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Abstract. Ammonia has attracted significant attention due to its pivotal role in the ecosystem and its contribu-
tion to the formation of secondary aerosols. Developing an accurate ammonia emission inventory is crucial for
simulating atmospheric ammonia levels and quantifying its impacts. However, current inventories are typically
constructed via the bottom-up approach and are associated with substantial uncertainties. To address this issue,
assimilating observations from satellite instruments for top-down emission inversion has emerged as an effective
strategy for optimizing emission inventories. Despite the severity of ammonia pollution in South Asia, research
in this context remains very limited. This study aims to estimate ammonia emissions in this region by integrating
the prior emission inventory from the Community Emissions Data System (CEDS) and the columned ammo-
nia concentration retrievals from the Infrared Atmospheric Sounder Interferometer (IASI). We employ a newly
developed four-dimensional ensemble variational (4DEnVar)-based emission inversion system to conduct the
calculations, resulting in monthly ammonia emissions for 2019 at a resolution of 0.5°× 0.625°. The annual total
estimate for the posterior emission inventory is 12.61 Tg, compared to the prior inventory’s 13.32 Tg. Our simu-
lations, driven by the posterior emission inventory, demonstrate superior performance compared to those driven
by the prior emission inventory. This performance is validated through comparisons against the IASI observa-
tions, the independent column concentration measurements from the advanced satellite instrument Cross-track
Infrared Sounder (CrIS), and the ground concentration observations of ammonia and PM2.5. Additionally, the
spatial and temporal characteristics of ammonia emissions in South Asia based on the posterior inventory are
analyzed. Notably, emissions there exhibit a “double-peak” seasonal profile, with the maximum in July and the
secondary peak in May. This observation differs from the “double-peak” trend suggested by the CEDS prior
inventory, which identifies the maximum column concentration in May and a second peak in September. The
differences may be attributed to a more accurate representation of regional agricultural practices, such as the
timing of fertilizer application and meteorological influences like precipitation and temperature.
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1 Introduction

Ammonia (NH3), an alkaline compound, has the capacity to
react with acidic gases present in the atmosphere, thereby
contributing to the formation of secondary aerosols, no-
tably ammonium sulfate and ammonium nitrate (Jimenez
et al., 2009). The genesis of fine atmospheric particulate
matter poses significant threats to human health (Mukher-
jee and Agrawal, 2017). Further, ammonia gas, along with
its reaction products, plays a pivotal role in soil acidifica-
tion and the eutrophication of water bodies through both
dry and wet deposition (Krupa, 2003), thereby affecting the
balance of ecosystems (Asman et al., 1998) and climate
change (Ma et al., 2022; Gong et al., 2024). With an enor-
mous livestock population and extensive use of nitrogen fer-
tilizers, South Asia has experienced the highest level of at-
mospheric NH3 globally (Pawar et al., 2021; Luo et al.,
2022). Specifically, the annual average ammonia concentra-
tion across India is approximately 1.8–5.6× 1016 mol cm−2,
while in the Indo-Gangetic Plain (IGP) of India, the concen-
tration is double that of other regions, reaching a peak of
11.5× 1016 mol cm−2 during the high season in July (Kut-
tippurath et al., 2020).

Over the past decade, scientists have predominantly em-
ployed the “bottom-up” approach to estimate NH3 emis-
sions. When combined with chemical transport models, at-
mospheric NH3 dynamics can be simulated, enabling the
quantification of environmental impacts. Substantial efforts
have been made to quantify the spatiotemporal distribution
of NH3 sources and develop global/regional emission inven-
tories, such as the global NH3 emission inventory (Bouwman
et al., 1997), the anthropogenic emission inventory that in-
cludes NH3 estimates (e.g., Community Emissions Data Sys-
tem, or CEDS) (Hoesly et al., 2018a), and regional NH3 in-
ventories focusing on South Asia (Yan et al., 2003; Yamaji
et al., 2004; Liu et al., 2022). However, these bottom-up es-
timates of NH3 emissions are generally considered as uncer-
tain (Xu et al., 2019), particularly when compared with emis-
sions of other pollutants primarily originating from fossil
fuel combustion, such as NO2. One challenge is that the in-
tensity of agricultural NH3 emissions (i.e., emission factors),
whether from livestock or fertilizer, depends heavily on man-
agement and farming practices, but this information is often
not readily available (Zhang et al., 2017). As a result, atmo-
spheric chemistry transport models driven by these emission
estimates inevitably struggle to reproduce atmospheric NH3
concentrations. Consequently, these discrepancies hinder our
comprehensive understanding of the environmental implica-
tions of NH3 emissions.

The rapid advancement of satellite remote sensing tech-
nology has resulted in an expanding array of valuable NH3
products, such as those from the first satellite NH3 ob-
servations using the Tropospheric Emission Spectrometer
(TES) (Beer et al., 2008), as well as higher-resolution re-
trievals from the Infrared Atmospheric Sounding Interferom-

eter (IASI) (Pawar et al., 2021) and the Cross-track Infrared
Sounder (CrIS) (Beale et al., 2022; Kharol et al., 2022).
While these remote sensing measurements play a pivotal role
in characterizing atmospheric NH3 loading, limitations still
remain. These primarily arise from the fact that satellite ob-
servations can only measure column-integrated NH3 con-
centrations, which do not directly reflect emission intensity
or the three-dimensional concentration field. In addition to
these satellite-based data, very limited ground-based obser-
vations are publicly available over South Asia, and those that
do exist are constrained by their inadequate representation of
atmospheric NH3 features (Pawar et al., 2021).

In the field of atmospheric pollutant modeling, an al-
ternative method for calculating emission flux is the “top-
down” approach, which is achieved through data assimila-
tion. Over the past decade, emission inversion has gained
widespread attention globally and has been applied in various
contexts, including the estimation of volatile organic com-
pounds (VOCs) (Bauwens et al., 2016; Choi et al., 2022), sul-
fur dioxide (SO2) (Qu et al., 2019; Li et al., 2021), methane
(CH4) (Wecht et al., 2014; Fujita et al., 2020), and atmo-
spheric NH3 emissions. For example, Kong et al. (2019) cal-
culated the 2016 NH3 emission inventory in China by assim-
ilating ground-based NH3 concentration observations from
several dozen ground stations. Similarly, Chen et al. (2021)
optimized the prior NH3 emission estimates from the United
States’ 2011 National Emissions Inventory (2011 NEI) by
assimilating NH3 column concentrations from IASI instru-
ments across the United States. Recently, we developed a
four-dimensional variational assimilation-based NH3 emis-
sion inversion system, which has been successfully tested for
NH3 emission inversion by assimilating IASI products over
China.

However, there is a paucity of studies focusing on
assimilation-based NH3 emission inversion specific to South
Asia, which has some of the highest NH3 loading hotspots
compared to other continents. In this study, we aim to ex-
plore the spatial and temporal features of NH3 emissions
over South Asia. The NH3 emission inventory will be cal-
culated using our newly developed emission inversion sys-
tem (Jin et al., 2023) by assimilating NH3 retrievals from
the IASI instruments on board the MetOp-A (operational
from 2008 to 2018), MetOp-B (operational since 2012), and
MetOp-C (operational since 2018) satellites (MetOp stands
for Meteorological Operational). Instead of directly assimi-
lating IASI measurements as previous studies have done, we
incorporate the averaging kernel information from the lat-
est version of the IASI product. This approach allows us to
update the column concentration observations before assim-
ilation. By doing so, we ensure a fairer comparison between
the simulated and observed columnar NH3 concentrations, a
point that has been emphasized in several studies (Eskes and
Boersma, 2003; von Clarmann and Glatthor, 2019) but never
implemented in the IASI-based emission inversion. We aim
to provide a more accurate estimation of anthropogenic NH3
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emission inventories and to explore their spatial and tempo-
ral characteristics across South Asia. Additionally, this work
serves as a model for effectively calculating atmospheric pol-
lution emissions in regions that have been less studied in the
past. The study focuses on anthropogenic NH3 emissions but
also contributes to a broader understanding of atmospheric
pollution in under-researched regions.

The remaining sections of this paper are organized as fol-
lows. Section 2 describes the measurements assimilated in
the NH3 emission inversion, as well as those used for in-
dependent validation. The assimilation methodology for the
emission inversion, along with the choice of the prior emis-
sion inventory and the chemical transport model, is also out-
lined. Section 3 presents the validation results of the emission
inversion and highlights the key features of NH3 emissions
over South Asia.

2 Data and method

2.1 IASI satellite measurements

IASI (Infrared Atmospheric Sounding Interferometer) is a
Fourier transform spectrometer that operates in the ther-
mal infrared spectral range. It is on board the MetOp-A,
MetOp-B, and MetOp-C satellites, a series of European
polar-orbiting meteorological satellites managed by the Eu-
ropean Space Agency (ESA) and the European Organiza-
tion for the Exploitation of Meteorological Satellites (EU-
METSAT). The MetOp-A satellite, equipped with IASI, was
launched in 2008, followed by MetOp-B and MetOp-C in
2012 and 2018, respectively. The IASI instruments operate at
an altitude of 817 km in a sun-synchronous orbit with an in-
clination of 98.7°. Each instrument conducts measurements
over a ground swath width of 2200 km, with 30 fields of view
(15 on each side of the nadir). Each field of view consists of
four pixels, each with a nadir diameter of 12 km. This ob-
servational strategy enables each IASI instrument to make
two passes over every point on Earth daily, around 09:30 and
21:30 local time (Bouillon et al., 2020).

The assimilated observations for estimating the NH3 emis-
sions were the monthly IASI column concentration means
over the 0.5°× 0.625° GEOS-Chem grid cell. These values
were derived from the latest ANNI-NH3-v4R-ERA5 prod-
uct. Despite improvements in NH3 column retrievals from
satellite observations, there remains substantial variability in
measurement uncertainty, ranging from 5 % to over 1000 %
(Van Damme et al., 2014; Whitburn et al., 2016; Van Damme
et al., 2017). Data selection was performed by excluding
nighttime observations, irrational values (< 0), and using
only data with a cloud fraction < 0.1 (Van Damme et al.,
2018) and skin temperature > 263 K (Van Damme et al.,
2014) during the calculation of the monthly mean. While
negative values are not necessarily incorrect, they are consid-
ered unrealistic in the context of NH3 concentrations. To im-
prove the quality of the monthly average, we removed those

negative values. Additionally, we re-compared the cases of
excluding negative NH3 total column values and retaining
them. As shown in Fig. S1 in the Supplement, the positive
bias on the final concentrations within our study region is
minimal. It is also important to note that we used daily obser-
vations from three satellites, each with a pixel resolution of
approximately 12 km× 12 km, which provided us with suffi-
cient observations to calculate the monthly average. We ap-
plied a selection criterion, using only grid averages that con-
tain a minimum of 80 observations. This approach ensures
that the grid-averaged values are statistically representative
and that the monthly mean is of high quality. Notably, the
time coverage of the available version 4 IASI product used
was limited: MetOp-A provided data for the entire year of
2019, MetOp-B provided data from January to July 2019,
and MetOp-C did not have data for 2019. Therefore, only
the data from MetOp-A and MetOp-B within the 2019 time
frame were used in this study. The use of both MetOp-A
and MetOp-B data for 2019 ensures data continuity and en-
hances the reliability of the measurements. While a single
satellite could provide sufficient data, using both platforms
could improve temporal and spatial coverage, resulting in
more accurate and robust results. To ensure robustness, we
also made a brief comparison of the NH3 column concentra-
tions obtained from both MetOp-A and MetOp-B satellites,
as shown in Fig. S2. Despite some small differences, the data
from both satellites are generally consistent in terms of spa-
tial patterns and concentration levels. Additionally, the data
from the two satellites can complement each other, indicat-
ing good reliability of the results across both platforms. To
further improve the data quality and ensure consistency, we
performed monthly and grid averaging of the observations.
This approach not only allows for a fair comparison between
the observed and modeled NH3 concentrations but also re-
duces the computational cost of the assimilation process. Us-
ing individual observations without averaging would result in
an excessively large observational vector, which would sig-
nificantly increase the computational burden. For example,
without averaging, the size of the observational vector could
reach 1 000 000, while with monthly and grid averaging, it is
reduced to a manageable size of around 1000. This reduction
in size helps to optimize the data assimilation process while
maintaining the integrity of the emission estimates.

Compared to the previous version, one highlight of the
latest version 4 product is that it includes averaging ker-
nel information. The benefit of using the averaging kernel
is that it can consider the vertical distribution characteristics
of satellite observations, helping to correct the satellite re-
trieval results and making them more representative of the
true distribution of the target gas or variable in the atmo-
sphere (Rodgers, 2000). The impact of averaging kernels
(AVKs) is supposed to be considered in the data processing.
The sensitivity of IASI NH3 observations varies with alti-
tude, and AVKs enable the adjustment of simulated or ob-
served NH3 concentrations to align with the vertical distri-
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bution detected by IASI. This adjustment is particularly im-
portant for data comparison and validation against the model
simulations (Clarisse et al., 2023). The formula for calculat-
ing the column concentration, after accounting for the aver-
aging kernels, in this paper follows:

X̂m
=

X̂a
−B∑

zA
a
zmz
+B. (1)

Here, X̂m represents the IASI column concentration retrieved
with the model profile. X̂a denotes the initial IASI column
concentration, with the background concentration B. The Aa

z

values are the AVK for each vertical layer, with the model
profile mz. More detailed information and the correspond-
ing equations are provided in the Supplement, Eqs. (S8) and
(S9).

The uncertainty assigned to the IASI measurements is
also essential. When calculating the uncertainty of gridded
monthly average NH3 measurements, both instrumental er-
rors σ instrumental and the representation error σ representation

are considered. The gridded average uncertainty derived di-
rectly from IASI products was designated as the instrumen-
tal error σ instrumental, while the standard deviation of the ob-
served samples for the gridded average was characterized as
the representation error σ representation. The total uncertainty
σ integrated for weighting the potential spread of the assimi-
lated IASI NH3 measurements is finally expressed as:

σ integrated
=

{(
σ instrument

)2
+

(
σ representing

)2
}0.5

. (2)

Four snapshots of the assimilated monthly IASI NH3 column
concentration observations and their uncertainty in January,
April, July, and November can be found in Figs. 1a and S3.
These four scenarios are selected to highlight the typical sea-
sonal profile of the NH3 loading over South Asia.

2.2 Independent observations for validation

The Cross-track Infrared Sounder (CrIS) NH3 column con-
centration and ground-based observations of NH3 and PM2.5
from the Central Pollution Control Board (CPCB) of India
were also collected to validate our assimilation results.

The CrIS instrument was launched in 2011 on the Suomi
National Polar-Orbiting Partnership (SNPP) satellite and in
2017 on the NOAA-20 satellite. The retrieval products from
SNPP began in 2011 and ended in May 2021, with a data
gap from April to August 2019. The NH3 retrieval products
from NOAA-20 started in March 2019. Therefore, we used
retrieval products from both SNPP and NOAA-20 as inde-
pendent observations for 2019. We utilized the Level 2 CrIS
product from the CFPR 1.6.4 version. Specifically, only the
CrIS observations during daytime, under cloud-free condi-
tions, and with a quality flag ≥ 3 were selected. These orig-
inal data were subsequently interpolated to achieve a spatial

resolution of 0.5°× 0.625°, which is consistent with our NH3
simulation. Similarly, we also considered the impact of the
averaging kernels (AVKs) and applied the AVKs to the satel-
lite profile data. We converted the logarithmic averaging ker-
nels into linearized averaging kernels based on the method
proposed by Cao et al. (2022).

Ground observations of NH3 in South Asia are mainly
provided by the Central Pollution Control Board (CPCB,
https://cpcb.nic.in/, last access: 21 October 2024), which is
the official portal of the Government of India. NH3 is mea-
sured by the chemiluminescence method as NOx following
the oxidation of NH3 to NOx . In that approach, NH3 is de-
termined from the difference between the NOx concentra-
tion with and without the inclusion of NH3 oxidation (Pawar
et al., 2021). The ground-level NH3 concentration data from
CPCB were successfully collected. There were NH3 sur-
face concentration observations from 33 stations available in
2019; the distribution of these stations is shown in Fig. 2.

PM2.5 observations from CPCB were also used in the
assimilation validation. The PM2.5 observations were se-
lected before they were used, which follows (Spandana et al.,
2021): First, select the hourly PM2.5 data greater than PM10.
Then, filter out the hourly PM2.5 data that fall outside the
range of daymean− 3× standard deviation and daymean+ 3×
standard deviation. Additionally, ensure that each day con-
tains at least 20 h of data. Finally, process the data into
monthly averages for subsequent validation. The distribution
of the ground stations where the PM2.5 values were used in
this paper can be found in Fig. 2, and detailed information
about the stations is provided in Tables S1–S3 in the Supple-
ment.

2.3 Emission inversion system

This study employs the four-dimensional ensemble varia-
tional (4DEnVar) data assimilation-based NH3 emission in-
version system that was developed by Jin et al. (2023).
The general idea of assimilation-based emission inversion
is to find the most likely estimate, which in this case is the
monthly NH3 emission field, given the prior NH3 emissions
and the observations. The calculation is conducted through
minimizing the cost function J :

J (f )=
1
2

(
f −f b

)TB−1 (f −f b
)

+
1
2
{y−HM(f )}TO−1

{y−HM(f )}. (3)

Here, f denotes the vector of the NH3 estimated emission
field, with its units typically expressed in kg m−2 s−1. Ad-
ditionally, f b denotes the prior monthly NH3 emission vec-
tor from CEDS, as will be described in Sect. 2.4. B repre-
sents the background error covariance matrix associated with
the prior emission estimate. Here, we assume that the uncer-
tainty in the NH3 emission can be compensated by a spatially
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Figure 1. Spatial distribution of the total column NH3 concentration from the IASI (a) or CrIS (b) instruments and from the GEOS-Chem
simulation using either the prior (c) or the posterior (d) NH3 emission flex for January (a.1–d.1), April (a.2–d.2), July (a.3–d.3), and
November 2019 (a.4–d.4).

varying tuning factor α. The α values are defined to be ran-
dom variables with a mean of 1.0 and a standard deviation
σ = 0.2. In addition, a correlation matrix C is introduced for
quantifying the spatial correlation between two α values in
the grid i and j as:

C(i,j )= e−(di,j /l)2/2, (4)

where di,j represents the distance between two grid cells i
and j . l here denotes the correlation length scale, which con-
trols the spatial degrees of freedom of the α values. An em-
pirical parameter l = 300 km, which is used in the NH3 emis-
sion inversion in China (Jin et al., 2023), is also used in this
study. With the spatial correlation matrix and the emission
uncertainty, the background error covariance matrix could
then be constructed as:

B(i,j )= σ 2
·f b(i) ·f b(j ) ·C(i,j ). (5)

M here represents the GEOS-Chem model (as will be il-
lustrated in Sect. 2.4) driven by the emission f . H is the ob-
servational operator that transfers the simulated NH3 3D con-
centration result into the observational space. y represents
the monthly IASI NH3 column concentration observations,

while O is the observation error covariance matrix. Here, we
assume the IASI observation representation errors are inde-
pendent from each other. O therefore is a diagonal matrix
filled with the square of the integrated uncertainty, as de-
scribed in Sect. 2.1. Meanwhile, a minimum measurement
error is used to prevent the posterior from being too close to
low-value observations, thereby avoiding model divergence:

Oi,i =min
(

1.0× 1016 molec cm−2,σ integrated
)2
. (6)

More information about how we minimize the cost func-
tion Eq. (3) can be found in Jin et al. (2023).

2.4 GEOS-Chem model and emission inventory

GEOS-Chem, a three-dimensional (3-D) global tropospheric
chemistry model, is driven by assimilated meteorological
data obtained from the Goddard Earth Observing System
(GEOS) at the NASA Data Assimilation Office (DAO) (Bey
et al., 2001). GEOS-Chem incorporates a fully integrated
chemistry system involving aerosol, ozone, NOx , and hydro-
carbons, as described by Park et al. (2004). The wet depo-
sition scheme is explained by Liu et al. (2001) for water-
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Figure 2. The GEOS-Chem model simulation domain, with dots in-
dicating the locations of ground observation stations from the Cen-
tral Pollution Control Board (CPCB), India. The three different-
colored dots represent stations with only PM2.5 observations, sta-
tions with both PM2.5 and NH3 observations, and stations with only
NH3 observations.

Table 1. The use of observations and simulations.

Data and model Period Use

IASI v3 2015–2023 Annual variation of NH3
concentration

IASI v4 all of 2019 Inversion and validation
Level 2 CrIS all of 2019 Independent validation
CPCB all of 2019 Independent validation
GEOS-Chem all of 2019 Simulation

soluble aerosols and by Amos et al. (2012) for gaseous com-
ponents. Dry deposition is modeled using the resistance-in-
series scheme proposed by Wesely and Lesht (1989), as ap-
plied by Wang and Jacob (1998). Size-specific aerosol dry
deposition follows the approach outlined by Emerson et al.
(2020).

A nested grid simulation within the GEOS-Chem model
v13.4.1 is conducted to simulate the atmospheric environ-
ment over South Asia. The nested domain (60–98° E, 4–
40° N), shown in Fig. 2, has a horizontal resolution of 0.5°
latitude by 0.625° longitude, accompanied by 47 vertical lay-
ers. The model is driven by meteorological fields from the
Modern-Era Retrospective analysis for Research and Appli-
cations, Version 2 (MERRA-2) reanalysis dataset provided
by the Global Modeling and Assimilation Office (GMAO) at
NASA. The model employs a 3 month spin-up period to min-
imize the influence of the initial conditions. Lateral boundary
conditions for the nested domain are updated every 3 h using

output from the global GEOS-Chem simulation at 2°× 2.5°
resolution. Chemical initial conditions are also obtained from
the global simulation to ensure consistency.

The NH3 emissions inventory employed to drive GEOS-
Chem originated from the Community Emissions Data Sys-
tem (CEDS, https://doi.org/10.25584/PNNLDH/1854347,
Hoesly et al., 2018b) inventory, which has been widely used
for modeling the South Asia atmospheric pollutants, e.g.,
VOCs (Chaliyakunnel et al., 2019) and PM2.5 pollution (Gut-
tikunda and Nishadh, 2022; Xue et al., 2021). The CEDS
inventory includes various sources encompassing agricul-
tural, energy production, industrial, residential, and commer-
cial activities, ships, solvent use, surface transportation, and
waste processing (McDuffie et al., 2020). The bulk of NH3
emissions originate from agricultural practices. Specifically,
these emissions stem predominantly from farmlands, includ-
ing crops such as wheat, maize, and rice, as well as manure
from livestock, including cattle, chicken, goats, and pigs (Liu
et al., 2022). The CEDS emission estimates were coarse-
grained into the model resolution 0.5°× 0.625° before be-
ing utilized to drive the GEOS-Chem simulations. Exam-
ples of the CEDS emission over South Asia are presented in
Fig. 3, which plots the total NH3 emission fluxes for January,
April, July, and November of the year 2019. Additionally,
the model’s biogenic emissions are based on the MEGAN2.1
(Model of Emissions of Gases and Aerosols from Nature)
inventory (Guenther et al., 2012), while the biomass burn-
ing sources driving the model are based on the GFEDv4
(Version 4 of the Global Fire Emissions Database) inventory
(Giglio et al., 2013). The use of IASI and CrIS observations,
along with GEOS-Chem simulations, is outlined in Table 1.

3 Results and discussion

With the assimilation system described above, the monthly
anthropogenic NH3 emission inversion for 2019 over South
Asia is conducted. The spatial distribution of the prior and
posterior results is presented in Sect. 3.1.1. The long-term
varying trend of South Asia NH3 emission is illustrated in
Sect. 3.1.2, followed by an analysis and discussion of its spa-
tial distribution and seasonal profile based on the inversion
results in Sect. 3.2. Then, the posterior result is evaluated in
Sect. 3.3.

3.1 Observed NH3 concentrations

We first present the spatial distribution of NH3 column con-
centrations from satellite observations and model results
driven by either the prior or posterior inventories. Then, we
examine their seasonal variation in 2019 and the long-term
trends from 2015 to 2023.

Atmos. Chem. Phys., 25, 7071–7086, 2025 https://doi.org/10.5194/acp-25-7071-2025
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Figure 3. Spatial distribution of the prior (a), the posterior (b), and the posterior minus prior increments (c) monthly NH3 emission in
January (a.1–c.1), April (a.2–c.2), July (a.3–c.3), and November 2019 (a.4–c.4).

3.1.1 Spatial NH3 total column concentration

The prior and posterior snapshots of NH3 column concen-
tration simulations for four months (January, April, July, and
November) are presented in Fig. 1c–d, alongside the IASI
measurements, shown in panel (a). These months were se-
lected as typical examples representing four different sea-
sons. The column concentration distributions for the remain-
ing months from the model and satellite observations can be
found in Figs. S4 and S5, respectively. While the prior sim-
ulation generally captured the distribution of NH3, with hot
spots in North India, Pakistan, and Bengal – consistent with
the IASI retrievals – it failed to capture the correct seasonal
profile. According to the IASI measurements, NH3 concen-
trations peak in July, a pattern clearly visible in the monthly
variation of the IASI-observed NH3 column concentrations
from 2015 to 2023, as will be discussed in Sect. 3.1.2. How-
ever, the prior model incorrectly indicated that the highest
NH3 loading occurred in the spring and autumn seasons. As
a result, NH3 loading was severely overestimated in winter
and spring (particularly in May) but significantly underesti-
mated in summer.

Note that there are still some discrepancies in the poste-
rior simulation vs. IASI column measurements. In particu-
lar, as shown in panel (a.3) vs. (d.3) of Fig. 1, the posterior
simulation did not fully reproduce the extremely high NH3
loading observed by IASI in July (with column-integrated
concentrations exceeding 10× 1016 molec. cm−2). This out-

come occurs because the goal of the assimilation is to achieve
the best fit between the posterior, observed, and prior emis-
sions rather than just fitting the observations alone. The ex-
tremely high NH3 concentrations are less likely given the rel-
atively low prior NH3 emissions and the background error
covariance matrix described in Sect. 2.3. Additionally, the
4DEnVar assimilation algorithm inherently accounts for po-
tential model variations through ensemble simulations. How-
ever, the response of GEOS-Chem NH3 simulations to emis-
sion variations is nonlinear, making it difficult to accurately
resolve these discrepancies through the 4DEnVar data as-
similation algorithm without implementing outer-loop opti-
mization strategies. Additionally, the spatial distribution of
the NH3 column concentrations observed by CrIS, as shown
in panel (b) of Fig. 1, demonstrate good consistency with
both the IASI observations and the posterior simulation re-
sults presented in Fig. 1.

3.1.2 Seasonal and annual variation of NH3
concentration

We examined the monthly average of the total NH3 col-
umn concentrations simulated by the model over the South
Asia region, along with IASI and CrIS observations, in
Fig. 4a. The prior model results demonstrate significant
seasonal variability in NH3 column concentrations, char-
acterized by peaks in May and September and compara-
tively low levels during the summer months. This variabil-
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ity has been corrected through assimilating the IASI mea-
surements in this study. Conversely, the posterior results
reveal a distinct temporal pattern, featuring a pronounced
peak in May and a negligible peak in July. The high value
in May is attributed to the huge amount of biomass burn-
ing in South Asia during the spring in Fig. S6c. We identi-
fied the planting and harvesting times of crops in the South
Asia region based on information from the U.S. Department
of Agriculture (USDA, https://ipad.fas.usda.gov/rssiws/al/
crop_calendar/sasia.aspx, last access: 3 March 2025), as pre-
sented in Table 2. The heavy use of fertilizers in agricultural
activities has resulted in the highest emission throughout the
year, as will be illustrated in Fig. 4b in Sect. 3.2. This lead to
the second NH3 concentration peak in July. The reasons for
higher emissions in July but lower concentration levels com-
pared to May could be attributed to meteorological factors.
The monsoon season in South Asia results in increased wet
deposition, and, notably, 2019 experienced the most intense
monsoon since 1994 (Bhargavi et al., 2024). As shown in
Fig. S6a and b, the precipitation and temperature in July are
the highest of the year. High temperature could increase am-
monia volatilization, leading to higher concentrations, while
high precipitation increases the wet deposition of ammonia.
However, the impact of temperature on concentration is sec-
ondary compared to the dramatic variations in precipitation.
These combined factors result in July having a smaller con-
centration peak compared to May, despite July being another
peak month. Additionally, CrIS exhibits minor peaks in May
and July, consistent with our posterior results.

Figure 5a–i illustrates the annual average NH3 column
concentrations observed by the IASI satellite instruments
from 2015 to 2023. The data clearly show that Pakistan
and northern India consistently experience the highest NH3
concentrations, with values exceeding 5× 1016 molec. cm−2.
Furthermore, the spatial distribution of annual average NH3
column concentrations remained relatively stable over the
past decade.

Figure 5j depicts the monthly mean NH3 column concen-
trations derived from the IASI satellite. The time series re-
veals a clear seasonal pattern, with peaks occurring in sum-
mer and lower levels in winter, and shows that the highest
concentrations were consistently observed in July. Addition-
ally, the inter-annual variation in NH3 column concentrations
from 2013 to 2019 exhibits a modest upward trend, ranging
from 2.17 to 2.6 (× 1016 molec. cm−2), corresponding to an
average growth rate of approximately 6.32 %. Subsequent to
2019, NH3 concentrations stabilize within the range of 2.6
to 2.8 (× 1016 molec. cm−2). Given the relatively stable NH3
levels after 2019, we restricted our analysis to conducting
an assimilation-based emission inversion for the year 2019.
Extending emission inversion over a longer period would re-
quire substantial computational resources.

Figure 4. The monthly average total NH3 column concentrations
from the prior and posterior, observed by IASI and CrIS from Jan-
uary to December (a). The monthly average values of the prior and
posterior emissions from January to December (b).

3.2 Anthropogenic NH3 emissions analysis

By assimilating IASI NH3 column concentrations, the pos-
terior anthropogenic monthly NH3 emission inventories for
2019 were updated. Scenarios of the posterior emission in-
ventories, along with the increments (posterior minus prior),
for January, April, July, and November are shown in Fig. 3b–
c. The prior, posterior, and increment data for the remain-
ing months of 2019 are provided in Figs. S7–S9 in the Sup-
plement. Our posterior inventory demonstrated that, in gen-
eral, the primary sources of NH3 originated from North In-
dia, Pakistan, and Bengal. This finding is consistent with the
CEDS inventory, as well as with other studies (Pawar et al.,
2021). However, a huge discrepancy emerged when we com-
pared the posterior and prior results, particular for April (in
Fig. 3b) and July (in Fig. S3c). The posterior results reveal
a distinct seasonal emission profile compared to the prior.
Specifically, emissions during spring are significantly over-
estimated by the prior model, whereas summer emissions are
underestimated by up to 3-fold.

To better illustrate the differences in timing profiles
throughout the year, the monthly average emission intensity
over South Asia was calculated and is shown in Fig. 4b. The
prior anthropogenic emission inventory exhibits a “double-
peak” pattern, mirroring the profile of the average NH3 con-
centration displayed in Fig. 4a. The emission flux reaches its
maximum in May, peaking at approximately 0.6 g m−2, with
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Table 2. Crop calendars for selected Kharif crops in Bhutan, India, Nepal, and Pakistan from USDA.

Country Crop Planting period Mid-season Harvest period

Bhutan Corn Feb–Mar Apr–Jun Jul–Sep
India Corn (Kharif) Mar–Jun Jul–Aug Sep–Oct
India Cotton Apr–Jul Aug–Sep Oct–Dec
India Millet (Kharif, Pearl) May–Jul Aug Sep–Nov
India Peanut (Kharif) May–Jul Aug Sep–Nov
India Rice (Kharif) May–Jul Aug Sep–Nov
India Sorghum (Kharif) May–Jul Aug Sep–Oct
India Soybean Jun–Jul Aug Sep–Oct
India Sunflower seed (Kharif) Jun–Jul Aug Sep–Oct
Nepal Millet May–Jul Aug Sep–Nov
Nepal Rice May–Jul Aug–Sep Oct–Dec
Pakistan Corn May–Jul Aug Sep–Oct
Pakistan Cotton Mar–Jun Jul–Aug Sep–Nov
Pakistan Millet May–Jun Jul Aug–Sep
Pakistan Peanut Mar–Jun Jul Aug–Oct
Pakistan Rice May–Jul Aug Sep–Nov
Pakistan Sorghum Jun–Jul Aug Sep–Oct
Pakistan Sunflower seed Jan–Feb Mar–May Jun

a secondary peak occurring in September around 0.25 g m−2.
In contrast, the assimilation that integrates prior CEDS emis-
sions with IASI measurements shows much lower intensities
from January to May, with the largest negative differences
(> 0.3 g m−2) observed in May. While the prior emissions
remain relatively low during the summer, the emission inver-
sion reveals positive increments, with the posterior inventory
indicating the maximum emission flux in July, peaking at
approximately 0.4 g m−2. In general, the posterior emissions
also display a “double-peak” pattern; however, the peaks oc-
cur in May and July, in contrast to the May and September
peaks observed in the prior emissions.

The substantial emissions in July, as indicated by the pos-
terior anthropogenic inventory, can be attributed to the in-
creased fertilizer application for crops during the summer
season (Tanvir et al., 2019). As shown in Table 2, the sow-
ing period for crops in South Asia is generally from May to
July, with July being the peak growth period for crops, re-
sulting in a large amount of fertilization, resulting in July
surpassing May in emission intensity. From July to Septem-
ber, as rice and other crops progress through their growth
stages, fertilizer application typically decreases, leading to
a gradual reduction in NH3 emissions. Additionally, tem-
peratures decline from August to September Fig. S6b, re-
ducing the volatilization rate of NH3, thereby leading to a
further decrease in emissions. This pattern occurs because
NH3 volatilization is strongly influenced by temperature (Fan
et al., 2011).

The convergence of prior and posterior anthropogenic
emission intensities in June is attributed to the overall off-
setting of negative and positive increments in the region, as
shown in Fig. S9f. As depicted in panel (c) of Fig. 3, the

negative increments observed in January and April primar-
ily originate from the Indian region, while the positive incre-
ments in July and September are predominantly observed in
the same area. Additionally, the posterior emission estimates,
which are based on CrIS, have now been included.

3.3 Validation

To evaluate our inversion results, we compared the atmo-
spheric NH3 simulation driven by either the posterior emis-
sion (referred to as the posterior simulation) or the prior one
against the observations, including the assimilated IASI col-
umn data and the independent CrIS retrieval and ground-
based NH3 and PM2.5 concentration measurements.

3.3.1 NH3 total column concentration validation

The difference between the model and IASI observations for
the entire year of 2019 is shown in Fig. 6a. The overesti-
mation by the prior model is particularly evident in spring
(especially May), while the underestimation is most promi-
nent in summer (especially July). These discrepancies con-
tributed to a relatively high model error, with the correla-
tion coefficient (R) as low as 0.33 and the root mean square
error (RMSE) as high as 4.64× 1016 molec. cm−2. In con-
trast, the posterior emission-driven GEOS-Chem simulations
showed good consistency with the IASI retrievals, captur-
ing both the spatial and temporal variations, as shown in
panel (d) of Fig. 1. This resulted in significantly improved
performance, with R increasing to 0.76 and RMSE reducing
to 2.48× 1016 molec cm−2, as shown in panel (b) of Fig. 6.
The discrepancy between the model and the posterior results
mentioned in Sect. 3.1.1 in July is also evident in the scat-
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Figure 5. The spatial distribution of the annual averaged IASI column concentrations in South Asia from 2015 to 2023 (a–i). Panel (j)
presents a time series depicting the monthly variation in IASI-observed NH3 column concentrations from 2015 to 2023, with the box plots
representing the yearly averages, showing interannual changes.

ter plot of the posterior column simulation against the IASI
measurements in panel (b) of Fig. 6.

In addition, we further evaluated our posterior simula-
tions using the other advanced satellite NH3 product from the
CrIS instruments. The scatter plots of the CrIS monthly NH3
column concentrations vs. the prior/posterior simulations in
2019 are presented in panels (c) and (d) of Fig. 6. Steady im-
provements were observed in the comparison against the in-
dependent CrIS retrievals, with the correlation coefficient (R)
increasing from 0.42 to 0.71 and the RMSE decreasing from
3.96 to 2.06× 1016 molec. cm−2. These evaluations give us
confidence that our emission inversion has successfully cal-
culated the most likely posterior, given both the prior and the
IASI measurements.

3.3.2 NH3 and PM2.5 ground concentration validation

The few surface NH3 concentration observations from
ground stations, shown in Fig. 2, were also utilized to eval-
uate our NH3 emission inversion results. Figure 7 presents
the scatter plot of monthly surface NH3 concentrations
against the prior/posterior simulations. Our posterior re-
sults are in better agreement with these independent sur-
face NH3 concentration measurements. This is evident from
the higher correlation coefficient (R = 0.39) in the posterior
compared to R = 0.28 in the prior simulation. The RMSE
values remained almost the same, changing slightly from
22.18 µg m−3 in the prior to 22.73 µg m−3 in the posterior.
The large remaining error is due to several instances where
ground NH3 concentration measurements indicated values
several times higher than our simulations. This was also re-
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Figure 6. Scatter plot of the IASI (a–b) and CrIS (c–d) observed NH3 concentrations against the NH3 simulation over South Asia, using
either the prior or the posterior NH3 emission inventory, from January to December.

ported by Pawar et al. (2021), which suggests that ground
NH3 observations are likely to overestimate NH3 levels. The
mismatch between ground observations and simulations may
be attributed to the fact that most monitoring stations are lo-
cated in urban regions of India, where NH3 concentrations
are higher due to traffic and human activities (Sharma et al.,
2014). Simulations with an extremely fine resolution could
provide a more accurate representation of NH3 characteris-
tics at these surface sites. However, such simulations would
significantly increase the computational burden on the emis-
sion inversion system, which is beyond the scope of this
study.

NH3 is the key precursor of the inorganic aerosol. The
estimated NH3 emission inventory is supposed to improve
the aerosol simulation as well, under the assumption that
aerosols from other sources are accurately represented. The
monthly averaged PM2.5 concentrations against the simula-
tions using either our prior or the posterior NH3 inventory,
as shown in Fig. 8a–b. It is evident that both RMSE and
Bias have been reduced to varying degrees: RMSE decreased

from 29.15 µg m−3 in the prior to 22.75 µg m−3 in the pos-
terior, and bias decreased from 24.8 µg m−3 in the prior to
18.37 µg m−3 in the posterior. These results indicate that the
emission inventory optimized by our inversion system has
improved the model’s performance in simulating PM2.5, re-
ducing both systematic biases and model underestimation ef-
fectively.

4 Summary and conclusion

South Asia has been severely affected by NH3, which has
significant impacts on both human health and the ecologi-
cal environment. The current emission inventories, primarily
based on bottom-up approaches, are subject to substantial un-
certainties. This is due to the fact that the intensity of NH3
emissions from livestock and fertilizers is heavily influenced
by management and farming practices, yet this information
is often not widely available. As a result, accurately simu-
lating the spatiotemporal characteristics of atmospheric NH3
and evaluating its impacts remain challenging. The use of
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Figure 7. Scatter plot of the ground-observed vs. NH3 simulation over South Asia using either the prior (a) or the posterior (b) NH3 emission
inventory for 2019.

Figure 8. Scatter plot of the ground-observed vs. PM2.5 simulation over South Asia using either the prior (a) or the posterior (b) emission
inventory for 2019.

satellite observations, such as those from IASI, for top-down
emission inversion has emerged as an effective method to de-
velop more accurate inventories. However, research in this
area remains limited in South Asia.

This study employed a 4DEnVar-based emission inver-
sion system to optimize anthropogenic NH3 emissions in
South Asia. The most likely posterior monthly anthropogenic
NH3 emission inventories were calculated given the CEDS
prior inventory and the NH3 column concentration observa-
tions from the polar-orbiting IASI satellite instrument. Vali-
dation against satellite and ground-based observations shows
that NH3 concentration simulations driven by the poste-
rior emissions perform significantly better than those driven
by the prior inventory. In the comparison against the IASI
measurements, the correlation coefficient (r) increased from
0.33 (for the prior) to 0.76, and the root mean square error
(RMSE) was reduced from 4.64× 1016 molec. cm−2 (prior)
to 2.48× 1016 molec. cm−2 (posterior). The posterior results

also show improvements when compared to independent
CrIS satellite measurements, with the correlation coefficient
(r) rising from 0.42 (prior) to 0.71 and RMSE reducing from
3.96× 1016 molec. cm−2 (prior) to 2.06× 1016 molec. cm−2

(posterior). Additionally, validation with ground-level NH3
and PM2.5 concentrations further supports the findings,
demonstrating that our emission inversion system effectively
reduces systematic biases and underestimation in ground-
level simulations.

The spatial and temporal characteristics of anthropogenic
NH3 emissions over South Asia were then analyzed based
on the inversion. While the prior CEDS inventory gener-
ally captured the NH3 emission hotspots, such as in Pak-
istan, North India, and Bengal, it failed to accurately rep-
resent the seasonal trend. Specifically, the prior inventory
showed a “double-peak” pattern throughout the year, with
peaks in May and September. In contrast, the posterior results
revealed the correct seasonal pattern, with the “double-peak”
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profile occurring in May and July. The posterior emission in-
ventory’s total annual estimate is 12.61 Tg, compared to the
prior inventory’s 13.32 Tg.

The top-down NH3 emission inversion system driven by
IASI observations has demonstrated superior performance in
enhancing the NH3 emission estimates. Nevertheless, several
challenges persist, such as the requirement for simulations at
finer resolutions to precisely capture very local emission dy-
namics. Furthermore, observations from stationary satellites,
such as FY-4B, also deserve attention for exploring the diur-
nal variations of the NH3 emission. Our next steps will focus
on further refining the spatiotemporal patterns at the daily or
weekly scale, building on the current posterior results.

Code and data availability. The NH3 emission inversion system
is in the Python environment and is archived on Zenodo (https:
//doi.org/10.5281/zenodo.7015397, Jin, 2022). The NH3 prior and
posterior emission inventories are archived on Zenodo (https://doi.
org/10.5281/zenodo.14979151, Xia, 2025). The IASI ANNI-NH3-
v4R-ERA5 data suites are available at https://iasi.aeris-data.fr/ (last
access: 6 July 2025):

– https://doi.org/10.25326/10 (AERIS, 2023a),

– https://doi.org/10.25326/11 (AERIS, 2023b),

– https://doi.org/10.25326/67 (AERIS, 2023c).

The CrIS v1.6.4 data are available at https://hpfx.collab.
science.gc.ca/~mas001/satellite_ext/cris/ (Shephard et al.,
2020). The observed NH3 and PM2.5 concentration data are
available at https://www.kaggle.com/datasets/abhisheksjha/
time-series-air-quality-data-of-india-2010-2023 (Jha, 2023).
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