

Supplement of

Enhanced emission of intermediate-volatility/semi-volatile organic matter in gas and particle phases from ship exhausts with low-sulfur fuels

Binyu Xiao et al.

Correspondence to: Fan Zhang (fzhang@geo.ecnu.edu.cn) and Gehui Wang (ghwang@geo.ecnu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Abbreviations	Full name
IMO	International Maritime Organization
MARPOL	International Convention for the Prevention of Pollution from Ships
SECA	Sulfur Emission Control Area
STEAM	Ship Traffic Emissions Assessment Model
SOA	secondary organic aerosol
POA	primary organic aerosol
VOC	volatile organic compound
IVOC	intermediate organic compound
SVOC	intermediate organic compound
OGV	ocean-going vessel
ICS	inland cargo ship
HSF	high-sulfur fuel
LSF	low-sulfur fuel
HFO	heavy fuel oil
MGO	marine gas oil
WCO	waste cooking oil
ME	main engine
AE	auxiliary engine
LSE	low-speed engine
MSE	medium-speed engine
SOAFP	secondary organic aerosol formation potential
UCM	unresolved complex mixture
PAH	polycyclic aromatic hydrocarbon
OPAH	oxygenated polycyclic aromatic hydrocarbon
b-alkane	branched alkane

Table S1 Abbreviations used in this article and their definitions

Ship ID	Туре	Tonnage (kt)	Main engine	Auxiliary engine	Ship age (year)
OGV1	Ocean going vessel	180.0	2-stroke, 15748 kW, 75 rpm	4-stroke, 1280 kW, 900 rpm	0
OGV2	Ocean going vessel	110.0	2-stroke, 13500 kW, 91.1 rpm	4-stroke, 900 kW, 900 rpm	0
OGV3	Ocean going vessel	210.0	2-stroke, 15745 kW, 75rpm	4-stroke, 1180 kW, 900 rpm	0
ICS1	Inland cargo ship	0.90	4-stroke, 255 kW, 1000 rpm	-	14
ICS2	Inland cargo ship	0.98	4-stroke, 300 kW, 1000 rpm	-	12
ICS3	Inland cargo ship	0.80	4-stroke, 145 kW, 1000 rpm	-	6
ICS4	Inland cargo ship	0.39	4-stroke, 138 kW, 1500 rpm	-	10

Table S2 Detailed parameters of the test three ocean-going vessels (OGVs) and four inland cargo ships (ICSs)

Ship	Engine	Operating	Sampling	Ship	Engine	Operating mode	Sampling
ID	type	mode	duration	ID	type		duration
OGV1	Main	20%_MGO°	20 min	OGV3	Auxiliary	50%_MGO	20 min
	engine	75%_MGO	20 min		engine	50%_HFO	20 min
	Auxiliary	75%_MGO	07 min			75%_HFO	20 min
	engine	(NCR)	27 11111				
OGV2	Main	25%_HFO	20 min	ICS1	Main	Maneuvering_No.0	20 min
	engine		20 11111		engine	diesel	20 11111
		50%_HFO	20 min			Cruise_No.0 diesel	20 min
		75%_HFO	20 min	ICS2	Main	Maneuvering_No.0	20 min
			20 11111		engine	diesel	20 11111
	Auxiliary	85%_HFO	20 min			Cruise_No.0diesel	20 min
engine		100%_HFO	O 20 min	ICS3	Main	Maneuvering_No.0	20 min
			20 11111		engine	diesel	20 11111
		50%_MGO	25 min			Cruise_No.0 diesel	20 min
		50%_HFO	70 min	ICS4	Main	Maneuvering_No.0	20 min
			70 11111		engine	diesel	20 11111
OGV3	Main	75%_MGO	40 min			Cruise_No.0 diesel	20 min
	engine	25%_HFO	20 min				
		50%_HFO	10 min				
		75%_HFO	40 min				
		95%_HFO	40 min				

Table S3 Engine type, operating mode, and fuel type of each ship for each

measurement

^{a,} means percentage of engine load under what type of fuel

Compounds	Abbreviation	M/Z	Detection limit (ng/m ³)	Recovery (%)	classification
(I) n-Alkanes					
Dodecane	C ₁₂	170	0.11	86	IVOC
Tridecane	C ₁₃	184	0.12	84	IVOC
Tetradecane	C_{14}	198	0.12	91	IVOC
Pentadecane	C ₁₅	212	0.12	90	IVOC
Hexadecane	C ₁₆	226	0.12	83	IVOC
Heptadecane	C ₁₇	240	0.12	81	IVOC
Octadecane	C_{18}	254	0.26	83	IVOC
Nonadecane	C19	268	0.25	85	IVOC
Icosane	C_{20}	282	0.26	82	IVOC
Henicosane	C ₂₁	296	0.20	89	IVOC
Docosane	C ₂₂	310	0.15	92	IVOC
Tricosane	C ₂₃	324	0.56	93	SVOC
Tetracosane	C ₂₄	338	0.29	95	SVOC
Pentacosane	C ₂₅	352	0.11	80	SVOC
Hexacosane	C_{26}	366	0.45	88	SVOC
Heptacosane	C ₂₇	380	0.24	96	SVOC
Octacosane	C ₂₈	394	0.61	98	SVOC
Nonacosane	C ₂₉	408	0.65	84	SVOC
Triacontane	C ₃₀	422	0.56	96	SVOC
Hentriacontane	C ₃₁	436	0.76	92	SVOC
Dotriacontane	C ₃₂	450	0.37	90	SVOC
Tritriacontane	C ₃₃	464	0.11	84	SVOC
Tetratriacontane	C ₃₄	478	0.20	86	SVOC
Pentatriacontane	C35	492	0.21	93	SVOC
Hexatriacontane	C ₃₆	506	0.12	92	SVOC
(II)PAHs					
Phenanthrene	Phe	178	0.11	79	IVOC
Anthracene	Ant	178	0.02	80	IVOC
Fluoranthene	Flu	202	0.13	86	IVOC
Pyrene	Pyr	202	0.10	84	IVOC
Benz(a)anthracene	BaA	228	0.04	83	IVOC
Chrvsene / Triphenvlene	Chr/TP	228	0.25	85	IVOC
Benzo(b)fluoranthene	BbF	252	0.34	89	IVOC
Benzo(k)fluoranthene	BkF	252	0.11	93	IVOC
Benzo(a)pyrene	BaP	252	0.28	92	IVOC
Benzo(e)pyrene	BeP	252	0.09	95	IVOC
Pervlene	Pery	252	0.02	83	IVOC
Indeno[123-cd]pyrene	IP	276	0.14	86	SVOC
Dibenz(a,h)anthracene	DBA	278	0.02	88	SVOC
Benzo(ghi)nervlene	BghiP	276	0.10	89	SVOC
(III) OPAHs	6				2.00
1-Naphthaldehyde	1-Nap	156	0.01	80	IVOC
9-Fluorenone	9-FO	180	0.01	97	IVOC
Anthraquinone	ATQ	208	0.01	98	IVOC
Benzanthrone	BZA	230	0.01	93	IVOC

Table S4 The identified I/SVOC species in this study

Benzo(a)anthracene- 7,12-dione	7,12-BaAQ	304	0.02	91	IVOC
1,4-Chrysenequione	1,4-CQ	258	0.01	99	SVOC
5,12-Naphthacenequione	5,12-NAQ	318	0.04	93	SVOC
6H-Benzo(cd)pyrene-6-	BPYRone	254	0.01	07	SVOC
one		234	0.01	97	SVUC
(IV) Fatty acids					
Capric Acid	C _{10:0}	172	0.32	93	IVOC
Undecanoic Acid	$C_{11:0}$	186	0.48	94	IVOC
Dodecanoic	$C_{12:0}$	200	0.75	93	IVOC
Tridecanoic	C _{13:0}	214	0.58	91	IVOC
Tetradecanoic	C _{14:0}	228	0.17	91	IVOC
Pentadecanoic	C _{15:0}	242	4.20	88	IVOC
Hexadecanoic	C _{16:0}	256	0.30	84	IVOC
Heptadecanoic	C _{17:0}	270	0.16	86	IVOC
Octadecanoic	C _{18:0}	284	0.56	91	IVOC
Octadecenoic	C _{18:1}	282	0.22	91	IVOC
Nonadecanoic	C19:0	298	0.31	95	IVOC
Eicosanoic	C _{20:0}	312	0.95	92	IVOC
Heneicosanoic	C _{21:0}	326	0.95	93	IVOC
Docosanoic	C _{22:0}	340	0.93	88	IVOC
(V) Aromatic acids					
o-Phthalic acid	O-Ph	166	0.11	95	IVOC
m-Phthalic acid	M-Ph	166	0.05	92	IVOC
p-Phthalic acid	P-Ph	166	0.11	96	IVOC
(VI) Hopanes					
17α(H)-22,29,30-	C272	191	0.08	86	SVOC
trisnorhopane	- 27a	101			2,00
1/β(H)-22,29,30-	C _{27b}	191	0.03	86	SVOC
$17\alpha(H) 21\beta(H) - 30$		191			
norhopane	C_{29ab}	171	0.26	93	SVOC
17β(H),21α(H)-30-	C	191	0.04	00	GUOG
norhopane	C _{29ba}		0.04	89	SVUC
17α(H),21β(H)-hopane	C _{30ab}	191	0.19	94	SVOC
17β(H),21α(H)-hopane	C _{30ba}	191	0.01	86	SVOC
17α(H),21β(H)-22S-	Calaba	191	0.01	88	SVOC
homohopane	C31ab S		0.01	00	5,000
$17\alpha(H),21\beta(H)-22R-$	C _{31ba S}	191	0.01	84	SVOC
178(U) 21 a(U)		101			
1/μ(Π),21α(Π)- homohonane	C _{31ba}	171	0.01	82	SVOC
$17\alpha(H).21\beta(H).228-$	~	10:	0.51	0.5	
bishomohopane	C _{32ab S}	191	0.01	86	SVOC
17α(H),21β(H)-22R-	C	101	0.01	8 2	SVOC
bishomohopane	U32ab R	171	0.01	02	3,00

M/Z: Mass-to-charge ratio

Carbon Number	N-alkanes	B-alkanes	PAHs	UCM	Data sources
12	0.01	0.0017	0.28	0.01	
13	0.019	0.0035	0.40	0.019	
14	0.033	0.007	0.49	0.033	
15	0.055	0.013	0.62	0.055	
16	0.089	0.024	0.70	0.089	
17	0.14	0.042	0.75	0.14	
18	0.23	0.073	0.79	0.23	
19	0.37	0.12	0.82	0.37	
20	0.56	0.20	0.82	0.56	
21	0.77	0.32	0.82	0.77	N-alkanes and B-
22	0.96	0.47	0.82	0.96	alkanes from Gentner
23	1.08	0.61	0.82	1.08	et al. (2012);
24	1.14	0.70	0.82	1.14	PAHs from Zhao et al.
25	1.16	0.75	0.82	1.16	(2014).
26	1.16	0.75	0.82	1.16	
27	1.16	0.75	0.82	1.16	
28	1.16	0.75	0.82	1.16	
29	1.16	0.75	0.82	1.16	
30	1.16	0.75	0.82	1.16	
31	1.16	0.75	0.82	1.16	
32	1.16	0.75	0.82	1.16	
33	1.16	0.75	0.82	1.16	
34	1.16	0.75	0.82	1.16	
35	1.16	0.75	0.82	1.16	
36	1.16	0.75	0.82	1.16	

Table S5 SOA yields used in this study

Note: The yield of $SOA_{n-alkane}$ after carbon number 25 was estimated by pentacosane, while yield of $SOA_{b-alkane}$ after carbon number 25 was also estimated by 25th b-alkane, yield of SOA_{UCM} was replaced with data from n-alkane, and other substances were replaced with corresponding data from n-alkanes based on their volatility distribution.(Gentner et al., 2012; Zhao et al., 2014) And the OH reaction rate constants (cm³ molec⁻¹ s⁻¹) and SOA yields used in this study were reacted (Δt) after 48 h photo-oxidation at the OA concentration of 9 µg/m³

Carbon Number	N-alkanes	B-alkanes	PAHs	UCM	Data sources
12	1.32E-11	1.32E-11	2.30E-11	1.32E-11	
13	1.51E-11	1.51E-11	4.86E-11	1.51E-11	
14	1.68E-11	1.68E-11	6.00E-11	1.68E-11	
15	1.82E-11	1.82E-11	8.00E-11	1.82E-11	
16	1.96E-11	1.96E-11	8.00E-11	1.96E-11	771 (1
17	2.10E-11	2.10E-11	2.10E-11	2.10E-11	2 nao et al.
18	2.24E-11	2.24E-11	2.24E-11	2.24E-11	(2014)
19	2.38E-11	2.38E-11	2.38E-11	2.38E-11	
20	2.52E-11	2.52E-11	2.52E-11	2.52E-11	
21	2.67E-11	2.67E-11	2.67E-11	2.67E-11	
22	2.81E-11	2.81E-11	2.81E-11	2.81E-11	

Table S6 Reaction constant of OH radicals used in this study

Compounds	HFO	MGO	No.0 diesel
(I) Acids			
O-Ph	$0.54{\pm}0.13$	$0.89{\pm}0.67$	$0.55{\pm}0.99$
M-Ph	0.12 ± 0.01	0.19±0.12	$0.18{\pm}0.40$
P-Ph	0.58±0.24	1.02 ± 0.85	$0.34{\pm}0.48$
C _{10:0}	$0.40{\pm}0.15$	0.61 ± 0.38	0.95 ± 1.54
C _{11:0}	2.07±0.11	3.05±0.25	$3.09{\pm}0.97$
C _{12:0}	0.71±0.13	5.89 ± 0.46	4.50±2.60
C _{13:0}	0.25±0.12	0.43±0.10	$0.66{\pm}0.47$
$C_{14:0}$	1.31 ± 0.03	10.1±0.36	5.31±1.52
C _{15:0}	0.86 ± 0.06	3.60±0.20	$2.17{\pm}1.02$
C _{16:0}	$0.39{\pm}0.02$	0.67 ± 1.58	0.52 ± 4.79
C _{17:0}	0.30±0.10	$0.91 {\pm} 0.05$	0.99 ± 0.38
$C_{18:0}$	4.39±0.04	2.39±1.09	5.16±4.92
C _{18:1}	4.84±0.03	3.39±0.43	$0.54{\pm}2.20$
C _{19:0}	0.28 ± 0.02	$0.70{\pm}0.04$	0.61 ± 0.18
C _{20:0}	0.41±0.05	1.92 ± 0.13	$0.80{\pm}0.24$
C _{21:0}	$0.14{\pm}0.17$	0.67 ± 0.02	0.70±0.11
C _{22:0}	0.34±0.17	2.09 ± 0.03	$0.74{\pm}0.28$
(II) n-Alkanes			
C ₁₂	$0.12{\pm}0.07$	0.16±0.03	0.12±0.12
C_{14}	$0.14{\pm}0.06$	$0.28{\pm}0.06$	$0.52{\pm}0.69$
C ₁₅	0.38±0.37	0.63±0.14	$1.18{\pm}2.46$
C ₁₆	0.88±1.35	0.72±0.15	2.38 ± 5.48
C ₁₇	2.41±3.62	3.04±2.24	4.56 ± 8.84
C_{18}	3.45±4.36	3.04±3.55	$3.00{\pm}7.08$
C ₁₉	4.95±0.42	3.31±2.83	3.34±7.61
C_{20}	4.83±0.09	2.28±1.98	$2.43{\pm}6.08$
C ₂₁	4.21±2.22	2.20±1.51	2.13±5.05
C ₂₂	3.48±0.17	$1.94{\pm}1.55$	1.54±3.62
C ₂₃	3.06±1.67	1.61 ± 1.51	1.21 ± 2.88
C ₂₄	2.85±0.16	1.74±1.35	$0.98{\pm}2.19$
C ₂₅	2.87 ± 4.80	1.46 ± 0.86	2.94±5.83
C ₂₆	2.43±0.38	$1.02{\pm}0.60$	1.55±3.66
C ₂₇	2.20±0.11	$0.92{\pm}0.52$	2.23±5.31
C_{28}	$1.79{\pm}0.48$	0.70 ± 0.32	1.50 ± 3.48
C ₂₉	$1.57{\pm}0.08$	0.61±0.26	0.83±1.37
C ₃₀	1.14±2.11	0.36±0.16	0.65±1.26
C ₃₁	$1.02{\pm}1.90$	0.29±0.17	$0.46{\pm}0.79$
C ₃₂	0.70±1.43	0.19±0.12	$0.47{\pm}1.06$
C ₃₃	0.54±1.15	0.17±0.11	0.49±1.35
C ₃₄	0.35±0.76	$0.18{\pm}0.08$	0.33 ± 0.89
C ₃₅	0.30±0.37	0.11 ± 0.02	0.21 ± 0.05
C36	0.10 ± 0.02	0.11 ± 0.01	0.15 ± 0.04
(III) PAHs			
Phe	0.81±0.13	0.72 ± 0.10	0.77 ± 0.23

Table S7 Profiles of I/SVOCs in ship exhausts under different fuels(%)

Ant	$0.06{\pm}0.01$	$0.04{\pm}0.01$	$0.09{\pm}0.01$
Flu	$0.29{\pm}0.24$	0.18±0.12	$0.22{\pm}0.28$
Pyr	$0.18{\pm}0.15$	$0.10{\pm}0.04$	0.22 ± 0.32
BaA	$0.07{\pm}0.11$	$0.06{\pm}0.03$	$0.05{\pm}0.05$
Chr/TP	0.10±0.13	$0.06{\pm}0.09$	$0.03{\pm}0.05$
BbF	0.10±0.12	$0.07{\pm}0.06$	$0.10{\pm}0.11$
BkF	$0.03{\pm}0.03$	$0.04{\pm}0.01$	$0.08{\pm}0.03$
BaP	$0.04{\pm}0.06$	$0.01{\pm}0.02$	$0.02{\pm}0.04$
BeP	$0.08{\pm}0.02$	$0.12{\pm}0.01$	$0.03{\pm}0.01$
Pery	$0.02{\pm}0.01$	$0.04{\pm}0.01$	$0.00{\pm}0.01$
IP	$0.03{\pm}0.04$	$0.04{\pm}0.01$	$0.05{\pm}0.01$
DBA	$0.02{\pm}0.02$	$0.03{\pm}0.01$	$0.03{\pm}0.02$
BghiP	$0.02{\pm}0.01$	$0.02{\pm}0.01$	$0.02{\pm}0.00$
(IV)OPAHs			
1-Nap	3.66±0.17	$3.96{\pm}0.47$	$7.46{\pm}6.30$
9-FO	$0.17{\pm}0.17$	$0.26{\pm}0.36$	0.17±0.23
ATQ	$1.21{\pm}0.97$	$1.22{\pm}0.41$	$0.92{\pm}0.42$
BZA	$0.08{\pm}0.07$	$0.08{\pm}0.05$	$0.16{\pm}0.08$
7,12-BaAQ	3.66±0.17	$3.96{\pm}0.47$	$7.46{\pm}6.30$
1,4-CQ	$0.00{\pm}0.00$	$0.00{\pm}0.00$	$0.00{\pm}0.00$
5,12-NAQ	$0.00{\pm}0.00$	$0.00{\pm}0.00$	$0.00{\pm}0.00$
BPYRone	$0.00{\pm}0.00$	$0.00{\pm}0.00$	$0.00{\pm}0.00$
(V)Hopanes			
C_{27a}	$0.24{\pm}0.42$	0.13 ± 0.06	0.09±0.13
C _{27b}	0.05 ± 0.09	$0.07{\pm}0.09$	$0.02{\pm}0.01$
C _{29ab}	1.07 ± 2.22	$0.49{\pm}0.54$	0.25 ± 0.66
C _{29ba}	$0.09{\pm}0.17$	$0.05 {\pm} 0.04$	$0.03 {\pm} 0.08$
C _{30ab}	0.85 ± 1.67	$0.37{\pm}0.37$	0.25 ± 0.63
C _{30ba}	$0.10{\pm}0.16$	$0.05 {\pm} 0.04$	0.05±0.12
C _{31ab S}	$0.39{\pm}0.80$	$0.17{\pm}0.18$	0.06 ± 0.15
C _{31ba} s	0.21±0.38	$0.10{\pm}0.09$	0.09 ± 0.23
C _{31ba}	0.05 ± 0.11	$0.04{\pm}0.05$	0.02 ± 0.05
C _{32ab} s	0.24 ± 0.48	$0.10{\pm}0.11$	0.06 ± 0.14
C _{32ab R}	$0.03{\pm}0.08$	$0.04{\pm}0.05$	0.01 ± 0.01

Figure S1 Schematic diagram of on-board measurement system

Figure S2 Box-whisker plot of the Modified Combustion Efficiency (MCE) with different fuel types

References:

- Gentner, D. R., Isaacman, G., Worton, D. R., Chan, A. W. H., Dallmann, T. R., Davis, L., Liu, S., Day, D. A., Russell, L. M., Wilson, K. R., Weber, R., Guha, A., Harley, R. A., and Goldstein, A. H.: Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions, Proc. Natl. Acad. Sci. U. S. A., 109, 18318-18323, 10.1073/pnas.1212272109, 2012.
- Zhao, Y., Hennigan, C. J., May, A. A., Tkacik, D. S., de Gouw, J. A., Gilman, J. B., Kuster, W. C., Borbon, A., and Robinson, A. L.: Intermediate-Volatility Organic Compounds: A Large Source of Secondary Organic Aerosol, Environ. Sci. Technol., 48, 13743-13750, 10.1021/es5035188, 2014.