

Supplement of

Measurement report: Crustal materials play an increasing role in elevating particle pH – insights from 12-year records in a typical inland city of China

Hongyu Zhang et al.

Correspondence to: Shenbo Wang (shbwang@zzu.edu.cn) and Zhangsen Dong (dzszzu1990@163.com)

The copyright of individual parts of the supplement might differ from the article licence.

14 Text S1 Instruments and Measurements.

Samples were collected using a high-volume sampler (TE-6070D, Tisch, USA) and air particulate samplers (TH-16A, Tianhong, China) from April 2011 to December 2022. Two quartz filters and two Teflon filters were used daily from 10:00 AM to 9:00 AM the next day, resulting in a total of 5848 samples. After excluding abnormal data due to instrument malfunctions, 4228 valid samples were obtained. Detailed information on the samples is provided in Table S1.

Organic carbon (OC) and elemental carbon (EC) were analyzed using a carbon analyzer (Model 20 5L, Sunset Laboratory, USA). The analysis of EC and OC was conducted in two stages. In the first 21 stage, the filter membrane was placed in a quartz heating furnace under a pure helium atmosphere. As 22 23 the temperature gradually increased to approximately 580°C, OC was volatilized and released. In the second stage, heating continued in a mixed atmosphere of 2% oxygen and 98% helium. When the 24 temperature reached approximately 870°C, EC underwent oxidative decomposition and was released. 25 During the helium flow transmission, OC and EC released at different temperatures were completely 26 oxidized to CO₂ in a MnO₂ oxidation furnace and subsequently reduced to CH₄ for detection by a flame 27 ionization detector (FID). The detection limits for both OC and EC were 0.2 µg/cm². Before each 28 29 sample analysis, calibration was performed using a standard sucrose solution. Additionally, parallel tests were conducted every ten samples to ensure accuracy. 30

Water-soluble inorganic ions (Cl⁻, NO₃⁻, SO₄²⁻, Na⁺, NH₄⁺, K⁺, Mg²⁺, and Ca²⁺) were measured using ion chromatography (ICS-90 and ICS-900 models, Dionex, USA). Half of the PM_{2.5} filter was cut into pieces and ultrasonically extracted with 20 mL of Milli-Q water for 30 min, followed by filtering through a 0.45 mm polytetrafluoroethylene syringe filter before analysis. The cation concentrations were determined by an IonPacASII-HC4 mm anion separation column and an IonPacAGll-HC4 mm guard column, with 20 mM methane sulfonate as an eluent at 0.8 mL/min. The anions were measured by an IonPacCS12A cation separation column and an IonPacCG12A guard column, with a solution of 8.0 mM Na₂CO₃ + 1.0 mM NaHCO₃ as an eluent at 1.0 mL/min. The regression coefficients (R^2) of the calibration curves were over 0.9996 for all ions, except NH⁺₄ (0.9988), which showed a quadratic response.

Elements were analyzed using a wavelength dispersive X-ray fluorescence spectrometer (S8 41 TIGER, Bruker, Germany) to determine concentrations of Fe, Na, Mg, Al, Si, Cl, K, Ca, V, Ni, Cu, Zn, 42 Cr, Mn, Co, Cd, Ga, As, Se, Sr, Sn, Sb, Ba, and Pb (Tremper et al., 2018), which has been approved 43 by the United States Environmental Protection Agency (Chow and Watson, 1994). The spectrometer 44 was equipped with an X-ray tube featuring close coupling among the tube, sample, and detector, 45 ensuring high efficiency and optimal excitation of elements within the sample. Before analysis, the 46 47 instrument was calibrated using a series of high-quality, self-prepared standards. Calibration procedures were conducted following established methods (Chow and Watson, 1994). To assess 48 potential contamination and ensure data quality, blank filters were routinely analyzed alongside each 49 50 batch of samples.

52 Figures

Figure S1. Sampling site in Zhengzhou, China. © 2019 National Geomatics Center of China. All
 rights reserved.

56

58

Figure S2. (a) Validation of pH estimates derived from observed vs. simulated NH₃ concentrations in
2022. Red line: linear regression fit. (b) Cross-validation of NH₃ concentrations calculated by the
ISORROPIA thermodynamic model and Equation 4 (2011–2022). Red line: linear regression fit.

Figure S3. Evolution of total spatial variance (TSV) and optimal cluster number determination for
 backward trajectories under two policy phases: (a) 2013–2018; (b) 2019–2022

Figure S4. Trends in the proportions of chemical components in PM_{2.5} from 2011 to 2022.

Figure S9. Trends in the concentrations of crustal elements and their proportions in PM_{2.5} from 2011 to 2022.

Figure S11. Sensitivity analysis of input parameters to particle pH. The dashed line represents the average of the observational data from 2011 to 2022.

Figure S12. Trends in aerosol liquid water content (ALWC) and H⁺ concentrations from 2011 to
2022
94

Figure S13. Trends in the annual average concentrations of PM_{2.5}, PM₁₀, and PM_{10-2.5} in provincial
 capitals in the North China Plain.

101 Tables

102	Table S	S1. Information on sampling date and	numbers.
	Years	Sampling date	The effective number of samples
		April 7–20	Sumpres
	2011	July 1–31	188
	2011	October 28–December 2	100
		December 11–November 23	
		February 25–26	
	2012	April 21–May 6	140
		July 22–August 2	
		October 17–November 1	
		December 8–25	
		February 25–March 6	
	2013	April 1–May 1	184
		June 5–July 30	
		September 20–October 13	
		December 2–18	
		April 1–May 5	
	2014	June 18–July 20	180
	-	October 7–24	
		December 30–31	
		January 1–15	
	2015	April 1–20	248
		July 1–20	
		October 9–24	
		January 6–22	
	2016	April 8–30	252
		July 9–31	
		October 1–20	
		December 29–31	
		January 1–20	
	2017	April 18–May 4	480
		July 1–26	
		October 14–December 31	
		January 1–31	
	2018	April 1–30	600
		July 1-31	
		October 9–December 31	
		January 1–31	
	2019	April 1–30	592
		JULY 1-51 Soutombor 2. October 21	
		November 12, 20	
		December 21 21	

_ c 1. 1 . . .

	January 1–20	
2020	June 5–July 31	332
	October 6–November 13	
	December 15–31	
	January 1–31	
2021	March 16–April 30	540
	July 1–August 8	
	October 17–December 31	
	January 1–4	
2022	April 1–May 3	492
	July 1–August 11	
	September 5–October 11	
	December 10–31	
Total		4228

-	MDLs ($\mu g/m^3$)	Unc (%)
EC	0.1	13.1
OC	0.1	9.8
Na ⁺	0.005	9.6
NH_4^+	0.011	10.1
K^+	0.006	9.5
Mg^{2+}	0.002	9.3
Ca^{2+}	0.017	8.8
\mathbf{F}^-	0.001	8.2
$C1^{-}$	0.001	9.3
NO_3^-	0.015	10.1
$\mathbf{SO}_4^{2^-}$	0.031	9.9
Na	0.003	10.9
Mg	0.002	10.6
Al	0.004	9.2
Si	0.005	9.3
Cl	0.008	9.5
K	0.005	9.4
Ca	0.01	9.4
V	0.008	57.9
Ni	0.006	96.6
Cr	0.02	24.7
Mn	0.02	16.8
Fe	0.03	9.3
Co	0.009	79.6
Cu	0.005	5.8
Zn	0.003	8.4
Ga	0.005	84.7
As	0.008	27.4
Se	0.006	25.7
Sr	0.006	22.8
Cd	0.03	68.6
Sn	0.02	42.0
Sb	0.02	73.6
Ba	0.02	15.6
Pb	0.02	13.4

Table S2. The method detection limit (MDL) and measurement uncertainties (Unc) of individualcomponents

111 Table S3. Major emission reduction measures were implemented during the Air Pollution Prevention and Control Action Plan (2013–2018) and

112 the Three-Year Action Plan (2018–2	2020)	
--	-------	--

	Air Pollution Prevention and Control Action Plan	Three-Year Action Plan			
	Elimination of a large amount of outdated	Continued phase-out of outdated production capacity			
	production capacity in industries.	(e.g., steel, cement)			
Industrial Restructuring	Cement to optimize the industrial structure	Strengthen ultra-low emission retrofitting in sectors			
	Reduce high-pollution production	such as steel and coking			
	Capping coal consumption in certain regions	Deepen regional coal consumption control			
Energy Transition	Restricting the construction of small-scale coal-fired	Expand clean heating coverage in rural areas			
	power plants				
		Continue raising emission standards in the power			
Promote clean fuels in the	Ultra-low emission retrofitting in the power sector	sector			
residential sector	Comprehensive retrofitting of coal-fired boilers	Introduce ultra-low emission requirements for non-			
		power sectors (e.g., steel, coking)			
		Full implementation of China VI emission standards			
	Initial elimination of high-emission (vellow-label)				
Mahila Sauraa Cantral	Initial elimination of high-emission (yellow-label)	Set up low-emission zones for diesel trucks			
Mobile Source Control	Initial elimination of high-emission (yellow-label) vehicles	Set up low-emission zones for diesel trucks Promote the replacement of vehicles with new energy			
Mobile Source Control	Initial elimination of high-emission (yellow-label) vehicles Promotion of China V emission standards	Set up low-emission zones for diesel trucks Promote the replacement of vehicles with new energy vehicles			

		Incorporate VOCs (Volatile Organic Compounds) and		
Coordinated Control of	Focus on SQ. NO. and DM.	NH3 (ammonia) into joint control		
Multiple Pollutants	Focus on SO_2 , NO_x , and $PN_{2.5}$	Strengthen control over industrial solvent use and		
		agricultural emissions		
Innovative Governance	Regional joint prevention and control (key regions	Grid-based and precise supervision (micro-zoning and		
Models	such as Beijing–Tianjin–Hebei)	dynamic management)		

Table S4. The Comparison of Key Indicators Between the Air Pollution Prevention and Control Action Plan (2013–2018) and the Three-Year
 Action Plan (2018–2020).

	Air Pollution Prevention and Control Action Plan	Three-Year Action Plan			
	Beijing-Tianjin-Hebei region: ≥25% reduction	$PM_{2.5}$ concentrations to be reduced by more than 18%			
PM _{2.5}	Yangtze River Delta region: ≥20% reduction				
	Pearl River Delta region: $\geq 15\%$ reduction	(vs. 2015)			
PM ₁₀	National PM ₁₀ concentration to decrease by $\geq 10\%$	No explicit targets			
SO-/NO	No overligit toppots	National SO ₂ and NO _x emissions to be reduced by $\geq 15\%$			
SO_2/NO_x	No explicit targets	(vs. 2015)			
Number of good air quality		> 200/ annually in much store level and share siting			
days	Annual improvement in good air days	>80% annually in prefecture-level and above cities			
Number of heavily polluted	Ne constituit to see the	250/ m. hasting in harmon alleting large (are 2015)			
days	No explicit targets	25% reduction in neavy pollution days (vs. 2015)			

Release time	Policies	Regulatory focus
2013.9	Regulations on Reducing Pollutant Emissions in Henan Province	Road, Construction
2014.8	Temporary Regulations on Dust Control Management at Construction Sites in Henan Province	Construction
2016.7	Implementation Plan for Controlling Dust Pollution in Henan Province	Road, Construction
2018.2	Regulations on the Prevention and Control of Atmospheric Pollution in Henan Province	Road, Construction, Piles
2019.4	Special Action Plan for Fine Management of Dust Pollution Prevention and Control at Construction Sites in Zhengzhou City, 2019	Construction
2019.8	Enhanced Action Plan for Intensive Dust Control at Construction Sites in 2019	Construction
2021.1	Special Governance Plan for Key Project Dust Pollution in Zhengzhou	Road, Construction, Piles

Table S5. Control measures for dust implemented by Henan Province and Zhengzhou government

126	Table S6. Analysis of the inter - annual trends of CM and Ca ²⁺ concentrations and pH during different periods using multiple methods.									methods.	
		2011–2013				2013–2019			2019–2022		
	CM Ca ²⁺ pH				СМ	Ca^{2+}	pН	СМ	Ca ²⁺	pН	
	MK-Z	3.01	2.70	1.41	-9.74	-13.62	3.00	2.48	8.21	5.12	
	МК-р	0.003	0.007	0.159	<2.2 E-16	<2.2E-16	0.003	0.013	2.20E-16	2.99E-07	
	Sen's slope	0.082	0.023	7.10E-03	-0.015	-4.14E-03	9.15E-04	5.80E-03	5.42E-03	2.93E-03	
	LS slope	2.65	0.61	/	-0.81	-0.32	0.11	0.24	0.40	0.21	

. C .1 · 1 6016 $1 \circ 2^+$ 1 17 1 . 1.00 121 1

** MK-Z and MK-p represent the trend (Z) and significance (p) calculated by the Mann - Kendall method respectively; Sen's slope represents 127

the Sen slope; LS slope represents the Least - Squares slope. All the above calculations were performed using the R language (R version 4.0.2). 128

Dust source	City	Ca/Si	Reference
Road dust	Xi'an	2.04	http://www.klacp.ac.cn/
	Yinchuan	2.48	wgPMzypfypk/ycy/2017
	Lanzhou	1.67	06/t20170610_375562.ht
	Beijing	1.25	ml
	Tianjin	1.03	
	Baoding	1.16	
	Shijiazhuang	1.98	
	Handan	1.83	
	Shenyang	1.81	
	Changsha	1.92	
	Chongqing	1.38	
	Chengdu	1.17	
	Kunming	1.94	
	Taiyuan	1.55	
	Nanjing	1.28	
Construction dust	Xi'an	1.69	http://www.klacp.ac.cn/
	Yinchuan	1.84	wgPMzypfypk/ycy/2017
	Lanzhou	2.33	06/t20170610_375562.ht
	Beijing	2.65	ml
	Tianjin	1.46	
	Baoding	1.58	
	Shijiazhuang	1.38	
	Handan	1.86	
	Shenyang	1.92	
	Changsha	2.30	
	Chongqing	2.52	
	Chengdu	2.15	
	Kunming	1.60	
	Taiyuan	1.92	
	Nanjing	2.26	
Piles dust	Xi'an	0.72	(Yang, 2016)
	Tianjin	0.57	(Zhang et al., 2018)
	Taiyuan	0.61	(Bi et al., 2007)
	Jinan	1.01	(Bi et al., 2007)
	/	0.65	http://www.nkspap.com:
			9091/Index.aspx
Soil dust	Nanchang	0.37	(Xu et al., 2019)
	Xi'an	0.27	(Yang, 2016)
	Jincheng	0.13	(Wang et al., 2016)
	Wuhan	0.52	(Gong and Luo, 2018)
	/	0.53	http://www.nkspap.com:
			9091/Index.aspx

Table S7. The ratios of Ca/Si in the source spectrum of different dust sources in China

Years	ALWC	$H^{+}(10^{-6})$	NO_3^-	SO_4^{2-}	$\mathrm{TNH}_{\mathrm{x}}$	Na^+	Cl-	K^+	Ca ²⁺	Mg^{2+}	RH(%)	T (°C)
2012VS2011	-19.0	-1.5	4.0	-4.6	1.3	0.02	2.0	0.9	-0.2	0.04	-9.6	-5.7
2013VS2012	-4.6	-7.6	2.6	13.0	2.1	0.2	0.4	0.3	1.4	0.1	-2.6	2.1
2014VS2013	-4.5	7.9	-7.3	-14.6	-6.9	-0.4	-3.4	-1.6	-1.1	-0.2	6.6	2.0
2015VS2014	17.6	-11.2	5.2	-1.8	5.5	0.1	2.1	0.4	-0.6	0.6	-5.6	-4.2
2016VS2015	-2.3	3.0	-0.2	-4.5	-3.7	-0.03	-0.1	-0.4	0.5	-0.7	8.0	0.3
2017VS2016	-10.0	-7.2	-2.9	-5.3	-3.6	-0.2	-0.3	-0.2	-0.1	0.1	-6.0	-4.9
2018VS2017	-5.8	-0.3	-0.8	-2.4	1.3	-0.1	-0.8	-0.2	-0.1	-0.1	1.4	-2.8
2019VS2018	4.1	4.8	-3.0	-0.8	-2.2	-0.04	-0.7	-0.03	-0.1	-0.01	-0.1	7.3
2020VS2019	11.6	-3.4	4.9	-0.3	-0.9	0.1	0.1	-0.2	0.7	0.02	-6.6	-2.1
2021VS2020	-12.7	-1.5	-3.6	-2.3	0.2	-0.01	0.03	0.01	0.1	0.04	-2.8	-1.5
2022VS2021	-10.6	-1.5	-5.1	1.9	-1.4	0.03	-0.3	0.01	0.5	0.04	4.7	5.8

Table S8. The difference between component concentrations ($\mu g/m^3$) and meteorological parameters between adjacent years.

134 **References**

- Bi, X., Feng, Y., Wu, J., Wang, Y., and Zhu, T.: Source apportionment of PM₁₀ in six cities of northern
 China, Atmospheric Environment., 41, 903–912, <u>https://doi.org/10.1016/j.atmosenv.2006.09.033</u>,
 2007.
- Chow, J.C., Watson, J.G., 1994. Guidelines for PM₁₀ sampling and analysis applicable to receptor
 modeling. Washington, DC7 US Environmental Protection Agency, Office of Air Quality
 Planning and Standards, EPA-452/R-94-009.
- Gong, P. and Luo, Y.: Study on the characteristics of source profiles in Wuhan, Journal of Nanjing
 University of Information Science & Technology., 10, 579–589,
 <u>https://doi.org/10.13878/j.cnki.jnuist.2018.05.008</u>, 2018.
- Tremper, A.; Font, A.; Priestman, M.; Hamad, S.; Chung, T.; Pribadi, A.; Brown, R.; Goddard, S.;
 Grassineau, N.; Petterson, K.; Kelly, F.; Green, D.: Field and laboratory evaluation of a high time
 resolution x-ray fluorescence instrument for determining the elemental composition of ambient
 aerosols, Atmos. Meas. Tech., 11, 3541–3557, https://doi.org/10.5194/amt-11-3541-2018, 2018.
- Wang, Y., Peng, L., Li, L., Wang, Y., Zhang, T., Liu, H., and Mu, L.: Chemical compositions and
 sources apportionment of re-suspended dust in Jincheng, Environmental Science., 37, 82–87,
 https://doi.org/10.13227/j.hjkx.2016.01.012, 2016.
- Xu, Y., Gong, X., and Zhang, W.: Construction and characteristic analysis of PM_{2.5} source profiles of
 typical emissions in Nanchang City, Chemical Engineer., 33, 41–43,
 <u>https://doi.org/10.16247/j.cnki.23-1171/tq.20190841</u>, 2019.
- Yang, Y.: The Chemical Compositions and source apportionment of particulate matter of open sources
 in Xi'an, 42–43, <u>https://doi.org/10.27393/d.cnki.gxazu.2016.000073</u>, 2016.
- Zhang, J., Wei, E., Wu, L., Fang, X., Li, F., Yang, Z., Wang, T., and Mao, H.: Elemental composition
 and health risk assessment of PM₁₀ and PM_{2.5} in the roadside microenvironment in Tianjin, China,
 Aerosol and Air Quality Research., 18, 1817–1827, <u>https://doi.org/10.4209/aaqr.2017.10.0383</u>,
 2017.
- 160