPa were gener-
ated for the period of significant volcanic activity (Figs. A3–
A5).

Given that lidar observations estimated the volcanic
plume’s center of mass at approximately 10 km, the analy-
sis primarily focused on the 300 hPa level (∼ 9.6 km), which
closely corresponds to this altitude (Fig. 4). Analyzing the
WRF regional model wind vectors at upper-tropospheric lev-
els (300 hPa, ∼ 9.6 km) at 18:00 UTC (approximately 11 h
after the Etna eruption), the general atmospheric circulation
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Figure 5. FLEXPART simulations of volcanic ash. (a) A priori ash column loading (µgm−2), using the meteorological fields “w/o”. (b) “w”
Aeolus wind assimilation. (c) A posteriori ash column loading (µgm−2), using meteorological fields “w” (12 March 2021, 20:45 UTC).
(d) EUMETSAT Meteosat-11 Ash (RGB-MSG-0-degree), product of the ash plume derived from the Spinning Enhanced Visible and In-
fraRed Imager (SEVIRI) during paroxysmal activity at Mt. Etna on 12 March 2021. Composite thermal IR (8.7, 10.8, 12 wavelengths)
satellite image from the SEVIRI captures the volcanic ash plume about 11 h after the start of the eruption above the PANGEA-NOA
station, at Antikythera island in Greece on 12 March 2021 at 20:45 UTC (SEVIRI data are taken from the EUMETSAT data portal;
https://view.eumetsat.int/productviewer?v=default, last access: 27 June 2025).

remained predominantly zonal over the Mediterranean, with
westerly winds prevailing throughout the troposphere. Over
the Anatolian Plateau and the eastern Mediterranean Sea,
these winds transition into northwesterlies, favoring the di-
rect transport of the Etna plume towards Greece and the east-
ern Mediterranean.

A comparison of the two simulations (“w” and “w/o” Ae-
olus assimilation) indicates that the overall atmospheric pat-
tern remains consistent, with the subtropical and polar jet
streams dominating the circulation. However, notable differ-
ences in wind speed are evident, as highlighted in the wind
speed difference map for the WRF 18 h forecast (Fig. 4).

The color shading in Fig. 4c illustrates the differences be-
tween the two WRF runs on 12 March 2021 (18:00 UTC).
This comparison indicates the significant strengthening of
winds at 300 hPa when Aeolus wind profiles are assimi-
lated (Fig. 4c), with maximum difference values reaching
approximately 8 m s−1. Additionally, slight differences in
wind vector direction (“w” Aeolus (green) and “w/o” Ae-
olus (black)) are observed, particularly over the Ionian Sea
(from W to NW) and the eastern Mediterranean between
Crete and Cyprus (from WNW to NW), where the two jet
streams merge.

Similar wind speed tendencies are observed at 200 hPa
(Fig. A4). In contrast, at 500 hPa (Fig. A5), the influence of
Aeolus assimilation is less pronounced, indicating that the
most significant differences occur at higher altitudes where
jet stream dynamics dominate.

At 100 hPa (Fig. A3), a strong westerly jet stream is evi-
dent across Europe and North Africa, indicating fast-moving
winds that could contribute to the long-range transport of
volcanic particles. The corresponding wind speed difference
map (Fig. A3c) shows high differences mainly along the
jet stream axis, suggesting that Aeolus assimilation plays a
crucial role in improving the representation of high-altitude
wind fields critical for long-range ash transport.

These findings highlight the importance of accurate upper-
air circulation representation in volcanic ash transport mod-
eling. The inclusion of Aeolus wind profiles in the ECMWF-
IFS model leads to a more refined depiction of wind patterns,
particularly at upper tropospheric and lower stratospheric
levels, which are crucial for accurately forecasting the dis-
persion of volcanic emissions.

The FLEXPART simulated a priori distribution (µgm−2)
of the ash clouds over the eastern Mediterranean at
20:45 UTC, using meteorological fields “w/o” and “w” Ae-
olus wind assimilation, is shown in Fig. 5a and b. The ash
plume is shown to arrive over Antikythera from the west only
when Aeolus assimilated wind fields were used (Fig. 5b).
In contrast, the volcanic plume in the “w/o” Aeolus forecast
never crosses Antikythera, as the forecasted cloud displaced
to the north (Fig. 5a).

Additionally, the a posteriori distribution of the ash
plume transport (µgm−2) over the eastern Mediterranean
at 20:45 UTC, using Aeolus wind assimilation, is shown in
Fig. 5c. However, the a posteriori particle emission rates in
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the “w/o” Aeolus simulation could not be estimated from the
inversion scheme due to very low source–receptor relation-
ships derived from the FLEXPART model (see Appendix A,
Fig. A2b, d, and f). As a result, the a posteriori simulation of
ash plume transport “w/o” Aeolus assimilation was not pro-
duced.

The a posteriori ash plume is notably more concentrated
than the a priori plume (Fig. 5b and c) and covers a smaller
area, mostly limited to the area around Antikythera and
southern Greece. In contrast, the a priori ash plume (Fig. 5b)
is more widely dispersed, potentially due to the higher MER
values (Fig. 3a, denoted as circles), leading to an overestima-
tion of the a priori ash emissions. The a priori ash plume dis-
persion extends from the eastern coast of Greece and reaches
as far as the western islands. Furthermore, the structure of
the a posteriori ash plume closely resembles the ash cloud
image captured by the EUMETSAT Meteosat-11 Ash RGB
product from the SEVIRI satellite above Antikythera island
on 12 March 2021 at 20:45 UTC (Fig. 5d), again highlighting
the importance of constraining the variability of the simula-
tion results toward a more stable solution.

A thorough evaluation of the different model simulations
is performed against the quality-assured lidar measurements
of the PANGEA-NOA observatory. Figure 6 presents the ver-
tical profiles of the FLEXPART simulated ash mass con-
centrations over PANGEA-NOA. FLEXPART vertical time–
height cross-sections of volcanic ash a priori and a posteriori
concentration “w” Aeolus assimilated fields (Fig. 6b and c)
show a similar pattern to the observed volcanic aerosol layer
over Antikythera (Fig. 2a) but reveal significant differences
in the vertical distribution and ash mass concentrations.

Specifically, the a priori simulation using “w” Aeolus wind
assimilation forecasts a volcanic ash layer at an altitude range
of approximately 7.5 to 11 kma.s.l., with ash concentrations
reaching below 100 µgm−3 over Antikythera between 18:30
and 21:30 UTC (Fig. 6b). In contrast, the a priori run “w/o”
Aeolus assimilation fails to capture the observed ash particle
concentrations over Antikythera (Fig. 6a). In the a posteriori
simulation, the ash plume driven by the Aeolus wind fields is
notably more aligned and better defined than in the a priori
simulation with respect to the observed ash plume (Figs. 2
and 6c). The a posteriori profile reveals a volcanic ash layer
at an altitude range of 8 to 12 km with higher ash concen-
trations than in the a priori layer, reaching up to 200 µgm−3

over Antikythera during the same time period (Fig. 6c). No-
tably, in the a posteriori profile (Fig. 6c), the main part of
the ash plume with the highest concentrations is confined be-
tween 9 and 11 km, consistent with the observed lidar profile
(Fig. 2a). However, the a posteriori FLEXPART time–height
cross-sections using the “w/o” Aeolus wind fields were not
calculated, as the a posteriori emission rates could not be esti-
mated by the inversion scheme due to very low SRRs derived
from the FLEXPART model (see Appendix A, Fig. A2b, d,
and f).

Figure 6. FLEXPART time–height cross-sections on 12 March
2021 at 18:30–21:30 UTC over the PANGEA observatory in An-
tikythera, Greece. (a) Time–height plot of a priori FLEXPART vol-
canic ash concentrations (µgm−3) “w/o” Aeolus wind assimilation
over Antikythera, Greece (zero values). (b) Time–height plot of a
priori FLEXPART volcanic ash concentrations (µgm−3) “w” Ae-
olus wind assimilation over Antikythera. (c) Time–height plot
of a posteriori FLEXPART volcanic ash concentrations (µgm−3)
“w” Aeolus wind assimilation over Antikythera, Greece (“w/o” are
not calculated). All heights are given in kilometers above ground
level.

The better agreement in both the vertical distribution and
the concentration of the volcanic ash in the a posteriori sim-
ulation (Fig. 6c), compared to the time–height profile of the
observed ash plume derived from PollyXT lidar on 12 March
from 18:30 to 21:30 UTC (Fig. 2a), highlights the effective-
ness of the inversion process when utilizing Aeolus wind
data.

The aerosol optical property profiles retrieved from the li-
dar data are shown in Fig. 7. The POLIPHON method as
described in Sect. 3.1.1 was utilized to derive the pure-ash
mass concentration profiles.

PollyXT lidar retrievals show that the volcanic ash con-
centrations over PANGEA-NOA reached up to almost
250± 80 µgm−3 at the plume’s center of mass, which is es-
timated at 10 kma.g.l. (orange line in Fig. 7c and d). The
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Figure 7. Lidar-derived optical properties over the PANGEA observatory on 12 March 2021 (18:30–21:30 UTC). Vertical distributions of
(a) total backscatter coefficient (green line) and particle linear depolarization ratio at 532 nm (black line), (b) depolarizing (orange line) and
non-depolarizing (blue line) particle backscatter coefficient, (c) volcanic mass concentrations using the POLIPHON method for ash (orange
line) and sulfates (blue line), and (d) vertical profile of volcanic ash. Volcanic ash mass concentrations using the POLIPHON method (orange
line); FLEXPART a priori model simulations “w” Aeolus assimilated winds (green line), the result of Amiridis et al. (2023) for the fine
particles (3, 5, 9, and 21 µm diameter); FLEXPART a posteriori model simulations “w” Aeolus assimilated winds (blue line) for the fine
particles (3, 5, 9, and 21 µm diameter); and a priori and a posteriori ash mass concentrations “w/o” Aeolus simulation equal to zero are not
shown. All heights are given in kilometers above ground level.

uncertainty in mass concentration calculation is marked with
a black error bar in Fig. 7a.

The a posteriori ash emissions from the “w” Aeolus simu-
lation, obtained through the inversion scheme (Fig. 3, stars),
were used as input for a new FLEXPART forward run. This
run was conducted to estimate a posteriori ash mass concen-
trations above the PANGEA-NOA station between 18:30 and
21:30 UTC, focusing on fine ash particles with a diameter
of 3, 5, 9, and 21 µm.

Figure 7d compares the vertical profiles of the observed
and the simulated (a priori and a posteriori “w” Aeolus as-
similation) volcanic ash concentrations. The a priori and
a posteriori ash mass concentrations “w/o” Aeolus simu-
lation equals zero and are not shown as the SRM derived
using “w/o” Aeolus assimilated wind fields results in neg-
ligible sensitivities. The volcanic ash plume in the “w/o”
Aeolus simulation never reached Antikythera on 12 March
2021 between 18:00 and 21:30 UTC due to a northward shift
(Fig. 5a).

The corresponding mass concentrations derived from the
FLEXPART a priori simulation (green line) and a posteriori
simulation (blue line) are shown in Fig. 7d for comparison
with the lidar observations (orange line).

The a priori simulation produced ash concentrations of ap-
proximately 150–180 µgm−3 at the plume’s center of mass,
at 8.5 kma.g.l. (green line in Fig. 7d). While the a priori pro-

file shows good spatiotemporal agreement with the lidar re-
trievals (orange line in Fig. 7d), there is a slight vertical shift
of 1 km between the modeled and observed ash mass peaks,
which is critical for aviation safety. Furthermore, there is a
misfit of about 50 µgm−3 between the ash concentrations de-
rived by the PollyXT lidar and those reproduced by the model
in the a priori simulation, even with Aeolus data assimilated.

In contrast, when comparing the modeled a posteriori
ash mass concentrations to the lidar observations, their
agreement is evident when Aeolus winds are assimilated.
The maximum ash mass concentration is approximately
250 µgm−3 at 9.8 km, closely matching the peak observed
by the lidar, while the vertical distribution of the ash plume
is also depicted with high accuracy. The difference between
the observed and the a posteriori simulated ash mass concen-
trations is minimal and only 2 %. In contrast, the difference
between the lidar observations and the a priori ash simula-
tions ranged from 28 % to 40 %. This demonstrates that the
estimated emission profile obtained from the inversion algo-
rithm presented herein is remarkably robust. Overall, the in-
version profile yields a much better agreement with lidar ob-
servations, confirming the effectiveness of the inversion pro-
cess and the value of incorporating Aeolus wind data into the
model.
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5 Conclusions and discussion

The present study presented an inversion method to estimate
the volcanic emission rate profile with a Lagrangian particle
dispersion model and a ground-based lidar system. The tech-
nique was applied to the case study of the explosive eruption
of Mt. Etna, Italy, on 12 March 2021. To assess the impact
of Aeolus wind assimilation in volcanic ash dispersion fore-
casts, the simulation was repeated twice: once with Aeolus
data assimilated (“w” experiment) and once without (“w/o”).
The volcanic aerosol layers observed above the PANGEA-
NOA station in Antikythera, along with the clear-sky condi-
tions in the days after the eruption, made this an ideal test
case. Important conclusions from our work are as follows:

The PollyXT lidar system of PANGEA-NOA detected a
dense aerosol layer between 8 and 12 km, with the volcanic
ash plume primarily concentrated between 9 and 11 km.
FLEXPART simulations, both a priori (with an empirical
emission profile) and a posteriori (with the emission profile
produced by the inversion algorithm) were conducted to de-
rive the modeled plume’s vertical distribution and concentra-
tion. The a priori “w” Aeolus simulation showed a broader
dispersion of the ash plume, potentially due to the overes-
timation of the a priori ash emissions obtained by inverting
the observed plume heights from the VONA reports, whereas
the a posteriori simulation, based on the inversion results,
produced a more refined and consistent ash plume profile,
confined to a smaller area, mostly around Antikythera and
southern Greece, which was closely similar to the ash cloud
observed by the SEVIRI satellite.

In terms of ash mass concentration, the a priori profile
with Aeolus wind data assimilated shows a good spatiotem-
poral agreement with the lidar retrievals but exhibited a slight
vertical shift of 1 km with respect to the observed ash mass
peaks (Amiridis et al., 2023) along with a misfit in mass
concentrations of about 50 µgm−3, a critical factor for avi-
ation safety. In contrast, the a posteriori ash mass concen-
trations demonstrate a better agreement with the observa-
tions above PANGEA-NOA when Aeolus winds are assimi-
lated. The maximum ash mass concentration is found close to
255 µgm−3 at 9.8 km, closely matching the peak observed by
the lidar, depicting a minimal difference of the order of 2 %
between the observed and the a posteriori simulated ash mass
concentrations. In contrast, the difference between the lidar
observations and the a priori ash simulations ranged from
28 % to 40 %. This consistency highlights the robustness of
the new inversion algorithm and the significant improvement
in the vertical distribution and the ash mass concentration.
However, additional independent datasets, such as ground-
based, satellite remote sensing data, or airborne in situ mea-
surements along the plume’s trajectory, would further en-
hance the validation of this methodology and should be con-
sidered in future studies.

To further assess the reliability of the retrieved emissions,
a Monte Carlo error propagation analysis was conducted, in-

troducing normally distributed perturbations to the lidar mea-
surements. With this method, the standard deviation of the
retrieved emissions at each height level was estimated. The
results indicate that the inversion output remained highly sta-
ble, with minimal variation across Monte Carlo realizations,
suggesting that the single-station observational setup does
not introduce significant uncertainty. To enhance the sensi-
tivity of the inversion framework and provide a more com-
prehensive uncertainty assessment, multiple lidar stations or
complementary remote sensing techniques are essential.

The accuracy of the FLEXPART a posteriori simulation is
highly dependent on the precision of the driving meteorolog-
ical fields (“w” Aeolus wind fields), as well as on volcano
source parameters such as the plume height and mass erup-
tion rates, which are refined through the inversion process (a
posteriori MER).

The advantages of Aeolus wind assimilation for global
NWP models have been well documented, particularly by
Rennie et al. (2021), who demonstrated significant improve-
ments in wind field representation, especially in the trop-
ics and Southern Hemisphere. Further enhancements in wind
forecasts were observed in the study of Amiridis et al. (2023),
where regional NWP models benefited from Aeolus wind as-
similation. Our case study validates these findings, showing
that the assimilation of Aeolus wind profiles leads to a sig-
nificant improvement in the estimation of volcanic emission
rates in the vertical distribution, optimizing the agreement
between lidar observations and a posteriori model simula-
tion.

Real-time applications, such as those of VAACs, demand
a rapid response to volcanic ash hazards. Once the plume is
detected and initial data from lidar systems become avail-
able, the presented method can quickly provide the neces-
sary information to calculate the current and future position
and extent of the plume within a few hours. This underscores
the imperative for high-quality, rapidly accessible data, such
as that provided by organized ground-based lidar networks
employing standardized algorithms and procedures, such as
those used by EARLINET, a key component of the ACTRIS
infrastructure.

However, their applicability to the proposed methodol-
ogy depends on the operation of a backscatter-depolarization
lidar, which constitutes the primary requirement. In cases
where direct measurements of essential parameters, such as
lidar ratios, are unavailable, values from the scientific liter-
ature can be used. A more advanced configuration, incorpo-
rating Raman lidar capabilities, would enhance the accuracy
of retrieved backscatter and lidar ratio coefficients. Addition-
ally, for daytime measurements, a co-located sun photometer
would facilitate the direct estimation of the conversion fac-
tors required in the inversion process. Beyond ground-based
applications, the methodology is also applicable to space-
borne aerosol lidars, which provide vertical profiles of the
backscatter coefficient and particle linear depolarization ra-
tio, both fundamental parameters for the inversion process.
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Furthermore, the methodology presented herein can be ap-
plied to current or future satellite missions that employ lidar
measurements (e.g., the EarthCARE mission). While passive
satellites offer near-global coverage of ash cloud measure-
ments within minutes to hours, ground-based or satellite lidar
systems provide more accurate direct retrievals of the vertical
distribution within the ash plume column.

Our methodology is broadly applicable and efficient
enough for real-time implementation. It can supply ash
forecasting models with an objectively derived quantitative
source term, leading to improved forecasts that are critical for
the aviation sector. These enhanced forecasts provide more
effective emergency responses, ensuring safer and more effi-
cient flight operations during volcanic eruptions, while at the
same time minimizing the risk of accidents and the financial
impact of flight cancelations.

Appendix A

The SRR for a size distribution of volcanic ash particles with
four size bins (3, 5, 9, and 21 µm diameter), derived from
the FLEXPART model using the “w” Aeolus assimilated
wind fields, indicate that the volcanic emissions observed
above the PANGEA-NOA observatory (receptor – y axis)
on 12 March 2021 (from 18:30 to 21:30 UTC) at the height
range of 6–12 km mostly originate from release heights be-
tween 5 and 11.5 km above the Etna volcano (source – x axis)
(Fig. A2a, c, and e). These source release heights are con-
sistent with the observed emissions above the PANGEA-
NOA station, particularly when the particle release time was
06:00–08:00 and 08:00–10:00 UTC. The source heights for
the fine particles align well with the eruptive column heights,
as reported from the INGV-OE calibrated cameras (Fig. 1).
Additionally, the inversion algorithm was utilized with the
FLEXPART SRR only for these two release times. In con-
trast, the SRR using “w/o” Aeolus assimilated wind fields
shows that the volcanic particles arriving above the PANGEA
station at heights of 8–10 km (receptor – y axis) are few and
originate from release heights of around 8–11 km above Etna
(source – x axis) and only when the particle release time was
04:00–06:00 UTC (Fig. A2b, d, and f). This release time is
not accurate, as the eruption actually began at 06:00 UTC ac-
cording to the VONA messages from INGV-EO.
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Figure A1. Workflow of the methodology.

Figure A2. Source–receptor sensitivities for the fine particles (3, 5, 9, and 21 µm diameter) “w” Aeolus assimilated winds (a, c, and e) and
“w/o” Aeolus simulation (b, d, and f). The horizontal axis “x” depicts the particle release height (km) above Etna, and the vertical axis “y”
is the altitude above PANGEA that the emissions observed on 12 March 2021 (18:30 to 21:30 UTC).
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Table A1. Volcanic ash plume heights (m) during the eruption activity from 06:30 to 10:30 UTC, as recorded by the ECV camera operated
by INGV-EO (second column) and adjusted heights incorporating SEVIRI satellite observations where applicable (third column).

Time (UTC) Height (m) from ECV Height (m) incorporating
camera (INGV-EO) SEVIRI observations

06:30 4000 4000
06:45 5500 5500
07:00 5500 5500
07:15 6000 6000
07:30 6500 6500
07:45 7000 7000
08:00 7500 7500
08:15 < 9000 11 500
08:30 < 9000 11 500
08:45 < 9000 11 500
09:00 < 9000 10 000
09:15 < 9000 9500
09:30 < 9000 9500
09:45 9000 9000
10:00 6500 6500
10:15 5000 5000
10:30 4500 4500

Figure A3. Wind speed (ms−1) in WRF 18 h forecasts. Horizontal winds (a) “w” Aeolus assimilation, (b) “w/o” Aeolus assimilation, and
(c) wind speed differences (“w” – “w/o” Aeolus assimilation) at 100 hPa (∼ 16 km).
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Figure A4. Wind speed (ms−1) in WRF 18 h forecasts. Horizontal winds (a) “w” Aeolus assimilation, (b) “w/o” Aeolus assimilation, and
(c) wind speed differences (“w” – “w/o” Aeolus assimilation) at 200 hPa (∼ 12 km).

Figure A5. Wind speed (ms−1) in WRF 18 h forecasts. Horizontal winds (a) “w” Aeolus assimilation, (b) “w/o” Aeolus assimilation, and
(c) wind speed differences (“w” – “w/o” Aeolus assimilation) at 500 hPa (∼ 5.5 km).
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Code availability. The inversion algorithm was written with
Python programming language version 3.12 (https://www.python.
org/, last access: 27 June 2025) and can be obtained from the
co-author Anna Kampouri (akampouri@noa.gr) upon request. The
WRF model code is publicly available, has a digital object identifier
(https://doi.org/10.5065/D6MK6B4K, UCAR, 2025; Skamarock et
al., 2019), and can be obtained via GitHub (https://github.com/
wrf-model/WRF, last access: 27 June 2025). The FLEXPART-
WRF model code is publicly available and can be obtained from
https://git.nilu.no/flexpart/flexpart-wrf (Dingwell, 2025; Brioude et
al., 2013) input. The code used for data processing was written with
Python programming language version 3.12 (https://www.python.
org/, last access: 2 July 2025) and can be obtained via GitHub
at https://github.com/NOA-ReACT/Aeolus_Volcano_2023 (last ac-
cess: 2 July 2025; https://doi.org/10.5281/zenodo.15805552, Kam-
pouri, 2025). The SCC algorithm used here is developed within
the EARLINET/ACTRIS community, and its source code is not
publicly available. Instead, it is used internally to process raw li-
dar signals into quality-assured Level 2 optical property profiles,
which are made publicly available via the EARLINET data portal
(https://data.earlinet.org/, last access: 10 July 2025). The retrievals
and the aerosol lidar optical properties are available from the co-
author Anna Gialitaki (togialitaki@noa.gr) upon request.

Data availability. The Aeolus L2A wind data can be down-
loaded from https://apps.ecmwf.int/mars-catalogue/?class=rd&
expver=hkv (ECMWF, 2021b, a). The lidar data from the
PollyXT system at the PANGEA-NOA station are available
in ascii format through Zenodo under the following DOI:
https://doi.org/10.5281/zenodo.15805552 (Kampouri, 2025).
These data were derived using the Single Calculus Chain
(SCC; https://scc.imaa.cnr.it) algorithm (a signal-analysis tool
for raw lidar data processing developed within EARLINET
(https://www.earlinet.org/, last access: 3 July 2025) and AC-
TRIS (https://www.actris.eu/, last access: 3 July 2025)). SCC
products (L2 optical property profiles) are publicly available
through the EARLINET data portal (https://github.com/actris-ares/
actris-earlinet-2024_annual_collection/tree/main, ACTRIS
EARLINET, 2024). The WRF and FLEXPART-WRF models’
simulation results are also available from the co-author Anna
Kampouri (akampouri@noa.gr) upon request.
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