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Abstract. Cirrus cloud formation and evolution are subject to the influences of thermodynamic and dynamic
conditions and aerosols. This study developed near global-scale in situ aircraft observational datasets based on
12 field campaigns that spanned from the polar regions to the tropics from 2008 to 2016. Cirrus cloud micro-
physical properties were investigated at temperatures ≤−40 °C, including ice water content (IWC), ice crystal
number concentration (Ni), and number-weighted mean diameter (Di). Positive correlations were found between
the fluctuations of these ice microphysical properties and the fluctuations of aerosol number concentrations for
larger (> 500 nm) and smaller (> 100 nm) aerosols (i.e. Na500 and Na100, respectively). Steeper linear regression
slopes were seen for large aerosols compared with smaller aerosols. Machine learning (ML) models showed that
using relative humidity with respect to ice (RHi) as a predictor significantly increased the accuracy of predicting
cirrus occurrences compared with temperature, vertical velocity (w), and aerosol number concentrations. The
ML predictions of IWC fluctuations showed higher accuracies when larger aerosols were used as a predictor
compared with smaller aerosols, even though their effects were similar when predicting cirrus occurrences. To
predict IWC magnitudes accurately, aerosol concentrations were particularly important at 50 to 250 s scales (i.e.
10–50 km) and showed increasing effects at low temperatures, small ice supersaturation, and strong updraughts/-
downdraughts. These results improve the understanding of aerosol–cloud interactions and can be used to evaluate
model parameterizations of cirrus cloud properties and processes.

1 Introduction

Cirrus clouds are one of the most prominent cloud types, with
a wide spatial coverage over the Earth’s surface. They are lo-
cated in the upper troposphere around 8–17 km and are there-
fore composed almost entirely of ice crystals (Lynch et al.,
2002). The global cirrus coverage was reported to range from
10 % to 30 % from the polar regions to the tropics, respec-
tively, based on observations of the Cloud-Aerosol Lidar and

Infrared Pathfinder Satellite Observations (CALIPSO) satel-
lite (Sassen et al., 2008, in their Fig. 2). Wang et al. (2024)
showed cirrus frequencies around 20 %–25 % at various lati-
tudes and longitudes (in their Fig. S6) based on several satel-
lite products (e.g. CALIPSO and CloudSat). Because of the
unique features of cirrus clouds, such as their thin, patchy
nature (e.g. Sassen and Campbell, 2001), their high altitudes
(e.g. Lynch et al., 2002), their complex ice morphology (e.g.
Schnaiter et al., 2012), and the large spatial heterogeneities
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of their macro- and microphysical properties (e.g. Diao et al.,
2014a, b; Maciel et al., 2023), cirrus clouds pose particular
challenges for both in situ and remote sensing observations.
For instance, the cirrus frequencies derived from satellite
data may be underestimated because many cirrus clouds were
reported to have a thin optical thickness (less than 0.3) that
may be too tenuous to be effectively captured by satellites
(Sassen and Campbell, 2001). Representing various proper-
ties of cirrus clouds in global climate models (GCMs) is also
critical for accurate estimation of the global radiation budget
and future climate prediction. At the altitude range of cirrus
clouds, large sensitivities of the atmospheric radiative forc-
ing have been found in response to variations in water vapour
and ice crystal concentration (e.g. Solomon et al., 2010; Tan
et al., 2016). Both the macrophysical properties (e.g. spatial
extent, vertical thickness of cloud layers) and microphysical
properties (e.g. mass and number concentrations of ice crys-
tals) of cirrus clouds have the potential to alter the radiative
budget (Liou, 1992) and cause a significant change in climate
feedback (Zhou et al., 2014).

Determining whether ice nucleation occurs is a critical
step for accurately representing the radiative effect of an at-
mospheric column. Changing clear-sky ice supersaturation
into a cirrus cloud given the same amount of total water con-
tent can produce an average increase of 2.49 W m−2 radia-
tive flux at the top of the atmosphere, ranging from 0.56 to
7.19 W m−2 (Tan et al., 2016). Two mechanisms contribute
to ice crystal formation at lower temperatures (e.g. temper-
atures ≤−40 °C), that is, homogeneous freezing and het-
erogeneous freezing. The former mechanism spontaneously
freezes dilute aerosol solutions into ice crystals without the
assistance of ice nucleating particles (INPs) depending upon
the temperature and water activity (Schneider et al., 2021),
while the latter mechanism relies on INPs to initiate ice
nucleation via freezing pathways such as immersion freez-
ing. Even though liquid droplets can freeze instantaneously
at these low temperatures, ice nucleation involving liquid
aerosols and solid particles still requires relatively higher ice
supersaturation (e.g. > 20 %). The freezing of liquid aerosol
solutions via homogeneous freezing requires even higher
thresholds of relative humidity with respect to ice (RHi) (e.g.
Koop et al., 2000) compared with heterogeneous freezing.
Comparatively, INPs can facilitate ice nucleation at lower
RHi thresholds, although only a few types of aerosols have
the capability to serve as INPs (e.g. Kanji et al., 2017, 2019).
It is still contested whether deposition freezing acts as a pos-
sible heterogeneous freezing mechanism at the cirrus tem-
perature range, as a previous study indicated that deposition
freezing may be pore condensation freezing (Marcolli, 2014;
David et al., 2019).

Aerosol–cloud interactions (ACIs) are important for the
formation of clouds because aerosols may contribute to het-
erogeneous freezing by serving as INPs or contribute to
homogeneous freezing as liquid aerosol solutions. Previous
aircraft-based in situ measurements frequently observed min-

eral dust and metallic particles inside ice residuals in mid-
latitudinal cirrus clouds, indicating that these aerosols fre-
quently act as INPs in the real atmosphere (Cziczo et al.,
2013). Other aerosols that may not act as an INP at mixed-
phase cloud temperatures (0 to−38 °C), such as sea salt, may
become an effective INP at cirrus temperatures (Patnaude et
al., 2021a, 2024). In addition, black carbon has been found
to have large variations in its effectiveness as INPs associated
with various morphological and chemical characteristics. Its
effectiveness may also increase during the ageing and coating
processes (e.g. Ullrich et al., 2017; Mahrt et al., 2018, 2020).
The contribution and competition between homogeneous and
heterogeneous freezing may vary with the pressure levels,
geographical locations, and meteorological conditions (e.g.
deep convection, synoptic scale forcing, and gravity waves),
and the global distributions of each mechanism are not fully
resolved (e.g. Cziczo et al., 2013; Mitchell et al., 2018; Lyu
et al., 2023).

Quantification of ACIs has been a difficult topic because,
aside from aerosols, various factors such as the thermody-
namic and dynamic conditions also affect cirrus clouds (e.g.
Schiller et al., 2008; Patnaude and Diao, 2020). Isolating and
quantifying the contributions of individual factors on cloud
microphysical properties remain challenging tasks for obser-
vational studies of the real atmosphere where environmental
conditions cannot be fully controlled (e.g. D’Alessandro et
al., 2023). In addition, cirrus clouds can have different ori-
gins, such as a convective liquid origin and an in situ ori-
gin, and therefore can be subject to different environmen-
tal influences during their evolution (Krämer et al., 2016;
Luebke et al., 2016; Krämer et al., 2020). Previously, Pat-
naude and Diao (2020) showed the importance of isolating
other thermodynamic and dynamical factors before quanti-
fying ACIs, as these other factors often play a more sig-
nificant role in affecting ice microphysical properties. That
study allowed comparisons between larger (> 500 nm) and
smaller aerosols (> 100 nm) for their correlations with cirrus
microphysical properties, with implications for the possible
contributions of heterogeneous and homogeneous freezing,
respectively. However, the linear regression method used in
that study did not allow for a direct comparison among the
effects of multiple factors and therefore cannot address the
question of which factors are more influential than others for
cirrus cloud formation and subsequent cloud properties. An-
other technical drawback of that previous study was the lack
of investigation of the small ice crystals due to the limita-
tion of the cloud probe being used. That drawback led to a
limited understanding of ACIs via homogeneous freezing be-
cause homogeneous freezing often forms numerous yet rel-
atively smaller ice particles compared with heterogeneous
freezing based on box model simulations (e.g. Spichtinger
and Cziczo, 2010). Because of these limitations, a large in
situ observational dataset that includes measurements of both
smaller and larger ice crystals as well as a new method that
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allows the quantification and comparison of each factor need
to be developed.

The limited understanding of ACIs in cirrus clouds also
inhibits the development of accurate parameterizations of ice
microphysical processes in GCMs. In fact, large uncertain-
ties still exist in the simulations of the ACIs of cirrus clouds
in GCMs. Previous studies comparing climate model sim-
ulations against in situ observations found an underestima-
tion of ACIs by the simulations of the National Center for
Atmospheric Research (NCAR) Community Earth System
Model version 2 (CESM2)/Community Atmosphere Model
version 6 (CAM6) (Patnaude et al., 2021b; Maciel et al.,
2023). The ACIs of cirrus clouds are particularly underes-
timated at the earlier evolution stage of cirrus clouds, such as
the nucleation and early growth phases (Maciel et al., 2023).
Adding or reducing aerosols can further modify cirrus prop-
erties, such as the cirrus thinning scenario discussed in hy-
pothetical geoengineering simulations (e.g. Storelvmo et al.,
2013; Storelvmo and Herger, 2014; Muri et al., 2014; Gas-
parini and Lohmann, 2016; Lohmann and Gasparini, 2017;
Liu and Shi, 2021). However, due to the complexity of the
processes affecting cirrus cloud formation and evolution,
more observational evidence is needed to verify the current
parameterizations used in GCM simulations (e.g. Gettelman
and Morrison, 2015), as well as the emerging types of pa-
rameterizations related to ice nucleation in cirrus clouds (e.g.
Kärcher, 2022; Barahona et al., 2023).

This study combines several aircraft-based in situ observa-
tional datasets from multiple flight campaigns to reach near-
global coverage. A new method is developed based on a ma-
chine learning (ML) approach to quantify the relationships
between cirrus microphysical properties and five controlling
factors – temperature, RHi, vertical velocity (w), and aerosol
number concentrations of larger and smaller aerosols (Na500
and Na100, respectively). A new metric is developed to quan-
tify the individual effects of these five factors under three
separate topics: (1) How do these factors affect the occur-
rences of cirrus clouds? (2) How do they affect cirrus micro-
physical properties, in terms of the fluctuations of ice water
content (IWC) being lower or higher than the average val-
ues? (3) How do they affect the distributions of IWC in cirrus
clouds as a function of temperature, RHi, and w? The sec-
tions are designed as follows. Section 2 describes the obser-
vational datasets, instrumentation, and set-up of two methods
to compare various factors (i.e. the delta-delta method and
the ML approach). Section 3 examines each of the three top-
ics mentioned above by quantifying and contrasting the role
of individual factors under each topic. Section 4 provides the
main summary of the findings and their implications for cli-
mate simulations.

2 Observational datasets and experimental setup

2.1 In situ observations and instrumentation

A dataset focusing on the cirrus cloud temperature range was
developed in this study based on seven U.S. National Sci-
ence Foundation (NSF) campaigns and five National Aero-
nautics and Space Administration (NASA) flight campaigns.
Note that many of these campaigns (especially all U.S. NSF
campaigns) were not cirrus-focused, and cirrus clouds were
sampled as opportunities arose en route. All data used in this
study are constrained to temperatures ≤−40 °C to eliminate
the presence of supercooled water droplets. The seven NSF
flight campaigns, in alphabetical order, include CONTRAST
(Pan et al., 2017), NSF-DC3 (Barth et al., 2015), HIPPO
(Wofsy, 2011), ORCAS (Stephens et al., 2018), PREDICT
(Montgomery et al., 2012), START08 (Pan et al., 2010), and
TORERO (Volkamer et al., 2015). The five NASA campaigns
include ATTREX-2014 (Jensen et al., 2017a, b; Woods et al.,
2018), NASA-DC3 (Barth et al., 2015), MACPEX (Rollins et
al., 2014), POSIDON (Schoeberl et al., 2019), and SEAC4RS
(Toon et al., 2016). The DC3 campaign was a coordinated
flight campaign between NASA and NSF; thus, we use NSF-
DC3 and NASA-DC3 to differentiate the two research air-
craft platforms during that campaign. Specific details of these
campaigns, such as the name, acronym, time, and location,
are listed in Table 1. Information on the cirrus cloud obser-
vations, such as the flight hours, ranges of temperatures, al-
titudes, and pressures, is also given in that table. Previously,
these field campaigns were also used by Maciel et al. (2023)
for the analysis of various phases of cirrus evolution. By
compiling observations from these flight campaigns, we aim
to construct a near-global-scale dataset covering wide latitu-
dinal regions (87° N to 75° S) and longitudinal regions (128
to 180° E and 37 to 180° W). Global maps illustrating the en-
tire flight tracks at all temperatures are shown for individual
NASA and NSF campaigns in Fig. 1. Flight tracks restricted
to cirrus temperatures (≤−40 °C) are illustrated in Figs. S1
and S2 in the Supplement for in-cloud and clear-sky condi-
tions, respectively.

Because one main objective of this study is to examine
the effects of key environmental conditions (such as temper-
ature, RHi, and w) on cirrus cloud properties, a few other
campaigns that targeted cirrus clouds were not included in
the compiled dataset due to issues with water vapour or RHi
measurements at the cirrus temperature range. For example,
the U.S. Department of Energy (DOE) Small Particles in Cir-
rus (SPARTICUS) campaign provided targeted observations
of cirrus clouds but had issues with water vapour measure-
ments. The Learjet research aircraft also participated in the
SEAC4RS campaign but did not provide good quality water
vapour measurements below−30 °C due to the limitations of
a chilled mirror hygrometer on board.

The seven flight campaigns funded by NSF were carried
out exclusively by the NSF/NCAR High-Performance Instru-
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Table 1. Descriptions of five NASA and seven NSF campaigns used in this work, including their names, acronyms, times, locations, and key
instruments. Cirrus cloud observations, including in-cloud flight hours ≤−40 °C and ranges of temperatures, altitudes, and pressures, are
also provided.

Field Full name Time Spatial Cirrus Cirrus sample Key
campaign extent obs hours range (min/max) instruments

NSF
HIPPO∗

HIAPER Pole-to-pole
Observations

Oct–Nov 2009
Mar–Apr 2010
Jun–Jul 2011
Aug–Sep 2011

67° S–87° N,
128° E–90° W

6.29 −77.2 to −40 °C
4.5–14.9 km
133–531 hPa

Fast-2DC, CDP,
Rosemount,
VCSEL, UHSAS

NSF
START08

Stratosphere-
Troposphere Analyses
of Regional Transport

Apr–Jun 2008 26–63° N,
117–86° W

2.28 −67.7 to −40 °C
6.1–14.9 km
133–447 hPa

Fast-2DC, CDP,
Rosemount,
VCSEL, UHSAS

NASA
SEAC4RS

Studies of Emissions
and Atmospheric
Composition, Clouds
and Climate Coupling
by Regional Surveys

Aug–Sep 2013 19–50° N,
80–120° W

4.71 −59.5 to −40 °C
9.8–13.2 km
179–290 hPa

2DS, FCDP, MMS,
DLH, UHSAS

NSF DC3 Deep Convective
Clouds and Chemistry
Project

May–Jun 2012 25–43° N,
106–79° W

22.89 −65.9 to −40 °C
9–14.4 km
147–322 hPa

Fast-2DC, CDP,
Rosemount,
VCSEL, UHSAS

NASA
DC3

Deep Convective
Clouds and Chemistry
Project

May–Jun 2012 30–42° N,
117–106° W

14.45 −63.5 to −40 °C
9.2–12.2 km
186–298 hPa

2DS, MMS, DLH,
UHSAS

NASA
MACPEX

Mid-latitude Airborne
Cirrus Properties
EXperiment

Mar–Apr 2011 26–41° N,
104–84° W

13.00 −77.3 to −40 °C
8.2–17.8 km
77–347 hPa

2DS, MMS, HWV,
FCAS

NSF
CON-
TRAST

CONvective
TRansport of Active
Species in the Tropics

Jan–Feb 2014 20° S–40° N,
132° E–105° W

22.80 −78.3 to −40 °C
8.6–15.3 km
127–332 hPa

Fast-2DC, CDP,
Rosemount,
VCSEL, UHSAS

NASA
ATTREX-
2014

Airborne Tropical
TRopopause
EXperiment

Jan–Feb 2014 12° S–36° N,
134° E–117° W

31.97 −88.2 to −40 °C
8.8–18.8 km
68–331 hPa

Hawkeye-2DS,
FCDP,
Hawkeye-FCDP,
MMS, DLH

NSF
PREDICT

PRE-Depression
Investigation of Cloud
systems in the Tropics

Aug–Sep 2010 10–29° N,
87–38° W

17.33 −71.4 to −40 °C
10.3–14.8 km
140–273 hPa

Fast-2DC, CDP,
Rosemount,
VCSEL, UHSAS

NASA
POSIDON

Pacific Oxidants,
Sulfur, Ice,
Dehydration, and
cONvection

Oct 2016 1° S–15° N,
131–161° E

12.65 −87.9 to −40 °C
10.4–19.4 km
63–253 hPa

2DS, FCDP, MMS,
DLH

NSF
TORERO

Tropical Ocean
tRoposphere
Exchange of Reactive
halogen species and
Oxygenated voc

Jan–Feb 2012 42° S–14° N,
105–70° W

1.89 −75 to −40 °C
8.3–15.3 km
124–345 hPa

Fast-2DC, CDP,
Rosemount,
VCSEL, UHSAS

NSF
ORCAS

The O2 /N2 Ratio and
CO2 Airborne
Southern Ocean Study

Jan–Mar 2016 75–18° S,
91–51° W

1.04 −68.9 to −40 °C
6.3–13 km
176–433 hPa

Fast-2DC, CDP,
Rosemount,
VCSEL, UHSAS

∗ Only used deployments #2 to #5.
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Figure 1. Global maps of research aircraft flight tracks from (a) five NASA campaigns and (b) seven NSF flight campaigns used in this
observational study. The entire flight tracks at all temperatures are shown.

mented Airborne Platform for Environmental Research (HI-
APER) Gulfstream V (GV) aircraft. As mentioned above,
these seven NSF flight campaigns were not specifically de-
signed for cirrus cloud measurements. For example, HIPPO
was planned for a near pole-to-pole profiling of greenhouse
gases, DC3 targeted deep convective outflows, PREDICT
targeted tropical cyclones, and START08 targeted the air-
mass exchanges between the stratosphere and troposphere.
The cirrus observations were extracted from these field cam-
paigns because the GV aircraft often reached the upper tropo-
sphere and lower stratosphere as part of their flight planning.

A list of key variables and the instruments used to derive
them is shown in Table 1. The key measurements include
1 Hz observations of basic meteorological parameters such
as temperature, pressure, water vapour, and vertical veloc-
ity (w), as well as measurements of cloud ice microphys-
ical properties and aerosol number concentrations. The ice
microphysical properties to be examined include ice wa-
ter content (IWC), ice crystal number concentration (Ni),
and number-weighted mean diameter (Di). Here, Di is cal-
culated based on the maximum dimension of the ice par-
ticle. On board the NSF/NCAR GV research aircraft, the
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Vertical-Cavity Surface-Emitting Laser (VCSEL) hygrome-
ter was used to measure molecular number concentrations
of water vapour (Zondlo et al., 2010). The Rosemount tem-
perature probe was used to provide 1 Hz temperature ob-
servations. Two cloud probes were used for the NSF cam-
paigns, i.e. the Fast 2-Dimensional Cloud (Fast-2DC) probe
and the Cloud Droplet Probe (CDP). The CDP has a size
range of 2–50 µm. The Fast-2DC has a physical measurement
range of 62.5–1600 µm through a 64-photodiode array with
25 µm bin widths and mathematically reconstructs partially
detected particles, with the maximum size up to 3200 µm.
The Fast-2DC probe was equipped with anti-shattering tips,
and shattering reduction in data post-processing was applied
through an “interarrival time rejection” algorithm, which is
described in Field et al. (2006), although complete elimi-
nation of shattering was not possible for the current mea-
surement technique, especially for ice particles smaller than
100 µm (e.g. Korolev et al., 2013). Measurements of aerosol
number concentrations were obtained from the Ultra-High-
Sensitivity Aerosol Spectrometer (UHSAS), operating at a
size range of 60–1000 nm with 99 logarithmically spaced
bins.

In contrast to the NSF campaigns, the five NASA flight
campaigns were obtained from several research aircraft plat-
forms, including the NASA Global Hawk for ATTREX-
2014, NASA DC-8 for SEAC4RS and NASA-DC3, and
NASA WB-57 for MACPEX and POSIDON. The ATTREX,
POSIDON, and MACPEX campaigns were designed to sam-
ple cirrus clouds and advance the understanding of cirrus
cloud microphysical properties, while the SEAC4RS and
NASA-DC3 campaigns were designed to target the evolution
of gases and aerosols in deep convective outflows. Compared
with the other research aircraft platforms that mostly sam-
pled altitudes lower than 15 km, the ATTREX and POSIDON
campaigns sampled mostly above 15 km on board the NASA
Global Hawk aircraft and NASA WB-57, respectively. The
ATTREX campaign had four deployments between 2011 and
2015, but only the 2014 deployment was used in the com-
piled dataset based on the availability of both ice microphys-
ical properties and water vapour measurements.

Water vapour measurements during the ATTREX, POSI-
DON, DC3, and SEAC4RS campaigns were taken from the
Diode Laser Hygrometer (DLH), which operates at a near-
infrared wavelength of 1.4 µm. The water vapour measure-
ments in MACPEX were sampled using the Harvard Water
Vapor (HWV) instrument, which is a combination of mea-
surement methodologies from the Lyman-α photo-fragment
fluorescence instrument (LyA) and Harvard Herriott Hy-
grometer (HHH). Temperature measurements were based on
the NASA Meteorological Measurement System (MMS) on
board various research aircraft. For all the NSF and NASA
campaigns, saturation pressures with respect to ice (es) were
derived from temperature measurements based on the equa-
tion from Murphy and Koop (2005), which were further com-
bined with water vapour measurements to calculate RHi.

Aerosol measurements were provided in three NASA
campaigns (i.e. MACPEX, NASA-DC3, and SEAC4RS).
NASA-DC3 and SEAC4RS utilized UHSAS, similar to the
NSF campaigns, while MACPEX used the Focused Cav-
ity Aerosol Spectrometer (FCAS), which measures parti-
cles within the diameter range of 70–1000 nm. The NSF
START08, NASA ATTREX, and NASA POSIDON cam-
paigns were not included in the analysis of ACIs due to the
lack of aerosol measurements. Thus, these campaigns were
excluded from the analysis in Figs. 5–10 and Tables 2 and 3.
To examine if there are any possible artefacts in aerosol mea-
surements for in-cloud conditions, we examined time series
of 1 Hz measurements for IWC, Ni, Di, Na100, and Na500 for
various campaigns (not shown). No direct correlations were
found between the cloud and aerosol measurements in the
cirrus regime at second-to-second resolution. Among all in-
cloud samples, only 33 % contain large aerosols, while most
in-cloud samples contain small aerosols. It is also unlikely
that the aerosol measurements were detecting small ice crys-
tals (a few micrometres), as the small ice crystals would grow
rapidly. This speculation is also corroborated by a modelling
study by Jensen et al. (2024), which showed that small ice
particles (diameters < 10 µm but specifically less than 2 µm)
are very transient and short-lived after ice formation in cir-
rus clouds. Nevertheless, when calculating the ratios between
Na500 and small ice concentrations (Ni_1–3 µm) when both
large aerosols and small ice were detected, the average ra-
tios for each campaign are 24 for NASA SEAC4RS, 81 for
NSF CONTRAST, 96 for NSF-DC3, 108 for HIPPO, 242
for ORCAS, 68 for PREDICT, and 716 for TORERO, in-
dicating that it is unlikely that the sublimation or shattering
of ice crystals contributes to the existence of large aerosols
(i.e. Na500> 0). Note that this ratio can be calculated only
for campaigns with both aerosol and small ice measurement
(by CDP, Fast-CDP (FCDP), or Hawkeye-CDP).

Ice particle measurements for most of the five NASA cam-
paigns were based on two probes – the FCDP probe and
the Two-Dimensional Stereo Probe (2DS). The FCDP probe
has a size range of 1–50 µm. The 2DS probe has a diame-
ter range of 5–3005 µm and uses two linear and independent
128-photodiode arrays designed to record at a 10 µm pixel
resolution. Similar to the Fast-2DC probe in the NSF cam-
paigns, anti-shattering tips were installed in the 2DS probe
for these field campaigns, although the MACPEX campaign
used an earlier version of a shattering probe that is slightly
different compared with the ones used in later NASA cam-
paigns. 2DS processing software also includes shattering re-
moval algorithms (Lawson, 2011). For two research flights in
ATTREX (RF03 and RF07), the FCDP probe did not provide
measurements, and therefore the Hawkeye-FCDP probe was
used to provide the same size range (1–50 µm) of measure-
ments.

Several additional steps were taken to derive ice mi-
crophysical properties from the key measurements men-
tioned above. For the 2DS, CDP, FCDP, and Hawkeye-FCDP
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Table 2. Summary of results for Test A, namely, predicting the occurrences of cirrus clouds. Accuracies of the predictions are shown for all
cirrus, vertically quiescent cirrus, and non-quiescent cirrus in columns 1–3, respectively. All possible combinations among five predictors
are shown.

Predictors Accuracy (%) Accuracy (%) Accuracy (%)
All cirrus Vertically Non-quiescent

quiescent cirrus cirrus

1 Predictor

T 63.57 65.70 54.63
RHi 91.33 91.86 89.07
w 71.06 75.98 50.34
Na500 84.17 88.81 64.68
Na100 69.02 70.35 63.42

2 Predictors

T +RHi 91.55 92.14 89.04
T +w 73.18 77.93 53.19
T +Na500 71.92 74.74 60.06
T +Na100 68.94 70.28 63.30
RHi+w 91.33 91.86 89.07
RHi+Na500 91.35 91.90 89.04
RHi+Na100 91.51 92.09 89.04
w+Na500 76.16 81.40 54.11
w+Na100 70.69 73.73 57.93
Na500+Na100 72.46 74.05 65.78

3 Predictors

T +RHi+w 91.90 92.57 89.09
T +RHi+Na500 91.89 92.55 89.10
T +RHi+Na100 91.72 92.31 89.23
T +w+Na500 77.69 82.75 56.40
T +w+Na100 74.46 77.33 62.35
T +Na500+Na100 71.68 73.70 63.21
RHi+Na500+Na100 91.64 92.24 89.11
RHi+w+Na500 91.56 92.16 89.07
RHi+w+Na100 91.60 92.23 88.94
w+Na500+Na100 74.89 78.55 59.52

4 Predictors

T +RHi+w+Na500 91.96 92.66 89.00
T +RHi+w+Na100 91.86 92.51 89.14
T +RHi+Na500+Na100 91.80 92.42 89.18
T +w+Na500+Na100 76.74 79.87 63.59
RHi+w+Na500+Na100 91.74 92.37 89.09

5 Predictors

T +RHi+w+Na500+Na100 92.06 92.74 89.20

probes, their measurements in the first bin were discarded to
avoid possible uncertainties in that bin. A similar procedure
for discarding small-size particles in 2DS measurements was
also applied in a previous study by Mitchell et al. (2018).
For the Fast-2DC probe, the first three bins were already
discarded in the archived data to minimize uncertainties, i.e.
starting the particle size distributions (PSDs) at 62.5 µm. The
last few bins (> 3012.5 µm) of Fast-2DC were further dis-

carded in this work to reach a similar size range as the 2DS
probe. After these procedures, the measurements of these
probes were combined. That is, in the NSF campaigns, the
CDP probe measurements at 2–50 µm were combined with
the Fast-2DC probe measurements at 62.5–3012.5 µm, pro-
viding a final size range of 2–3012.5 µm. To quantify the im-
pact of the remaining size gap (50–62.5 µm) of the merged
NSF data, the IWC and Ni of this size gap were calculated
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Table 3. Summary of results for Test B, namely, predicting whether IWC inside cirrus clouds is higher or lower than the average IWC
conditions. Similar to Table 2, accuracies of the predictions are shown for all cirrus, vertically quiescent cirrus, and non-quiescent cirrus in
columns 1–3, respectively. Effects of multiple factors are analysed at different spatial scales, i.e. 1, 50, 250, and 500 s averaged conditions.

Predictors Accuracy (%) Accuracy (%) Accuracy (%)
All cirrus Vertically Non-quiescent

quiescent cirrus cirrus

1 Hz observations

dT 48.89 49.46 47.94
dT + dRHi 65.79 64.04 68.73
dT + dw 57.29 56.52 58.58
dT + dRHi+ dw 65.17 64.08 67.00
dT + dRHi+ dw+ dlog10Na500 66.51 64.83 69.35
dT + dRHi+ dw+ dlog10Na100 65.45 64.29 67.40

50 s averaged observations

dT 49.33 49.47 44.83
dT + dRHi 70.34 70.34 70.39
dT + dw 57.29 57.63 46.25
dT + dRHi+ dw 70.67 70.62 72.44
dT + dRHi+ dw+ dlog10Na500 71.67 71.60 74.09
dT + dRHi+ dw+ dlog10Na100 71.71 71.64 74.01

250 s averaged observations

dT 51.75 51.73 54.89
dT + dRHi 69.51 69.44 80.14
dT + dw 56.08 56.17 43.70
dT + dRHi+ dw 69.99 69.95 76.20
dT + dRHi+ dw+ dlog10Na500 70.01 69.90 85.60
dT + dRHi+ dw+ dlog10Na100 69.86 69.76 83.52

500 s averaged observations

dT 49.87 49.89 44.66
dT + dRHi 71.72 71.74 66.14
dT + dw 56.01 55.96 68.26
dT + dRHi+ dw 72.19 72.21 67.11
dT + dRHi+ dw+ dlog10Na500 72.52 72.58 56.00
dT + dRHi+ dw+ dlog10Na100 72.30 72.36 54.92

based on ice crystal PSDs from global climate model simula-
tions of the NCAR CESM2/CAM6. The results show that the
size gap of 50–62.5 µm accounts for 4 % of IWC and 0.8 % of
Ni relative to their values at 2–3200 µm, respectively. Thus,
we did not attempt to interpolate the data to fill this small
size gap to avoid introducing more uncertainties through the
interpolation assumptions.

In the NASA ATTREX, POSIDON, and SEAC4RS cam-
paigns, 2DS measurements were restricted to 15–3005 µm
and then combined with FCDP (or Hawkeye-FCDP) mea-
surements at 1–14.5 µm, which produced a combined size
range of 1–3005 µm. Because NASA DC3 and MACPEX
did not have FCDP, only 2DS measurements were used for
the size range of 15–3005 µm after discarding the first bin
of 2DS. In summary, the compiled dataset of all NSF cam-
paigns provided a final range of 2–3012.5 µm, while the com-

piled dataset of all NASA campaigns provided a final range
of 1–3005 µm. The size range of the combined dataset for all
NASA+NSF campaigns was 1–3012.5 µm. The combined
NASA+ NSF dataset with the size range of 1–3012.5 µm
was used for most of the tables and figures in this paper, in-
cluding Tables 1–3, Figs. 1–3, and Figs. 5–10, and all the
analyses shown in the Supplement. The separate NSF and
NASA campaigns were analysed in Fig. 4 and part of Fig. 5
to contrast the differences between these campaigns.

For both NASA and NSF datasets, the in-cloud condi-
tion is defined when ice crystals have been detected in a
1 s measurement, that is, Ni> 0 for either Fast-2DC or 2DS
measurements. The rest of the samples are defined as the
clear-sky condition. Flight hours for each flight campaign
in the cirrus temperature range (i.e. temperatures ≤−40 °C)
are shown in Table S1, including flight hours for all-sky,

Atmos. Chem. Phys., 25, 7007–7036, 2025 https://doi.org/10.5194/acp-25-7007-2025



D. Ngo et al.: Aerosol–cloud interactions in cirrus clouds 7015

clear-sky, and in-cloud conditions, as well as cirrus clouds
under two types of environmental conditions. For the cir-
rus temperature regime, 730 flight hours were obtained at
temperatures ≤−40 °C (i.e. 251 and 479 h from the NSF
and NASA datasets, respectively), which include 161.6 h of
in-cloud conditions (i.e. 81.6 and 80.0 h from the NSF and
NASA datasets, respectively). Furthermore, IWC, Ni, and Di
were calculated for the combined size range for each flight
campaign. IWC was derived based on the mass-dimensional
relationship following Brown and Francis (1995) for Fast-
2DC, CDP, FCDP, and Hawkeye-FCDP. For the 2D-S probe,
the archived IWC data in each NASA campaign were used,
which are based on the parameterizations from Baker and
Lawson (2006). Because the parameterizations in Baker and
Lawson (2006) require additional information besides the
maximum dimension, such as width, area, perimeter, and cat-
egories of ice morphology, they were not applied to the other
optical array probes.

Table S2 shows the minimum and maximum range of sev-
eral key variables for each campaign at cirrus cloud temper-
atures ≤−40 °C. In this work, we analysed the entire range
of IWC measurements including cirrus clouds that may be
subvisible for satellite retrievals. We also conducted sensi-
tivity tests using higher IWC thresholds for in-cloud condi-
tions (i.e. IWC> 10−5, > 10−4, and > 10−3 g m−3), and the
main ACI features were consistently found (to be discussed
in Sect. 3.4). One should note that cirrus clouds with dif-
ferent magnitudes of IWC have different radiative effects.
Based on the previous work of Heymsfield et al. (2003),
cirrus clouds with IWCs of 10−7 and 10−5 g m−3 would
have an optical depth of 3.3× 10−5 and 0.0015, respectively,
for a cirrus layer with 1 km thickness using the equation
τ = 0.069(IWP)0.83, where τ is the optical depth and IWP
is the ice water path. In addition, calculations of a radiative
transfer model showed that cirrus radiative effects in short-
wave and longwave radiation become more noticeable (i.e.
<−0.25 and > 0.25 W m−2, respectively) when the cloud
optical depth is larger than 0.001 (Spang et al., 2024).

2.2 Methods used to quantify influences of multiple
factors on ice microphysical properties

Two main methods were used to examine the influences
of various factors on the occurrences of cirrus clouds and
their microphysical properties. The key variables investi-
gated include temperature, RHi, w, Na500, and Na100. The
first method is a delta-delta method (shown in Figs. 4g–r, 5,
and 6). The second method is based on ML models (shown
in Figs. 7–10 and Tables 2 and 3).

2.2.1 The “delta-delta” method to isolate the effects of
aerosols from other effects

In the previous studies of Patnaude and Diao (2020) and
Maciel et al. (2023), a “delta-delta” method was developed

to individually examine the thermodynamic/dynamic effects
and aerosol effects on cirrus microphysical properties. This
method calculates the mean value for each temperature bin
(e.g. binned by 1 °C) and then calculates the differences be-
tween each 1 s variable value within that temperature bin and
the mean value of the temperature bin. Thus, the delta-delta
method removes the trend of a variable as a function of tem-
perature. Note that the delta-delta method is different from
detrending the data by subtracting the averaged values from
each 1 Hz data point along the time series. After applying
the delta-delta method, linear regressions can be applied to
quantify the correlations between fluctuations of a certain
environmental factor and the fluctuations of a cirrus micro-
physical property. However, one limitation of such analysis is
the difficulty of conducting a direct, quantitative comparison
among multiple factors. Thus, to achieve a direct compari-
son of multiple factors, an ML approach was developed in
this work.

2.2.2 Design of the machine learning (ML) models

ML models were developed to examine the influences of var-
ious factors through direct comparisons of the model predic-
tion results. By using different combinations of predictors,
prediction accuracies can be used to show the incremental
values of individual variables. Three experiments were de-
signed for the ML models (hereafter referred to as Tests A,
B, and C), which aimed to answer the following scientific
questions, respectively: (1) Which factor(s) are more impor-
tant for the ML model to predict the occurrences of cirrus
clouds? (2) Which factor(s) are more important for the ML
model to predict the fluctuations of IWC inside cirrus clouds?
(3) Which factor(s) are more important for the ML model to
predict the distributions of IWC as a function of temperature,
RHi, and w inside cirrus clouds? This section describes the
technical part of the experimental setup of the ML models,
including the ML model type and dataset preparation. The
results of the ML analysis are shown in Sect. 3.5.

For the ML model, a random forest model was used, con-
sisting of 100 individual and distinct decision trees based
on a classification ensemble algorithm. To develop “train-
ing” and “testing” datasets for the ML models, all the ob-
servation data for each research flight were first separated
into 10 consecutive flight segments. Seven of the 10 flight
segments were randomly selected to be used as the train-
ing data, while the remaining three flight segments were
used as the testing data. This method ensures that the train-
ing and testing datasets do not overlap and avoids possible
high-frequency correlations between the training and testing
datasets. Another method for separating training and testing
data was also investigated, which randomly selected 70 % of
the 1 Hz data of a research flight as training data and the rest
(30 %) as testing data. This second-based separation may as-
sign training and testing data points adjacent to each other
at high resolution, which may lead to biases in the perfor-
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mance evaluation of the ML models. Thus, the segment-
based separation method was used for all the analyses in
this work. Nevertheless, sensitivity tests using the second-
based separation method showed consistent results for the
ML model performance (not shown). Another step taken to
pre-process the data was the utilization of a “listwise dele-
tion” method for data filtering. This deletion method was ap-
plied if any second of the observational datasets contained
temperatures >−40 °C or if any key variable of that second
showed “NAN”, in which case the entire second would be
removed from the dataset.

In addition, the “Random Undersampling Boosting”
(RUSBoost) algorithm was implemented to account for any
imbalances of samples among various categories in the
dataset to keep any training biases to a minimum. For ex-
ample, in the aircraft-based observations, the flight hours
of each campaign were dominated by clear-sky conditions
compared with in-cloud conditions. In that case, the RUS-
Boost algorithm helps to account for the disproportionate
sampling of in-cloud conditions by randomly boosting this
under-sampled category.

3 Results

3.1 Distributions of RHi and σw for cirrus clouds in two
environmental conditions

The influences of thermodynamic (i.e. temperature and RHi)
and dynamical conditions (w) were investigated for various
types of cirrus clouds (Figs. 2 and 3). Cirrus clouds were
categorized into two types of conditions, depending on the
fluctuations of w in the adjacent environment. That is, for
one second of measurement, if the region of ±30 s surround-
ing it experienced updraughts and downdraughts exceeding
±1 m s−1 (i.e. w≤−1 m s−1 or ≥ 1 m s−1), then this 1 s ob-
servation was defined as non-quiescent conditions. A pre-
vious study of Diao et al. (2014a) analysed the horizontal
length distributions of ice supersaturated regions (ISSRs),
which are the prerequisite condition of cirrus clouds. That
study showed that ∼ 5% of the ISSR samples (i.e. one con-
secutive ISSR counted as one sample) exceed the 10 km
horizontal scale, while most ISSRs are relatively small, in-
dicating that they are significantly affected by microscale
dynamics but can also be affected by mesoscale dynam-
ics. Therefore, the spatial window of ±30 s (i.e. ∼ 12 km
horizontal scale) was chosen in this work to categorize the
two dynamic conditions. Previous airborne observations of
cirrus clouds around convective activity (e.g. D’Alessandro
et al., 2017) and gravity waves and strong turbulence (e.g.
Diao et al., 2015, 2017) showed frequent occurrences of
w≤−1 m s−1 or≥ 1 m s−1. In addition, the rest of the obser-
vations experiencing smaller updraughts and downdraughts
within ±1 m s−1 were defined as vertically quiescent condi-
tions. The observations of cirrus clouds under non-quiescent
and vertically quiescent conditions are 52 and 110 h, re-

spectively (Table S1). Global maps and vertical profiles of
cirrus cloud observations in vertically quiescent and non-
quiescent conditions are depicted in Fig. S1. In addition,
clear-sky samples in two environmental conditions at tem-
peratures ≤−40 °C are shown in Fig. S2. The vertical distri-
butions of IWC, Ni, Di, and the water vapour volume mix-
ing ratio under two environmental conditions are illustrated
in Fig. S3. Note that because of the nature of Eulerian-view
sampling of research aircraft, this separation of two types of
cirrus clouds differs from the previous study that used La-
grangian trajectories of w from model simulations to sepa-
rate cirrus cloud origins, i.e. convective (liquid-origin) cirrus
versus in situ cirrus (Krämer et al., 2016, 2020). For instance,
the high vertical velocity condition defined as non-quiescent
in this work may indicate convective influences but may also
be caused by other dynamic conditions such as gravity waves
and strong turbulence. Thus, we did not attempt to provide a
one-to-one comparison between the non-quiescent condition
in this work and the convective (liquid-origin) cirrus condi-
tion in the previous work by Krämer et al. (2016, 2020).

Distributions of 1 Hz observations of RHi as a function of
temperature are examined for cirrus clouds under two envi-
ronmental conditions separately using the combined datasets
of the NASA and NSF campaigns (Fig. 2). In addition, the
RHi–T distributions for clear-sky conditions under two en-
vironmental conditions are shown in Fig. S4. Six latitudinal
regions were individually analysed, including the northern
tropical (NT) regions, northern midlatitudes (NM), northern
polar (NP) regions, southern tropical (ST) regions, southern
midlatitudes (SM), and southern polar (SP) regions. The in-
cloud conditions show higher frequencies of RHi concen-
trated within ±20 % around the ice saturation line. On the
other hand, clear-sky conditions (Fig. S4) indicate higher
variabilities in RHi. Higher frequencies of RHi > 140 % are
seen in the tropical regions in both in-cloud and clear-sky
conditions, while for the midlatitude and polar regions, the
RHi samples are seen below the homogeneous freezing line
(e.g. below 140 %), indicating a possible dominant role of
heterogeneous freezing based on the available thermody-
namic conditions. This result is consistent with the finding of
Cziczo et al. (2013) and Patnaude et al. (2021b) for the ex-
tratropical regions. More occurrences of RHi exceeding the
homogeneous freezing threshold (around 160 % to 190 %)
are seen in the NT regions at temperatures below −55 °C in
Fig. 2, consistent with the large fluctuations of vertical veloc-
ity seen in Fig. 3, indicating that this region is more likely to
initiate homogeneous freezing compared with other regions.
In addition, these higher RHi values in the NT regions are
seen in cirrus clouds under both non-quiescent and vertically
quiescent conditions, indicating that homogeneous freezing
in the tropics is not only restricted to conditions with stronger
updraughts and downdraughts but rather plays an important
role for the formation of both types of cirrus clouds.

Similar to Fig. 2, distributions of the standard deviations
of w (denoted as σw) are examined against various tempera-
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Figure 2. Distributions of RHi at various temperatures in six latitudinal bands using the combined NASA and NSF dataset, separated into
non-quiescent cirrus (two left columns) and vertically quiescent cirrus (two right columns). Solid black line indicates ice saturation. Dashed
black line denotes the liquid saturation threshold. Dash-dotted line represents the homogeneous freezing line based on Koop et al. (2000).
Colour bars denote the logarithmic-scale number of samples.

tures for both types of cirrus clouds (Fig. 3). The distributions
of σw for clear-sky conditions under the non-quiescent and
vertically quiescent conditions are shown in Fig. S5. Here,
σw is defined as the standard deviation of w for the 1 Hz
observations calculated for every 10 km of aircraft observa-
tions. Most of the cirrus clouds in the two conditions show
σw within 0.5 m s−1. For the non-quiescent cirrus, the maxi-
mum σw values range from 0.5 to 5 m s−1 at various temper-
atures, which is a wider range compared with the vertically
quiescent cirrus at 0.5 to 1 m s−1. Comparing among differ-
ent regions, the highest σw values are seen in the NT and
NM regions, where a few samples of σw are seen to reach a
maximum at 4 to 5 m s−1.

Caution should be paid regarding the sampling domains
of the field campaigns used in this analysis. Because the air-
craft platforms used in these campaigns were not safe for
storm penetration or sampling of highly convective condi-
tions, cirrus clouds near the convective core are expected to
be under-represented. This under-representation of convec-
tive cirrus clouds by aircraft observations was also pointed
out by Krämer et al. (2020). In addition, previous stud-
ies showed that the higher Ni values were often associated
with orographic gravity wave (OGW) cirrus clouds, espe-
cially over and downwind of mountain barriers, as seen in

aircraft (Krämer et al., 2009) and satellite (e.g. Gryspeerdt
et al., 2018; Mitchell et al., 2018) observations. The flight
maps in this study (Fig. 1) show limited sampling of such re-
gions, suggesting that the OGW cirrus clouds may be under-
sampled. As a result of the under-sampling of convective and
OGW cirrus clouds, the impacts of homogeneous freezing
may be underestimated, as higher updraughts in these types
of cirrus conditions are conducive to higher cooling rates,
higher ice supersaturation, and higher frequencies of homo-
geneous freezing.

3.2 Thermodynamic and dynamical controlling factors
on cirrus microphysical properties

Three cirrus microphysical properties (IWC, Ni, and Di) are
examined separately for the NASA and NSF flight cam-
paigns at various temperatures in Fig. 4a–c and d–f, respec-
tively. Compared with the NSF campaigns, which sampled
the minimum temperature at −78.3 °C, the NASA ATTREX
and POSIDON campaigns sampled temperatures as low as
−88.2 °C. For both the NASA and NSF campaigns, an in-
creasing trend of average IWC with increasing temperatures
is seen, which is consistent with previous observational stud-
ies of the IWC–T relationship (e.g. Diao et al., 2014a; Woods
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Figure 3. Distributions of standard deviations of vertical velocity (σw calculated for 10 km spatial scales) at various temperatures, separated
into non-quiescent cirrus (two left columns) and vertically quiescent cirrus (two right columns).

et al., 2018; Krämer et al., 2020; Patnaude and Diao, 2020).
Both the NASA and NSF datasets show a nonlinear trend of
Ni with increasing temperatures. The NSF dataset exhibits
median Ni values near 101.5 L−1 or 32 L−1, which is sim-
ilar to the median Ni in Krämer et al. (2020). Similar to
the IWC–T relationship, a positive Di–T relationship is also
seen, likely due to faster ice crystal growth under higher wa-
ter vapour partial pressure and more sedimentation of larger
ice crystals into lower altitudes at higher temperatures. The
main difference between the NASA and NSF datasets is that
the NASA dataset shows higher IWC and higher Ni by an
order of magnitude of 0.5, likely due to differences in cirrus
microphysical properties at different geographical locations,
as previously discussed by Patnaude et al. (2021b).

The relationships between the variability of cirrus ice mi-
crophysical properties and the variability of thermodynamic
and dynamical conditions are further investigated in Fig. 4g–
r. A delta-delta method is applied to various factors, similar
to the method used in the study of Patnaude and Diao (2020)
and Maciel et al. (2023). As described in Sect. 2.2.1, the
delta value is calculated by subtracting the average value of
a certain variable in each 1 °C temperature bin from every 1 s
datum, which removes the average increasing or decreasing
trend of a variable as a function of temperature. In addition,
the average values of each 1 °C temperature bin are sepa-
rately calculated for individual campaigns. Subtracting these

campaign-specific average values from each 1 Hz datum fur-
ther reduces the impacts of geographical locations and dif-
ferent measurement platforms on the delta variables.

When examining the relationships of fluctuations of IWC,
Ni, and Di (i.e. dlog10IWC, dlog10Ni, and dlog10Di, respec-
tively) with respect to the fluctuations of temperature, RHi,
and w (i.e. dT , dRHi, and dw, respectively), the observed re-
lationships are much more similar between the NASA and
NSF datasets, which is reflected by the similar increasing
or decreasing trends and similar ranges of delta values at
various conditions between the two datasets. For example,
both the NASA and NSF datasets show a peak of dlog10IWC
and dlog10Ni at dRHi slightly above 0 % (i.e. dRHi of 10 %–
20 %). This result is consistent with that seen in Patnaude and
Diao (2020), suggesting that the highest IWC and Ni may be
reached shortly before all the ice supersaturation has been de-
pleted through new ice particle formation and/or ice crystal
growth. The decreasing trend of dlog10IWC, dlog10Ni, and
dlog10Di with decreasing dRHi is also consistent with the
previous studies of Diao et al. (2013, 2014b), which showed
a decreasing trend of IWC, Ni, and Di with decreasing RHi
during the sedimentation phase of cirrus cloud evolution.

As for the relationship with vertical velocity fluctua-
tions, the maximum dlog10IWC and dlog10Ni are seen at
the strongest updraughts and downdraughts, while the mini-
mum dlog10IWC and dlog10Ni are seen associated with weak
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Figure 4. (a–f) Distributions of IWC, Ni, and Di as a function of temperature. Relationships between the (g–l) fluctuations of RHi (calculated
as dRHi) and (m–r) fluctuations of w (calculated as dw) with respect to the fluctuations of ice microphysical properties. Rows 1, 3, 5 are
based on NASA campaigns, and rows 2, 4, 6 are based on NSF campaigns. Black lines and vertical bars denote the geometric means and
standard deviations, respectively.
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downdraughts (i.e. dw around −0.25 to −0.75 m s−1). This
result indicates that large updraughts, which often are in
close proximity to large downdraughts during turbulence and
gravity waves (e.g. Diao et al., 2017), may provide sustained
ice supersaturated conditions and therefore lead to the contin-
uous formation of new ice particles. As for dlog10Di values,
they reach maximum values when dRHi is around 20 % to
60 % but remain relatively constant under various dw values.

3.3 Effects of aerosols on cirrus microphysical
properties

The influences of aerosols on cirrus microphysical properties
are investigated in Fig. 5, which uses the delta-delta method
similar to Fig. 4. Three types of datasets are examined –
NASA only (rows 1 and 4), NSF only (rows 2 and 5), and
the combined NASA+NSF dataset (rows 3 and 6). The ACI
is separately examined for larger and smaller aerosols, i.e.
Na500 and Na100, which correspond to aerosol number con-
centrations when the aerosol diameter is greater than 500
and 100 nm (but less than 1000 nm), respectively. Under-
standing the correlations of aerosols with cirrus microphys-
ical properties can give clues to the two main ice nucleation
mechanisms. Previously, aerosols larger than 500 nm were
used as a proxy for INPs when the direct measurements of
INP were not available (DeMott et al., 2010). Note that due
to the limitations of former INP measurement techniques,
that study focused on temperatures higher than −30 °C in-
stead of the cirrus cloud regime (i.e. ≤−40 °C). Other stud-
ies using the particle analysis by laser mass spectrometry
(PALMS) instrument showed that particles with diameters
> 500 nm are dominated by dust particles and nonvolatile
sea-salt for number and mass concentrations (Murphy et al.,
2019; Froyd et al., 2019). Both dust (e.g. Hoose and Möhler,
2012; Roesch et al., 2021) and sea salt (e.g. Patnaude et al.,
2021a, 2024) have been previously reported to initiate het-
erogeneous freezing as INPs, which supports the speculation
that Na500 may be used as a proxy for INP number concen-
trations.

For the ACIs of larger aerosols, a nearly linear posi-
tive correlation is seen in three cirrus microphysical prop-
erties (i.e. dlog10IWC, dlog10Ni, and dlog10Di) in relation
to dlog10Na500. The smaller aerosols show nonlinear cor-
relations with cirrus microphysical properties, as illustrated
by the significant increases in dlog10IWC and dlog10Ni val-
ues when dlog10Na100 exceeds 1. That is, when dlog10Na100
values are significantly above (by a factor of 10) the aver-
age values of a 1° temperature bin, significant impacts on
cirrus microphysical properties are seen. This nonlinearity
with Na100 may suggest a nucleation mechanism shift from
homogeneous freezing to heterogeneous freezing at higher
Na100. The higher Na100 may be associated with either higher
concentrations of INPs or more effective INPs (or both), as
a positive correlation between Na100 and Na500 was found
(not shown). However, without direct INP measurements and

aerosol composition measurements at the cirrus cloud levels
in these former campaigns, one cannot rule out one possibil-
ity or the other.

Even though no evidence was found regarding possible
artefacts of in-cloud aerosol measurements (as discussed in
Sect. 2.1), we investigate the ACI relationships based on
clear-sky aerosol number concentrations (Na) to further ver-
ify whether the observed ACIs would still be seen when us-
ing coarser-scale Na for clear-sky conditions only. Specifi-
cally, for each centre second, only the clear-sky segments of
the surrounding 100 s are used for the calculation of clear-sky
Na500 (or Na100) values. In addition, at least 10 % of the 100 s
have to be clear sky and all 100 s must be ≤−40 °C. If either
of these two criteria are not satisfied, this second would be
assigned NAN for the clear-sky Na value. Figure S6 shows
similar positive relationships of IWC and Ni with respect to
clear-sky Na500 and Na100 compared with Fig. 5, indicating
that the observed ACI relationships are consistently seen re-
gardless of using aerosol information at finer or coarser reso-
lution and under in-cloud or clear-sky conditions. One main
difference between Fig. S6 and Fig. 5 is that Fig. S6 shows
fewer Na with very high or low values, due to the averag-
ing process for the clear-sky Na calculation. This averaging
process may also lead to less significant increases in IWC,
Ni, and Di with respect to Na100 in Fig. S6, as the very high
Na100 values are smoothed out.

In addition, when examining the distributions of Na500
at in-cloud conditions, the occurrences of large aerosols are
seen at various Ni and Di ranges (Fig. S7a and b), suggest-
ing that large aerosols are not solely observed when large
or small ice crystals are available. In the Ni–Di relation-
ship shown for the NASA SEAC4RS campaign (Fig. S7a),
a group of samples was observed at relatively lower Di
(∼ 10 µm) and higher Ni (100–104 L−1), with very few oc-
currences of large aerosols. This feature indicates possible
influences of homogeneous freezing on the formation of
these particles. A similar feature of high Ni and low Di val-
ues was also reported by a remote sensing study (Mitchell
and Garnier, 2024). To further examine the likelihood of ice
shattering affecting Na500 values, number concentrations of
small ice particles (i.e. Ni_1–3 µm) and standard deviations
of particle size distributions (σDi) are used to indicate the
possible occurrences of ice shattering. Figure S7c shows the
number of samples of Ni_1–3 µm> 0 regardless of the exis-
tence of aerosols, and Fig. S7d shows the ratio between the
number of samples for incidents with possible shattering and
the total samples with large aerosols. The results show that a
small fraction (< 10 %) of the in-cloud Na500 samples have
indicators of shattering (not definitive proof that shattering
actually occurred). When comparing Na500 against Ni_1–
3 µm values along time series (not shown), their ratios are
generally larger than 30, indicating relatively small effects
on Na500 even if shattering occurred.

In addition to a possible homogeneous freezing feature
seen in Fig. S7, a time series example of NSF DC3 RF20
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Figure 5. Similar to Fig. 4 but for relationships of fluctuations of cirrus properties (i.e. dlog10IWC, dlog10Ni, and dlog10Di) with respect to
dlog10(Na500) in the top three rows and dlog10(Na100) in the bottom three rows. Rows 1 and 4 are based on NASA campaigns, rows 2 and
5 are NSF campaigns, and rows 3 and 6 are the combined NASA+NSF campaigns.
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(Fig. S8) illustrates a possible heterogeneous freezing fea-
ture. That is, during this horizontal segment within −46 to
−45 °C, Na100 data show higher values inside the cirrus seg-
ment compared with the adjacent clear-sky samples, while
the Na500 data show lower values at the in-cloud condition.
This feature indicates that heterogeneous freezing may have
activated some of the large aerosols as INPs and formed ice
crystals inside the cirrus segment.

These main features of ACIs from larger and smaller
aerosols are consistently seen for the three datasets, i.e.
NASA campaigns, NSF campaigns, and the combined
NASA+NSF campaigns. Therefore, for the following anal-
yses, the combined NASA+NSF datasets (i.e. 1–3012.5 µm)
are used in the quantitative analyses based on linear regres-
sions (Fig. 6) and ML models (Figs. 7–10 and Tables 2 and
3).

3.4 Quantifications of ACIs based on linear regressions

The effects of aerosols on cirrus microphysics are further
quantified through linear regressions between the fluctua-
tions of cirrus properties and the fluctuations in aerosol num-
ber concentrations in Fig. 6 for the combined NASA+NSF
dataset. The ACI is individually quantified for different ther-
modynamic and dynamical conditions, including various
ranges of temperatures from −40 to −70 °C, dRHi from be-
low−10 % to above 10 %, and dw from below−0.5 m s−1 to
above 0.5 m s−1. Geometric means of dlog10IWC, dlog10Ni,
and dlog10Di are calculated for each bin of dlog10Na500 or
dlog10Na100. All information regarding slopes, intercepts,
and their standard deviations for all linear regressions shown
in Fig. 6 is given in Table S3.

Positive correlations are seen for both dlog10Na500 and
dlog10Na100 at various temperature, dRHi, and dw ranges,
except for the lowest temperature range of −80 to −70 °C,
where significantly fewer samples are seen (Fig. 6b1, b2). In
addition, for every range, larger positive slope values are seen
in relation to dlog10Na500 compared with dlog10Na100, indi-
cating stronger ACIs from the larger aerosols on three mi-
crophysical properties. In addition, when comparing among
different ranges of dRHi and dw, the variabilities among the
slope and intercept values for these different linear regres-
sions with respect to larger aerosols (Fig. 6a5–a7, a9–a11)
are smaller than those seen with respect to smaller aerosols
(Fig. 6b5–b7, b9–b11). These results suggest that with the
availability of potential INPs (using larger aerosols as an
indicator), ice nucleation is less dependent upon thermody-
namic and dynamic factors such as the magnitudes of RHi
and the strength of updraughts. On the other hand, for smaller
aerosols, activating ice nucleation has higher requirements
for the appropriate thermodynamic and dynamic conditions.
For the ACIs of smaller aerosols, such dependence upon
thermodynamic and dynamic conditions is even stronger
when relatively fewer aerosols are available, as shown by
the large separation between the geometric mean of cirrus

cloud properties at the lower values of dlog10Na100. That
is, when dlog10Na100< 0, the dlog10IWC and dlog10Ni val-
ues are 1–2 orders of magnitude higher at higher dRHi (i.e.
dRHi > 10 %) compared with those at lower dRHi (≤ 10 %)
and 0.5–1 orders of magnitude higher at stronger updraught
or downdraught (i.e. dw> 0.5 or ≤−0.5 m s−1) compared
with those with weaker updraught and downdraught (i.e. dw
within ±0.5 m s−1). The dlog10Di values are also higher by
a factor of 2–3 at these higher dRHi and dw ranges. As
dlog10Na100 increases, the cirrus properties converge to sim-
ilar values, indicating that higher concentrations of smaller
aerosols may also associate with higher INP number concen-
trations, thereby lowering the requirements of the high RHi
and w thresholds. This result also corroborates the specula-
tion on the association between high Na100 and INP number
concentrations discussed in Sect. 3.3.

Similar to Sect. 3.3, clear-sky Na values are investigated
for their correlations with ice microphysical properties. Lin-
ear regressions using clear-sky Na500 and Na100 are shown in
Fig. S9. Figure S9 shows similar positive correlations com-
pared with Fig. 6 for almost all IWC and Ni panels, except
for the lower temperature ranges for small aerosols (Fig. 6b1
and b2) possibly due to fewer samples. One main difference
is that Fig. S9 shows no clear trend for Di–Na relationships
compared with Fig. 6, which is likely due to the lack of high
Na values as a result of the averaging process for clear-sky
Na calculations.

A sensitivity test is also conducted using various IWC
thresholds to define in-cloud conditions, i.e. IWC> 10−5,
> 10−4, and > 10−3 g m−3 in Figs. S10–S12, respectively.
The slope values of the linear regressions show almost all
positive values for the correlations of IWC, Ni, and Di with
respect to Na500 and Na100, except for the lower temperature
ranges (−80 to −60 °C in panels b1 and b2 of Figs. S10–
S12), where negative correlations with Na100 are seen. This
exception is likely caused by higher IWC thresholds signif-
icantly reducing the in-cloud sample size at lower tempera-
tures, as seen in the last column of those figures.

3.5 Using machine learning (ML) models to quantify and
compare thermodynamic and dynamic effects and
aerosol effects on cirrus clouds

Three experiments are designed to quantify the contributions
of various factors to cirrus cloud occurrence and the subse-
quent microphysical properties. ML models are designed to
directly compare the contributions from temperature, RHi,
w, Na500, and Na100. The three ML tests in this section will
be referred to as Tests A, B, and C. These three tests address
the three scientific questions described in Sect. 3.2. That is,
Test A examines the key factors contributing to the occur-
rence of cirrus clouds; Test B examines the key factors con-
tributing to whether cirrus clouds are formed with higher and
lower IWC values; and Test C examines the key factors con-
tributing to the full range of magnitudes of IWC as a func-
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Figure 6. Linear regressions quantifying the correlations of dlog10IWC, dlog10Ni, and dlog10Di with respect to dlog10(Na500) in the top
three rows and dlog10(Na500) in the bottom three rows. The analyses in Figs. 6–10 use the combined NASA+NSF datasets (1–3012.5 µm).
ACIs are examined for various ranges of temperature (in rows 1 and 4), dRHi (in rows 2 and 5), and dw (in rows 3 and 6). Coloured dots
represent the geometric means of ice microphysical properties in each Na bin. Slope and intercept values are shown in the legend. The last
column represents the distributions of the number of samples.
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tion of temperature, RHi, and w. For this section, all the
ML-based analyses use the combined NASA+NSF dataset,
but the NSF START08, NASA ATTREX, and NASA POSI-
DON campaigns are not included due to the lack of aerosol
measurements. A similar sensitivity test that focuses on these
three campaigns using the T , RHi, andw predictors only (i.e.
no aerosol predictors) is shown in Table S4. Similar results
are seen compared with those in Table 2.

Test A trains the ML models to differentiate between clear-
sky conditions and cirrus clouds. Because the prediction
is for binary conditions (i.e. in-cloud versus out-of-cloud),
Test A utilizes a binary ensemble classification algorithm for
the ML models. The results are analysed based on an ac-
curacy scale of 0 %–100 % to account for the percentage of
1 s samples being accurately predicted for its clear-sky or in-
cloud condition. Individual factors (e.g. T , RHi, w, Na500,
and Na100), as well as the entire set of combinations of these
factors, are used as predictors in the ML models to exam-
ine which sets of variables provide more accurate predic-
tions. Figure 7 shows six sets of predictors, including T ,
T +RHi, T +w, T +RHi+w, T +RHi+w+Na500, and
T +RHi+w+Na100. The prediction results of the com-
plete sets of predictors are shown in Table 2.

The results show that when using temperature solely as
a predictor, 63.57 % accuracy is seen for all cirrus clouds,
while 65.70 % and 54.63 % accuracies are seen for vertically
quiescent cirrus and non-quiescent cirrus, respectively. This
outcome indicates that when only providing temperature as
the sole predictor, the chances of predicting cirrus occurrence
is close to a random guess (i.e. 50 %). Besides the tempera-
ture predictor, other factors are added incrementally to ex-
amine the added values of these predictors. Among all of
them, RHi is found to be most effective for enhancing the
prediction accuracy. The three types of cirrus – all cirrus,
vertically quiescent cirrus, and non-quiescent cirrus – show
accuracies of 91.55 %, 92.14 %, and 89.04 %, respectively,
when T +RHi predictors are used. Therefore, providing the
additional information of RHi enhances the prediction from
the baseline T predictor by ∼ 26 % to 34 %. Comparatively,
smaller increases in accuracies (by ∼ 10 % to 12%) are seen
when T +w are used for all the cirrus and vertically qui-
escent cirrus types, which show accuracies of 73.18 % and
77.93 %, respectively. Even lower accuracy (53.19 %) of pre-
dicting the occurrences of non-quiescent cirrus clouds is seen
by using the T +w predictors compared with using just the
T predictor (54.63 %), likely caused by the pre-selection of
dynamical conditions, which requires the existence of strong
updraughts and downdraughts in the adjacent environments.
That restriction already pre-selected the more favourable w
conditions and therefore made the w factor less effective for
enhancing the prediction accuracy any further.

When adding the predictors of aerosol information, the ac-
curacies increase by a small amount (∼ 0.1 %–0.2 %) com-
pared with using T +RHi+w, which are 92.06 %, 92.74 %,
and 89.20 % when using T +RHi+w+Na500+Na100 for

the three types of cirrus clouds, respectively. Such increases
in accuracy verify that aerosols do make a difference on the
occurrence of cirrus clouds. Comparing between the larger
and smaller aerosols, the differences in accuracy by using
them as predictors are not very significant, which is within
0.1 %.

Table 2 shows more combinations of predictor variables,
totalling to 31 sets of combinations. Using more predictors
generally provides better results than using fewer predictors.
All the tests that include RHi as a predictor have consistently
high accuracies exceeding 91 %, which show that RHi is con-
sistently the most important factor among all five variables.
Compared with RHi, w plays a less important role in im-
proving predictions of cirrus cloud occurrence regardless of
being used as a single predictor or combined with other pre-
dictors. This result is likely caused by the fact that both wa-
ter vapour concentrations and w contribute to cooling rates
that further control RHi magnitude, indicating that having an
accurate representation of available water vapour concentra-
tions is important in addition to the representation of dynam-
ical conditions. Using Na500 as a single predictor also shows
a high accuracy of 84 % for all cirrus clouds, but the accuracy
decreases to 72 % when using T +Na500. This result likely
occurs because, when using only Na500, the ML model fo-
cuses on a small number of samples with non-zero values of
Na500 for predicting in-cloud conditions, while after adding
the T predictor, the ML model would need to predict cirrus
occurrences using many T samples without Na500 informa-
tion (i.e. Na500= 0). To further verify if the effect of RHi
ultimately represents influences from both the water vapour
volume mixing ratio (q) and temperature, another series of
ML tests similar to Test A were conducted by using q as the
predictor (Table S5). The result shows that having q as the
single predictor has lower accuracy (76 %) than RHi (91 %),
while using T + q has a similar accuracy (91 %) to RHi. Be-
cause of the frequent usage of RHi in model parameteriza-
tions of ice cloud macro- and microphysical properties (e.g.
Gettelman and Kinnison, 2007; Tompkins et al., 2007), RHi
is used for the rest of the ML analyses in the main paper.

Test B is designed to examine what factors are more influ-
ential for the prediction of a cirrus cloud containing higher
or lower IWC compared with the average conditions (Fig. 8).
Only in-cloud conditions are used for Test B. Here, the pre-
dictors are calculated in terms of delta values, which are fluc-
tuations relative to the average values of every 1° temper-
ature bin. Similar to Test A, a binary ensemble classifica-
tion algorithm is used for Test B, predicting whether IWC is
higher or lower than the average IWC in each 1° temperature
bin (i.e. dlog10IWC> 0 or < 0). Comparing the respective
rows between Figs. 8 and 7, the accuracies for each set of
predictors for predicting dlog10IWC> 0 or < 0 (Fig. 8) are
lower than the accuracies for predicting the in-cloud or out-
of-cloud conditions (Fig. 7). In fact, the accuracy of predict-
ing the fluctuations of IWC does not exceed 86 % in any of
the tests. This is likely due to the large variabilities of IWC
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Figure 7. Prediction accuracies (in %) of Test A, namely, using ML models to predict the binary condition of in-cloud or out-of-cloud
for temperatures ≤−40 °C. Columns 1 and 2 show the accuracies for predicting observed in-cloud and observed clear-sky conditions,
respectively. Red and green indicate false and correct predictions, respectively. Column 3 shows the predication of three types of cirrus
clouds – all cirrus, vertically quiescent (VQ) cirrus, and non-quiescent (NQ) cirrus. The set of predictors used in each test is labelled on the
right-hand side of each row. ML predictions using T , RHi, and w are based on all 12 campaigns, while ATTREX and POSIDON are not
included in the bottom two rows due to the lack of aerosol measurements.
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in cirrus clouds, which can be several orders of magnitude
different even within the same cirrus cloud layer. In addition,
ice particle growth and the formation of new ice particles all
contribute to the variations in IWC, which require the under-
standing of the entire evolution of cirrus clouds and the accu-
mulative history of environmental factors that the air parcel
experienced.

When using dT as the sole predictor, the prediction has
accuracies around 48 % to 49 %, which are closer to a ran-
dom 50 %–50 % guess. Adding dRHi to dT increases the
accuracies to 64 %–69 %, which indicates smaller increases
in accuracies by adding dRHi as a predictor for IWC fluc-
tuations in Fig. 8 compared with predicting cirrus occur-
rences in Fig. 7. Adding dw to dT increases the accuracies
to 57 % to 59 %, indicating smaller contributions from dw
compared with dRHi for predicting the fluctuations of IWC
inside cirrus clouds. When adding aerosol information, the
accuracies increase to 66.51 %, 64.83 %, and 69.35 % for
the test of dT + dRHi+ dw+ dlog10Na500 and to 65.45 %,
64.29 %, and 67.40 % for dT + dRHi+ dw+ dlog10Na100
for the three cirrus types (i.e. all cirrus, vertically quiescent,
and non-quiescent), respectively. Comparing between the
larger and smaller aerosols, the added values of dlog10Na500
are 0.8 % to 2.4 %, while the added values of dlog10Na100
are closer to zero around 0.2 % to 0.4 %. This result indi-
cates that the larger aerosols play a more significant role in
controlling the fluctuations of IWC compared with smaller
aerosols. This result is consistent with the result shown in
Fig. 6, which shows higher positive slope values for correla-
tions with dlog10Na500 (top three rows in Fig. 6) compared
with those for dlog10Na100 (bottom three rows in Fig. 6). The
stronger effects of larger aerosols on IWC inside cirrus are
also consistent with previous studies using in situ observa-
tions (e.g. Patnaude and Diao, 2020; Maciel et al., 2023). The
added values of using larger aerosols as a predictor in Test B
(Fig. 8) are higher than those seen in Test A (Fig. 7), indi-
cating that larger aerosols play a relatively more important
role in controlling IWC fluctuations, possibly by modifying
Ni and Di via ice nucleation, as well as by modifying the am-
bient RHi and w via water vapour deposition and latent heat
release, compared with a relatively weaker role for determin-
ing whether cirrus clouds can be formed or not.

In addition to testing the effects of key factors at 1 Hz
resolution, as shown in Fig. 8, we further examined the ef-
fects of environmental factors on cirrus cloud formation at
coarser scales from 10 km to 100 km in Table 3. Specifically,
50, 250, and 500 s averages of dT , dRHi, dw, dlog10Na500,
dlog10Na100, and dlog10IWC values are calculated surround-
ing each second, and these coarser-scale factors are used
to predict whether the coarser-scale dlog10IWC is above
or below zero. This experiment addresses the question of
whether the IWC fluctuations are affected by larger-scale
conditions and what spatial scales are more impactful. Us-
ing dT + dRHi as predictors, the accuracies of predicting the
sign of dlog10IWC for vertically quiescent cirrus clouds are

64.04 %, 70.34 %, 69.44 %, and 71.74 % for 1, 50, 250, and
500 s averaged observations, respectively, indicating that the
dT + dRHi predictors from 50 to 500 s scales are more in-
fluential on the IWC prediction in vertically quiescent cirrus
clouds. This is likely because a higher RHi for a wider spatial
scale can provide a favourable condition for ice crystal for-
mation and growth for a larger cloud segment. For the effects
of dw (using dT + dw as predictors) on vertically quiescent
cirrus clouds, the accuracies are 56.52 %, 57.63 %, 56.17 %,
and 55.96 %, respectively, indicating that the effects of w on
IWC fluctuations extend from the microscale (i.e. ∼ 0.2 km)
to mesoscale (10–100 km). On the other hand, examining the
non-quiescent cirrus clouds, even though the dT + dRHi pre-
diction provides the highest accuracy of 80.14 % by using
250 s averaged observations, the 500 s averaged observations
provide the lowest accuracy of 66.14 % among all spatial
scales, indicating a sudden decrease in the impacts of RHi
conditions around 100 km surrounding non-quiescent cirrus
clouds. When using dT + dw predictors for non-quiescent
cirrus clouds, the accuracies show more variabilities, with
only 43.70 % accuracy for 250 s averaged observations, indi-
cating that the effects of dw on non-quiescent cirrus clouds
originate from a smaller surrounding environment within
±25 km.

For the analysis of ACIs, the effect of Na500 is consistently
higher than that of Na100. The additional values of Na500 and
Na100 peak around the 50 s and 250 s scales for vertically qui-
escent and non-quiescent cirrus clouds, respectively, but both
decrease at the 500 s scale. For non-quiescent cirrus clouds at
the 500 s scale, adding aerosol information even reduces the
prediction accuracy in addition to dT + dRHi+ dw, likely
due to these cirrus clouds being affected by thermodynamic/-
dynamic conditions more significantly than aerosols at that
scale. These scale analysis results suggest that higher aver-
age Na500 and Na100 at the 10–50 km scale are more likely to
overlap with favourable RHi and w conditions to initiate ice
nucleation. On the other hand, Na averaged above 100 km
shows weak ACIs, likely because that scale becomes much
larger than the lengths of ice supersaturated regions, i.e. 0.1–
10 km (Diao et al., 2014a), which are prerequisite conditions
for ice nucleation.

Test C examines the ability of the ML models to predict
the distributions of IWC as a function of temperature, RHi,
and w, as shown in Figs. 9 and 10. In Fig. 9, the distribu-
tions of IWC based on real in situ observations (Fig. 9a–c)
show four main features: (1) an increasing trend of IWC with
increasing temperatures, (2) two peaks of IWC values, one
at small ice supersaturation (i.e. RHi of 110 %) that is more
pronounced for quiescent cirrus clouds and another at high
ice supersaturation (RHi of 150 %–160 %) that is more pro-
nounced for non-quiescent cirrus clouds, (3) higher IWC at
stronger updraughts and downdraughts, and (4) higher geo-
metric mean IWC values in the non-quiescent cirrus clouds
than in the vertically quiescent cirrus clouds by 1 order of
magnitude. The higher IWC seen in non-quiescent cirrus
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Figure 8. Similar to Fig. 7 but predicting whether dlog10IWC is positive (+) or negative (−) for in-cloud conditions. dlog10IWC is calculated
relative to the geometric mean of IWC in each 1° temperature bin inside cirrus clouds. Observations at 1 Hz are used in this analysis, compared
with the coarser scales used in Table 2. Columns 1 and 2 represent the scenarios when the real observations show dlog10IWC> 0 and < 0,
respectively. Column 3 shows the overall accuracies for predicting the sign of dlog10IWC in three types of cirrus clouds.
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Figure 9. Distributions of log10IWC in relation to temperature, RHi, and w in columns 1–3, respectively. Various sets of predictors are used
in different rows. The solid horizontal lines and the vertical bars represent the geometric means and standard deviations of (a–c) observed
and (d–l) predicted log10IWC. Red and blue represent results for non-quiescent and vertically quiescent cirrus clouds, respectively.

clouds is consistent with the finding of Krämer et al. (2016)
in their Fig. 13, assuming part of the non-quiescent cir-
rus clouds are affected by convective activity. Three sets of
predictions are evaluated, including T , T +RHi+w, and
T +RHi+w+Na500+Na100. All the tests can capture the
first feature (positive correlations between IWC and T ), but

the test using only T as a predictor cannot capture the trend
with respect to RHi andw, nor can it show the different IWCs
between the two types of cirrus clouds. Using T +RHi+w
predictors can already capture the main differences in IWC
between the two cirrus types. Adding aerosols as predic-
tors shows larger differences in IWC values between the
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non-quiescent and vertically quiescent cirrus clouds, which
are also more similar to the observations compared with us-
ing only T +RHi+w. This result illustrates the effects of
aerosols in addition to thermodynamic and dynamic effects.

Figure 10a–i shows the comparisons of predicted IWC ver-
sus observed IWC, colour-coded by the average T , RHi, and
w in columns 1–3, respectively. Three sets of predictors are
used: T only (rows 1 and 4), T +RHi+w (rows 2 and 5),
and T +RHi+w+Na500+Na100 (rows 3 and 6). In addi-
tion, Fig. 10j–r compares the probability density functions
(PDFs) of T , RHi, and w between the scenarios when ML
models underestimate or overestimate IWC values. When
RHi is not included as a predictor, the predicted IWC val-
ues are underestimated at higher RHi values (i.e. orange and
red bins below the 1 : 1 line in Fig. 10b) and overestimated
at lower RHi values (i.e. blue bins above 1 : 1 line). In ad-
dition, when only using T as the predictor in Fig. 10k, the
ML predictions overestimating IWC (red line) show higher
frequencies of subsaturated conditions and lower frequen-
cies of ice supersaturated conditions compared with the ML
predictions that underestimate IWC. Similarly, when w is
excluded from the prediction, the higher IWC values asso-
ciated with strong updraughts are underestimated (i.e. red
bins under the 1 : 1 line in Fig. 10c). The PDFs of w also
show that the underestimated IWC samples have higher fre-
quencies of strong updraughts and downdraughts when w is
not used as a predictor (Fig. 10l). The differences in PDFs
of RHi and w between overestimated and underestimated
IWC samples are significantly reduced when three predic-
tors are used (i.e. T +RHi+w), as shown in Fig. 10m–o.
These differences are even further reduced when Na500 and
Na100 are added as the predictors in Fig. 10p–r, especially
for those samples associated with lower temperatures below
−60 °C (in Fig. 10p), small ice supersaturation less than 20 %
(Fig. 10q), and stronger updraughts (> 1.5 m s−1) and down-
draughts (<−2.5 m s−1) (Fig. 10r). These analyses demon-
strate the primary importance of accurately representing the
RHi and w distributions in model simulations for the en-
tire temperature range when simulating the magnitudes of
IWC in cirrus clouds, as well as the increasing importance
for representing aerosol concentrations accurately for condi-
tions with low temperatures, small ice supersaturation, and
high updraughts/downdraughts.

4 Conclusions and implications

In this study, near global-scale datasets were compiled for
in situ observations of cirrus microphysical properties and
their surrounding environmental conditions. The individual
roles of several key factors (i.e. temperature, RHi, w, Na500,
and Na100) affecting the distributions of cirrus microphysical
properties were investigated. The datasets cover a wide range
of latitudes, providing observations in six latitudinal bands

ranging from the polar regions to the midlatitudes and the
tropics.

Several approaches were developed to quantify these in-
dividual effects, including using a delta-delta method to ex-
amine the correlations between the fluctuations of environ-
mental conditions and the fluctuations of cirrus properties,
using linear regressions to quantify the effects of larger and
smaller aerosols, and using random forest ML models to ad-
dress the effectiveness of adding different variables as predic-
tors for predicting the occurrences of cirrus clouds and the
subsequent IWC fluctuations and magnitudes. These meth-
ods have been shown to be critical for quantifying the role of
different factors. For instance, the effects of RHi and w on
IWC, Ni, and Di were examined by removing the tempera-
ture effects on cirrus properties in Fig. 5. The five NASA and
seven NSF campaigns show similar trends when the fluctua-
tions of IWC, Ni, and Di were examined, including the peak
of dlog10IWC and dlog10Ni seen at 10 % dRHi and the peak
of dlog10IWC and dlog10Ni seen at stronger updraughts and
downdraughts conditions. The calculation of delta values en-
ables the combination of NASA and NSF datasets for linear
regression analysis of ACIs (Fig. 6). The average background
conditions of every 1° temperature bin were subtracted from
the delta values, removing the variabilities introduced by var-
ious instruments and geographical locations.

The ML models were designed to directly compare the
effects of multiple factors (Figs. 7–10 and Tables 2 and 3).
Among all factors, RHi is the most important factor for pre-
dicting the occurrences of cirrus clouds and the fluctuations
of IWC, although its relative contributions to the fluctua-
tions and magnitudes of IWC are smaller compared with
its dominant role for predicting cirrus occurrences. Com-
paring between non-quiescent and vertically quiescent cir-
rus clouds, the non-quiescent cirrus clouds show 1 order
of magnitude higher IWC than vertically quiescent cirrus
clouds. This main feature can be captured if the predictors of
T +RHi+w are used, while adding aerosol information can
further reduce the biases in predicted IWC magnitudes es-
pecially for low temperatures, small ice supersaturation, and
high updraughts/downdraughts.

Focusing on the analysis of ACIs, both larger and smaller
aerosol concentrations (Na500 and Na100) show positive cor-
relations with the delta values of IWC, Ni, and Di when the
combined NASA+NSF datasets were examined. However,
larger aerosols produce stronger effects on cirrus clouds (i.e.
steeper slopes) than smaller aerosols, as shown by the slopes
of linear regressions (Fig. 6). In addition, near-linear corre-
lations with positive slopes are seen between fluctuations of
IWC, Ni, and Di relative to fluctuations of larger aerosols,
while the correlations with smaller aerosols are nonlinear.
The increasing trends of dlog10IWC, dlog10Ni, and dlog10Di
become more visible when the number concentrations of
smaller aerosols are 10 times larger than their background
conditions (i.e. dlog10Na100> 1). The nonlinearity of ACIs
for small aerosols may be caused by the higher Na100 values
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Figure 10. (a–i) Distributions of predicted versus observed log10IWC, colour-coded by the average temperature, RHi, and w in each
bin for columns 1–3, respectively. (j–r) PDFs of T , RHi, and w, separated by when IWC is underestimated or overestimated by the
ML model. Rows 1 and 4 are predicted by T only. Rows 2 and 5 are predicted by T +RHi+w. Rows 3 and 6 are predicted by
T +RHi+w+Na500+Na100.
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being associated with higher INP concentrations, as Na100
and Na500 are positively correlated (not shown). Based on
the ML analysis, the relative contributions of large aerosols
for the prediction of cirrus cloud occurrences are relatively
small compared with those from RHi and w (Fig. 7), but
they have slightly larger influences on the prediction of IWC
magnitudes (Fig. 8). The ML experiments consistently show
relatively smaller effects from small aerosols compared with
larger aerosols (Tables 2 and 3). The fact that near-linear cor-
relations are seen with respect to Na500 at various IWC val-
ues across 3–4 orders of magnitudes (Figs. 6, S10–S12) as
well as using both in-cloud and clear-sky Na values (Fig. S9)
suggests that the ice shattering is less likely a main cause of
the higher Na500 at in-cloud conditions, as higher IWC val-
ues are more likely to induce ice shattering based on previous
in situ observations (McFarquhar et al., 2017).

When examining the impacts of using predictors at differ-
ent spatial scales, the dT + dRHi+ dw predictors are more
effective at the 50 to 500 s scale than at the 1 s scale, suggest-
ing larger impacts of thermodynamic/dynamic conditions at
coarser scales than the 1 s scale. On the other hand, the ef-
fects of both types of aerosols peak at the 50 s scale for ver-
tically quiescent cirrus clouds and at the 250 s scale for non-
quiescent cirrus clouds, and both decrease at the 500 s scale,
suggesting that the availability of aerosols at similar scales
to the lengths of ice supersaturated regions, i.e. 0.1–10 km
(Diao et al., 2014a), may lead to higher probabilities of ice
nucleation.

The compiled in situ observational dataset of cirrus clouds
in this study provided a complementary dataset in terms
of geographical coverage to the previous study of Krämer
et al. (2020). That study analysed cirrus cloud observa-
tions from 24 field campaigns, including five campaigns
that were also used in this study, i.e. START08, CON-
TRAST, MACPEX, ATTREX-2014, and POSIDON. That
study showed more samples over Europe, Africa, Australia,
and South America compared with this study. When assess-
ing the geographical coverage of both studies, we identified
several regions with fewer samples – (a) the polar regions
in both hemispheres, (b) the Northern Hemisphere midlat-
itudes over the ocean, and (c) the Southern Hemisphere
midlatitudes over both ocean and land. Thus, more cirrus-
oriented airborne field campaigns are needed in these re-
gions to understand the key environmental factors control-
ling cirrus formation and evolution by specifically targeting
the cirrus cloud system. In addition, both studies had fewer
samples over mountainous regions conducive to OGW cirrus
clouds, which may not cover the entire distributions of cloud
properties. Previously, considerably different ice microphysi-
cal properties and widespread coverage were found in OGW
cirrus clouds (e.g. Joos et al., 2008; Barahona et al., 2017;
Mitchell et al., 2018; Gryspeerdt et al., 2018; Krämer et al.,
2020; Lyu et al., 2023). Last but not the least, the majority
of the field campaigns used in both studies (e.g. NSF cam-
paigns) captured cirrus clouds as targets of opportunity in-

stead of sampling them as the main scientific objective. Thus,
more purposely designed comparative studies among cirrus
clouds formed under various synoptic dynamical conditions
(i.e. convective, orographic, and in situ cirrus) are still war-
ranted.

Quantifying the relative role of various factors has im-
plications for improving the simulations of cirrus clouds
in GCMs. For example, capturing the fluctuations of larger
aerosols is more important than capturing such information
for small aerosols (Fig. 6 and Tables 2 and 3). In addition,
capturing the sub-grid scale variabilities of T , RHi,w, Na500,
and Na100 at 10–50 km for GCM simulations at the 1°× 1°
grid scale is especially important for predicting IWC vari-
abilities (Table 3) and for representing the differences be-
tween vertically quiescent and non-quiescent cirrus clouds
(Fig. 10), which presents a challenge to sub-grid parame-
terizations in GCMs. Overall, this study provided two main
types of metrics to quantify the contributions from multiple
factors on cirrus microphysical properties, i.e. linear regres-
sions and ML predictions. These datasets and metrics devel-
oped in this study can be applied to evaluate GCM simula-
tions and satellite-based observations for cirrus microphysi-
cal properties and ACIs in cirrus clouds.

Data availability. Observations from the seven NSF flight
campaigns are accessible at https://data.eol.ucar.edu/ (last
access: 15 June 2024). The DOIs for the 1 s cloud mi-
crophysical properties of NSF campaigns are also pro-
vided (https://doi.org/10.5065/D6BC3WKB, UCAR/NCAR,
2018a; https://doi.org/10.5065/D65T3HWR, UCAR/NCAR,
2018b; https://doi.org/10.5065/D6JW8C64, UCAR/NCAR,
2019a; https://doi.org/10.5065/D6QF8R6R, UCAR/NCAR,
2019b; https://doi.org/10.5065/D6V40SK6, UCAR/NCAR,
2019c; https://doi.org/10.5065/D6CZ35HX, UCAR/NCAR,
2019d; https://doi.org/10.5065/D6NZ85Z4, UCAR/NCAR,
2019e; https://doi.org/10.5065/D6668BHR, UCAR/NCAR,
2019f; https://doi.org/10.5065/D6TX3CK0, UCAR/NCAR,
2021a; https://doi.org/10.5065/D61R6NV5, UCAR/NCAR,
2021b). Observations from the five NASA flight campaigns
are accessible at the following links for the ATTREX,
MACPEX, NASA-DC3, POSIDON, and SEAC4RS cam-
paigns, respectively: https://espo.nasa.gov/attrex (NASA Data,
2024a), https://espo.nasa.gov/macpex (NASA Data, 2024b),
https://www-air.larc.nasa.gov/missions/dc3-seac4rs/ (NASA Data,
2024c), https://espo.nasa.gov/posidon (NASA Data, 2024d), and
https://www-air.larc.nasa.gov/missions/seac4rs/ (NASA Data,
2024e).

Supplement. The supplement related to this article is available
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