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Abstract. The microphysical and radiative properties of cirrus clouds are strongly dependent on the ice nu-
cleation mechanism and origin of the ice crystals. Due to sparse temporal coverage of satellite data and limited
observations of ice-nucleating particles (INPs) at cirrus levels, it is notoriously hard to determine the origin of the
ice and the nucleation mechanism of cirrus clouds in satellite observations. In this work we combine 3 years of
satellite observations of cirrus clouds from the DARDAR-Nice retrieval product with Lagrangian trajectories of
reanalysis data of meteorological and aerosol variables calculated 12 h backward in time for each observed cirrus
cloud. In a first step, we identify typical cirrus cloud formation regimes by clustering the Lagrangian trajectories
and characterize observed microphysical properties for in situ and liquid origin cirrus clouds in mid-latitudes
and the tropics. On average, in situ cirrus clouds have smaller ice water content (IWC) and lower ice crystal
number concentration (Nice) and a strong negative temperature dependence of Nice, while liquid origin cirrus
have a larger IWC, higher Nice and a strong positive temperature dependence of IWC. In a second step, we use
MERRA2 reanalysis data to quantify the sensitivity of cirrus cloud microphysical properties to a change in the
concentration of dust particles that may act as INPs. By identifying similar cirrus cloud formation pathways, we
can condition on ice origin, region, and meteorological dependencies, and quantify the impact of dust particles
for different formation regimes. We find that at cloud-top median Nice decreases with increasing dust concen-
trations for liquid origin cirrus. Specifically, the sensitivities are between 6 % and 7 % per order of magnitude
increase in dust in the tropics and between 15 % in the mid-latitudes. The decrease in Nice can be explained
by increased heterogeneous ice nucleation in the mixed-phase regime, leading to fewer cloud droplets freezing
homogeneously once the cloud enters the cirrus temperatures and glaciates. The resulting fewer, but larger, ice
crystals are more likely to sediment, leading to reduced IWC, as for example observed for liquid origin cirrus in
the mid-latitudes. In contrast, for high-altitude in situ cirrus in the tropics, we find an increase of Nice median
values of 11 % and IWC median values of 17 % per unit increase of dust aerosol in logarithmic space. We as-
sume that this is caused by heterogeneous nucleation of ice initiated by dust INPs in INP-limited conditions with
supersaturations between the heterogeneous and homogeneous freezing thresholds. Such conditions frequently
occur at high altitudes, especially in tropical regions at temperatures below 200 K.

Our results provide an observational line of evidence that the climate intervention method of seeding cirrus
clouds with potent INPs may potentially result in an undesired positive cloud radiative effect (CRE), i.e., a
warming effect. Instead of producing fewer but larger ice crystals, we show that additional INPs can lead to an
increase in Nice and IWC, an effect called overseeding.
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1 Introduction

Cirrus clouds have a region-dependent occurrence of be-
tween 10 % and 50 %. When analyzing the zonal distribu-
tion from the poles towards the Equator, occurrence peaks in
the mid-latitude storm tracks, followed by a decrease in the
subtropics. The occurrence then increases again towards the
intertropical convergence zone (ITCZ), with a particularly
pronounced increase over the warm pool region (Heymsfield
et al., 2017). Despite the high cirrus cloud cover and the re-
sulting climatological relevance, cirrus are a source of large
uncertainties in climate projections (Forster et al., 2021). Cir-
rus clouds occur primarily in the upper troposphere at tem-
peratures below −38 °C and consist purely of ice crystals.
Clouds modulate the Earth’s radiative budget via the reflec-
tion of short-wave radiation (cloud albedo effect) and the ab-
sorption and emission of infrared radiation into space (cloud
greenhouse effect). Global climate model (GCM) and ob-
servational studies show that the greenhouse effect domi-
nates in cirrus clouds, resulting in a positive CRE, meaning
a net warming of the atmosphere (Gasparini and Lohmann,
2016; Hong et al., 2016). However, depending on the cloud
microphysical properties (CMPs) of cirrus, the magnitude
of the CRE varies significantly and can even change to a
negative CRE for lower-level optically thick cirrus (DeMott
et al., 2010; Hong et al., 2016; Krämer et al., 2016; Heyms-
field et al., 2017). Cirrus CMPs, namely the IWC and Nice,
are in turn controlled by the competition between homoge-
neous and heterogeneous ice nucleation (e.g., Kärcher et al.,
2006), ice origin (Krämer et al., 2016), geographical location
(Heymsfield et al., 2017), environmental variables, mainly
temperature and updraft velocities, and the aerosol environ-
ment (Gryspeerdt et al., 2018). Other studies like Muhlbauer
et al. (2014) and Sassen and Comstock (2001) use a dy-
namical regime for the classification of cirrus. The hetero-
geneity of cirrus CMPs and subsequent CRE require a bet-
ter understanding of the formation pathways and their influ-
ence on cirrus CMPs to reduce the uncertainties in CRE es-
timates and cirrus cloud representations in GCMs used for
climate change projections. In recent years there have been
significant advances in the understanding of cirrus cloud for-
mation and the resulting CMPs using in situ aircraft data,
global satellite data, and model simulations. Krämer et al.
(2016) and Luebke et al. (2016) introduced a cirrus classi-
fication based on the origin of ice crystals in cirrus clouds.
Cirrus that form directly from the gas phase at tempera-
tures T <−38 °C are termed in situ cirrus. In contrast, liquid
origin cirrus evolve from mixed-phase clouds, where cloud
droplets freeze heterogeneously via ice-nucleating particles
(INP; Kanji et al., 2017) at temperatures T >−38 °C. Once
the cloud is lifted to temperatures T <−38 °C it glaciates
spontaneously by homogeneous freezing of the remaining
cloud droplets. Krämer et al. (2016) combined in situ air-
craft observations with model simulations to study the CMPs
associated with the two ice-origin regimes. The authors find

that in situ cirrus form at higher altitudes, are optically thin-
ner, and consist of fewer ice crystals. Liquid origin cirrus,
on the other hand, are thicker clouds found at lower altitudes
consisting of many ice crystals. Their study suggests that liq-
uid origin clouds have a cooling and in situ a warming effect
on the atmosphere.

Multiple other studies have adopted the classification of
cirrus with respect to ice origin. For instance, Wernli et al.
(2016) analyzed 12 years of ERA-Interim trajectories in the
North Atlantic to identify the relative occurrence of liquid
origin and in situ cirrus; Gasparini et al. (2018) compared
satellite observations from the CALIPSO satellite (Hunt
et al., 2009) with simulation data from GCMs to study CMPs
of in situ and liquid origin cirrus. While data from active
satellite instruments like CALIPSO’s lidar provide an un-
precedented vertically resolved global view on real cirrus
clouds, the observations suffer from the long revisiting time
of the satellite of 16 d, which only allows for a temporal
snapshot perspective on cirrus clouds. To still approximate
the ice origin of satellite-observed cirrus, Gasparini et al.
(2018) used a heuristic approach to determine ice origin, in
which cirrus are considered liquid origin if they extend to
temperatures warmer than −35 °C. However, due to the tem-
poral snapshot perspective, anvil cirrus and frontal cirrus are
falsely classified as in situ cirrus in this approach. The above-
mentioned studies all agree that liquid origin cirrus clouds
occur at lower altitudes and contain more IWC and higher
Nice than in situ cirrus clouds, which occur at higher altitudes
and are typically thinner with less IWC and lower Nice.

Apart from studying cirrus ice origin, the relationships be-
tween meteorological and aerosol cirrus drivers and CMPs
have also been studied extensively using observational data.
Gryspeerdt et al. (2018) found that next to ice origin, mainly
temperature, updraft by controlling supersaturation, and the
aerosol environment determine the CMPs. Aerosols can in-
fluence CMPs by acting as INPs for heterogeneous freezing.
In addition to temperature and particle morphology, the abil-
ity of INPs to initiate heterogeneous freezing in cirrus clouds
is strongly dependent on ambient supersaturations. Recent
analysis of 65 airborne relative humidity measurements at
cirrus levels have shown that, both in mid-latitudes and the
tropics, regions with supersaturations between the homoge-
neous and heterogeneous freezing thresholds exist both in
cloudy and cloud-free regions (Krämer et al., 2020; Dekout-
sidis et al., 2023). We refer to these conditions as INP limited,
as the availability of (additional) INPs could induce hetero-
geneous freezing and hence increase Nice in existing clouds
and also form new clouds. The frequency of such conditions
is more prevalent in tropical regions below 200 K. Mineral
dust is considered the most important INP in the atmosphere
(Kanji et al., 2017). Kuebbeler et al. (2014) found in a GCM-
based study that an increase in dust INP leads to a global re-
duction of ice mass and an increase of crystal size, caused by
a partial switch from homogeneous to heterogeneous nucle-
ation. The exact effect of INPs on cirrus in observed cirrus
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is still uncertain and difficult to study in observational data
as INPs generally only represent a small subset of the overall
aerosol population (Lacher et al., 2018; Forster et al., 2021),
and the INP effect may be masked by other dependencies
such as regional influences, meteorological conditions, and
ice origin.

An additional motivation to study the impact of INPs on
cirrus cloud properties is the assessment of the climate inter-
vention method of cirrus cloud thinning (CCT), which aims
at altering the radiative properties of cirrus clouds to coun-
teract global warming. CCT was first proposed by Mitchell
and Finnegan (2009), building on results by Lohmann et al.
(2008) who found in a modeling study that a change of the
dominant ice nucleation mechanism from homogeneous to
heterogeneous nucleation leads to a large reduction of the
cirrus CRE by −2.0 W m−2. The idea behind CCT is to in-
duce a shift of the dominant nucleation mechanism by in-
jecting INPs into cirrus regimes with the aim of producing
fewer but larger ice crystals, which reflect less short-wave ra-
diation, but more importantly trap less long-wave radiation.
Storelvmo et al. (2013) simulated CCT in a global climate
model and found two opposing effects. A substantial cooling
effect was achieved when injecting the optimal amount of
INPs into cirrus regimes, namely 18 L−1. However, at higher
concentrations of injected INPs more and smaller ice crys-
tals were observed, which resulted in a substantial warming
effect. This undesirable response to CCT is termed overseed-
ing. Multiple other studies with different global climate mod-
els and seeding strategies report a negligible cooling poten-
tial of CCT, but confirm an overseeding effect at high seeding
concentrations (Penner et al., 2015; Gasparini and Lohmann,
2016; Gasparini et al., 2017; Tully et al., 2022).

Due to uncertainties in parameterizing subgrid processes,
modeling studies have inherent uncertainty. Studies based on
observational data can provide additional evidence to sup-
port and validate the outcome of these model studies. In
this study we combine instantaneous satellite observations
with Lagrangian backward trajectories of meteorological and
aerosol reanalysis data on a large regional and temporal
scale. With this approach, we extend the temporal snapshots
obtained by satellite observations with an evolutionary per-
spective on cloud formation and development. Our goal is
to classify observed cirrus clouds by means of their trajec-
tories and to investigate the influence of typical formation
pathways on observed cirrus CMPs. We follow a data-driven
approach by using k-means clustering of Lagrangian trajec-
tories with dynamic time warping (DTW) as a distance met-
ric to identify typical cirrus formation regimes. Our second
objective is to quantify the effect of mineral dust particle con-
centrations on cirrus CMPs. By identifying cirrus clouds that
have formed in similar meteorological environments in mid-
latitudinal and tropical regions in the first step, we are able to
disentangle the influence of ice origin, meteorological condi-
tions, and regional occurrence from the dust effect.

2 Methods

2.1 Data

In this work, 3 years of satellite observations of cirrus clouds
is extended with Lagrangian backward trajectories of mete-
orological variables and aerosol properties. DARDAR (De-
lanoë and Hogan, 2008) and its extension DARDAR-Nice
(Sourdeval et al., 2018) are widely used satellite products
that provide vertically resolved retrievals for IWC and Nice.
DARDAR is a synergistic product combining CloudSat’s
radar with CALIPSO’s lidar and is hence able to penetrate
through deep convective clouds, while still being sensitive to
optically thin cirrus clouds. Due to the long 16 d revisiting
times, DARDAR only provides temporal snapshots along its
narrow satellite overpass. The locations of observed cirrus
for 10 000 randomly sampled cirrus clouds, representing ap-
proximately 1 % of the dataset used in this study, are visual-
ized as red dots in Fig. 1. The satellite overpasses are clearly
detectable in the figure.

To add a notion of temporal development to observed cir-
rus clouds, Lagrangian trajectories are calculated 12 h back
in time based on hourly wind fields using LAGRANTO
(Sprenger and Wernli, 2015) for each grid point containing
an observed cirrus cloud. Hereby, a grid point is considered
to contain a cirrus cloud if IWC> 0 and T <−38 °C. Since
LAGRANTO calculates trajectories based on ERA5 wind
fields (Hersbach et al., 2018), DARDAR cirrus observations
are first regridded onto the ERA5 grid of 0.25°× 0.25° and
a vertical resolution of 300 m, which approximately corre-
sponds to the model layer thickness in ERA5 at cirrus al-
titudes. After regridding, only grid points with a fractional
cloud cover > 0.1 are considered to be cirrus cloud observa-
tions. Blue dots in Fig. 1 mark the trajectories for 10 000 ran-
domly sampled cirrus (red dots). We trace temperature from
ERA5 along the trajectories. Cloud properties available from
ERA5 are intentionally omitted in this work, since IWC is
substantially underestimated compared to DARDAR, espe-
cially in the cirrus regime (Duncan and Eriksson, 2018). The
data source for dust concentration is the MERRA2 (Buchard
et al., 2017; Gelaro et al., 2017) reanalysis product, which
contains data for dust aerosols in five size bins. For this
study we aggregate the four size bins with radii > 1 µm into
a single super-micron size bin. Given that larger particles are
more likely to act as INPs (Kanji et al., 2017), we use the
super-micron dust bin as proxy for dust particle concentra-
tion for this study. In order to trace MERRA2 data along the
ERA5 trajectory, the data is regridded to the spatiotempo-
ral resolution of ERA5 data. MERRA2 was chosen as a data
source for aerosol concentration in this study as it has been
shown to better represent aerosol properties than the CAMS
reanalysis product (Benedetti et al., 2009; Inness et al., 2019)
when compared to remote sensing observations (Gueymard
and Yang, 2020; Gandham et al., 2022).
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Figure 1. Visualization of 10 000 randomly sampled cirrus cloud observations in the study domain (red dots) with their corresponding 12 h
Lagrangian backward trajectories (blue dots). For visualization purposes only the trajectories of the cloud top layers are shown.

In this study, we define cirrus clouds as all clouds with
a cloud-top temperature colder than −38 °C. This definition
includes, for example, the top part of deep convective cores,
which are not classified as cirrus clouds in some other stud-
ies. However, our clustering approach, based on backward
trajectory reanalysis data, aims to capture all evolutionary
stages of cirrus clouds. Therefore, we adopt this broad defini-
tion. For the remainder of this study, we refer to a cirrus cloud
as all consecutive vertical layers in a DARDAR observation
containing IWC> 0 mg m−3 and located at T <−38 °C, in-
stead of considering each vertical level separately. This ap-
proach enables a more holistic view on the whole cloud. In
order to also get a holistic view of the history for each cloud,
while ensuring comparability between clouds, we define the
meteorological history of a cloud by its 12 h temperature evo-
lution along the trajectories starting at cloud top and cloud
base. Correspondingly, we consider the dust particle concen-
tration along the trajectory starting at cloud center. Figure 2
visualizes these trajectories for seven randomly sampled cir-
rus clouds.

The domain of this study is defined from 140° W to 40° E
and 0 to 60° N, and contains data from 2007–2009. The cho-
sen domain covers a wide range of climatological regimes
and surface types, and can be considered representative for
tropical and mid-latitudinal regions, where cirrus clouds oc-
curring at latitudes ≤ 30° N are considered tropical and cir-
rus clouds occurring at latitudes> 30° N are considered mid-
latitudinal. The dataset contains 1.1 million cirrus cloud ob-
servations with 7.2 million separate cloud layers, for each of
which a 12 h Lagrangian backward trajectory has been calcu-
lated. As cirrus clouds typically do not persist more than 12 h
(Lohmann et al., 2016), it can be assumed that the observed
cirrus clouds have formed within the time frame of the 12 h
trajectories. This is also in line with Jeggle et al. (2023), who
found that the last 15 h of a trajectory contain all the infor-
mation for predicting cirrus cloud properties.

Figure 2. Lagrangian backward trajectories of seven randomly
sampled cirrus clouds. The clouds are observed at time step t = 0,
from which the Lagrangian trajectories are calculated backwards in
time. Each color represents trajectories for a single cloud across the
three panels. Panel (a) shows temperature along trajectories start-
ing from cloud top and cloud base of observed cirrus; panel (b)
shows concentration of dust particles with radii > 1 µm along the
trajectory at the cloud center. Note that for clouds extending to T >
−38 °C, the cloud base is defined as the last layer with T <−38 °C
at t = 0.

2.2 Trajectory clustering

To identify different formation regimes of cirrus clouds in
our dataset, we follow a data-driven approach by applying
k-means clustering using dynamic time warping (DTW) as
a distance metric (Sakoe and Chiba, 1978). The algorithm
separates time series (i.e., Lagrangian backward trajectories)
into k clusters, where similar trajectories are grouped to-
gether in the same cluster. Instead of using point-to-point
comparisons to calculate the similarity between time series
using Euclidean distance, we apply DTW to account for
time shifts in the backward trajectories. DTW is a similar-
ity measure that calculates the Euclidean distance on tempo-
rally aligned time series, aiming at an improved similarity as-
sessment compared to a point-to-point comparison. Figure 3
visualizes the differences between standard Euclidean dis-
tance and DTW. In both cases the calculated similarity is the
sum of distances between matched points. It can be seen that
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DTW is invariant to the temporal shift of the two time series
by aligning the sinusoidal pattern of the two time series along
the temporal axis. We use the Python library tslearn (Tave-
nard et al., 2020) for the k-means clustering of time series
with DTW and refer to its documentation for further details.

To improve the readability of this paper, the following
nomenclature is defined:

– Temperature trajectory. This is the ERA5 temperature
along a Lagrangian trajectory (as shown in Fig. 2a).

– Dust trajectory. This is the MERRA2 dust concentra-
tion along a Lagrangian trajectory (as shown in Fig. 2b).

– Trajectory start. This is the starting point of a La-
grangian backward trajectory, i.e., t = 0. At this point
a DARDAR cirrus cloud observation is available.

In a first step, temperature trajectories starting at cloud top
and cloud base are clustered, resulting in kT clusters per re-
gion, which are associated with respect to their ice origin.
For instance, if both cloud top and cloud base trajectories re-
main at temperatures below −38 °C, the cluster can be con-
sidered to be formed in situ in the ice phase. Given the as-
sumption that an air parcel’s history containing a cirrus cloud
provides information about the cloud formation and devel-
opment mechanisms, our approach allows an analysis of ob-
served cloud snapshots with respect to their formation his-
tory, which was formerly only possible for model and reanal-
ysis data. Cirrus formation regimes may differ depending on
the region in which they occur, and we analyze the results
of the clustering for tropical cirrus and mid-latitudinal cirrus
separately. By grouping cirrus of similar temperature path-
ways, the meteorological dependence of cirrus CMPs (IWC,
Nice) can be disentangled from aerosol–cloud interactions.

2.3 Dust effect quantification

To estimate the sensitivity of IWC and Nice in the identified
formation regimes, a multivariate linear regression model is
fitted for both variables in each formation regime. The re-
quired input to a linear regression is a single data point rather
than a time series (i.e., dust along trajectory), which is why
we take the dust particle concentration at the time of cirrus
cloud observation (t = 0) as a proxy for the dust concentra-
tion along the trajectory. The small mean standard deviation
of 0.14 log mg kg−1 along trajectories supports the validity of
this simplifying assumption. We are interested in analyzing
possible distribution shifts of cirrus CMPs caused by varying
dust particle concentrations, rather than the effect of dust on
individual clouds. Hence, we create dust concentration bins
with a width of 1/10 of an order of magnitude and calculate
median IWC and Nice values, which are used as target vari-
ables for the regression. The width of the dust concentration
bins is chosen to account for relatively small variations in
dust concentrations while guaranteeing a sufficient number
of cirrus observations per bin.

Despite having reduced the dependence of cloud ice prop-
erties on the formation regime and meteorological conditions
through the trajectory clustering, it is still necessary to adjust
for meteorological dependencies within each cluster. There-
fore, in addition to dust concentration as a regressor, temper-
ature (T ) and large-scale vertical velocity (ω) at the time of
the observation (t = 0) are also used as regressors, resulting
in the following multivariate linear regression equations:

IWC= βIWC
1 T +βIWC

2 ω+βIWC
3 Dust+ ε, (1)

NICE = β
NICE
1 T +β

NICE
2 ω+β

NICE
3 Dust+ ε. (2)

Once fitted and the significance of the regression coefficients
is tested (p < 0.05), the coefficients for “Dust” can be inter-
preted as the sensitivity of IWC and Nice to a unit change in
the concentration of dust. Note that throughout this study a
unit change in dust concentration corresponds to a change of
one order of magnitude, as we use log-transformed concen-
trations.

3 Data-driven formation regime identification

By clustering the temperature trajectories as described in
Sect. 2.2, four distinct trajectory pathways can be identified.
We refer to Appendix A for a discussion on the choice of k
clusters. Each cirrus cloud in the dataset is assigned to the
cluster with the minimum distance of its temperature trajec-
tory at cloud top and cloud base. Figure 4 shows the mean
temperature trajectories of cirrus clouds belonging to the four
clusters for cirrus clouds in the mid-latitudes (Fig. 4a) and
tropics (Fig. 4b). Given the characteristics of the trajectories,
the clusters are named according to their ice origin. We iden-
tify two clusters for which the temperatures remain below
235 K along the whole 12 h trajectory. Assuming that the ob-
served cirrus at t = 0 formed at any point in the 12 h prior
to its observation, we are confident that cirrus belonging to
these clusters formed directly in the ice phase, i.e. in situ.
Based on the temperature differences, the clusters are named
in situ (cold) (blue color) and in situ (warm) (green color).
Both in situ clusters are characterized by a negligible tem-
perature decrease along the trajectory with cloud top temper-
atures ∼ 190 K for cirrus clouds of the in situ (cold) cluster
and ∼ 205 K for cirrus clouds of the in situ cluster in the
tropics. Due to the increased height of the tropopause in the
tropics, in situ origin cirrus can occur at higher altitudes, re-
sulting in a shift to colder temperatures of the mean cloud top
temperatures of approximately 15 K compared to the mid-
latitudes. The third cluster (yellow color) may contain both
in situ and liquid origin cirrus, given that its trajectory is
gradually surpassing the homogeneous freezing temperature
threshold of 235 K. Whether clouds belonging to this cluster
have formed in situ or have ascended from the mixed phase
depends on the time of cloud formation. Since the moment of

https://doi.org/10.5194/acp-25-7227-2025 Atmos. Chem. Phys., 25, 7227–7243, 2025



7232 K. Jeggle et al.: Cirrus formation regimes

Figure 3. Comparison between Euclidean distance and DTW for two time series that are shifted along the temporal axis. Reprinted from
Tavenard (2021).

Figure 4. Mean temperatures along 12 h backward trajectories for four identified clusters of cirrus clouds in the (a) mid-latitudes and
(b) tropics; t = 0 indicates the starting point of the backward trajectories, that is, the DARDAR-observed cirrus clouds. Dashed lines indicate
trajectories at cloud top and solid lines trajectories at cloud base. The error bars represent the standard deviations at each time step. The
horizontal black line at 235 K marks the homogeneous freezing threshold, and hence the shift from the mixed-phase to the cirrus regime.

cloud formation is unknown, and hence the ice origin is am-
biguous, this cluster is named hybrid. The temperature trajec-
tories and cloud vertical extent of the remaining cluster sug-
gest that cirrus clouds belonging to this formation regime are
likely to have formed in the mixed-phase regime. Thus, this
cluster is named liquid origin (orange color). Figure 5 visu-
alizes the absolute occurrence of cirrus clouds in the dataset
that belong to each cluster for both mid-latitudes and trop-
ics. In the tropics, cirrus clouds are fairly equally distributed
between the four clusters, whereas in the mid-latitudes there
are almost no in situ (cold) (2 %) cirrus and half of the cirrus
clouds belong to the hybrid regime.

Figure 6 visualizes the spatial distribution of cirrus clouds
belonging to each cluster in the study domain. Cirrus clouds

of the in situ (cold) cluster occur almost exclusively in the
ITCZ, cirrus in the in situ (warm) and liquid origin clusters
also occur often in the ITCZ, but also in the northern At-
lantic and Europe. A majority of cirrus belonging to the hy-
brid cluster occur at latitudes 40–60° N.

Cirrus cloud properties are typically characterized as a
function of temperature, hence we analyze and compare the
temperature dependence of the observed cloud ice proper-
ties for the identified temperature trajectory clusters. Fig-
ure 7 shows the median values of IWC (Fig. 7a, c) and Nice
(Fig. 7b, d) for 1 K temperature bins for each cluster as well
as the median values for all clouds (dashed black line). Con-
sistent with Krämer et al. (2016), we observe higher IWC for
liquid origin cirrus compared to in situ cirrus with an increas-
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Figure 5. Sankey plot visualizing the classification of 1 134 000
cirrus cloud observations into formation regimes based on k-means
clustering of Lagrangian trajectories. The number of clouds con-
tained in each cluster is proportional to the thickness of each link
in the Sankey diagram and is also displayed at each node. In a first
step cirrus clouds are divided by region; next, reanalysis trajectories
are clustered by temperature pathways. Temperature trajectories are
named with respect to the ice origin of the corresponding cirrus
clouds.

ing spread at higher temperatures, which means that the ef-
fect of ice origin on cirrus CMPs decreases with temperature
and therefore altitude. At 220 K, for instance, liquid origin
cirrus have a median IWC that is twice as large compared to
median in situ cirrus, in both the tropics and mid-latitudes.
Notably, median IWC values are decreasing for in situ cirrus
at temperatures> 215 K in the mid-latitudes. We assume that
updrafts for cirrus in this temperature regime are too small to
nucleate new ice crystals, leading to the reversal of the nor-
mally positive IWC–temperature dependence. Low median
Nice values (< 0.05 cm−3; Fig. 7b) support this hypothesis.

The same effect can be observed in a weaker form in the
tropics. Generally, a stronger positive IWC–temperature de-
pendence can be observed for cirrus of liquid origin, while
in situ cirrus exhibit a stronger negative Nice–temperature
dependence. The relative temperature dependence is quan-
tified in Table 1 as the relative change in median IWC and
Nice values for cirrus occurring at 210 K compared to cirrus
occurring at 220 K. Nice decreases by 52 % (43 %) between
210 and 220 K for in situ (warm) cirrus in the mid-latitudes
(tropics), probably due to a scarcity of INPs at higher temper-
atures. Liquid origin cirrus clouds have a 5 (10) times lower
dependency of Nice on temperature compared to in situ cir-
rus clouds. As liquid origin cirrus clouds form by glaciat-
ing cloud droplets of mixed-phase clouds that are lifted to
the cirrus temperature regime, it cannot necessarily be ex-
pected to observe larger ice crystal concentrations with de-
creasing temperatures. The fact that Nice is increasing with
decreasing temperatures for liquid origin clouds (although
only slightly) suggests that the nucleation of new ice crys-
tals through INPs enabled heterogeneous or homogeneous
freezing of solution droplets triggered by cloud top cooling

Table 1. Relative change of IWC and Nice median values from 210
to 220 K for in situ (warm) and liquid origin clusters for cirrus in
tropics and mid-latitudes.

Mid-latitudes Tropics

in situ liquid in situ liquid
(warm) origin (warm) origin

IWC −15 % 50 % 11 % 58 %
Nice −52 % −11 % −43 % −4 %

(Hartmann et al., 2018) or gravity waves (Kim et al., 2016;
Chang and L’Ecuyer, 2020; Atlas and Bretherton, 2023). An-
other possible explanation for the negative temperature de-
pendence of Nice for liquid origin cirrus clouds is that clouds
observed at warmer temperatures are aged clouds (e.g., aged
anvil cirrus) that have sedimented to lower (i.e., warmer) al-
titudes (Doswell, 1985). Since we do not have information
about the time of cloud formation, it is impossible to disen-
tangle the effects described.

Cirrus clouds belonging to the in situ (cold) cluster occur
in a narrow temperature band below ∼ 210 K. Cirrus clouds
of this cluster are characterized by the lowest IWC and Nice
median values at any given temperature. Clouds belonging to
the hybrid cluster sit in the middle between liquid origin and
in situ clusters, supporting the hypothesis that both in situ
and liquid origin cirrus clouds belong to this cluster.

4 Quantification of dust aerosol effect

Our goal is to isolate the effect of dust on cirrus cloud prop-
erties from other dependencies such as temperature and for-
mation regime. By classifying cirrus into different trajectory
clusters, we can analyze the effect of dust on cirrus clouds for
different cloud regimes and at the same time reduce the ef-
fect of ice origin on IWC and Nice. Figure 8d and h show
the distributions of dust particle concentration for the dif-
ferent temperature trajectory clusters for mid-latitudes and
tropics, respectively. It can be seen that the dust concentra-
tion distributions span four orders of magnitude. Figure 8a,
b, e, and f show median IWC and Nice as a function of dust
particle concentration. Following the approach described in
Sect. 2.3, we analyze whether the amount of available dust
has an influence on observed cirrus CMPs. While clouds in
the same regime occur at similar meteorological conditions,
there is still a spread in both temperature and vertical veloc-
ity. As dust concentrations generally decrease with height,
and therefore temperature (Fig. 8c, g), and cloud ice prop-
erties are functions of temperature (Fig. 7), the remaining
meteorological effect must be taken into account when con-
sidering the influence of dust on the CMPs of cirrus.

To account for the remaining dependency of cirrus proper-
ties on temperature and vertical velocity, we conduct a mul-
tivariate regression onto median IWC and Nice values with
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Figure 6. Occurrence of observed cirrus clouds for each temperature trajectory cluster on a 2.5°× 2.5° grid for the years 2007–2009.

Figure 7. Median IWC (a) and Nice (b) in cloud layers with a dis-
tance to cloud top < 600 m of temperature trajectory clusters calcu-
lated for 1 K temperature bins in the mid-latitudes. (c) and (d) are
analogous for the tropics. The dashed black lines represent the me-
dian value for cirrus clouds in a given region. Median values are
shown for 1 K temperature bins containing > 2500 cirrus cloud ob-
servations. The temperatures represent the ERA5 temperature at the
trajectory start points (t = 0).

temperature, vertical velocity, and dust concentration as re-
gressors (see Eqs. 1 and 2). Since ice nucleation occurs at
cloud top, we expect the largest effect of dust acting as INPs
close to cloud top and hence use data from the cloud top layer
in the regression. Figure 9a and b show the regression coef-
ficient for dust (β3 in Eq. 2) in the regression onto IWC and
Nice, respectively. The regression coefficients can be inter-
preted as the sensitivity of the median values of IWC andNice
to a unit change in dust particle concentration. Gray fields
in Fig. 9 indicate that the dust concentration did not have a
significant effect on the target variable (p < 0.05). Panels c

and d show the sensitivity of IWC and Nice to dust as a per-
centage of the median IWC and Nice values.

As expected, Nice is generally more sensitive to the
amount of dust aerosol than IWC, with all regression co-
efficients except for the two in situ cirrus clusters in the
mid-latitudes being significant. An increased availability of
dust aerosols can lead to a regime shift from homogeneous
freezing of solution droplets or cloud droplets to heteroge-
neous freezing catalyzed by the availability of INPs in the
form of dust aerosols. Depending on the region and forma-
tion regime, this regime shift leads to a decrease in Nice of
between 6 % and 15 %, which results in an increase in ice
crystal size. The effect is strongest in the mid-latitudes for
cirrus clouds of the hybrid and liquid origin regimes. Due
to the sedimentation of larger ice crystals, the regime shift in
the ice nucleation mechanism can lead to a reduction of IWC,
as can be observed for cirrus clouds in the hybrid and liquid
origin regimes in the mid-latitudes. For liquid origin cirrus
the suppression of homogeneous ice nucleation by heteroge-
neous ice nucleation occurs with a temporal delay. Increased
availability of INPs leads to an increase of heterogeneous ice
nucleation while the cloud is still in the mixed-phase regime.
This leads to a growth of ice crystals at the expense of cloud
droplets via the Wegener–Bergeron–Findeisen process (We-
gener, 1911), or even full glaciation of the cloud at tempera-
tures>−38 °C and ultimately resulting in less homogeneous
ice nucleation and thus fewer ice crystals at cirrus tempera-
tures (T <−38 °C).

For cirrus clouds of the in situ (cold) cluster in the tropics,
a substantial positive sensitivity of 11 % for Nice and 17 %
for IWC can be observed, in contrast to the negative dust
aerosol sensitivities discussed so far. We assume that this ef-
fect is caused by heterogeneous nucleation of ice in regions
with supersaturations between the heterogeneous and homo-
geneous freezing thresholds and low updraft velocities, i.e.,
in conditions that are INP limited and in which ice nucleation
would not have happened homogeneously. Aircraft-based in
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Figure 8. Median IWC (a), Nice (b), and temperature values (c) for given dust bins in the mid-latitudes in cloud layers within 325 m of
cloud top. Each dust concentration bin represents 1/10 of an order of magnitude. Median values are shown for data points with> 1000 cirrus
cloud observations per dust bin. Filled circles in panel (c) mark the median dust particle concentration per cirrus cluster. Panel (d) shows the
density plot of dust particle concentration for different cirrus clusters in the mid-latitudes. Panels (e)–(h) are the same plots for tropical cirrus
clouds.

Figure 9. Regression coefficients β3 in Eq. (1) (a) and Eq. (2) (b) representing the sensitivity of IWC and Nice to a unit change of dust
aerosol in logarithmic space. Panels (c) and (d) represent the sensitivity as a percentage of the median IWC and Nice values, respectively,
for each region/cirrus cluster combination. The gray fields indicate that β3 has a p-value > 0.05, and is therefore considered statistically
insignificant.

situ measurements of relative humidities in fact show that
these conditions occur frequently at high altitudes, especially
in the tropics at temperatures below 200 K (Krämer et al.,
2020).

Our findings provide observational evidence that an in-
creased abundance of INPs in cirrus regimes can lead to
an overseeding effect for CCT. This means that instead of
an INP-induced shift from homogeneous to heterogeneous
ice nucleation, more numerous ice crystals form heteroge-
neously in conditions where homogeneous ice nucleation

would not have occurred. Our results confirm findings from
studies with global climate models that have found an over-
seeding effect (Storelvmo et al., 2013; Penner et al., 2015;
Gasparini and Lohmann, 2016; Gasparini et al., 2017; Tully
et al., 2022).

Also, for cirrus clouds of liquid origin, a positive IWC de-
pendence of 6 % is detected, while the Nice dependence re-
mains negative at −6 %. We assume that an increased avail-
ability of INPs induces a shift from homogeneous to hetero-
geneous freezing, leading to a decrease in Nice. At the same

https://doi.org/10.5194/acp-25-7227-2025 Atmos. Chem. Phys., 25, 7227–7243, 2025



7236 K. Jeggle et al.: Cirrus formation regimes

time, additional INPs may facilitate new freezing events that
would not have occurred otherwise. These two effects par-
tially offset each other, influencing the overall cloud proper-
ties.

We note that with our simplified assumption of linearity
between median IWC and Nice values and the regressors we
might miss non-linear effects, and are also only able to re-
trieve a noisy estimate given different microphysical pro-
cesses with opposing effects. For example, despite the overall
positive dust sensitivity for in situ (cold) cirrus in the tropics,
there may still be some in situ (cold) cirrus in the tropics that
are subject to a regime shift from homogeneous to hetero-
geneous nucleation due to an increase of dust concentration
leading to a reduction of Nice. While being able to explain
the observed sensitivities with our theoretical understanding
of microphysical processes, the identified sensitivities do not
necessarily constitute causal effects and could also be con-
founded by other factors.

As some cirrus clouds persist for more than 12 h, we re-
peated the trajectory clustering and dust sensitivity analy-
sis using 24 h backward trajectories. The median temper-
ature trajectories of the identified clusters and their corre-
sponding dust sensitivities are presented in Appendix A. The
longer trajectories allow for the identification of more dy-
namic regimes; for example, the hybrid regime exhibits a
stronger ascent of air parcels along the trajectory. To ensure
comparability, the cluster names remain consistent with those
used for the 12 h clustering. The sensitivity of cirrus cloud
properties to dust aerosol exposure largely aligns with the
12 h clustering results, except for the positive IWC sensitiv-
ity of liquid origin cirrus in the tropics, which is not detected,
suggesting that this result is less robust.

5 Limitations

Cloud-scale updrafts are a core driver of cirrus cloud forma-
tion and have a substantial influence on their CMPs. Like
all other studies working with satellite and reanalysis data,
this work is limited to the use of proxies for cloud-scale up-
drafts. While ERA5 can represent large-scale vertical veloc-
ity, small-scale updrafts like gravity waves and cloud-scale
convection are not resolved. Additionally, uncertainties in
ERA5 are higher in the tropics due to the frequent occur-
rence of convection, which, in turn, increases the uncertainty
of our findings in the tropics. It is likely that a portion of
cirrus clouds that we have classified as in situ cirrus in the
tropics are in fact liquid origin cirrus formed by convec-
tion that is not resolved in ERA5. Analogous to uncertainties
in meteorological variables, aerosol concentrations obtained
from MERRA2 are associated with region-dependent uncer-
tainties and may not necessarily represent the actual occur-
rence of dust. The study domain is a region with the highest
annual mean atmospheric dust concentrations (Gavrouzou
et al., 2021) and may therefore be less representative for the

Southern Hemisphere or more remote regions. While DAR-
DAR IWC and Nice agree well with co-located in situ ob-
servations of cirrus clouds (Krämer et al., 2016; Sourdeval
et al., 2018; Krämer et al., 2020), uncertainties associated
with measurement errors of the satellite instruments as well
as the retrieval algorithms remain. Due to the absence of ob-
servational information about the time of cloud formation,
cirrus clouds that have recently formed and cirrus clouds that
are in a dissolving stage may belong to the same formation
regime identified in this work, resulting in noisier results.
If we were able to accurately determine the time of cloud
formation, a more fine-grained classification of cirrus clouds
could be conducted, leading also to an increase of the signal-
to-noise ratio in the dust effect quantification. Knowledge
about cloud age would also allow us to estimate the effect of
gravitational size sorting by ice crystal sedimentation. Since
we focus on cloud top data, large ice crystals may have al-
ready sedimented from cloud top, reducing IWC compared
to younger clouds. Nice should be less affected by this un-
quantifiable effect of gravitational size sorting asNice is dom-
inated by the more numerous small ice crystals, which will
remain at cloud top for several hours (Jensen et al., 2018).

6 Conclusions

In this study, we combined 3 years (2007–2009) of vertically
resolved satellite retrievals from DARDAR-Nice of cirrus
clouds in the domain from 140° W to 40° E and 0 to 60° N
with Lagrangian 12 h backward trajectories of meteorolog-
ical and aerosol variables from reanalysis data, resulting in
1.1 million cirrus clouds and their corresponding trajectories.
Extending satellite data with trajectories enables an evolu-
tionary perspective on observed cirrus clouds in contrast to
the usual snapshot perspective studied with satellite data.

By clustering cirrus trajectories with k-means and DTW as
distance metric, we identified four main formation regimes
(in situ (cold), in situ (warm), hybrid, liquid origin). Con-
sistent with existing studies, we confirm increased IWC and
Nice values for liquid origin cirrus compared to in situ cir-
rus. However, in contrast to existing research that classified
cirrus cloud ice origin in reanalysis data or in situ observa-
tions of single case studies, our method enables the classifi-
cation of cirrus clouds based on their formation pathway in
a large-scale satellite dataset. Furthermore, we find that IWC
of liquid origin cirrus has a strong positive temperature de-
pendence, whereas in situ cirrus have a strong negative tem-
perature dependence on Nice.

The identification of cirrus formation regimes helps to dis-
entangle the effect of dust particle concentration on cirrus
cloud IWC and Nice from other dependencies. In line with
recent evidence showing that mineral dust plays a domi-
nant role in cirrus cloud formation in the Northern Hemi-
sphere (Froyd et al., 2022), we find significant sensitivities
of satellite-observed cirrus cloud properties, i.e., IWC and
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Nice, to dust particle concentrations from MERRA2 reanaly-
sis data. We find that increasing dust concentrations can in-
duce sensitivities of opposing signs caused by varying dom-
inant microphysical processes for different cirrus cloud for-
mation regimes. Except for tropical in situ (cold) cirrus, we
detect a decrease in median Nice with increasing dust con-
centrations, with sensitivities ranging from 6 % to 7 % in the
tropics and 15 % in mid-latitudinal regions per unit increase
of dust concentration in logarithmic space. We attribute this
decrease to a shift from homogeneous to heterogeneous ice
nucleation, resulting in fewer, but larger, ice crystals. Con-
versely, in situ (cold) cirrus in the tropics show an 11 % in-
crease in median Nice per dust aerosol unit increase in loga-
rithmic space. We assume this is caused by heterogeneous ice
nucleation initiated by dust INPs in INP-limited conditions
with supersaturations between heterogeneous and homoge-
neous freezing thresholds, which are frequently found at high
altitudes, especially in tropical regions. Cold, thin cirrus have
on average a net positive CRE due to their stronger long-
wave CRE compared to their short-wave CRE. An increase
in these clouds could contribute to additional warming. How-
ever, their CRE may be relatively small because these clouds
remain quite thin (Krämer et al., 2020). These results add
observational evidence towards the ineffectiveness and po-
tential undesired warming effects due to overseeding of CCT
as a climate intervention strategy.

IWC is generally less sensitive to the ice nucleation mech-
anism than Nice, and hence to a change in the concentration
of dust aerosol. At mid-latitudes, we find a negative sensitiv-
ity of IWC of 9 % and 12 % to dust particle concentrations
for hybrid and liquid origin cirrus, likely caused by the faster
sedimentation of larger ice crystals produced by heteroge-
neous freezing. Faster updraft velocities in the tropics may
counteract this effect. An IWC sensitivity to dust of 17 % for
in situ (cold) cirrus and 6 % sensitivity for liquid origin cir-
rus is detected in the tropics, suggesting that the effect of new
nucleation events is dominating here.

To validate the effects of formation regime and dust
aerosol on cirrus cloud properties, we suggest extending the
study to the Southern Hemisphere and additionally conduct-
ing both modeling studies and further studies exploring satel-
lite data.

A core limitation of this work is the absence of knowl-
edge about when an observed cloud was initially formed and
where in the cloud development life cycle it was observed
by the satellite. Aircraft observations show that the impact of
large aerosol particles like dust on IWC and Nice depends on
the evolutionary phase of cirrus clouds (Patnaude and Diao,
2020; Maciel et al., 2023). Modeling studies would enable a
full evolutionary view but are limited by assumptions about
cloud microphysics schemes and coarse resolutions. Stud-
ies with satellite data could include the use of geostation-
ary data, with its high temporal resolution but with the lim-
itation of only integrated retrievals, in contrast to vertically
resolved data. Recent advancements in combining multiple

satellite sources with machine learning have enabled the cre-
ation of a fully 3D-resolved dataset of cloud ice properties
with the spatiotemporal coverage of geostationary satellites
(Jeggle et al., 2024), enabling future studies to track cloud
trajectories, analyze cloud properties, and study dust sensi-
tivity using observation-based data.

The clustering approach applied to a dataset that combines
backward trajectories of reanalysis data with vertically re-
solved satellite observations introduced in this paper may
provide insights about formation regimes and aerosol–cloud
interactions beyond cirrus clouds. This method could be ap-
plied to liquid and mixed-phase clouds in a similar fashion.

https://doi.org/10.5194/acp-25-7227-2025 Atmos. Chem. Phys., 25, 7227–7243, 2025



7238 K. Jeggle et al.: Cirrus formation regimes

Appendix A: Determining number of clusters k

The choice of the number of clusters k is crucial for the ef-
ficacy of k-means clustering. Ideally, k is chosen such that
the algorithm maximizes the homogeneity of samples within
a cluster and the separation of samples of different clusters.
Various methods such as the “elbow” (Kodinariya and Mak-
wana, 2013) and the silhouette method (Rousseeuw, 1987)
can be used to heuristically determine k. The elbow method
involves plotting the sum of squared distances of samples to
their nearest cluster center as a function of the number of
clusters k. The point where the plot bends or makes an elbow
typically suggests a good value for k, indicating a balance
between compactness and separation of clusters.

Figure A1. Sum of squared distances of samples (cirrus trajecto-
ries) to their nearest cluster center as a function of the number of
clusters k.

The silhouette method measures the quality of cluster-
ing by calculating the silhouette score for each sample,
which is the difference between the intra-cluster distance and
the nearest-cluster distance normalized by the maximum of
these distances. Beyond these quantitative heuristics, domain
knowledge is a key factor when determining k. Understand-
ing the specific context and characteristics of the data can
guide the selection of k, ensuring that the clusters are mean-
ingful and relevant to the task at hand (Jain, 2010). The com-
putation of the silhouette scores scales quadratically with the
number of samples and time steps and is thus computation-
ally prohibitive for our setting. To determine k, we com-
bine the elbow method with visual interpretation and do-
main knowledge. Figure A1 visualizes the sum of squared
distances of samples (cirrus cloud trajectories) to their near-
est cluster centers as a function of k.

The optimal choice of k is not unambiguously identifiable
according to the elbow method, but can be restricted to values
between four and six. We finalize the choice of k by visually
interpreting the identified clusters. Figure A2 shows the iden-
tified cluster centers for k = 4 (a), k = 5 (b), and k = 6 (c).
It can be seen that the differentiation of additional clusters in
the k = 5 and k = 6 setting does not provide much additional
insight for the task of identifying cirrus formation regimes.
Thus, k = 4 is chosen for the analysis presented in this study.
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Figure A2. Cluster centers computed by k-means for 1.1 million cirrus cloud trajectories for k = 4 (a), k = 5 (b), k = 6 (c) clusters.
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Appendix B: Analysis with 24 h trajectories

Figure B1. Analogue to Fig. 4, but based on 24 h trajectories instead of 12 h trajectories.

Figure B2. Analogue to Fig. 9 but based on clustering with 24 h trajectories.
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