

Supplement of

Comparative ozone production sensitivity to NO_x and VOCs in Quito, Ecuador, and Santiago, Chile

María Cazorla et al.

Correspondence to: María Cazorla (mcazorla@usfq.edu.ec)

The copyright of individual parts of the supplement might differ from the article licence.

List of contents

Figure S1. 10-minute time series of solar radiation in Quito and Santiago overlapping sunny days to all days.

Figure S2. 1-hour air quality time series for Santiago (O'Higgins Station).

Figure S3. 1-hour air quality time series for Quito. Ozone, NO, and NO₂ are from EMA USFQ station. CO was obtained by averaging data from Belisario, Centro and Tumbaco stations from the Quito Air Quality Network (Secretariat of the Environment, Quito, Ecuador, https://aireambiente.quito.gob.ec/).

Figure S4. Left panel: Santiago 1-hour measurements and mean diurnal variation of CO (blue dots and blue line with stars) and benzene (red dots and red line with circles). Right panel: linear regression of the mean diurnal variations of benzene vs. CO.

Figure S5. Left panel: Santiago 1-hour measurements and mean diurnal variation of CO (blue dots and blue line with stars) and toluene (red dots and red line with circles). Right panel: linear regression of the mean diurnal variations of toluene vs. CO.

Figure S6. Flow diagram followed to perturb VOCs in Santiago.

Figure S7. Monte Carlo simulations for benzene for Santiago. Left panel: 10-minute time series, percentiles 10 to 90. Right panel: mean diurnal variation for percentiles 10, 50 and 90.

Figure S8. Flowchart synthesizing the methodology applied to simulate VOC inputs for the model.

Figure S9. Monte Carlo simulations for benzene for Quito. Left panel: 10-minute time series, percentiles 10 to 90. Right panel: mean diurnal variation for percentiles 10, 50 and 90.

Figure S10. Boundary layer depth (PBLh) for Quito and Santiago (top panels) and first order dilution constant for the F0AM model (kdil) for both cities (bottom panels).

Figure S11. Ozone production P(O₃) percentage differences from Figure 7a.

Figure S12. Left to right: ozone losses due to ozone photolysis, ozone reaction with HO₂, ozone reaction with alkenes, and losses to P(RONO₂) for Quito and Santiago.

Figure S13. NO/NO₂ ratio for Quito and Santiago comparing the real data (blue) versus the unconstrained scenario from the model (orange).

 Table S1. Linear regressions obtained for measured VOCs in Santiago using both methods

Table S2. VOC compounds used in the model with the measurement nomenclature and the attributed weighing factors

 Table S3. F0AM input options chosen for model runs

Table S4. Ozone and NO statistics for 2022 data at Quito and Santiago

Figure S1. 10-minute time series of solar radiation in Quito and Santiago overlapping sunny days to all days.

Figure S2. 1-hour air quality time series for Santiago (O'Higgins Station).

Figure S3. 1-hour air quality time series for Quito. Ozone, NO, and NO₂ are from EMA USFQ station. CO was obtained by averaging data from Belisario, Centro and Tumbaco stations from the Quito Air Quality Network (Secretariat of the Environment, Quito, Ecuador, https://aireambiente.quito.gob.ec/).

Figure S4. Left panel: Santiago 1-hour measurements and mean diurnal variation of CO (blue dots and blue line with stars) and benzene (red dots and red line with circles). Right panel: linear regression of the mean diurnal variations of benzene vs. CO.

Figure S5. Left panel: Santiago 1-hour measurements and mean diurnal variation of CO (blue dots and blue line with stars) and toluene (red dots and red line with circles). Right panel: linear regression of the mean diurnal variations of toluene vs. CO.

Figure S6. Flow diagram followed to perturb VOCs in Santiago.

Figure S7. Monte Carlo simulations for benzene for Santiago. Left panel: 10-minute time series for percentiles 10 to 90. Right panel: mean diurnal variation for percentiles 10, 50 and 90.

Figure S8. Flowchart synthesizing the method applied to simulate VOCs for Quito.

Figure S9. Monte Carlo simulations for benzene for Quito. Left panel: 10-minute time series for percentiles 10 to 90. Right panel: mean diurnal variation for percentiles 10, 50 and 90.

Figure S10. Boundary layer depth (PBLh) for Quito and Santiago (top panels) and first order dilution constant for the F0AM model (kdil) for both cities (bottom panels).

Figure S11. Ozone production P(O₃) percentage differences from Figure 7a.

Figure S12. Left to right: ozone losses due to ozone photolysis, ozone reaction with HO₂, ozone reaction with alkenes, and losses to P(RONO₂) for Quito and Santiago.

Figure S13. NO/NO₂ ratio for Quito and Santiago comparing the real data (blue) versus the unconstrained scenario from the model (orange).

		VOC regressions for Santiago (ppbv)					
Group	Compound	Method 1: Original regression using mean diurnal cycles			Method 2 nighttime da	2: Regression ta and w/o bac CO	with ckground
		Slope	Intercept	R ²	Slope	Intercept	R ²
Group ALK ARO	Propene	0.00746	-2.467	0.87	0.00467	0.738	0.58
ALK	Butene	0.00966	-3.066	0.84	Method 2: nighttime data Slope 0.00467 0.00608 0.00215 0.00543 0.01026 0.00062 0.01026 0.00022 0.01597 0.000313 0.000066 0.00029 0.08050 0.00857 0.00298 0.00090 0.00088 0.00041	0.826	0.62
	Benzene	0.00257	-0.849	0.86	0.00215	0.096	0.74
	Toluene	0.00754	-2.949	0.90	0.00543	0.138	0.60
	Ethylbenzene (C8)	0.01573	-6.437	0.83	0.01026	-0.104	0.66
ARO	Styrene (C8)	0.00096	-0.243	0.87	0.00062	0.151	0.73
	C8 (sum)	0.01664	-6.646	0.84	0.01089	0.047	0.66
	C9 Aromatics	0.00364	-1.466	0.90	0.00222	0.059	0.73
	Methanol	0.01959	-5.099	0.87	0.01597	2.365	0.65
	Ethanol	0.00487	-2.227	0.87	0.00313	-0.222	0.67
OXY	Phenol	0.00098	Method 2: Regression nightime data and with COopeIntercept \mathbb{R}^2 SlopeIntercent Intercent 746 -2.467 0.87 0.00467 0.73 966 -3.066 0.84 0.00608 0.82 9257 -0.849 0.86 0.00215 0.09 754 -2.949 0.90 0.00543 0.13 1573 -6.437 0.83 0.01026 -0.10 0966 -0.243 0.87 0.00062 0.15 1664 -6.646 0.84 0.01089 0.04 0364 -1.466 0.90 0.00222 0.05 1959 -5.099 0.87 0.01597 2.36 0487 -2.227 0.87 0.00313 -0.22 0098 -0.016 0.84 0.00066 0.40 0019 0.229 0.25 0.00029 0.26 1222 -1.008 0.58 0.08050 3.34 1470 -2.062 0.59 0.00678 4.15 0506 2.623 0.32 0.00857 3.33 0467 -1.300 0.73 0.00298 0.59 0088 0.211 0.74 0.00088 0.57 0066 -0.143 0.82 0.00041 0.16	0.406	0.68		
	Cresol	0.00019	0.229	0.25	0.00029	0.266	0.45
ALD	Acetaldehyde	0.01222	-1.008	0.58	0.08050	3.349	0.62
	Acetic acid	0.01470	-2.062	0.59	0.00678	4.155	0.28
	Acetone	0.00506	2.623	0.32	0.00857	3.333	0.61
	Butanone	0.00467	-1.300	0.73	0.00298	0.599	0.61
	Methacrolein	0.00088	0.211	0.74	0.00090	0.556	0.60
100	Isoprene	0.00079	0.325	0.49	0.00088	0.575	0.56
ISO	Monoterpenes	0.00066	-0.143	0.82	0.00041	0.164	0.57

Table S1. Linear regressions obtained for measured VOCs in Santiago using both methods

Group	Measured Compounds	MCM Nomenclature	Name	Attributed Factor
	Propene/Cyclopropane	С3Н6	Propene	1
		BUT1ENE	1-butene	0.288
ALK	1- Butene/2-Butene	CBUT2ENE	Cis-2-butene	0.356
		TBUT2ENE	Trans-2-butene	0.356
	Benzene	BENZENE	Benzene	1
	Toluene	Toluene TOLUENE Toluene		1
	Styrene	STYRENE	Styrene	1
		EBENZ	Ethylbenzene	0.195
	Etherl han and /Valance	OXYL	O-xylene	0.241
	Einyi benzene/Ayienes	MXYL	M-xylene	0.282
		PXYL	P-xylene	0.282
		PBENZ	Propylbenzene	0.077
ARO		IPBENZ	Isopropylbenzene	0.026
		TM123B	1,2,3- trimethylbenzene	0.109
	C9-Aromatics	TM124B	1,2,4- trimethylbenzene	0.202
		TM135B	1,3,5- trimethylbenzene	0.099
		OETHTOL	2-ethyltoluene	0.090
		METHTOL	3-ethyltoluene	0.251
		PETHTOL	4-ethyltoluene	0.104
	Acetaldehyde	СН3СНО	Acetaldehyde	1
	Mathaaralain/MV/	MACR	Methacrolein	1
	BenzeneBENZENEBenzenTolueneTOLUENETolueneStyreneSTYRENEStyreneStyreneSTYRENEStyreneEthyl benzene/XylenesEBENZEthyl benzene/XylenesAROArrowPXYLO-xylaPXYLP-xylaPXYLPXYLP-xylaPBENZPropylbeIPBENZIsopropylbeIPBENZIsopropylbe12,2,3trimethylbTM123B1,2,3trimethylb1,2,4TM124B1,2,4trimethylb1,3,5TM135B1,3,5TM135B1,3,5TM135B1,3,5TM135B1,3,5TM135B1,3,5TM135B1,3,5TM124B1,2,4Methacrolein/MVKMETHTOLPETHTOL4-ethyltoPETHTOL4-ethyltoMethacrolein/MVKMACRMEKButanoneButanone / ButanalCH3COCH3Acetone / PropanalCH3COCH3Acetone / PropanalCH3COCH3Acetone / PropanalCH3CO2HAcetone / PropanalCH3CO2HAcetone / ButanolCH3COHOXYMethanolCH3CO2HAcetoGlycolaldehydeHOCH2CHOBhernelDKrealBhernelCH3COH	Methyl Vinyl Ketone	1	
ALD	Dutanono / Dutanal	MEK	Butanone	1
	Butanone / Butanar	C3H7CHO	Butanal	1
	A astona / Proposal	CH3COCH3	Acetone	1
	Acetone / Propanal	C2H5CHO	Propanal	1
	Acetic Acid /	СН3СО2Н	Acetic acid	1
	Glycolaldehyde	HOCH2CHO	Glycolaldehyde	1
OXY	Methanol	СНЗОН	Methanol	1
	Ethanol	C2H5OH	Ethanol	1
	Phenol	PHENOL	Phenol	1

Table S2: VOC compounds used in the model with the measurement nomenclature and the attributed weighing factors

	Cresol	CRESOL	Cresol	1
ISO	Isoprene	С5Н8	Isoprene	1
		APINENE	Alpha-pinene	0.33
	Monoterpenes	BPINENE	Beta-pinene	0.33
		LIMONENE	Limonene	0.33

Table S3: F0AM input options chosen for model runs

Parameter	Variables	Name in model	Units	Input	
Meteorolo gy	Pressure	Р	mbar		
	Temperature	Т	K	Meteorological dataset	
	Relative humidity	RH	%		
Dilution	Dilution constant	kdil	s ⁻¹	From PBL evolution and height	
Photolysis options	J-value function	MCMv331_J(Met, Jmethod)	s ⁻¹	MCMv331_J(Met,0)	
Emissions/De position	Boundary layer depth	BLH	m	Quito: https://doi.org/10.1002/asl.829, 2018 Santiago: https://doi.org/10.5194/gmd-17- 7467-2024	
	Solar zenith angle	SZA	degree	Calculated and checked MCMv331	
Radiation-	Ozone column	O3col	DU	Merra-2 1 hour dataset of Area- Averaged of total ozone column	
Related	Albedo	Albedo	-	Merra-2 1 hour dataset of Area- Averaged of surface albedo	
	Altitude	ALT	m	538.4 (S), 2414(Q)	
Chemical Concentrat ions	O ₃ , CO and VOC's	InitConc	ppb	Dataset of air quality variables and 36 VOC's	
	NO, NO ₂ , NO _x	InitConc	ppb	Unconstrained NO, NO ₂ NO _x family conservation	
	Background concentration	BkgdConc	ppb	0 (default)	
Chemistry	MCM scheme	ChemFiles	-	Subset of chemical species	
Model options	Verbose	Verbose	-	3 (flag for verbose command window output)	
	End points	EndPointsOnly	-	1 (flag for concentration and rate outputs)	
	Link step	LinkSteps	-	0 (flag for using end-points of one run to initialize next run)	

	Days	Quito		Santiago	
2022		Days with O ₃ higher than 60 ppbv	Days with NO higher than 100 ppbv	Days with O ₃ higher than 60 ppbv	Days with NO higher than 100 ppbv
January	31	0	5	2	1
February	28	1	1	6	0
March	31	0	0	7	12
April	30	0	0	5	17
May	31	0	0	1	27
June	30	0	1	0	25
July	31	0	0	0	24
August	31	0	0	2	22
September	30	0	0	2	13
October	31	0	4	4	6
November	30	0	10	6	1
December	31	0	10	13	0
Sum	365	1	31	48	148

Table S4: Ozone and NO statistics for 2022 data at Quito and Santiago