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Abstract. The impact of post-monsoon crop residue burning (CRB) on surface PM2.5 concentrations over
the Punjab–Haryana–Delhi (PHD) region in northern India was investigated using a regional meteorology–
chemistry model, NHM(WRF)-Chem, and a high-density in situ surface observation network comprising Com-
pact and Useful PM2.5 Instrument with Gas Sensors (CUPI-G) stations. We optimized CRB emissions from 1
to 15 November 2022 using the model and surface PM2.5 observational data. The CUPI-G data from Punjab
were found to be crucial for CRB emission optimization, as the CRB emissions in northern India in October
and November are predominantly originating from Punjab, accounting for 80 % of the CRB emissions. The new
emission inventory is referred to as OFEv1.0, with 12 h time resolution, in daytime (05:30–17:30 IST) and night-
time (17:30–05:30 IST). The total emissions in OFEv1.0, such as PM2.5, CO, organic carbon, and black carbon,
were consistent with previous studies. OFEv1.0 substantially increased emissions relative to those calculated
from satellite fire observation data (prior emissions). We showed that the prior PM2.5 emissions were underesti-
mated by approximately 8.6 times in the period 1–15 November 2022 and sometimes obscured completely due to
clouds or thick smoke/haze on 8 and 10 November 2022. Large differences in optimized daytime and nighttime
emissions indicated the importance of diurnal variations. Daytime emissions were larger than nighttime emis-
sions on some days but not on others, indicating that diurnal variation shape may have differed each day. The
mean contribution of CRB to surface PM2.5 over PHD was 30 %–34 %, which increased to 50 %–56 % during
plume events that transported pollutants from Punjab to Haryana and to Delhi. Due to insufficient performance
of the meteorological model simulation on 8 and 9 November 2022 and the lack of measurement sites on the
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southern side of Punjab, emission optimization was not successful in the case of increased PM2.5 concentrations
observed in Haryana on these days.

1 Introduction

Delhi is a megacity with severe air pollution, and substan-
tial efforts have been undertaken to understand the reasons
underlying the rise in surface concentrations of air pollu-
tants, source apportionments, impacts on human health, and
mitigation policies and their effects (Rizwan et al., 2013;
Guttikunda and Goel, 2013; Ghude et al., 2016; De Vito
et al., 2018; Singh et al., 2019; Yadav et al., 2022; Lan
et al., 2022; Guttikunda et al., 2023). Source apportion-
ment studies indicate that vehicle exhaust, anthropogenic
dust, biomass burning, and industry contribute approxi-
mately equally (10 %–30 %) to surface PM2.5 concentrations
in Delhi, although the dominant sector differs depending
on the study (Yadav et al., 2022; Guttikunda et al., 2023).
Delhi’s air quality worsens during the post-monsoon to win-
ter period, which is associated with (1) weaker wind speeds
than other times of the year and increased emissions from
space heaters (Guttikunda and Gurjar, 2012; Chowdhury et
al., 2017, 2019; Guttikunda et al., 2023), (2) use of fire-
works during Diwali festivities (Singh et al., 2019), and
(3) crop residue burning (CRB) upwind of Delhi (Cusworth
et al., 2018; Beig et al., 2020; Takigawa et al., 2020; Liu
et al., 2020; Singh et al., 2023; Hayashida, 2023; Man-
garaj et al., 2025). Delhi’s air quality is influenced by CRB
of the kharif crop, which is grown in the monsoon season
(June–September) and harvested in the post-monsoon season
(October–November) in Punjab and Haryana states under the
prevailing northwesterly winds.

The post-monsoon CRB emissions have increased since
implementation of the groundwater conservation policy in
2009, which delays planting of kharif crops and thus har-
vesting, leaving farmers with insufficient time to remove
residues before planting rabi crops (grown in winter), re-
sulting in farmers burning their stubble (Balwinder-Singh et
al., 2019; Hayashida, 2023; Mukherjee et al., 2023). How-
ever, a consensus has yet to be reached on the impact of
post-monsoon CRB emissions on regional air quality. For ex-
ample, Cusworth et al. (2018) reported that CRB contributed
7.0 %–78 % of PM2.5 primary components in Delhi depend-
ing on the year and selected emission inventory. Wiedin-
myer et al. (2023) summarized commonly used emission
inventories of open biomass burning such as the Fire In-
ventory from National Center for Atmospheric Research
(FINNv2.5; Wiedinmyer et al., 2023), the Global Fire Emis-
sions Database (GFED4.0s; van der Werf et al., 2017), Fire
Energetics and Emissions Research (FEER; Ichoku and Elli-
son, 2014), the Global Fire Assimilation System (GFASv1.2;
Kaiser et al., 2012), and the Quick Fire Emissions Dataset

(QFED v2.5; Darmenov and da Silva, 2015). They reported
that there were substantial variations in the estimation of
open biomass burning emissions among them over the south
and southeast Asian region, and the relative magnitudes also
varied substantially among species (see Fig. 4 of Wiedinmyer
et al., 2023). They concluded that determining the cause of
different fire emissions in the region is a target for their future
research.

Accuracy in emission inventories is crucial for the bet-
ter prediction of source apportionment using 3D chemical
transport models. Constructing emission inventories can take
a bottom-up or top-down approach. Bottom-up inventories
are based on the amount of fuel (activity data) multiplied by
the emissions of chemical compounds per unit mass of fuel
(emission factor). Active fire data or burned area products ob-
served by polar-orbiting satellites are commonly employed
as the activity data for bottom-up inventories of open biomass
burning (e.g., Kaiser et al., 2012; Giglio et al., 2013; van der
Werf et al., 2017; Beig et al., 2020; Liu et al., 2020; Singh
et al., 2020; Wiedinmyer et al., 2023). Although substantial
efforts have been undertaken to improve inventory data, large
differences exist among emission inventories (e.g., Cusworth
et al., 2018; Wiedinmyer et al., 2023). In the case of post-
monsoon CRB in northern India, two main issues need to
be resolved concerning emission inventories: (1) fire counts
observed by satellites can be underestimated due to the pres-
ence of clouds or thick smoke/haze, and (2) determining di-
urnal variations is impossible because polar-orbiting satel-
lites travel twice during the day and the night, usually around
noon and midnight (Takigawa et al., 2020; Liu et al., 2020).
In fact, Takigawa et al. (2020) demonstrated that 3D disper-
sion simulations employing emission data based on MODer-
ate resolution Imaging Spectroradiometer (MODIS) fire ra-
diative power (FRP) did not reproduce high PM2.5 concen-
tration episodes observed in Delhi in late October and early
November 2019. To improve post-monsoon CRB emission
estimations in northern India, Singh et al. (2020), Beig et
al. (2020), and Liu et al. (2020) considered small fires utiliz-
ing Visible Infrared Imaging Radiometer Suite (VIIRS) data,
with a finer spatial resolution (375 m) than MODIS (1 km)
data, which resulted in a 109 % increase in FRP compared to
using MODIS data alone in 2017 (Liu et al., 2020). Beig et
al. (2020) combined geostationary satellite data with lower
resolution (4 km) but higher temporal variation (15–30 min)
to overcome the diurnal variation issue. Liu et al. (2020) tried
to overcome both issues by (1) assuming a Gaussian distri-
bution for spatial and temporal variations of CRB emissions
and (2) employing a household survey of > 2000 farmers.

Atmos. Chem. Phys., 25, 7137–7160, 2025 https://doi.org/10.5194/acp-25-7137-2025



M. Kajino et al.: Optimizing PM2.5 emissions from crop residue fires 7139

Another way to improve emission estimations is through
a top-down approach, which minimizes the cost function be-
tween simulations and observations by adjusting for emis-
sion fluxes (e.g., Maki et al., 2010, 2011; Yumimoto and
Takemura, 2015). In many cases, satellite data are employed
to constrain emission fluxes due to their large spatial cover-
age (Elguindi et al., 2020). Surface observational data, which
include more chemical compounds and have higher tempo-
ral variations than satellite data, can be utilized for limited
regions (i.e., only over land because surface observations
are scarce over oceans) if the spatial coverage is sufficiently
high. For example, Henze et al. (2009) optimized inorganic
PM2.5 precursor emissions over the United States using Inter-
agency Monitoring of PROtected Visual Environment (IM-
PROVE) monitoring datasets. However, to date, no studies
have developed top-down inventories of post-monsoon CRB
emissions in northern India.

India hosts a nationwide network of surface air quality
monitoring stations, named Continuous Ambient Air Quality
Monitoring (CAAQM) stations, and data are provided by the
Central Pollution Control Board (CPCB). Because CAAQM
stations are mostly located in large cities, surface PM2.5 con-
centration data in CRB source areas have not been available.
To address this issue, Singh et al. (2023) distributed low-
cost sensors for air quality monitoring, known as Compact
and Useful PM2.5 Instrument with Gas Sensors (CUPI-G),
over rural and farmland areas in the Punjab–Haryana–Delhi
(PHD) region, under the Aakash project (Hayashida, 2023).
Together with meteorological analysis datasets, these authors
successfully identified two transport events of air pollutants
from Punjab to Haryana and to Delhi in 2022.

Based on the work by Singh et al. (2023), the current study
aimed to quantify the impact of CRB emissions on surface
PM2.5 concentrations (i.e., the so-called source–receptor re-
lationship of PM2.5) over the PHD region using a 3D re-
gional meteorology–chemistry model (Kajino et al., 2019).
Additionally, we applied an emission optimization technique
to develop a top-down CRB emission inventory by resolv-
ing underestimations due to clouds and thick smoke/haze
and considering diurnal variations (12 h resolution, differ-
entiating daytime and nighttime) using CUPI-G station data
(Singh et al., 2023). To the best of our knowledge, this is the
first study to apply a top-down approach to constrain post-
monsoon CRB emissions in northern India.

The model, observation data, and the emission optimiza-
tion method are described in Sect. 2.1, 2.2, and 2.3, respec-
tively. The model validation using the observation data is
presented in Sect. 3.1. The results of emission optimiza-
tion are intercompared with each other, and the best estimate
is referred to as Optimized Fire Emission v1.0 (OFEv1.0)
in Sect. 3.2. The OFEv1.0 data are compared against other
bottom-up inventories in Sect. 3.3. The reconstructed move-
ments of polluted air masses are presented in Sect. 3.4, and
the contributions of CRB to surface PM2.5 concentrations
are quantified in Sect. 3.5. Uncertainties in OFEv1.0 asso-

ciated with parameters used in the optimization method and
with the planetary boundary layer (PBL) simulations are dis-
cussed in Sect. 3.6. Concluding remarks and future issues are
summarized in Sect. 4.

2 Methods

2.1 Numerical models and simulation settings

The Japan Meteorological Agency (JMA)’s regional
meteorology–chemistry model, named Non-Hydrostatic
Model (NHM)-Chem v1.0 (Kajino et al., 2019, 2021), was
utilized herein. NHM-Chem v1.0 is a chemical transport
model (CTM) coupled offline with NHM, the previous ver-
sion of JMA’s numerical weather prediction (NWP) model
(Saito et al., 2006, 2007). The CTM part of offline-coupled
NHM-Chem can be employed with other meteorological
models (Nakata et al., 2021; Kajino et al., 2022; Sato et
al., 2023a, b). In this study, the CTM part offline-coupled
with the Weather Research and Forecast model (WRF
v4.1.5; Skamarock et al., 2019), named NHM(WRF)-Chem,
was employed in this study because NHM(WRF)-Chem
exhibited a slightly superior performance compared to
NHM-Chem when evaluated against observed time series of
surface PM2.5 in northern India.

Figure 1 presents the model domains utilized in the sim-
ulation. The parent domain (domain 1; D01) covered all of
India, with a horizontal grid resolution of 1x= 30 km to
resolve the transport phenomena associated with synoptic
scale circulations. The nested domain (domain 2; D02) cov-
ered the northwestern part of India, with 1x= 6 km to re-
solve local transport phenomena such as mountain–valley
circulation and mesoscale cloud processes. There were 32
vertical levels from the surface to 50 hPa for WRF and
40 vertical levels from the surface to 18 km for CTM us-
ing terrain-following coordinates. Two-way nesting was ap-
plied for WRF, with the initial and boundary conditions pro-
vided by the National Center for Environmental Prediction
(NCEP) final operational global analysis data (available from
https://rda.ucar.edu/datasets/ds083.2, last accessed: 7 May
2024) (1°× 1°, 6 hourly). The NCEP final analysis data were
also utilized for grid nudging over D01. The climatologi-
cal chemistry data provided by the Meteorological Research
Institute Chemistry-Climate Model version 2 (MRI-CCM2;
Deushi and Shibata, 2011) (TL159, 1x∼ 1.125°, monthly)
and Model of Aerosol Species in the Global Atmosphere
mark-2 (MASINGAR mk-2; Tanaka et al., 2003; Tanaka and
Ogi, 2017; Yumimoto et al., 2017) (TL159, 1x∼ 1.125°,
monthly) were employed for the initial and boundary con-
centrations of gaseous and aerosol species over D01, respec-
tively. The boundary concentrations of gaseous and aerosol
species over D02 were provided by the hourly simulation re-
sults of D01. The simulation period was from 10 October
2022 (00:00 UTC) to 15 November 2022 (00:00 UTC), with a
5 d spin-up period, resulting in an analysis period of 1 month
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from 15 October 2022 (00:00 UTC) to 15 November 2022
(00:00 UTC). The time interval of WRF output and CTM in-
put/output was 1 h.

Among physics modules in WRF, we employed Morri-
son’s double-moment cloud microphysics scheme (Morri-
son et al., 2009), the RRTMG-K scheme for shortwave and
longwave radiation (Baek, 2017), the Mellor–Yamada–Janjic
scheme for PBL turbulence (Janjic, 1994), and the Unified
Noah Land–Surface Model (Chen and Dudhia, 2001) for
both domains in WRF. The Grell–Freitas ensemble scheme
(Grell and Freitas, 2014) was utilized for sub-grid-scale cu-
mulus parameterization only over D01. For the aerosol and
chemistry modules in the CTM of NHM-Chem, we em-
ployed the same approach as Kajino et al. (2019, 2021),
adopting the 5-category nonequilibrium method for aerosol
representation. Within the 5-category method, aerosols are
categorized into five categories or modes, including the
Aitken mode (ATK), soot-free accumulation mode (ACM),
internal mixture of soot aggregates (AGR), mineral and
anthropogenic dust (DU), and sea salt particles (SS), and
changes in the size distribution and chemical components in
each category due to emissions, secondary production, new
particle formation, advection, turbulent diffusion, and dry
and wet deposition processes are solved dynamically using
a triple-moment modal dynamics approach (Kajino, 2011).

As demonstrated in Fig. 2, we considered anthropogenic
and natural emissions for the CTM simulation. We em-
ployed the Regional Emission inventory in Asia (REAS)
version 3.2.1 (monthly,1x= 0.25°, base year= 1950–2015)
(Kurokawa and Ohara, 2020) as the anthropogenic emissions
for D01 and D02. We utilized 2015 values for the simulation
because 2015 was the latest dataset available. The near-real-
time open biomass burning emissions provided by the Global
Fire Assimilation System (GFAS; daily, 1x= 0.1°, 2003 to
present) version 1.2 (Kaiser et al., 2012) were utilized for the
simulation of D02. Note that fire emissions were not con-
sidered in the D01 simulation because we assumed that fire
emissions from outside D02 had little influence on surface
PM2.5 concentrations over the targeted region during the sim-
ulation period. For natural sources, we employed the scheme
of Han et al. (2004) for mineral dust deflation, the scheme of
Clarke et al. (2006) for sea salt emissions, and the Model of
Emissions of Gases and Aerosols from Nature (MEGAN2;
Guenther et al., 2006) for biogenic emissions. No volcanic
SO2 emissions were considered since there were no active
volcanoes in the region. The hourly and vertical profiles of
Li et al. (2017) were applied for the anthropogenic emis-
sions of REASv3.2.1. Natural emissions, such as mineral
dust, sea salt, and biogenic compounds, which vary in time,
were derived from simulated hourly surface meteorological
variables. No diurnal variations are considered in the open
biomass burning emissions (GFAS), and their vertical distri-
bution was assumed to be uniform up to 1 km above ground
level, based on the data described in Tang et al. (2022). The
emissions of NOx , SO2, NH3, nonmethane volatile organic

compounds (NMVOCs), black carbon (BC), primary organic
carbon (OC), primary PM2.5, and primary PM10 were uti-
lized in the simulation, as described by Kajino et al. (2021).
However, only carbon monoxide (CO) data are depicted in
Fig. 2 to illustrate the spatial variations of anthropogenic and
open biomass burning emissions in the study area.

2.2 Observational data

2.2.1 Monitoring data provided by CPCB

CPCB provides near-real-time surface monitoring data of
air pollutants and meteorological variables from CAAQM
stations. There are currently 542 stations across India
(https://airquality.cpcb.gov.in/ccr/#/caaqm-dashboard-all/
caaqm-landing, last accessed: 7 May 2024) providing
15 min averaged data of air pollutants such as CO, SO2,
NO, NO2, NOx , O3, PM2.5, PM10, benzene, toluene, xy-
lene, ethyl benzene, m-xylene, p-xylene, methane (CH4),
NH3, HCHO, and Hg, as well as meteorological variables
such as temperature, wind speed, wind direction, relative
humidity, pressure, solar radiation, and rainfall. The tech-
nical documentation can be found at https://erc.mp.gov.in/
Documents/doc/Guidelines/CAAQMS_Specs_new.pdf (last
accessed: 7 May 2024), and raw data are available at https:
//app.cpcbccr.com/ccr/#/caaqm-dashboard/caaqm-landing/
(last accessed: 7 May 2024). Former 1 h averaged data based
on UTC were derived from 15 min averaged data to compare
with the simulation data. We obtained the observational
data available in 2022 from 40, 30, and 8 stations in Delhi,
Haryana, and Punjab states, respectively, as shown in Fig. S1
and Table S1 in the Supplement.

2.2.2 High-density in situ surface observation network
using CUPI-G stations

The CUPI-G field campaign was described by Singh et
al. (2023), and details of the low-cost PM2.5 sensors were
presented by Nakayama et al. (2018); however, some key fea-
tures are included here. A CUPI-G station consists of a low-
cost PM2.5 sensor developed by Panasonic Co., Ltd. (Osaka,
Japan) (Nakayama et al., 2018) and other low-cost sensors
for gases provided by AMETEK Inc. (Berwyn, PA, USA),
such as the CO-B4 Carbon Monoxide Sensor, NO-B4 Ni-
tric Oxide Sensor, NO2-A43F Nitrogen Dioxide Sensor, and
the OX-A431 Oxidizing Gas Sensor (https://www.alphasens.
com, last accessed: 7 May 2024). The 15 min averaged data
were generated based on the 2 min raw data after a quality
check, and then the former 1 h averaged data based on UTC
were derived from 15 min averaged data to compare with the
simulation data. There were 29 stations available in 2022.
As listed in Table S1, Singh et al. (2023) categorized the
CUPI-G stations into “source”, “intermediate”, and “Delhi
National Capital Region (NCR)” regions, which were basi-
cally based on state boundaries, namely, Punjab, Haryana,
and Delhi NCR, and some CUPI-G stations from other states.
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Figure 1. Parent model domain (a, 1x= 30 km) and nested model domain (b, 1x= 6 km) with terrestrial elevations. Areas below 0 m
indicate the water body grids in the model. Symbols in panel (b) indicate observation sites used in the study, which were provided by the
Compact and Useful PM2.5 Instrument with Gas Sensors (CUPI-G) observation network (colored circles) and the Central Pollution Control
Board (CPCB) in India (white squares). Colors in the CUPI-G sites indicate (blue) “source”, (green) “intermediate”, and (orange) “Delhi
National Capital Region (NCR)” as categorized by Singh et al. (2023). The names of states in India, such as Punjab, Haryana, Uttar Pradesh,
Rajasthan, and Delhi, are depicted in panel (b).

Figure 2. (a) Anthropogenic CO emissions (µgm−2 s−1) of November 2015, provided by REASv3.2.1 over D01. (b) Same as (a) but over
D02. (c) Same as (b) but the simulation period-mean open biomass burning CO, provided by the Global Fire Assimilation System (GFAS).
The black arrows in the center and right panels indicate Delhi. The pink areas in the right panel indicate the five regions for area tags, North
Punjab (NP), West Punjab (WP), Central Punjab (CP), East Punjab (EP), and South Punjab and North Haryana (SP&NH).

The site names, locations, and location types can be found in
the supplementary material of Singh et al. (2023), and the
same category definitions were adopted herein. All 14 sta-
tions in Punjab were categorized as the source region. Nine
stations were categorized in the intermediate region, includ-
ing eight stations from Haryana and one station from Ut-
tar Pradesh (Muzaffarnagar). Delhi NCR included six sta-
tions, including one station in New Delhi (Jawaharlal Nehru
University), two stations in Uttar Pradesh (Meerut and Au-
rangabad), and three stations in Haryana (two in Gurugram
and one in Faridabad). Notably, the categorizations differed

for CPCB and CUPI-G stations because CPCB stations were
categorized on a state basis.

2.2.3 Remote sensing data, MODIS, TROPOMI, and
AERONET

The Level 3 daily global 1°× 1° aerosol optical depth (AOD)
at a wavelength of 550 nm and cloud fraction (CF) data of
MODIS aboard the National Aeronautics and Space Admin-
istration (NASA) Terra satellite (observation time: 10:30 lo-
cal time, descending mode) were employed in this study.
The AOD_550_Dark_Target_Deep_Blue_Combined_Mean
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and the Cloud_Fraction_Mean variables of Col-
lection 6.1 were used for the AOD and CF data,
respectively. The data description is available at
https://atmosphere-imager.gsfc.nasa.gov/sites/default/
files/ModAtmo/L3_ATBD_C6_C61_2019_02_20.pdf (last
accessed: 7 May 2024).

The 1-orbit Level 2 (5.5 km× 3.5 km) TROPO-
spheric Monitoring Instrument (TROPOMI) ultraviolet
aerosol index (UVAI) using the 340/380 nm wave-
length pair data aboard the European Space Agency
(ESA) Sentinel-5 Precursor (S5P) satellite was uti-
lized in this study. The data description is available at
https://sentinel.esa.int/documents/247904/2474726/Sentinel-
5P-Level-2-Product-User-Manual-Aerosol-
Index-product (last accessed: 7 May 2024). Even though
MODIS AOD is not retrieved in the presence of clouds,
UVAI data can be available.

The ground-based measurement data of AOD from the
Aerosol Robotic Network (AERONET) were employed in
model validation as an independent dataset from the data
utilized for emission optimization, i.e., CPCB and CUPI-
G. AERONET consisted of 434 stations worldwide (two in
D02) in 2022, imposing standardization of the instrument
(Cimel’s sun photometer, CE318 series), calibration, and
data processing. We employed Level 2.0 (quality-assured)
Version 3 AOD at a wavelength of 500 nm for validation
of the simulated AOD at the same wavelength by assuming
the Maxwell Garnett approximation for non-light-absorbing
and light-absorbing internal mixtures, such as BC and min-
eral dust. The data and their description are found at https:
//aeronet.gsfc.nasa.gov/ (last accessed: 7 May 2024).

2.2.4 IAGOS

The In-service Aircraft for a Global Observing System (IA-
GOS) data were used to evaluate the simulated vertical pro-
files of atmospheric constituents. IAGOS is a European Re-
search Infrastructure for global observations of atmospheric
composition from commercial aircraft (https://www.iagos.
org/, last accessed: 18 February 2025). During the analysis
period, six flight profiles are available departing from and
landing at Indira Gandi International (IGI) airport at Delhi,
as shown in Fig. S1. CO and O3 data were used for model
evaluation in this study.

2.3 Emission optimization using tagged simulation

To optimize CRB emission fluxes, we used a simple cost
function basically following the concept of the equation com-
monly used for Bayesian synthesis inversion (e.g., Eq. 1 in

Baker et al., 2006), which is expressed as follows:

f =

N∑
n=1

(
On−

(
S0,n+

∑
mxm

(
Sm,n− S0,n

)))2
σ 2
n

+

M∑
m=1

(xm− x0)2

(um− lm)2 , (1)

whereO and S are the observed and simulated PM2.5 surface
concentrations, respectively; N and M are the numbers of
observational data and sensitivity tests (or tags), respectively;
S0,n is a simulation result without CRB emissions (i.e., an-
thropogenic and natural emissions only); Sm,n is a tagged
simulation including CRB emissions of the right panel of
Fig. 2 (period-mean GFAS emission) for certain times and
areas; σn is uncertainty of the observational data; xm is a
variable to optimize the cost function with the upper (um) and
lower (lm) limits; and x0 is the initial condition of xm. Similar
to Eq. (1) in Baker et al. (2006), the first and second terms
on the right-hand side of the equation represent the devia-
tions between simulations and observations and between op-
timized and a priori simulations, respectively. Optimization
reduced both sets of deviations simultaneously. We employed
the limited-memory Bryoyden–Fletcher–Goldfarb–Shanno
(L-BFGS)-B algorithm (L-BFGS-B; Byrd et al., 1995; Zhu
et al., 1997) to minimize the cost function. L-BFGS-B is
an extension of the quasi-Newton algorithm L-BFGS (No-
cedal, 1980; Liu and Nocedal, 1989), which is utilized to
minimize a nonlinear function f (x) subject to l≤ x ≤ u us-
ing the derivatives gm=∇f (xm) as a key driver of the al-
gorithm to identify the direction of steepest descent (Zhu
et al., 1997). This optimizer was commonly used in previ-
ous studies of atmospheric chemistry inverse modeling (e.g.,
Zheng et al., 2018).

The list of sensitivity simulations performed herein is
summarized in Table 1. We conducted whole-period simu-
lations without CRB emissions (“No_CRB”) (i.e., without
GFAS emissions), with GFAS emissions (“GFAS”), and us-
ing several emissions optimized by Eq. (1) (“Optimized”).
Among the “Optimized” emission simulations, as described
in Sect. 3.2, the best estimate was referred to as Optimized
Fire Emission v1.0 (OFEv1.0). The whole-period simula-
tions began on 15 October 2022 (00:00 UTC), using the same
initial conditions simulated by the “No_CRB” test during
10–15 October 2022 (00:00 UTC), that is, the 5 d spin-up pe-
riod. The tagged simulations and subsequent emission opti-
mization were separately applied for the two plume periods
defined by Singh et al. (2023), including the Plume 1 period
in 2–5 November 2022 (00:00 IST; India standard time) and
Plume 2 period in 8–12 November 2022 (00:00 IST). The
simulation periods were 1–6 November 2022 (00:00 UTC)
and 6–14 November 2022 (00:00 UTC) for Plumes 1 and 2,
respectively. As shown in Fig. 2, we set five areal tags
over the CRB source region, including North Punjab (NP),
West Punjab (WP), Central Punjab (CP), East Punjab (EP),
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and South Punjab and North Haryana (SP&NH). Based on
GFAS, the emission contribution from the five regions to the
emissions over D02 was approximately 80 % from 15 Octo-
ber to 15 November 2022 (00:00 UTC). In addition to the five
areal tags, 7 and 11 temporal tags were set for emission opti-
mization for the Plume 1 and Plume 2 periods, respectively,
as shown in Table 1. On each day, the temporal tags were di-
vided into a.m. (00:00–12:00 UTC or 05:30–17:30 IST) and
p.m. (12:00–24:00 UTC or 17:30–05:30 IST) to elucidate the
relative abundance of daytime and nighttime fire ignition.

In total, there were 36 and 56 tags (areal tags multiplied
by temporal tags plus one; GFAS tag) for the Plume 1 and
Plume 2 periods, respectively, and solving Eq. (1) in one
step was found to be unsuccessful. In addition, there was no
prior information regarding the upper and lower limits of xm.
Therefore, we applied multi-step optimization with smaller
limit values as follows: Step 1 involved solving Eq. (1) us-
ing temporal tags only with (um, lm)= (2.0, 0.5) by sum-
ming all areal tagged simulations; Step 2 involved solv-
ing Eq. (1) using areal tags only with (um, lm)= (2.0, 0.5)
by summing all temporal tagged simulations multiplied by
the optimized xm value of the result of Step 1; and Step 3
was the same as Step 1, but it involved summing all areal
tagged simulations multiplied by the optimized xm value of
the result of Step 2. Let xm,i be the value of xm obtained in
the ith step. This multi-step optimization was repeated until
0.009<xm,i < 1.001 was obtained for all m at the kth step,
so that the final xm was obtained as

xm =

k∏
i=1
xm,i . (2)

The optimization results of Eq. (1) should be substantially
altered by the selection of uncertainty of observation data
σn. There are several ways to estimate σn using constant val-
ues (Maki et al., 2010) for CO2 and constant rates (Maki et
al., 2011) for p.m. In the same manner as Maki et al. (2011),
we derived the uncertainty rate as 10 % from the standard
deviations of 3 h mean values, so that σn= 0.1On. However,
as shown later in Sect. 3.6, sensitivity tests of emission op-
timization using the constant uncertainty rates ranging from
1 % to 500 % and (um, lm)= (2.0, 0.5), (10, 0.1), and (100,
0.01) underpredicted the emission fluxes. Therefore, in this
study, constant σn values are selected as 20 µgm−3 for all
data, which is 10 % of the average of observed PM2.5 from
all stations (200 µg m−3). Maki et al. (2010) selected constant
values in time but different values in space. In this study, we
used the same value for all data by assuming that the PM2.5
values do not vary substantially in space over the region and
the period. The sensitivity tests of emission optimization us-
ing the constant σn values ranging from 1 to 500 µgm−3 are
also conducted as shown in Sect. 3.6. We set x0= 1 for all
cases.

Observation site selection is essential for better estima-
tions of CRB emissions. Herein, we only selected observa-

tion sites where data were continuously available and reli-
able for the whole simulation period (i.e., the data did not
include sudden gaps and exhibited zero drift). Moreover, we
only selected sites where the simulated values agreed well
with the observed values during the period not affected by
CRB, namely, 15–28 October 2022. The NHM(WRF)-Chem
simulation can only predict spatiotemporal mean concentra-
tions from steady-state emission sources, whereas observa-
tional data are affected by the local environment and spo-
radic emissions. If the spatial and temporal representative-
ness of an observation site was small or the site was largely
affected by local-scale disturbances, deviations between the
simulation and observations would be large. Using all ob-
servational data, optimization would reduce these deviations
due to differences in spatiotemporal representativeness be-
tween the simulation and observations. In other words, if
there are big gaps in the simulated and observed data dur-
ing the non CRB period, our optimization would be misled
to fill the gaps by altering CRB emissions. All CPCB and
CUPI-G sites are listed in Table S1, as well as those selected
in this study.

The optimized xm value should vary depending on the
chemical compound. Ideally, the same compound should be
utilized for optimization and emission changes. For example,
the optimized xm value obtained from observed and tagged
simulations for CO should be applied to optimize CO emis-
sions. However, quality assurance and control (QA/QC) had
only been performed for CUPI-G PM2.5 data at the time of
the study (Singh et al., 2023), and not all variables were avail-
able in CPCB data. Therefore, we applied the same xm val-
ues obtained from the observed and tagged simulations of
PM2.5 for the optimized fire emissions of all primary pre-
cursor species, including NOx , SO2, NH3, NMVOCs, BC,
OC, PM2.5, and PM10. Thus, we assumed that the relative
magnitude of the emission factors for all primary emission
species was consistently estimated in GFAS emissions, and
chemical reactions, transport, and deposition processes were
consistently solved by NHM(WRF)-Chem; therefore, the de-
viations between GFAS simulations and observations only
originated from discrepancies in spatiotemporal variations of
satellite-derived fire detection over the region and difference
in emission factors, which is common for all chemical com-
pounds. Although this assumption was unlikely, it was the
best available option.

3 Results and discussion

3.1 Evaluation of meteorological and chemical
simulations with GFAS

Figure 3 presents the time series of station-mean observed
and simulated PM2.5 concentrations by “GFAS” for CPCB
and CUPI-G stations over Punjab (source), Haryana (inter-
mediate), and Delhi (Delhi NCR). The observational data
differed for CPCB and CUPI-G stations on 24 October 2022,
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Table 1. Sensitivity simulations.

Simulation period Emission test names Temporal tags

Whole period 15 October to No_CRB n/a
15 November 2022 GFAS
(00:00 UTC) Optimized

OFEv1.0a

Plume 1 period: 1 to 6 November 2022 Tagged 7 tags (1 November p.m.c; 2 November a.m.d, p.m.;
2 to 5 November 2022 (00:00 UTC) 3 November a.m., p.m.; 4 November a.m., p.m.)
(00:00 IST)b

Plume 2 period: 6 to 14 November 2022 Tagged 11 tags (7 November a.m., p.m.;
8 to 12 November 2022 (00:00 UTC) 7 November a.m., p.m.; 9 November a.m., p.m.;
(00:00 IST)b 10 November a.m., p.m.; 11 November a.m., p.m.;

12 November a.m.)

a The best estimation in this study: Optimized Fire Emission v1.0 (OFEv1.0).
b The plume periods defined by Singh et al. (2023).
c 00:00–12:00 UTC (05:30–17:30 IST).
d 12:00–24:00 UTC (17:30–05:30 IST).
n/a: not applicable.

which was the date of Diwali, the festival of lights. Because
CPCB stations are situated in urban locations, remarkable en-
hancements in PM2.5 were observed at Punjab and Haryana
CPCB stations due to festive use of firecrackers and candles,
whereas no enhancements were observed at CUPI-G source
and intermediate stations situated in farmland areas. Because
the model did not consider sporadic emissions due to events
such as Diwali, enhancements were not simulated on 24 Oc-
tober 2022 in these regions. Thus, optimization using CPCB
data that included the Diwali day would cause misleading
CRB emissions. Another remarkable feature was the large
difference in observed PM2.5 between the CPCB Punjab and
CUPI-G source regions. The observed and simulated PM2.5
for CPCB Punjab did not differ greatly, except on 8 and
9 November, whereas large underestimations were found in
the simulation for the CUPI-G source region from 29 Oc-
tober to 10 November 2022, which was the intensive CRB
period of that year. A similar feature was observed in CPCB
Haryana and CUPI-G intermediate regions, where observa-
tion values at CUPI-G stations over the CRB period were
larger than those observed in CPCB Haryana and those sim-
ulated by “GFAS”. These features demonstrated the success-
ful allocation of CUPI-G stations over source and interme-
diate regions, thereby avoiding large anthropogenic emission
sources and capturing the influence of CRB emissions.

The time series differences between selected and all sta-
tions for PM2.5 and CO are presented in Figs. S2 and S3, re-
spectively. The importance of station selection was evident,
especially for CO in Delhi (Fig. S3). The “GFAS” simulation
seemed to underestimate emissions due to the underestima-
tion of CRB emissions only for CPCB selected stations over
Delhi (Fig. S3e), whereas the simulation tended to underes-
timate emissions almost every night for all CPCB stations
over Delhi (Fig. S3f). This was likely because CPCB stations

were located within the urban canopy, whereas the simula-
tion predicted air concentrations above it. The inclusion of all
CPCB station data in emission optimization would prevent
the optimization of only the effect of CRB emissions. The
same trends were observed in Punjab and Haryana. How-
ever, the PM2.5 differences between selected and all stations
(Fig. S2) were not overly remarkable compared to those of
CO, which was likely because CO is generated by primary
sources, whereas PM2.5 consists of both primary and sec-
ondary sources. Concentrations within and above the canopy
for primary species such as CO may differ substantially
because emission contributions dominate air concentrations
within the canopy. However, for secondary species, the con-
tribution of transport from other regions became relatively
larger, thereby reducing concentration differences within and
above the canopy. The observed PM2.5 was slightly greater in
all stations than in selected stations, especially for the CUPI-
G intermediate region (Fig. S2i, j); however, the differences
were minor compared to those of CO.

Figure 4 presents the observed and simulated time series
of selected station-mean meteorological variables (the selec-
tion of stations was based on PM2.5 data, not CO data). Since
no height information was available for the wind measure-
ments of CPCB, height adjustments were not applied in the
figure. The simulated 10 m wind data were compared with
the observed data, which seemed to be< 10 m a.g.l. or within
the urban canopy, as previously discussed, because the sim-
ulation yielded substantially larger values than the observa-
tions. Nevertheless, good agreement was achieved between
the simulation and observations in terms of temporal vari-
ations for wind speed, except on 8 and 9 November 2022,
which was likely due to clouds and precipitation, especially
over Delhi. As wind direction is affected by the local environ-
ment and mesoscale meteorology, the derivation of station-
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Figure 3. Temporal variations (in UTC) of selected station-mean (black) observed and (red) “GFAS”-simulated PM2.5 concentrations
(µg m−3) for (a) CPCB Punjab, (b) CUPI-G source, (c) CPCB Haryana, (d) CUPI-G intermediate, (e) CPCB Delhi, and (f) CUPI-G Delhi
NCR from 20 October to 15 November 2022 (00:00 UTC).

mean wind direction was not overly meaningful. Neverthe-
less, the simulated wind direction matched well with obser-
vations over Haryana, where northwesterly winds prevailed
over the Plume 1 (2–4 November 2022) and Plume 2 (8–
12 November 2022) periods. In Delhi, the simulated winds
were northwesterly during the two plume periods, whereas
those in observations were southwesterly. This was likely
due to many of the selected stations being located within
the urban canopy, causing the simulated wind direction to
deviate from observed values. This difference in wind direc-
tion in Delhi may have caused errors in emission optimiza-
tion, but the effect could not be quantitatively derived. The
observed wind directions in Punjab during the two plume
periods were almost northwesterly. Similarly, the simulated
values were almost northwesterly, although they sometimes
deviated from observations, especially in the early stage of
Plume 2 (8–9 November 2022).

Figures S4–S7 present the time series of spatial distri-
butions of GFAS CO emissions used in the simulation,
MODIS AOD and CF, and TROPOMI UVAI for the entire
CRB period (27 October to 15 November 2022). The sim-
ulated surface concentrations of anthropogenic PM2.5 and
OFEv1.0 CRB PM2.5 and wind vectors are also presented
in the figures. Notably, the data in the figures were obtained
around noon, but the timing differed slightly: approximately
10:30 IST for MODIS, 12:00–15:00 IST for TROPOMI, and
11:30 IST for the simulation. Additionally, MODIS and
TROPOMI represent column values, whereas the simulation
data are in the surface air (bottom layer of the model grids).

During the Plume 1 period (1–5 November; Figs. S5), re-
markable signs of CRB emissions were observed over Pun-

jab due to substantial underestimations of simulated PM2.5
in the CUPI-G source region data, as shown in Fig. 3b.
There were higher GFAS emissions on 2 and 4 November
2022, corresponding to large values of MODIS AOD (> 2).
MODIS retrieval was unsuccessful on 3 and 5 November
2022, likely due to the presence of clouds; thus GFAS emis-
sions were small, whereas TROPOMI UVAI indicated a sub-
stantially large aerosol burden over the PHD region (> 3).
Southeasterly winds prevailed on 1 and 5 November 2022
(Fig. S5), preventing transportation of surface PM2.5 from
CRB to Haryana and Delhi (Fig. 3). However, from 2 to
4 November 2022, northwesterly winds carried air pollu-
tants from Punjab to Delhi, which caused high surface PM2.5
concentrations of > 500 µgm−3. In fact, the Plume 1 period
could be divided into two events, including Plume 1A on 2–
3 November 2022 and Plume 1B on 3–4 November 2022.
The Plume 1A event (station mean-values= approximately
600–700 µgm−3) was larger than the Plume 1B event (ap-
proximately 300–400 µgm−3) (Fig. 3d–f), likely because the
former plume directly transported pollutants from Punjab to
Delhi, while the latter plume was a blowback of pollutants
previously carried downwind (southeast direction) of Delhi
by the former plume (Figs. 4d, f, and S5).

Similarly, the Plume 2 period (8–12 November) could
be divided into two events, including Plume 2A on 8–
9 November 2022 and Plume 2B on 10–12 November
2022. During the Plume 2 period (Figs. S6 and S7),
remarkable signs of CRB emissions on 8–9 November
2022 were observed in Punjab, as the CUPI-G (farmland)
mean PM2.5 concentrations were > 700 µgm−3 (Fig. 3b),
and even the CPCB (urban) mean values became much
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Figure 4. Same as Fig. 3 but for selected CPCB station-mean (a, c, e) wind speed (m s−1), (b, d, f) wind direction (degree), (g, i, k) tempera-
ture (°C), and (h, j, l) relative humidity (%, left axis) over Punjab, Haryana, and Delhi, respectively. The simulated (blue lines) and observed
(sky blue bars) surface precipitation amounts (mm h−1) are also depicted in the panels on the right axis (h, j, l).

higher (300 µgm−3) (Fig. 3a) than the “GFAS” simulation
(100 µgm−3) (Fig. 3a, b). However, MODIS AOD data were
not available during this period, and even TROPOMI UVAI
did not detect a high concentration event in Punjab on
8 November 2022, likely due to thick clouds associated with
rainfall over the PHD region (Fig. 4h, j, l). CRB cannot be
conducted in the rain; however, CRB might have occurred
because rain was not observed in Punjab during this period
(Fig. 4h). The surface PM2.5 concentrations in Punjab were
high on 8–9 November 2022, whereas those in Delhi NCR
were high on 10–12 November 2022 (Fig. 3b, f). However,
unlike during the Plume 1 period, there were no remarkable
enhancements of MODIS AOD and TROPOMI UVAI over

Punjab on 8–9 November 2022 (Fig. S6) and Delhi NCR on
10–12 November 2022 (Figs. S6 and S7) during the Plume 2
period. In the latter period, the transport of air pollutants from
Punjab to Delhi was observed in the simulation (Fig. S7). By
contrast, CRB plumes were not transported to the Haryana
region in the former period (Fig. S6), whereas an enhance-
ment was observed in surface PM2.5 at CUPI-G intermediate
stations (Fig. 3d). As shown in Fig. 4a–f, discrepancies be-
tween simulated and observed wind fields were enhanced in
the former period (8–9 November 2022), especially for Delhi
NCR (Fig. 4e, f). The meteorological simulation might have
failed to reproduce the air flows associated with rainfall from
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thick convective clouds, hindering successful optimization of
CRB emissions during this period.

3.2 Optimization of CRB emissions

Various combinations of data selection, application, and eval-
uation could be proposed for CRB emission optimization,
including optimization using CUPI-G data and validation us-
ing CPCB data. Another approach could be emission opti-
mization utilizing data from Punjab and validation using data
from Delhi. We needed emission data of all chemical compo-
nents for the simulation of PM2.5; however, not all data were
available from observations, as described in Sect. 2.3. We
attempted various combinations of data selection and found
that employing more data yielded better results; therefore,
we decided to use PM2.5 data from the CPCB and CUPI-G
stations over all regions as an optimization starting point.

Table 2 summarizes the data selection combinations em-
ployed in optimization and the obtained xm values from
Eq. (1). “CPCB + CUPI-G” indicates optimization using
PM2.5 data from all CPCB and CUPI-G selected stations.
Optimization was performed for each plume period, so that
different xm values were obtained for the two plume peri-
ods. Because the simulated wind fields deviated from ob-
servations in the Plume 2 period (8–9 November 2022), xm
for the GFAS tag during the Plume 1 period (6.87 or 6.99)
was applied for the whole simulation period (15 October–
15 November 2022; 00:00 UTC). For the areal tags, only
time-averaged data are presented in Table 2; however, xm
values were also obtained for different temporal tags, which
were applied for each period. Optimized xm values for all
temporal and areal tags are presented in Table S2.

The time series of observed and simulated all selected
CPCB and CUPI-G station-average PM2.5 concentrations
are presented in Fig. 5. Statistical scores between the sim-
ulated and observed surface concentrations are listed in
Table 3, such as simulation to observation median ratio
(Sim. /Obs.), root mean square error (RMSE), and corre-
lation coefficient (R). The “GFAS” simulation substantially
underestimated surface PM2.5 concentrations over the en-
tire PHD region (Fig. 5a–c; Table 3); however the simula-
tion using CRB emissions optimized by “CPCB + CUPI-G”
data (Fig. 5d–f) was substantially improved (Table 3), espe-
cially for the Plume 1 (2–4 November 2022) and Plume 2B
(10–12 November 2022) periods, demonstrated by increased
emissions in the EP and SP&NH regions. GFAS emissions
are generally smaller than CRB fire emissions in India (Cus-
worth et al., 2018; Wiedinmyer et al., 2023). Because the op-
timized xm values were much larger than unity, the GFAS
emissions may have been underestimated in our case as well.

Even though CRB emissions optimized by “CPCB +
CUPI-G” data substantially improved the simulation of
PM2.5, the simulation continued to greatly underestimate the
observed peaks in Plume 2A (8–9 November) over the en-
tire PHD region. Therefore, additional optimizations were

conducted using CUPI-G Punjab data only. The “CPCB +
CUPI-G” optimization was insensitive to emissions from the
NP, WP, and CP regions (xm< 10−5), whereas the addi-
tional optimization “CUPI-G Punjab” enhanced emissions
from CP. Because the additional optimization continued to
underestimate surface concentrations, especially on 8 and
9 November 2022, an additional optimization was conducted
using only data from CUPI-G station nos. 8 and 9 (“CUPI-
G P89”), where substantial enhancement of PM2.5 was ob-
served on these dates. Subsequently, we constructed two ad-
ditional optimized CRB emission inventories in the same
manner as the “CPCB + CUPI-G” case, which were merged
with “CPCB + CUPI-G” emissions by taking the larger xm
values among CPCB + CUPI-G and the additional cases,
regarded as “CPCB + CUPI-G plus CUPI-G Punjab” and
“CPCB + CUPI-G plus CUPI-G P89.” Note that optimiza-
tion of “CUPI-G P89” was only conducted for the Plume 2
period and the same xm values with “CUPI-G Punjab” were
used for the Plume 1 period.

The two additional simulation results obtained using
“CPCB + CUPI-G plus CUPI-G Punjab” and “CPCB +
CUPI-G plus CUPI-G P89” emissions are shown in the lower
half of Fig. 5 (Fig. 5g–l). Simulated PM2.5 in the source re-
gion was improved due to enhanced emissions over the CP
region on 8–9 November 2022 (Fig. 5g, l). However, no in-
creases in the simulation were observed over the interme-
diate region and Delhi NCR in the same period (Fig. 5h, i,
k, l), likely because the simulated wind fields deviated from
those observed during this period, as shown in Fig. 4. Conse-
quently, the reasons for the enhanced PM2.5 concentrations
observed over the intermediate region and Delhi NCR on 8–
9 November 2022 (Plume 2A) were not identified in the cur-
rent study. As shown in Table 3, substantial improvements
were achieved in the simulations using optimized emissions
compared to the original simulation using GFAS. Only small
differences were observed among the three simulations using
optimized emissions, but “CPCB + CUPI-G plus CUPI-G
Punjab” was slightly better than the other simulations over
the source region for Sim./Obs, RMSE, and R, which is re-
ferred to as OFEv1.0. Comparison against AERONET AOD
at the Lahore and Amity University Gurgaon stations, as
shown in Fig. S8, supported the same conclusion: the opti-
mized emissions were better than GFAS, with no great dif-
ferences observed among the optimized simulations.

The simulated source contributions are illustrated in Fig. 6.
The anthropogenic contribution was calculated using the
brute-force method, derived from the difference between the
control run and the 20 % emission reduction run multiplied
by 5 to reduce the effect of nonlinearity in chemical reactions
(Kajino et al., 2013): the brute-force method with a zeroed-
out simulation (no anthropogenic NOx and NMVOCs) af-
fects oxidant concentrations substantially and thus chemi-
cal production rates of secondary PM2.5, which deteriorates
the calculation of source contribution estimations. The brute-
force method is easy to implement, and its validity has been
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Table 2. Combination of observational data selection utilized for emission optimization and obtained xm values.

Data selection GFAS tag Areal tags

1. NP 2. WP 3. CP 4. EP 5. SP&NH

CPCB + CUPI-Ga 6.87 0.00 0.00 0.00 0.00 31.6
Plume 1 period CUPI-G Punjabb 6.99 0.00 0.00 0.00 38.9 0.00

CUPI-G P89c – – – – – –

CPCB + CUPI-Ga 3.03 0.00 0.00 0.00 47.7 9.84
Plume 2 period CUPI-G Punjabb 4.13 0.00 0.00 9.80 69.1 0.00

CUPI-G P89c 2.09 0.00 0.00 7.63 116 0.00

a Optimization using all CPCB and CUPI-G stations.
b Optimization using selected CUPI-G Punjab stations.
c Optimization using only CUPI-G stations no. 8 (Thikriwala) and no. 9 (Beauscape Farm) in Punjab state.

Figure 5. Time series of all selected CPCB and CUPI-G station-average (black) observed and simulated (red) total and (blue) No_CRB
PM2.5 using (a–c) GFAS emission, (d–f) optimized fire emission (CPCB + CUPI-G), (g–i) optimized fire emission (OFE v1.0; average of
CPCB + CUPI-G and CUPI-G Punjab sites), and (j–l) optimized fire emission (average of CPCB + CUPI-G and CUPI-G station numbers 8
and 9 in Punjab) over (left to right) source (CPCB Punjab + CUPI-G Source), intermediate (CPCB Haryana + CUPI-G intermediate), and
Delhi NCR (CPCB Delhi + CUPI-G Delhi NCR) regions from 1 to 15 November 2022 (00:00 UTC).

confirmed via comparisons with other sophisticated methods,
such as the decoupled direct method (Hakami et al., 2004;
Choi et al., 2014; Kelly et al., 2015). The brute-force method
with a 20 % reduction run was employed to obtain the anthro-
pogenic PM2.5, whereas the zeroed-out brute-force method
was applied to obtain PM2.5 from CRB emissions. The mis-
cellaneous contribution was the remainder after subtracting
all contributions, namely, natural emissions, upper and lat-
eral boundary effects, and numerical errors.

During the first half of November 2022, as shown in Fig. 6,
a small but certain contribution of CRB emissions was con-

tinuously observed in the “GFAS” simulation in the source
region (10 %–20 %, Fig. 6a), whereas the simulated PM2.5
was only affected during the two plume events in the interme-
diate region and Delhi NCR by 10 %–20 % (Fig. 6b, c). After
emission optimization using “CPCB + CUPI-G”, approxi-
mately 50 % of surface PM2.5 concentrations accounted for
CRB emissions in the entire PHD region during the Plume 1
period (2–3 November 2022). In the intermediate region and
Delhi NCR (Fig. 6e, f), contributions from SP&NH were
substantially increased up to approximately 50 % during the
Plume 1A event (2–3 November 2022), whereas contribu-

Atmos. Chem. Phys., 25, 7137–7160, 2025 https://doi.org/10.5194/acp-25-7137-2025



M. Kajino et al.: Optimizing PM2.5 emissions from crop residue fires 7149

Table 3. Statistical scores comparing simulated and observed PM2.5 over the PHD region using several CRB emission cases.

Source Intermediate Delhi NCR

Fire emissions Sim. /Obs.a RMSEb Rc Sim. /Obs. RMSE R Sim. /Obs. RMSE R

GFAS 0.67 115 0.59 0.71 79.2 0.50 0.61 126 0.47
CPCB + CUPI-G 0.98 89.5 0.60 0.91 58.6 0.54 0.85 90.4 0.64
CPCB + CUPI-G plus CUPI-G Punjabd 1.02 73.1 0.71 0.92 57.5 0.57 0.85 89.4 0.64
CPCB + CUPI-G plus CUPI-G P89 1.03 78.9 0.69 0.92 56.7 0.58 0.85 89.0 0.64

a Simulation to observation median ratio.
b Root mean square error (RMSE).
c Correlation coefficient (R).
d Optimized Fire Emission ver1.0 (OFEv1.0).

Figure 6. Same as Fig. 5 but for simulated contributions of different emission sources: (gray) anthropogenic emissions; CRB emissions from
(red) North Punjab, (pink) West Punjab, (yellow) Central Punjab, (green) East Punjab, (sky blue) South Punjab and North Haryana; (blue)
fire from other areas; and (white) miscellaneous, which contains natural emissions such as biogenic, mineral dust, and sea salt, influences
from lateral and upper boundary conditions, and numerical errors.

tions from EP were also increased up to approximately 60 %
during the Plume 1B event (3–4 November 2022). In the
source region, CRB emissions from CP and EP contributed
almost equally to simulated PM2.5. Even though the trans-
port of pollutants by northwesterly winds was clearly ob-
served during the Plume 1 period, the largest contributions
to PM2.5 in the source (Punjab) and receptor (Haryana and
Delhi NCR) regions differed from one another. After addi-
tional inclusion of CUPI-G Punjab stations into the emis-
sion optimization (Fig. 6g–l), the contributions from CP
were enhanced approximately from 20 % to 50 % during the
Plume 2A event (8–9 November 2022) only in the source re-
gion, and the total CRB emission contributions were> 80 %.

Although the observed concentrations in the receptor region
became higher during the Plume 2A event, the simulation did
not present any increases (Fig. 6h, i, k, l), likely due to the
large discrepancy with simulated wind fields, as previously
mentioned. During the Plume 2B event (10–12 November
2022), in the presence of prevailing northwesterly winds in
the simulation, PM2.5 in the receptor regions was substan-
tially affected by CRB emissions from CP on 10–11 Novem-
ber 2022 (approximately 50 % of total PM2.5) and WP, EP,
and SP&NH on 11–12 November 2022 (Fig. 6h, i, k, l). The
CRB emission contributions were > 80 % on 11–12 Novem-
ber 2022 in receptor regions (Fig. 6h, i, k, l). Similar to the
Plume 1 period, the largest contributions to PM2.5 in the
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source (Punjab) and receptor (Haryana and Delhi NCR) re-
gions differed from one another during the Plume 2B event,
with PM2.5 greatly affected by emissions from NP and EP in
the source region and emissions from WP, EP, and SP&NH
greatly affecting the receptor region.

Figure 7 illustrates the time series of D02 total 12 h CRB
CO emissions for GFAS and OFEv1.0. The OFEv1.0-to-
GFAS CO emission ratio was approximately 7 (Table 2), and
the two datasets are separately depicted on the left and right
axes. Although the xm values had almost no limit because op-
timization was repeatedly applied until the values converged,
the time variation of OFEv1.0 was continuous without any
sudden spikes or gaps. This indicated that the number of ob-
servational data available was sufficient for the number of
tags. The optimization was successful for the recovery (or
boosting) of emission fluxes, especially on 8 and 10 Novem-
ber 2022, when GFAS emissions may have been underes-
timated due to clouds or thick smoke/haze (see Fig. S6).
Large differences were sometimes observed between opti-
mized emissions in daytime (or a.m. in UTC) and nighttime
(or p.m. in UTC), such as on 8 November 2022. Because each
CRB event lasted only a few hours, the 12 h time resolution
may not have been sufficient to reproduce CRB activity. Nev-
ertheless, the study findings indicate the importance of diur-
nal variations in CRB emission estimations for air quality
simulations. In addition, diurnal variation shape may not be
the same on each day. For example, daytime (a.m.) emissions
were larger on 2, 9, and 10 November 2022, while nighttime
(p.m.) emissions were larger on 3, 4, and 8 November 2022.
Judging from Fig. S5, GFAS emissions may have been un-
derestimated due to the presence of clouds on 3 November
2022; however, OFEv1.0 did not demonstrate a substantial
increase in emissions on this day (Fig. 7). This was likely be-
cause the observation stations were insensitive to CRB emis-
sions that occurred on 3 November 2022, or not many CRB
events occurred on that day.

3.3 Intercomparison of OFEv1.0 and other studies

Table 4 compares the emissions of OFEv1.0 and previous
studies developed for post-monsoon CRB emissions in north-
ern India on a total amount basis. The total GFASv1.2 emis-
sions from 1 to 15 November 2022 (00:00 UTC) for CO,
PM2.5, OC, and BC were 111, 10.0, 5.04, and 0.517 Gg,
whereas those of OFEv1.0 were 963, 86.1, 43.5, and 4.46 Gg,
respectively. The OFEv1.0 emissions were 8.6 times larger
than those of GFASv1.2 (same ratio for all chemical com-
pounds, as previously explained). The daytime and nighttime
emissions of OFEv1.0 did not differ considerably; for exam-
ple, nighttime CO emissions (495 Gg) were 5.8 % larger than
daytime CO emissions (468 Gg). The OFEv1.0-to-GFASv1.2
ratio for the non-tagged period (6.99 in Table 2) can be re-
garded as the general underestimation of GFASv1.2 on clear
sky days. The difference between the 14 d total OFEv1.0-to-
GFASv1.2 ratio (8.6 times) and the general underestimation

ratio (8.6/6.99= 23 %) can be regarded as the boosting of
emissions that could not be detected due to clouds or thick
smoke/haze. Liu et al. (2020) estimated that post-monsoon
CRB emissions were boosted by 142 % considering cloud/-
haze gap fill, which was substantially larger than our esti-
mates.

Emission optimization was performed for 1–15 November
2022 (00:00 UTC); however, applying the same general un-
derestimation ratio (6.99) to boost the emissions from 15 Oc-
tober to 1 November 2022 (00:00 UTC), yielded the monthly
total emissions of OEFv1.0 (referred to as OFEv1.0∗) (Ta-
ble 4). The OFEv1.0∗ monthly total optimized emissions
from 15 October to 15 November 2022 (00:00 UTC) were
1460, 130, 65.8, and 6.73 Gg for CO, PM2.5, OC, and BC,
respectively. Based on GFASv1.2, the monthly values ac-
counted for > 85 % and approximately 90 % of the whole
post-monsoon emission period (from 1 October to 1 Decem-
ber 2022; 00:00 UTC) over the D02 and CRB source regions
(areal tagged regions), respectively. The monthly total emis-
sions of OFEv1.0∗ were consistent with those reported in
previous studies, such as by Liu et al. (2020), at 65± 18
and 5.6± 1.6 Gg for OC and BC, respectively, and Beig et
al. (2020), at 141.65 Gg for PM2.5, but did not align with CO
estimated by Liu et al. (2020), at 791± 225 Gg. Our emis-
sions may have been overestimated because the same opti-
mized factor obtained using PM2.5 data was applied for all
species. Certainly, optimization using observed and simu-
lated CO data would be better in CO emission estimations.
In fact, differences between observed and simulated CO dur-
ing the Plume 1 and 2 events (Fig. S3a, c, e) are much
smaller than those of PM2.5 (Fig. 3a, c, e). Therefore, CO of
GFASv1.2 may not be underestimated to the extent of PM2.5.

As reported by van der Werf et al. (2017), Liu et al. (2020),
and Wiedinmyer et al. (2023), additional use of VIIRS
data with finer resolution (1x= 375 m) to capture smaller
scale fires, such as CRB, substantially increased emissions
over South Asia compared to using only MODIS data
(1x= 1 km), such as GFASv1.2 (Kaiser et al., 2012). The
values of the VIIRS- and MODIS-based inventories such as
the GFED4.0s (van der Werf et al., 2017) and FINNv2.5
(Wiedinmyer et al., 2023) are also listed in Table 4. Both
GFEDv4.0s and FINNv2.5 values are larger than GFASv1.2,
but the magnitudes are very different. GFED4.0s values are
smaller than Liu et al. (2020), Beig et al. (2020), and this
study by more than half, whereas FINNv2.5 values are larger
than those studies by more than twice. Substantial efforts
have been made to improve the CRB emission estimates, but
no consensus has been reached yet.

MODIS-based GFASv1.2 was used in emission optimiza-
tion herein; however, fire emissions should also have been
underestimated in the presence of clouds in VIIRS- and
MODIS-based inventories such as GFED4.0s and FINNv2.5.
Therefore, the emission optimization was necessary in any
case, and the conclusions reached may have been the same
but with different xm values, even if GFED4.0s or FINNv2.5
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Figure 7. Time series of D02 total 12 h CRB CO emissions (Gg CO 12 h−1) of (sky blue, left axis) GFAS and (orange, right axis) OFEv1.0
from 1 to 15 November 2022 (in UTC). Time resolution of GFAS is 1 d, whereas OFEv1.0 is a 0.5 d. Daytime (day; 05:30–17:30 IST; or
a.m., 00:00–12:00 UTC) and nighttime (ngt; 17:30–05:30 IST; or p.m., 12:00–24:00 UTC) are separately marked as open and closed circles,
respectively.

Table 4. Total emission amounts (Gg) of post-monsoon CRB emissions from northern India estimated in this study and previous studies.

Period Duration CO PM2.5 OC BC

OFEv1.0 1–15 November 2022b 14 d 963 86.1 43.5 4.46
OFEv1.0∗

a
15 October–15 November 2022b 1 month 1460 130 65.8 6.73

1–15 November 2022b 14 d 111 10.0 5.04 0.517
GFASv1.2 15 October–15 November 2022b 1 month 182 16.3 8.23 0.843

1 October–1 December 2022b 2 months 211 18.9 9.54 0.981

Liu et al. (2020) Post-monsoon, 2003–2018 2 months 791± 225 65± 18 5.6± 1.6

Beig et al. (2020) October–November 2018 2 months 141.65

GFED4.0s 1 October–1 December 2014 2 months 411 25.8 9.71 3.01

FINNv2.5 1 October–1 December 2021 2 months 3630 240 99.3 19.0

aOptimization was not performed from 15 October to 1 November 2022, but the general underestimation value of GFASv1.2 (6.99) was applied to
boost emissions during the period for comparison with other emission datasets.
b Starting from 00:00 UTC until 00:00 UTC.

data were used for the emission optimization instead of
GFASv1.2. However, since the current emission optimization
was based on period-mean values of GFASv1.2 emissions
(Fig. 2), optimization may be improved by using GFED4.0s
or FINNv2.5, which may better represent the spatial distri-
butions of CRB than GFASv1.2 data.

3.4 Reconstructed air mass movement of
anthropogenic and CRB PM2.5 in November 2022

The time series of simulated surface PM2.5 and satellite ob-
servation maps during the Plume 1 and Plume 2 periods are
illustrated in Figs. 8 and 9, respectively. The major features
were already described in detail and are summarized here.
The general features of MODIS AOD and TROPOMI UVAI
were similar, with higher resolution and more available data
in the presence of clouds for TROPOMI UVAI. Although di-
rect comparisons between the simulated and TROPOMI ob-

served UVAI were not performed in this study, the plume
shapes were similar during the Plume 1 period (Fig. 8). Cy-
clonic wind fields carried pollutants from the PHD region
toward Pakistan on 1 November 2022; the air mass stagnated
around the Punjab region on 2 November 2022; northwest-
erly winds prevailed over the PHD, transporting pollutants
from Punjab to Haryana and to Delhi NCR on 3 Novem-
ber 2022 (Plume 1A); pollutants once carried further down-
wind of Delhi blew back on 4 November 2022 (Plume 1B);
and cyclonic winds again carried pollutants toward Pakistan
on 5 November 2022. These patterns were also observed by
AERONET AOD at the Lahore station (Fig. S8a, c, e).

During the Plume 2 period (Fig. 9), the general features
of MODIS AOD and TROPOMI UVAI were consistent, al-
though much more data were missing compared to the Plume
1 period (Fig. 8). Even though UVAI data were missing dur-
ing this period, peaks were observed in surface PM2.5 con-
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Figure 8. Spatial distribution of (top to bottom) simulated surface concentrations of anthropogenic PM2.5, simulated surface concentrations
of PM2.5 from Optimized Fire Emission v1.0 (OFEv1.0), simulated surface concentrations of PM2.5 from GFAS emission, TROPOMI UV
Aerosol Index, and MODIS AOD from 1 to 5 November 2022, which includes the Plume 1 period (2–4 November 2022). The simulation
time was 06:00 UTC (11:30 IST), the TROPOMI observation time was 06:30–09:30 UTC (12:00–15:00 IST), and the MODIS time was
approximately 10:30 IST.

centrations (Figs. 3 and 5), whereas no peaks were observed
over Delhi NCR by the satellites. UVAI was > 3 and AOD
was > 2 over Delhi during the Plume 1 period (Fig. 8), and
these values were much lower during the Plume 2 period
(Fig. 9). During the Plume 2A event, no simulated influences
of CRB were observed over Haryana and Delhi, whereas an-
thropogenic emissions were high over these regions; how-
ever, almost no satellite data were available on 8 Novem-

ber 2022. Likely owing to convective activity, the wind pat-
terns were too complex to be resolved by the low-resolution
simulation (1x= 6 km), which resulted in the simulated
wind fields deviating from those observed. The air was al-
most stagnant from 8 to 10 November 2022. The shapes of
plumes between the simulation and TROPOMI were similar
on 9 November 2022; however, pollutants from TROPOMI
seemed to be more widely distributed than in the simula-
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Figure 9. Same as in Fig. 8 but from 8 to 12 November 2022, which includes the Plume 2 period (8–12 November 2022).

tion. Certainly, the difference in altitude between TROPOMI
(column) and the simulation (surface) might have affected
horizontal distributions. During the Plume 2B event, north-
westerly winds prevailed over the PHD region, and pollutants
were transported from Punjab to Haryana and to Delhi.

3.5 Contributions of CRB to surface PM2.5
concentrations

Based on the simulation using OFEv1.0, the contributions
of CRB to surface PM2.5 concentrations and the source–
receptor relationship among Punjab, Haryana, and Delhi

NCR during the two plumes periods in November 2022 are
summarized in Fig. 10. The plume duration periods are de-
fined as follows: Plume 1A (2 November 2022 (12:00 UTC)
to 3 November 2022 (11:00 UTC)), Plume 1B (3 Novem-
ber 2022 (12:00 UTC) to 4 November 2022 (23:00 UTC)),
Plume 2A (8 November 2022 (00:00 UTC) to 9 Novem-
ber 2022 (23:00 UTC)), and Plume 2B (10 November 2022
(00:00 UTC) to 12 November 2022 (23:00 UTC)); thus, the
durations were 24, 36, 48, and 72 h, respectively. During
the Plume 1 period, the observed surface PM2.5 concentra-
tions were > 50 % higher than the half-month average val-
ues (1–15 November 2022; 00:00 UTC) over the receptor
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regions (Haryana and Delhi NCR). The mean concentra-
tion values and simulated contributions of CRB emissions
from the source regions (Punjab and North Haryana) were
higher during the Plume 1A event (274 µgm−3 and 50 % for
Haryana and 419 µgm−3 and 50 % for Delhi NCR, respec-
tively) than those during the Plume 1B event (219 µgm−3

and 40 % for Haryana and 324 µgm−3 and 50 % for Delhi
NCR, respectively) because the Plume 1A event was the re-
sult of direct transport, while the Plume 1B event was the
blowback. The mean observed concentration over Punjab and
simulated contribution of CRB emission became highest dur-
ing the Plume 2A event (312 µgm−3 and 47 %, respectively)
due to the stagnated horizontal wind field predicted by the
simulation. Although small increases were observed in sur-
face PM2.5 concentrations over receptor regions (Figs. 3c–
f, 5b–c, e–f, h–i, and k–l), the optimized emissions could
not reproduce the observed high concentration levels, which
was likely due to low performance of the meteorological
simulation of air flows associated with rainfall and convec-
tion. Thus, the source–receptor relationship among the three
regions could not be identified for the Plume 2A event in
this study. During the Plume 2B event, PM2.5 from CRB
emissions was directly transported from the source region
to the receptor region, and the contributions became highest
in Haryana (56 %) and Delhi NCR (55 %), whereas the ob-
served PM2.5 concentrations were not very large compared
to those in the Plume 1 period or the half-month averages.
This result may have been due to the larger mean wind speeds
during the Plume 2B event (11–12 November 2022, in Fig. 9)
than during the Plume 1A event (3 November 2022, in Fig. 8)
or the amount of CRB emissions in Plume 2B being smaller
than that in Plume 1A.

3.6 Uncertainties in our top-down emission optimization
approach

Uncertainties in our emission optimization approach are dis-
cussed in this section, especially for the assumption of uncer-
tainties in observation data and a priori simulation and uncer-
tainties due to the predictability of simulated PBL.

As described in Sect. 3.2, we used the observation uncer-
tainty σn= 20 µgm−3 (10 % of all station mean PM2.5) and
the upper and lower limits of the scaling factor xm as (um,
lm)= (2.0, 0.5). The estimated total primary PM2.5 emission
from 1 to 15 November 2022 was 86.1 Gg. The sensitivity
tests were conducted using σn ranging from 1 to 500 µgm−3

and (um, lm)= (2.0, 0.5), (10, 0.1), and (100, 0.01), which re-
sulted in the estimated PM2.5 emission of 88.1± 3.01 Gg. On
the other hand, when we used the constant observation uncer-
tainty rate of 10 % together with (um, lm)= (2.0, 0.5), the es-
timated total primary PM2.5 emission was 31.6 Gg. The sen-
sitivity tests using observation uncertainty rates ranging from
1 to 500 % and (um, lm)= (2.0, 0.5), (10, 0.1), and (100, 0.01)
yielded the estimated PM2.5 emission as 30.6± 1.75 Gg. The
simulation using the optimized emission derived using the

constant uncertainty rates was not conducted, but judging
from Fig. 5 and Table 3 the simulation would be substantially
underpredicted because the optimized emissions using con-
stant uncertainty rates (30.6± 1.75 Gg) were approximately
3 times smaller than those using constant uncertainty values
(88.1± 3.01 Gg).

Emission flux estimates in the top-down approach are
highly sensitive to the simulation of vertical profile of
species, which in turn are highly sensitive to the simulation
of boundary layer dynamics. In Fig. S9, vertical profiles of
simulated CO and O3 with and without OFEv1.0 were com-
pared with the IAGOS aircraft observation over the IGI air-
port. On 4 November, when the CRB plume arrived at Delhi
(Plume 1B), significant enhancements of pollutants due to
CRB were observed up to approximately 2 km above the
ground level (a.g.l.), with the highest concentrations at ap-
proximately 1 km a.g.l. for both CO and O3. The simulated
and observed profiles were consistent with each other on the
day. On 7 November there were no enhancements of simu-
lated CO and O3 due to CRB. The simulation agreed well
with the observations at 20:00 IST but was underestimated at
22:00 IST. There seemed to be some enhancements in the ob-
served CO and O3, which might be a sign of CRB contribu-
tions. However, due probably to insufficient performance of
meteorological simulation during Plume 2A, the simulation
did not reproduce higher observed CO and O3 concentrations
at around 1 km a.g.l. On 11 November, during Plume 2B, the
simulated plume height (approximately 1.5 km a.g.l.) agreed
well with observations, but the simulated vertical profiles of
CO and O3 below 1.5 km a.g.l. were not consistent with those
observed. It is difficult to quantify the uncertainty due to pre-
dictability of PBL simulations only using surface air quality
measurements and a single meteorological simulation. At the
right moment, it indicated that our PBL simulation was not
always wrong. In future, it will be necessary to use differ-
ent meteorological simulations with different PBL schemes
to quantify variations in optimized emission fluxes.

4 Conclusions and future remarks

The impact of post-monsoon CRB on surface PM2.5 con-
centrations over the PHD region in northern India was in-
vestigated using a regional meteorology–chemistry model,
NHM(WRF)-Chem, a high-density in situ surface observa-
tion network comprising CUPI-G stations, and the emission
optimization technique. Emission optimization was applied
for the Plume 1 (2–4 November 2022) and Plume 2 (8–
12 November 2022) periods identified by Singh et al. (2023)
using CUPI-G and meteorological analysis data.

In the source region (Punjab state), almost no enhance-
ments were observed in surface PM2.5 concentrations in
CPCB stations mostly situated in big cities, whereas substan-
tial increases associated with CRB were observed in CUPI-
G data from stations in rural and farmland areas. Employing
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Figure 10. Schematic illustration of the contributions of CRB to surface PM2.5 concentrations and the source–receptor relationship among
Punjab, Haryana, and Delhi NCR during the (a) Plume 1 and (b) Plume 2 periods in November 2022. The period and duration of each
plume (1A: 2 November 2022, 12:00 UTC to 3 November 2022, 11:00 UTC, 24 h; 1B: 3 November 2022, 12:00 UTC to 4 November 2022,
23:00 UTC, 36 h; 2A: 8 November 2022, 00:00 UTC to 9 November 2022, 23:00 UTC, 48 h; and 2C: 10 November 2022, 00:00 UTC to
12 November 2022, 23:00 UTC, 72 h) are noted in the figure. Blue circles, orange circles, and arrows indicate roughly simplified CRB
emission flux, high concentration plumes, and wind direction, respectively, predicted by the simulation using OFEv1.0. The observed mean
PM2.5 concentrations are indicated in black or red, and gray values with brackets indicate the observed mean PM2.5 for the first half of
November 2022 (1–15 November 2022, 00:00 UTC). The values in red indicate when values exceed the periodical mean values by 50 %.
The contributions of CRB from areas 1 to 5, namely, NP, WP, CP, EP, and EP&NH, are reported (in %) for each region and plume. The
contributions of fire emissions from outside the PHD region are not included. The period-mean contributions of CRB from areas 1 to 5 were
34 %, 33 %, and 30 % over Punjab, Haryana, and Delhi NCR, respectively.

the CUPI-G data from Punjab enabled us to obtain optimized
CRB emissions (Optimized Fire Emission v1.0; OFEv1.0)
from 1 to 15 November 2022, which substantially improved
the PM2.5 simulation over the PHD region compared to using
GFAS emission data. Diurnal variations of satellite-derived
fire emissions have been previously unavailable. However,
unlike forest fires, each CRB event lasts only a few hours;
hence, information of diurnal variation may be crucial. Also,
some farmers ignite fires after sunset (Liu et al., 2020). Thus,
emission optimization was performed at 12 h resolution on a
daily basis in the daytime (05:30–17:30 IST, or a.m., 00:00–
12:00 UTC) and nighttime (17:30–05:30 IST, or p.m., 12:00–
24:00 UTC).

The major findings of the study are summarized as fol-
lows:

– The total CO and PM2.5 emissions of OFEv1.0 over the
PHD region from 1 to 15 November 2022 were 963
and 86.1 Gg, respectively, which was 8.6 times larger
than the original GFAS emissions. OFEv1.0 boosted

CRB emissions that were substantially underestimated
due to clouds or thick smoke/haze on 8 and 10 Novem-
ber 2022. The total emissions of OFEv1.0 were consis-
tent with other relevant inventories for PM2.5, CO, OC,
and BC. Optimized daytime and nighttime emissions
differed greatly, indicating that consideration of diur-
nal variations is crucial in emission estimations. Day-
time emissions were larger than nighttime emissions on
some days but not others, indicating that diurnal varia-
tion shape may differ for each day.

– Using OFEv1.0 and NHM(WRF)-Chem, the half-
month (1–15 November 2022) mean contributions of
CRB to the surface PM2.5 concentrations over Punjab,
Haryana, and Delhi NCR were 34 %, 33 %, and 30 %,
respectively. As seen from Figs. 8 and 9, the emission
increments by OFEv1.0 were observed over the Pun-
jab region mainly, suggesting the origin of the CRB
sources being concentrated in the state, while affecting
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the neighboring two states similarly. The role of CRB
in Haryana was lower compared to the PM2.5 enhance-
ment in the region.

– The Plume 1 period was divided into two events, in-
cluding Plumes 1A (2–3 November 2022) and 1B (3–
4 November 2022). During the Plume 1A event, north-
westerly winds prevailed over the PHD region and
station-mean concentrations became larger in Haryana
(274 µgm−3) and Delhi NCR (491 µgm−3), and the
CRB contributions were both 50 %. The Plume 1B
event was smaller than the Plume 1A event because it
was a blowback of pollutants that once carried further
downwind of Delhi. The station-mean concentrations of
Haryana and Delhi NCR were 219 and 324 µgm−3, re-
spectively, and the CRB contributions were 40 % and
43 %, respectively.

– Similarly, the Plume 2 period was divided into two
events, including Plumes 2A (8–9 November 2022) and
2B (10–12 November 2022). The Plume 2B event was
similar to the Plume 1A event (direct transport of pollu-
tants from Punjab to Delhi due to northwesterly winds),
with similar CRB contributions (56 % in Haryana and
55 % in Delhi); however, the PM2.5 concentration was
not as high as in Plume 1A. During the Plume 2A event,
the air mass stagnated around the Punjab region, result-
ing in a high CRB contribution in Punjab (47 %). Al-
though the observed PM2.5 in Haryana was increased
in Plume 2A, the simulation did not reproduce the in-
creased emissions, likely due to low performance of the
meteorological simulation or inability of the CUPI-G
observation network to capture the emission source be-
cause the southern Punjab region of intense CRB was
not covered by the 2022 observation sites.

Future issues are itemized as follows:

– The results of this study were obtained using a single
model. Multi-model analysis is indispensable for better
predictions and quantification of prediction uncertain-
ties using different boundary conditions, meteorologi-
cal models with different physical schemes, chemical
transport models with different chemical schemes, dif-
ferent emission inventories, and different optimization
techniques.

– Post-monsoon CRB emissions have a negligible impact
on surface PM2.5 on an annual basis and thus may not
cause substantial long-term health effects (Guttikunda
et al., 2023; Ghude et al., 2016). However, short-term
exposure of vulnerable populations to high aerosol con-
centrations may lead to the need for emergency medical
care and death (Krishna et al., 2021). Our model simu-
lation using optimized emissions indicated a 50 % con-
tribution to short-term exposure on a mass basis. While

the 50 % value is specific to mass, corresponding infor-
mation on a toxicity basis has not been determined. Tox-
icity per unit of aerosol mass may vary substantially de-
pending on the chemical compound, size, mixing state
(e.g., Das et al., 2020, 2021, 2023; Ching and Kajino,
2018), and emission source (e.g., Fushimi et al., 2021;
Kajino et al., 2024). Further studies are warranted to de-
termine the associations between chemical compounds
and toxicity in order to perform accurate health impact
studies.

– Similar issues, namely, “satellite-based observations are
underestimated by clouds or thick smoke/haze” and
“ground-based observations are mostly in cities and not
near the fire emission source regions”, may also exist
in other parts of the world. Our methodology, top-down
estimation of emissions using distributed low-cost sen-
sors, can be applied to other cases in the world.

Code and data availability. The NHM-Chem source code is
available subject to a licensing agreement with the Japan Meteo-
rological Agency. Further information is available at https://www.
mri-jma.go.jp/Dep/glb/nhmchem_model/application_en.html
(Japan Meteorological Agency, 2019). The simulation results are
freely available. The simulated, observed, and OFEv1.0 data used
in the paper are available at https://doi.org/10.17632/9hs9mtxhh4.1
(Kajino, 2024). The CUPI-G observation data are available at
https://aakash-rihn.org/en/data-set/ (Research Institute for Human-
ity and Nature, 2023). The CPCB observation data are available
at https://app.cpcbccr.com/ccr/#/caaqm-dashboard/caaqm-landing/
(Central Pollution Control Board, 2016). The MODIS AOD
and CF data are available at https://modis.gsfc.nasa.gov (Na-
tional Aeronautics and Space Administration, 2000). The
TROPOMI UVAI data are available at https://sentinels.
copernicus.eu/data-products/-/asset_publisher/fp37fc19FN8F/
content/sentinel-5-precursor-level-2-ultraviolet-aerosol-index
(Copernicus, 2018). The AERONET data are available at
https://aeronet.gsfc.nasa.gov/ (National Aeronautics and Space
Administration, 2002).
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