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Abstract. In order to investigate the relationship between latent heating (LH) and radiative heating (Qrad), in
particular the heating released by mesoscale convective systems (MCSs), we used synergistic satellite-derived
data from active instruments. Given the sparse sampling of these observations, we expanded the spectral LH
profiles derived from the Tropical Rain Measurement Mission (TRMM-SLH) by applying artificial neural net-
work regressions to the Clouds from InfraRed Sounders (CIRS) data and meteorological reanalyses, following a
similar approach as for the expansion of theQrad profiles. A direct comparison with the collocated TRMM-SLH
data shows excellent agreement of the average profiles, but the prediction range is underestimated, in particular
between 550 and 900 hPa. Noise related to discrepancies in rain fraction between TRMM and CIRS-ML (ma-
chine learning), as well as an underestimation of extremes, can be reduced by averaging over larger areas. The
zonal averages of vertically integrated LH (LP) at 01:30 and 13:30 LT align well with those from the full diurnal
sampling of TRMM-SLH over the ocean. For upper-tropospheric (UT) clouds with a large amount of latent heat
release, the surface temperature has a larger impact on the atmospheric cloud radiative effect (ACRE) in dry
environments than in humid ones, while humidity plays a large role in cool rather than in warm environments.
In all situations, the cloud height is mostly responsible for the value of ACRE. The distribution of UT clouds in
the LP–ACRE plane shows a very large spread in the ACRE for small values of LP, which is gradually reduced
towards larger values of LP. The mean ACRE of mature MCSs increases with LP, up to about 115 Wm−2. As
expected, the shapes of the LH profiles of mature MCSs show that larger, more organized MCSs have a larger
contribution of stratiform rain than the smaller MCSs do. Furthermore, convective organization enhances the
mean ACRE of mature MCSs on average by about 10 Wm−2 over the whole LP range.

1 Introduction

Clouds envelop approximately two-thirds of the Earth’s sur-
face, with 40 % originating from upper-tropospheric (UT)
clouds (e.g. Stubenrauch et al., 2013, 2017). These cloud
formations play a crucial role in modulating the Earth’s en-
ergy budget and heat transport. They are most abundant in
the tropics, constitute around 60 % of the total tropical cloud
distribution, and often form as cirrus anvils from convective
outflow, building mesoscale convective systems (MCSs), as
illustrated by Houze (2004).

Throughout the precipitation process, latent heating (LH)
is generated within the convective cores and denser regions
of the anvils due to the condensation process, which involves
the phase transition of water vapour into tiny liquid or frozen
cloud particles. The release of latent heat strongly influences
the atmospheric circulation, particularly in the tropics (Tao
et al., 2006). Therefore, the interpretation of latent heat re-
lease and its fluctuations plays a central role in the com-
plex interactions of the Earth’s water and energy cycles (e.g.
Gill, 1980; Mapes, 1993; Schumacher et al., 2004; Tao et al.,
2016). Radiative heating (Qrad) of UT clouds further aug-
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ments this energy reservoir by at least 20 % (Bergman and
Hendon, 2000; Li et al., 2013; Stubenrauch et al., 2021).
Given the significance of both processes, this article aims to
study the relationship between latent and radiative heating,
comparing different environments with a focus on MCSs.

In order to study the relationship between latent and ra-
diative heating, we have combined information from multi-
ple satellite instruments. The heating profiles are obtained
from active measurements that only overlap a small amount
in space and in time with the cloud top properties from pas-
sive remote sensing. Previously, we have expanded this ver-
tical information using machine learning (ML) techniques
(Stubenrauch et al., 2021), leading to 3D fields of radiative
heating at specific local times (LTs). This article describes
the expansion of the latent heating and shows to what ex-
tent these 3D latent heating fields at specific LTs represent
the daily mean of tropical latent heating. In addition, a cloud
system approach (Stubenrauch et al., 2023) is used to iden-
tify MCSs and to determine their size, which is related to
convective organization (e.g. Houze and Hobbs, 1982; Mon-
crieff, 1992). The data expansion and the following analyses
cover the latitudinal band of 30° N–30° S.

Infrared sounders, with their good spectral resolution, are
sensitive to cirrus clouds during both day and night (e.g.
Wylie et al., 2005; Stubenrauch et al., 2006, 2017, 2024).
For this reason, we use cloud top properties retrieved from
measurements of the Atmospheric Infrared Sounder (AIRS)
on board the National Aeronautics and Space Administra-
tion (NASA) Earth Observation Satellite Aqua and from
the Infrared Atmospheric Sounding Interferometer (IASI) on
board the EUMETSAT Meteorological Operation satellite
(MetOp). These instruments are along-track scanners with
wide swaths, with a horizontal coverage of about 70 % in the
tropics at a specific local time.

Active sensors, i.e. CALIPSO (Cloud–Aerosol Lidar and
Infrared Pathfinder Satellite Observation) lidar and the
CloudSat radar, are part of the A-Train satellite constella-
tion (Stephens et al., 2018) and have worked in synergy with
Aqua since 2006. They provide observations of the verti-
cal structure of clouds (e.g. Mace et al., 2009), radiative
heating rates (Henderson et al., 2013), and information on
precipitation (Haynes et al., 2009). However, these parame-
ters are only available along successive narrow-nadir tracks
(∼ 2500 km apart).

The satellite orbit of the Tropical Rainfall Measuring
Mission (TRMM) allowed it to statistically sample the full
diurnal cycle (Negri et al., 2002). Latent heating profiles
have been estimated from the precipitation radar (PR) on
board TRMM via the spectral latent heating (SLH) algo-
rithm (Shige et al., 2007). However, within a time window
of about 1 h, the TRMM data only cover a very small frac-
tion of the tropics: approximately 7 %. For the expansion to-
wards 3D latent heating fields at the specific LTs of AIRS
(01:30 and 13:30 LT) and IASI (09:30 and 21:30 LT), we
have used a similar approach as in Stubenrauch et al. (2021).

While CALIPSO–CloudSat observations only overlap with
those of AIRS, TRMM observations overlap with both AIRS
and IASI observations.

Section 2.1 to 2.3 present the data: latent heating pro-
files from TRMM-PR measurements, cloud properties from
AIRS and IASI, and 3D structure and precipitation intensity
classification from machine learning trained on CloudSat–
CALIPSO. Section 2.4 and 2.5 describe their collocation, as
well as the training and evaluation of the artificial neural net-
work (ANN) models developed to expand the TRMM-SLH
heating profiles. Section 3 outlines the construction of the
3D LH dataset over the period of 2004–2018 and shows its
coherence in comparison to the original TRMM-SLH data.
Section 4 describes the reconstruction of the MCSs using the
Clouds from InfraRed Sounders (CIRS) data. Finally, Sect. 5
discusses the results regarding the relationship between la-
tent and radiative heating, while Sect. 6 summarizes the key
conclusions and suggests future research directions.

In our analyses, we use the following definitions: LH
refers to the latent heating profile, LP denotes the vertically
integrated latent heating, Qrad represents the radiative heat-
ing profile, CRE (cloud radiative effect) refers to the differ-
ence between all-sky and clear-sky radiative heating rates,
and the ACRE (atmospheric cloud radiative effect) repre-
sents the vertically integrated CRE. While the heating rates
are expressed in units of Kd−1, the vertically integrated heat
is given in units of Wm−2.

2 Data, methods, and evaluation

2.1 Latent heating data

The primary objective of the TRMM mission (Houze et al.,
2015; Kummerow et al., 1998; Liu et al., 2012; Dorian, 2014)
was to study the temporal and spatial variability in tropical
rainfall. For this purpose, TRMM has an orbital inclination
of 35° with 16 orbits per day. TRMM revisits a given area at
the same LT every 23 (near the Equator) to 46 d (near 35°).
Therefore, according to Negri et al. (2002), TRMM-PR es-
timates over any 1 h period, even with 3 years of data, are
insufficient to accurately describe the diurnal cycle of pre-
cipitation for grid sizes smaller than 12° due to inconsistent
spatial sampling. The PR is a radar operating at the Ku-band
in the microwave range around 13.8 GHz, specifically ded-
icated to the collection of vertical profiles of precipitation,
with a horizontal resolution of about 5 km and a swath width
of 247 km. The TRMM mission collected data from 1997 un-
til 2015 and was then continued by the Global Precipitation
Measurement Mission (GPM).

The radar measures the echo-top height corresponding
to the precipitation top height, identifies the melting layer,
determines the rain intensity vertical structure, and distin-
guishes between convective and stratiform rain. In general,
convective LH profiles show heating throughout the vertical
layers except near the surface due to evaporation at lower lev-
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els. LH profiles of the stratiform rain within the anvils show
cooling at low levels below a melting level and heating at lev-
els above (e.g. Chang and L’Ecuyer, 2019, Fig. 3). The peak
of LH in isolated convection is also lower in altitude than the
one in complex convective systems that include stratiform
rain in the anvils (e.g. Hartmann et al., 1984).

Since there is no direct measurement of LH, there are two
recognized retrieval algorithms to estimate LH for TRMM
(Tao et al., 2022): convective–stratiform heating (CSH; Tao
et al., 2018, 2022; Lang and Tao, 2018) and spectral latent
heating (SLH; Shige et al., 2007, 2008, 2009; Takayabu and
Tao, 2020). Both retrievals use look-up tables (LUT) with
LH profiles simulated by cloud-resolving models (CRMs) as
a function of precipitation rate and other parameters. How-
ever, an important difference between the two approaches is
the source of these CRM simulations: for SLH, the LUTs
are built from diabatic heating rates using CRM simulations
with data from the Tropical Ocean Global Atmosphere –
Coupled Ocean–Atmosphere Response Experiment (TOGA
COARE) field campaign. Although TOGA COARE itself is
an oceanic campaign, the resulting SLH dataset is not re-
stricted to oceanic regions since the TRMM-PR observes
reflectivities over both land and the ocean (Dorian, 2014).
In contrast, the CSH retrieval uses more diverse data in the
CRM simulations to construct its LUTs, including data from
six multi-week ocean field campaigns and four multi-week
land field campaigns.

In addition to the differences in the data sources for con-
structing the LUTs of the LH profiles, the SLH and CSH al-
gorithms also differ in their input variables, their convective–
stratiform classification methods, and the way that they han-
dle stratiform rain.

In the SLH algorithm, the TRMM-PR input consists of
the precipitation top height (PTH), the precipitation rate at
the surface (Psrf), and the melting (freezing) level (P0), as
well as convective–stratiform classification. The convective–
stratiform classification is based on the Goddard cumulus en-
semble (GCE) method (Churchill and Houze, 1984), which
identifies convective and stratiform regions using surface rain
rate thresholds, cloud water content, and vertical velocity
profiles from CRM simulations. The stratiform part is fur-
ther separated into shallow-stratiform and deep-stratiform
(anvil) clouds based on the relationship between PTH and
the melting level height (4.4 km; Shige et al., 2004). The
LUTs used in SLH are constructed differently for different
rain types. For convective and shallow-stratiform rain, the
LUTs are based on PTH, while for deep-stratiform rain, P0
is used instead of PTH. In the latest SLH retrieval version
(V6; Takayabu and Tao, 2020), deep-stratiform rain is fur-
ther divided into two subcategories: one where precipitation
decreases from the melting level toward the surface and one
where precipitation increases. The first case represents typi-
cal stratiform rain where evaporation-driven cooling occurs
below the melting level, and the cooling magnitude is esti-
mated from the difference between P0 and Psrf. The second

case, more common near convective areas, requires a sepa-
rate set of LUTs, where the profile magnitude is determined
directly by Psrf (Tao et al., 2016; Takayabu and Tao, 2020).

In the CSH algorithm, the surface precipitation rate, com-
posite radar reflectivity, freezing level height, and echo-top
height (ETH) are used as inputs. The CSH algorithm also ap-
plies a convective–stratiform classification, but the method
differs from that of SLH. In CSH V6 (Tao et al., 2022), the
convective–stratiform separation follows a method more con-
sistent with the GPM classification approach (Steiner et al.,
1995). This method identifies convective and stratiform rain
based on the radar reflectivity profile, comparing local re-
flectivity values to background averages and detecting bright
bands (sharp reflectivity decreases near the melting level). In
CSH, stratiform profiles are further divided based on mean
ETH, with deep stratiform defined as ETH> 5 km. To es-
timate low-level evaporative cooling in stratiform regions,
CSH uses the vertical gradient of low-level reflectivity to dis-
tinguish between profiles with increasing and decreasing pre-
cipitation below the melting level (Lang and Tao, 2018; Tao
et al., 2022).

A comparison study by Tao et al. (2022) over five tropical
(warm-season) regions shows that both retrievals capture the
general structure of convective and stratiform heating, with
broad heating in the middle troposphere in convective regions
and heating aloft but cooling below in stratiform regions.
However, SLH shows stronger heating aloft in the stratiform
anvils across all cases. In addition, the peak heating height
in SLH profiles tends to be higher than in CSH, which was
also reported by Elsaesser et al. (2022). This difference may
be related to the fact that SLH is based on cloud-resolving
simulations from the TOGA COARE field campaign, which
represents oceanic convection with a larger fraction of strat-
iform rain (Tao et al., 2016). Another notable difference is
that SLH-derived LH profiles show more structural details
in stratiform regions, with three distinct heating peaks, while
CSH-derived profiles generally show only two heating peaks
over most regions.

In this investigation, we utilize the latent heating profiles
of the GPM TRMM-SLH dataset (V06) gridded at 0.5° lati-
tude× 0.5° longitude and with a vertical resolution of 250 m
(Shige et al., 2007). We used the unconditional LH pro-
files averaged over all measurements within each grid cell
and therefore used the averaging contributions from shallow
and deep convection, from deep-stratiform rain, and from the
clear sky.

2.2 Cloud and atmospheric data

The AIRS instrument (Chahine et al., 2006) on board the
polar-orbiting satellite Aqua offers high-spectral-resolution
measurements of the Earth’s atmosphere at 01:30 and
13:30 LT since 2002. Its spectral coverage spans 2378 radi-
ance channels within the wavelength range of 3.7–15.4 µm.
AIRS footprints are grouped as 3× 3 arrays. These arrays
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correspond to the size of the Advanced Microwave Sounder
Unit (AMSU) footprints, as this instrument is also on board.
The spatial resolution of an AIRS footprint is about 13.5 km
at nadir, and the swath width is approximately 1650 km. The
latter leads to substantial horizontal coverage of approxi-
mately 70 % in the tropics at a specific local time.

The IASI instruments (Hilton et al., 2012) are operational
on the European MetOp platforms, having started data ac-
quisition in 2007. They provide measurements at 09:30 and
21:30 LT. IASI is a hyperspectral and high-precision Fourier
transform spectrometer. The 8461 spectral channels cover the
infrared spectral domain from 3.6 to 15.5 µm. IASI footprints
are grouped as 2× 2 arrays. Again, these arrays correspond
to the size of the onboard AMSU footprints (August et al.,
2012). The spatial resolution of an IASI footprint is about
12 km at nadir, and the swath width is about 2200 km, lead-
ing to 77 % coverage at a specific local time in the tropics.

The Clouds from InfraRed Sounders (CIRS) retrieval re-
constructs cloud properties from both AIRS and IASI mea-
surements. It relies on a weighted χ2 methodology employ-
ing eight channels in the vicinity of the 15 µm CO2 absorp-
tion band, as explained by Stubenrauch et al. (2010, 2017).
The choice of eight channels was made to establish a con-
sistent long-term cloud climatology by employing the same
retrieval method across AIRS, IASI, and High-Resolution In-
frared Radiation Sounder (HIRS) data (Stubenrauch et al.,
2006). This retrieval simultaneously provides cloud emissiv-
ity (εcld) and pressure (Pcld), along with associated uncer-
tainties. CIRS cloud types are defined according to Pcld and
εcld: high clouds (Pcld < 440 hPa) are further categorized into
high opaque clouds (Cb) with εcld > 0.95, cirrus clouds (Ci)
with 0.95> εcld > 0.5, and thin cirrus (thin Ci) clouds with
0.5> εcld > 0.05. UT clouds with Pcld < 350 hPa are part of
the high-cloud category. Mid-level clouds (440 hPa< Pcld <

680 hPa) and low-level clouds (Pcld > 680 hPa) are further
divided into opaque clouds with εcld > 0.5 and partly cloudy
conditions with εcld < 0.5.

For consistent diurnal cloud variability from AIRS and
IASI (Feofilov and Stubenrauch, 2019) the CIRS cloud re-
trieval uses auxiliary data (surface pressure and temperature,
atmospheric temperature and humidity profiles, and snow
and sea ice information) from an identical source: ERA-
Interim, obtained from the European Centre for Medium-
Range Weather Forecasts (ECMWF) meteorological reanal-
ysis (Dee et al., 2011). These atmospheric profiles are also
used to convert cloud pressure to cloud temperature (Tcld)
and cloud height (Zcld).

The ERA-Interim reanalyses have a spatial resolution of
0.75°× 0.75° and are available at 00:00, 06:00, 12:00, and
18:00 UTC. They have been interpolated to the AIRS and
IASI observation times by employing a cubic-spline func-
tion. The spatial colocation was done in such a way that
each array of footprints was associated with the closest ERA-
Interim grid cell.

2.3 Input data for the artificial neural networks

Table 1 summarizes the input variables that are used in the
artificial neural network predictions described in Sect. 2.5.1.

Since the target data (TRMM-SLH) are given at a spa-
tial resolution of 0.5°, we adapt the input data by also grid-
ding them to 0.5°. The atmospheric properties (specific hu-
midity and temperature profiles with a reduced vertical res-
olution containing 10 layers, total precipitable water, and
tropopause height) and surface properties (pressure and tem-
perature) from the ERA-Interim ancillary data are averaged
over 0.5°, as well as cloud properties such as Pcld and εcld
and their uncertainties. In addition, we keep the cloud prop-
erties averaged over the most frequent scene (high-level or
mid- and low-level clouds) in each grid cell. We also utilize
the horizontal sub-grid structure within the grid cells: frac-
tions of Cb, Ci, thin Ci, mid-/low-level clouds, and clear sky.
The spectral variability in the effective cloud emissivity be-
tween 9 and 12 µm that is computed using the retrieved Pcld
indicates if the footprint is partly cloudy (Stubenrauch et al.,
2017). Additional variables are the atmospheric window in-
frared (IR) brightness temperature and its spatial variability,
brightness temperature differences between the atmospheric
window and water vapour absorption channels, and the num-
ber of atmospheric layers down to the surface.

Furthermore, we use additional variables from the CIRS-
ML dataset (Stubenrauch et al., 2023) for evaluation and for
scene identification, but they are not considered input vari-
ables. As CIRS only identifies the uppermost cloud layer
in the case of multiple-layer clouds, the occurrence of a
cloud underneath was deduced by a binary artificial neu-
ral network (ANN) classification per footprint, trained us-
ing CloudSat–CALIPSO layer information. A rain intensity
classification (0 for no rain, 1 for light rain, 2 for heavy rain)
was also obtained by ANN classification per footprint but
was trained with precipitation rate data from CloudSat (2C-
PRECIP-COLUMN; Haynes et al., 2009). The rain inten-
sity classification considers light rain to be ≤ 5 mmh−1 and
heavy rain to be > 5 mmh−1. In combination with a Cloud-
Sat 2C-PRECIP-COLUMN quality flag, which indicates cer-
tain rain, we also expanded a rain rate indicator via a bi-
nary ANN classification and then averaged it per 0.5° grid
cell (Stubenrauch et al., 2023). The rain intensity classifi-
cation used for the scene identification for the ANN train-
ing and production is based on this averaged rain indicator,
with heavy rain starting around 2.5 mmh−1. We show that
this category corresponds to an average certain-rain fraction
of at least 0.8 (not shown), while the light-rain category cor-
responds only to 0.3 over the ocean (0.5 over land). The ad-
vantage of using the CIRS-ML rain intensity classification is
that the CIRS-ML data are available together with the CIRS–
AIRS and CIRS–IASI data records, so we can use it for scene
identification for the training as well as for the application of
the ANN models developed for the different scenes discussed
in Sect. 2.5.1.
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Table 1. List of input variables for the prediction of latent heating gridded over a 0.5°× 0.5° grid.

Input variables Definitions

Clouds

εcld,Pcld,Tcld,Zcld,dεcld,dPcld CIRS cloud properties and uncertainties
ε(scene∗),P (scene∗), frac_scene CIRS cloud properties and fraction of the most frequent scene
σ (ε(λi )) Spectral variability in effective cloud emissivity over six

wavelengths (9–12 µm)

Atmosphere

TB(11.85µm),σ (TB) AIRS/IASI brightness temperatures and spatial variability
TB(11.85µm)−TB(7.18µm),TB(11.85µm)−TB(7.23µm) Brightness temperature difference between the atmospheric

window and water vapour absorption channels
q,T within 10 layers ERA-Interim specific humidity and temperature profile
Total precipitable water, Ptropopause ERA-Interim column water vapour and tropopause height

Surface

Psurf, Tsurf, number of atmosphere layers down to Psurf ERA-Interim surface properties

Horizontal sub-grid structure of CIRS cloud types from footprints

frac_Cb, frac_Ci, frac_thCi Fraction of cumulonimbus, cirrus, and thin cirrus clouds
frac_mlow Fraction of mid- and low-level clouds
frac_clr Fraction of clear sky

∗ The scene is 1 for high-level clouds and 2 for mid-/low-level clouds.

2.4 Collocation of input and target data

Due to their different orbit characteristics, the observations
from the TRMM, Aqua, and MetOp satellites seldom coin-
cide in both time and geographical location when observing
the Earth. Consequently, only a subset of their respective ob-
servational databases can be overlaid and employed for the
training. We allow a 20 min time differential between the
CIRS and TRMM data. AIRS orbits (01:30 and 13:30 LT)
and IASI orbits (09:30 and 21:30 LT) are independently col-
located with TRMM orbits. Figure 1 illustrates the different
swath widths of the Aqua–AIRS and TRMM-PR measure-
ments and their overlaps for a specific day at a specific obser-
vation time. Within a time window of ±20 min, the overlap
between the TRMM-PR and the AIRS measurements is only
3 %. Our goal is to expand this coverage to about 70 % and
77 % (swath coverage of AIRS and IASI, respectively) by ap-
plying ANN methods to the input data described in Sect. 2.3.
This allows us to then relate horizontal fields of clouds, LH,
and Qrad at specific local times, as shown in Sect. 3 and in
the MCS analysis described in Sect. 5.2.

The collocated AIRS–TRMM data spanning from 2004
to 2013 consist of approximately 2 300 000 cases, and
the IASI–TRMM data from 2008 to 2014 contain about
1 600 000 cases for each of the morning/evening measure-
ment times.

2.5 Artificial neural network predictions and evaluation

2.5.1 Development of prediction models

As the distribution of precipitation rates is very skewed,
with a large peak at 0 mmh−1 and a very long tail towards
larger values, we first examine the shapes and statistics of
the TRMM-SLH LH profiles within the collocated data.

In general, convective towers that produce strong latent
heating can be identified by a heavy rain rate. However, these
occur much less frequently (10 %) than scenes of lightly
precipitating (25 %) and non-precipitating (65 %) high-level
clouds. Over land, the diurnal variation in these convective
towers is larger than over the ocean, as expected, with a min-
imum in the morning (7 %) and a maximum in the evening
(12 %), while non-precipitating high-level clouds vary from
65 % at night to 77 % in the afternoon. The distinction be-
tween non-precipitating, lightly precipitating, and heavily
precipitating clouds is given by the rain intensity classifica-
tion described in Sect. 2.3. For the training of the artificial
neural network regression models, the least frequent scenes,
i.e. the ones with heavy precipitation (see above), will be less
represented, but these are the scenes that we are most inter-
ested in (for the MCS studies in Sect. 5).

Figure 2 presents LH profiles of high-level clouds, which
are separately averaged over these three rain intensity scenes
and over the ocean and land, at the four CIRS observation
times. Although the rain intensity categorization is derived
from CloudSat radar and ANN classification using CIRS and
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Figure 1. Illustration of the temporal and spatial match between the Aqua–AIRS and TRMM-PR orbits. Orange represents the satellite trace
segments that coincide within a time window of ± 20 min, for 1 specific day. The narrow swaths represent TRMM-PR orbits, while the
broader swaths represent Aqua–AIRS orbits. Shades of blue indicate variations in the sampling time difference.

Figure 2. TRMM-SLH LH profiles of high-level clouds categorized by the CIRS-ML rain intensity described in Sect. 2.3 at four observation
times (01:30, 09:30, 13:30, and 21:30 LT) over the ocean (a–c) and over land (d–f). The data are averaged over the TRMM-CIRS collocated
data during the period of 2008–2013 within 30° N–30° S at a spatial resolution of 0.5°.

ERA-Interim data, the shape of the TRMM LH profiles is
consistent with this scene classification for both ocean and
land cases. As expected, the LH profiles of these three scene
types differ considerably, with nearly no LH for the no-rain
situation and very large amounts of LH for heavy rain. The
latter show large peaks in LH around 450 hPa, with a larger

maximum over the ocean (30 Kd−1) than over land (approxi-
mately 20 Kd−1). This may be linked to smaller systems over
land than over the ocean (e.g. Liu, 2007). A larger diurnal
variation over land is also observed, as expected.

When considering all precipitating high-level clouds or
even all precipitating clouds (Fig. S1), the averages are far
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smaller than the averages of heavy precipitation because
heavy precipitation occurs only rarely. Since the LH profile
shapes and statistics of the different rain intensity categories
are very different, we developed ANN models for each of
the three classes of rain intensity and separated them over
the ocean and over land. If we had trained only one single
ANN regression model for all scenes together, the LH of
heavy rain would have been underestimated because of the
small number of data points (as has been shown for radiative
heating rates in the case of all clouds and Cb alone in Stuben-
rauch et al., 2021. For each of these precipitation classes, we
also separated scenes of high-level clouds from those of mid-
and low-level clouds. The latter show a peak of only about
5 K d−1 at about 900 hPa in the case of heavy rain (Fig. 5b
of Stubenrauch et al., 2023; Figs. S6 and S8). This leads us
to develop 12 ANN regression models to predict LH profiles
from AIRS or from IASI. The predicted LH rates are given
at a spatial resolution of 0.5° and at a reduced vertical reso-
lution of 20 layers; they are given within the same pressure
layers as the CIRS-ML radiative heating rates (Stubenrauch
et al., 2021).

The final ANNs of the regression models consist of two
hidden layers that both have 32 neurons and one output layer,
as shown in Fig. S2. We applied the rectified linear unit
(ReLU) activation function to the hidden layers. In addition,
we used the root-mean-square propagation (RMSprop) op-
timizer with a learning rate of 0.0001 and a batch size of
512. Furthermore, we applied a min–max normalization to
the variables. The collocated dataset was randomly divided
into three categories: 60 % for training, 20 % for validation,
and 20 % for testing. The latter two were not directly used in
the training: while the validation data are used in the iteration
process of the training, the test data are used for evaluation
after the training (Sect. 2.5.2).

We use the mean squared error as a loss function for the
regression models, which evaluates the mean squared dif-
ference between observed and predicted values. The model
parameters are fitted by minimizing this loss function. The
mean absolute error (MAE) is the average of absolute dif-
ferences between observed and predicted values, and it is
used to assess the quality of these regression models. In or-
der to avoid overfitting, we stop training when the loss func-
tion does not improve for 20 iterations. We compare the be-
haviour of the loss function of the training data with that
of the validation data. Similar results suggest that the model
performs consistently well on both datasets, showing a cer-
tain level of generalization ability. Figure S4 shows good per-
formance, except for a slight overfitting for heavy precipita-
tion.

The hyperparameter selection of the neural network may
influence the training results. Therefore, we tested differ-
ent deep-learning parameters (e.g. number of neurons per
layer, number of layers, learning rate, regression kernel) to
optimize these ANN regression models. The results show
only slight differences in training/validation loss and MAEs

among these tests, and there was no significant impact on the
LH results.

To study the impact of the variable selection on the pre-
dictions, we have experimented with various input variables;
in particular, we included and excluded information on the
rain intensity substructure within the 0.5° grid cells. Using
this information, the results were slightly better, in particu-
lar, the spread of the predicted LH was slightly larger. How-
ever, this approach resulted in a slight positive anomaly in
vertically integrated LH for March 2014 and later on, when
considering the time series of LH derived from AIRS data
(not shown). The LH time series derived from IASI were not
affected. In March 2014, the AIRS instrument was impacted
by a solar flare event that led to tiny artefacts that show up in
the ANN rain rate classification (Stubenrauch et al., 2023).
Consequently, we have excluded these grid fractions of dif-
ferent rain intensity classes from our input variables.

We also assessed the effectiveness of the fraction of
clouds below CIRS clouds. For the non-precipitating high-
level clouds in Fig. 2, the very small LH peak of less than
1 Kd−1 at about 900 hPa can be explained by the lower
clouds underneath that produce rain (Fig. S3). Over land, this
lower small peak is vertically more extended and is only ob-
served at 13:30 LT. This may be due to the developing con-
vection, which has its peak in the late afternoon and was
missed by the AIRS and IASI observation times (see Sect. 3).
While this CIRS-ML variable effectively shows low clouds
underneath (Fig. S3), it did not improve the results as an ad-
ditional input.

Therefore, we kept the configuration that uses the 27 vari-
ables given in Table 1 as input variables.

2.5.2 Evaluation using test data

We have evaluated the LH prediction results by comparing
them with those of the target TRMM-SLH, using the 20 %
test data from the collocated data.

For both AIRS and IASI, the MAE values presented in
Table S1 are notably small, varying from 0.02 Kd−1 for
non-precipitating to 0.55 for heavily precipitating high-level
clouds. Moreover, the loss function presented in Fig. S4 de-
creases rapidly with the iterations (epochs), which is fol-
lowed by stabilization.

As shown in the upper panels of Figs. 3 and S6, as well
as in Figs. S5 and S7, the predicted LH profiles capture, on
average, the specific patterns of the high-level clouds exactly.

1. For the heavy-rain case, high-level clouds produce no-
ticeable 25 Kd−1 LH at about 450 hPa.

2. In the light-rain case, the predicted LH exhibits a much
flatter distribution with only a very small peak of about
5 Kd−1 at around 450 hPa.

3. In the no-rain case, LH is close to 0 Kd−1, with a tiny
peak of approximately 0.7 Kd−1 in the low-altitude re-
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gion (P> 800 hPa), corresponding to low-level clouds
that are mostly underneath non-precipitating cirrus, as
suggested by Fig. S3, which shows a peak twice as large
when only selecting cases with clouds below, according
to a classification from CIRS-ML (see Sect. 2.5.1).

While the averages of the predicted results of the differ-
ent scenes agree well with those of the target TRMM-SLH
data, the spread of the predicted values is much smaller. The
TRMM-SLH data reveal large variability between 550 and
900 hPa, which may be linked to the variability between strat-
iform and convective rain within the 0.5°, as well as due to
additional precipitation from the underlying clouds. This de-
crease in the prediction of the variability may be due to insuf-
ficient input information and a too coarse spatial resolution
but may also be because of the skewness of the precipitation
distribution itself.

Compared to the LH prediction, the lower panels of Fig. 3
show the average CIRS-ML radiative longwave (LW) heat-
ing profiles and the target CloudSat–CALIPSO fluxes and
heating rates (FLXHR) profiles (Henderson et al., 2013) as
well as their spread, shown separately for thin cirrus, cirrus,
and high opaque clouds. Here the spread of the predicted and
target data is similar, in particular for the optically thicker
clouds. Relatively opaque clouds contribute to the heating
of the atmospheric column below by trapping surface emis-
sions, while inducing cooling effects in the column above
due to excess emission. In contrast, thin cirrus clouds warm
the UT by intercepting LW radiation originating from be-
low (Stubenrauch et al., 2021). Notably, above Cb clouds,
the cooling is on average −4.5 Kd−1 around 170 hPa. The
small amount of cooling observed at approximately 550 hPa
is attributed to the melting process, which takes place at or
just below the freezing level, typically around 5 km above sea
level across tropical regions.

Figure S7 shows that the LH profiles predicted from AIRS
have slightly larger values in the lower troposphere (below
500 hPa) than the ones predicted from IASI, in particular
over land. This may be explained by the diurnal cycle of pre-
cipitation coming from clouds at different heights since both
AIRS and IASI predictions are on average in excellent agree-
ment with the target TRMM-SLH profiles.

3 Construction of the 3D latent heating dataset by
applying the ANN models

During the training process, ANN models are tuned to fit the
data through continuous adjustment of hyperparameters by
the optimization algorithm to minimize the difference be-
tween the predicted output and the target data (loss function).
We use these trained models to extend the TRMM-SLH data,
which only cover about 3 % of the CIRS observations, to a
coverage of 70 % and 77 %, corresponding to the AIRS and
IASI swaths over the periods of 2004–2018 and 2008–2018,
respectively. We evaluate the effect of using only specific lo-

cal times (given by the ANN-predicted LH at the observation
times of AIRS and IASI), and we compare the vertically inte-
grated LH (LP) to the original temporal sampling of TRMM.
At the end of this section, we illustrate how the ML-derived
data can be used to compare the horizontal and vertical struc-
ture of LH and Qrad between La Niña and El Niño.

3.1 Coherence in diurnal variation

Figure 4 shows the vertical LH profiles from the ML pro-
duction for precipitating clouds. We consider all clouds and
specifically high-level clouds, treating the groups separately
over the ocean and over land. AIRS and IASI observations
allow us to examine these profiles at four distinct observa-
tion times. The results are coherent with our expectations on
the diurnal variation.

1. The shape of the LH profiles averaged over precipi-
tating clouds strongly differs between ocean and land.
Over the ocean, the mean LH profiles have two peaks, at
450 and at 850 hPa, corresponding to the contributions
from high-level clouds and low-level clouds (Shige et
al., 2004), while over land, the LH is mostly produced
by high-level clouds.

2. The diurnal spread is larger over land than over the
ocean, as expected. Over land, the precipitation fre-
quency typically peaks in the late afternoon, whereas
over the ocean, the diurnal cycle is less pronounced,
with a maximum occurring in the early morning (e.g.
Nesbitt et al., 2000; Dorian, 2014). The observations at
13:30 LT are before the peak of land precipitation, while
those at 01:30 LT are before the early-morning peak of
ocean precipitation. LH also involves the intensity of
precipitation, and given that MCSs contribute to over
half of intense precipitation (e.g. Roca et al., 2014), we
observe the largest peaks at 450 hPa (corresponding to
stratiform anvil precipitation) at 21:30 LT over land and
at 09:30 LT over the ocean, which is a few hours after
convection had started and MCSs were able form.

3. In particular over land, we notice a diurnally changing
profile shape, with a stronger contribution from lower
atmospheric levels in the early afternoon, correspond-
ing to the development of cumulus congestus. Later in
the evening, the peak moves higher into the UT, cor-
responding to stratiform anvils. During the night there
may be a more complex vertical structure with con-
vection from lower clouds underneath the high-level
clouds, and LH is at a minimum in the morning.

Small differences from the original TRMM-SLH averages
in Fig. S1 may be explained by the different spatial sampling
(70/77 % coverage compared to 3 % coverage).
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Figure 3. Average and range of predicted (dashed) and target (solid) latent heating (2004–2013) and radiative heating (2007–2010) of
high-level clouds within 30° N–30° S at a spatial resolution of 0.5°. ANN models were trained on collocated AIRS–TRMM and AIRS–
CloudSat–CALIPSO data. The upper panels show the latent heating rates for different rain rate intensities (no rain, light rain, and heavy
rain); the lower panels are the radiative longwave heating rates for different UT cloud types (thin cirrus, cirrus, and cumulonimbus). Shaded
areas indicate ±67.5 % of the standard deviation, which approximately correspond to the quartiles.

3.2 Coherence between TRMM-SLH LP and
ML-predicted LP

Due to the large diurnal cycle of occurrence and intensity of
precipitation over land, the time sampling plays an impor-
tant role in order to obtain reliable monthly means of LH.
Figure 5 presents zonal averages of the vertically integrated
LH (LP): ML-derived LP at specific observation times and
original TRMM-SLH LP with its specific diurnal sampling,
shown separately over the ocean and over land.

We note the following points.

1. Over the ocean, all zonal means of LP show a peak
around 5° north of the Equator, with a small, broader
peak from the Equator to approximately 10° S that cor-
responds to the large amount of LP released over the
Pacific warm pool. Over land, there is only one broad
peak from about 10° N to 10° S.

2. Overall, the latitudinal behaviour of LP given by AIRS-
ML and IASI-ML is consistent with the one given by
TRMM-SLH with broader diurnal sampling. It is re-
markable that over the ocean, the zonal averages of LP
at 01:30 and 13:30 LT agree very well with those from
TRMM-SLH. However, over land, as expected, consid-
ering LP only at these two observation times underesti-
mates the daily mean LP because the strong convection
in the afternoon is not captured. The effect is the worst
at 09:30 LT.

Furthermore, Fig. S9 compares the LP zonal means of
the ML-derived data with the collocated TRMM-SLH data,
shown separately over the ocean and over land at the four
observation times. One has to keep in mind that the spatial
sampling is much smaller than the one in Fig. 5. In general,
the LP zonal averages from ML agree quite well with that
from the collocated data, with small explainable biases: a
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Figure 4. Average CIRS-ML LH profiles of all precipitating cloud scenes (a, c) and precipitating high-level clouds (b, d) at four observation
times (01:30, 09:30, 13:30, and 21:30 LT) separated into over the ocean (a, b) and over land (c, d). Data are from the CIRS-ML production
during the period of 2008–2013 within 30° N–30° S at a spatial resolution of 0.5°.

Figure 5. Zonal averages of vertically integrated LH (LP) at four specific observation times (01:30, 09:30, 13:30, and 21:30 LT) from the
CIRS-ML production and for the original TRMM, including diurnal sampling (a) over the ocean and (b) over land. Latitude intervals are
1°. The LP from TRMM-SLH data for the period of 2008–2013 is represented by a solid black line. The dashed green line and dash-dotted
bright-green line represent LP from the ML regression using TRMM–AIRS (2008–2013) as inputs at 01:30 and 13:30 LT, respectively. The
dashed blue line and dash-dotted light-blue line represent LP from ML regression using TRMM–IASI (2008–2013) as inputs at 09:30 and
21:30, respectively. Shaded areas correspond to inter-annual variabilities.

slight underestimation in regions with strong rain (tropical
peak region) and a very slight overestimation in regions with
not much rain (subtropics).

To investigate the coherence of LP monthly averages over
grid cells between TRMM-SLH and CIRS-ML in more de-
tail, we examined their relationship at different scales over
the ocean, using averages over 1, 2.5, 5, and 10°. Differences
from a 1-to-1 relationship stem from (1) biases in the CIRS-
ML LH and (2) differences in the sampling of observation
times. Since the diurnal sampling of TRMM is not homoge-
neous, a larger grid cell has a larger probability of includ-
ing more observations at 01:30 LT. As the TRMM revisit cy-
cle depends strongly on latitude (Negri et al., 2002), 23 d at

the Equator and up to 46 d at the highest latitudes (the lat-
ter should have different observation times sampled in differ-
ent months), we limited the latitudinal band to 10° N–10° S
for this comparison. We computed the slopes and correlation
coefficients between monthly mean LP of TRMM-SLH and
CIRS-ML averaged over different scales, and Fig. 6 presents
the normalized density in the CIRS-ML LP and TRMM-SLH
LP plane. While the slopes increase from 0.54 to 0.82 in
this latitude band, they vary from 0.44 to 0.77 at higher lati-
tudes (20–30° N and S, not shown), where the TRMM repeat
cycle is only half as long as at higher latitudes. The larger
slopes in the latitude band nearer to the Equator demonstrate
their dependency on the TRMM diurnal sampling variabil-
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ity. The increase in the slopes and the increasing linearity of
the points with increasing grid cell size in the CIRS-ML LP
and TRMM-SLH LP show a strong bias and noise reduction
when averaging over more observations within a grid cell.
At the spatial averaging over 1°, the small slope is related to
the fact that the ANN regression does not capture extreme
events well, mainly because of insufficient input information
and the skewed distribution of input data, as mentioned in
Sect. 2.5, and the relatively noisy relationship is due to the
inhomogeneous TRMM sampling at specific times. There-
fore, for larger grid cell sizes, the agreement is much better.

In summary, the increasing slopes of the relationship be-
tween the LP of CIRS-ML and TRMM-SLH suggest that
our ML-expanded LH dataset is suitable at scales larger than
about 2.5° (with a slope of 0.68). At a scale of 1°, one still
observes a correlation, but the relationship is much noisier,
and the CIRS-ML LP is strongly underestimated for large
amounts of TRMM-SLH LP. This can be explained by the
fact that extreme values are very rare and, as seen in Fig. 3,
the ANN regression is capable of producing a reliable mean
per scene, but the training dataset of precipitation extremes
was most probably too small.

In order to further understand the noise and biases, we
analysed the complete statistics of the collocated data in or-
der to link discrepancies in LP with those in rain fraction
over the 0.5° grid cells estimated from CIRS-ML (CloudSat)
and TRMM. Therefore, we compare the CIRS-ML certain-
rain fraction as a function of the TRMM rain fraction and
TRMM-SLH LP (Fig. S10). The average certain-rain fraction
increases coherently with both, as one would expect. When
separating cases with small and large fractions of certain-rain
within the grid cells, the CIRS-ML LP is much larger for a
large fraction, as one would again expect. Cases with a large
certain-rain fraction for very small values of TRMM-SLH LP
are rare, but their occurrence leads to a slight overestimation.
The distributions of the CIRS-ML certain-rain fraction in the
CIRS-ML LP – TRMM-SLH LP space, shown in Fig. S11,
explain the noise, in particular for small TRMM LP. Thus,
this noise can be mostly explained by a few individual cases
that show a mismatch between the certain-rain coverage ob-
tained from ANN classification of certain-rain identified in
CloudSat samples (1.25 km× 2.5 km) and the TRMM radar
samples (5 km× 5 km). Nevertheless, what is important to
note is that the CIRS-ML LP seems to be consistent with the
certain-rain coverage, even though this variable was not used
in the training.

3.3 Structure of diabatic heating: contrasting La Niña
and El Niño events

After verifying the ML-derived LH production along the ver-
tical and latitudinal directions, we illustrate that the horizon-
tal patterns produced by this 3D LH dataset for La Niña and
El Niño are as expected. Figure 7a, d show geographical
maps of LP and ACREs, respectively, for two distinct sce-

narios: La Niña (January 2008) and El Niño (January 2016).
LP is marked by contours, while the colours correspond
to ACRE values. The LH and CRE profiles averaged over
30° N–30° S are given as a function of longitude in Fig. 7e
and f.

During El Niño (warm phase), sea surface temperatures
(SSTs) are higher than normal in the eastern and central
equatorial regions of the Pacific Ocean, leading to increased
convection and cloudiness in these regions, which cause an
increase in latent heat release. Lower SSTs in the western
Pacific lead to a decrease in convection and cloudiness in the
region, resulting in negative LP anomalies. La Niña shows
the opposite behaviour (Fig. 7a and b).

During La Niña, there is a large, structured band of la-
tent heating in the South Pacific Convergence Zone (SPCZ)
(Fig. 7c and d), in addition to the large value of LP in the In-
tertropical Convergence Zone (ITCZ), mostly over the con-
tinents. During El Niño, we notice that the maximum distri-
bution of latent heating moves eastward, which happens be-
cause the upward branch of the Walker circulation shifts to-
wards the central Pacific (e.g. Bayr et al., 2018). This is even
more evident in Fig. 7e and f. Furthermore, there are some re-
gions with negative CRE values at altitudes around 850 hPa,
which correspond to the presence of low-level clouds. This
effect is more significant during La Niña because convective
activity peaks in the western Pacific during La Niña, whereas
in the eastern Pacific, with lower SSTs and less convective
activity, there is more low-level cloud formation, thereby
leading to negative CRE aloft.

We also assessed the geographical coherence between
the CIRS-ML-predicted LP and the LP calculated using
precipitation data from TRMM (3B42_daily; Huffman et
al., 2007) and from the Global Precipitation Climatology
Project (GPCP CDR_V2.3; Adler et al., 2016) during the
same ENSO events. To facilitate comparison between our
ML-derived LP and the precipitation datasets, we estimated
LP= ρlLνR as in L’Ecuyer and Stephens (2007), where ρl
is the density of liquid water (1000 kgm−3), Lν is the la-
tent heat of vaporization of water (2.5× 106 Jkg−1), and R
represents the surface rainfall rate (ms−1). Using this for-
mula, the conversion factor to convert precipitation rates
from TRMM and GPCP (mmd−1) to latent heat flux LP
(Wm−2) is 28.9 Wm−2 / (mmd−1). Figure 8 shows that the
geographical patterns and the absolute values of the monthly
mean LP computed from GPCP and from TRMM daily ac-
cumulated precipitation agree very well. Moreover, the geo-
graphical patterns of our ML-predicted LP align closely with
the ones derived from TRMM and GPCP precipitation data
during both the La Niña and El Niño phases, although the ab-
solute values in the regions of larger amounts of LP are un-
derestimated, as shown by Fig. S13, which presents the ratio
between CIRS-ML LP and TRMM (or GPCP) LP for grid
cells with a TRMM (or GPCP) LP larger than 50 Wm−2.
This was expected from the results presented in Sect. 3.2.
Nevertheless, the CIRS-ML LH allows us to study monthly
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Figure 6. Relationship of LP monthly means per grid cell between TRMM-SLH LP and CIRS-ML at different spatial scales: (a) 1° lati-
tude× 1° longitude, (b) 2.5°× 2.5°, (c) 5°× 5°, and (d) 10°× 10°. Data points are over the ocean from 10° N to 10° S over the time period
of 2004–2013.

mean spatial patterns at four specific times, keeping in mind
that the range between the smallest and largest LP values is
underestimated. This is not possible with the original TRMM
dataset, which does not fully cover the latitudinal band over a
whole month at a specific time, as demonstrated in Fig. S12.

All of the above suggests that the monthly means of the
CIRS-ML-expanded LP represent the horizontal structures
seen in other datasets well and strongly reflect the character-
istics of ENSO events. In addition, the ACRE shows a highly
matched distribution pattern with LP. In other words, larger
ACRE distributions are also seen in the regions of larger LP
values, and therefore enhance LP. In Sect. 5, we will explore
in more detail the connection between them, in particular at
the scale of mesoscale convective systems (MCSs). For this
study, we need to average LP and ACREs over the horizontal
extent of the MCSs. Therefore, in the next section we de-
scribe the reconstruction of these MCSs.

4 Construction of mesoscale convective systems

The study in Sect. 5.2 requires the identification of mesoscale
convective systems, including their non-precipitating anvil
parts, as these also provide radiative heating. Therefore, we
use the CIRS data to reconstruct the first UT cloud systems,
using a method developed by Protopapadaki et al. (2017) and
refined by Stubenrauch et al. (2023). We consider UT clouds
with Pcld < 350 hPa. The grid cells of 0.5° latitude× 0.5°
longitude have to be covered by at least 90 % of these clouds.
Since ubiquitous thin cirrus in the TTL (tropical tropopause
layer) connect with many of the MCSs, we exclude the UT
clouds with emissivity smaller than 0.2 for this UT cloud sys-
tem reconstruction. First, adjacent grid cells with UT clouds
of similar heights (within 8 hPa× ln(Pcld [hPa])) are merged
together into the same system. Then the size of the convective
cores is determined first by counting the number of grid cells
with cloud emissivity> 0.98 within regions where the cloud
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Figure 7. (a, b) Maps of anomalies of vertically integrated LH and the ACRE during La Niña (January 2008) and El Niño (January 2016),
which were obtained by subtracting the corresponding 11-year (2008–2018 January) averages. (c, d) Maps of vertically integrated LH and
the ACRE during La Niña (January 2008) and El Niño (January 2016), respectively. (e, f) Plots of longitudinal–vertical LH and CRE during
La Niña (January 2008) and El Niño (January 2016), respectively. All data are within 30° N–30° S at a spatial resolution of 0.5°. The colour
bars represent the El Niño–Southern Oscillation (ENSO) ACRE anomalies (W m−2) and the ACRE (W m−2) and CRE (Kd−1) values from
CIRS-ML–CloudSat–CALIPSO, while contours correspond to vertically integrated ENSO LH anomalies (W m−2) and vertically integrated
LH (W m−2) and LH values (Kd−1) from CIRS-ML–TRMM at 01:30 and 13:30 LT (AIRS).

Figure 8. Comparison of horizontal structures between the vertically integrated LH (LP) of CIRS-ML (at 01:30 LT) and those obtained from
daily precipitation accumulation of TRMM (a, b) and GPCP (c, d) during La Niña (January 2008) and El Niño (January 2016) within the
region of 30° N–30° S at a spatial resolution of 2.5°× 2.5°. The LP from CIRS-ML is represented by contours, while the colour bars indicate
the LP from TRMM and GPCP.
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Figure 9. (a) Profiles of latent heating and (b) profiles of CRE.
Averages are over CSs with the presence of at least one grid cell
with heavy precipitation (magenta), averages over small CSs (black)
and MCSs (red), and averages over CSs with small (cyan) and large
(blue) LW cooling above the precipitating parts. The classification
thresholds are 12 000 km2 for size and−7.5 Kd−1 for the minimum
of the LW cooling above the precipitating part of the CS. The num-
ber and the coverage compared to all CSs are also given according
to the category. Data are for oceanic systems over the time period
of 2004–2018 within 25° N–25° S.

emissivity exceeds 0.93 and then by multiplying this num-
ber by the grid cell size of 0.5° (approximately 3000 km2).
We define a convective system as a UT cloud system with at
least one convective core and the presence of precipitation.
Earlier studies (Protopapadaki et al., 2017; Stubenrauch et
al., 2019, 2023) have shown that the convective core frac-
tion, given by the ratio of the convective core size over the
MCS size, can be used as a proxy for the maturity stage.

Since for the cloud system reconstruction the gaps be-
tween the orbits have been filled (Protopapadaki et al., 2017),
but the CIRS-ML diabatic heating and precipitation intensity
classification have only been extended within the orbits of
AIRS and IASI, we select for the following analyses only
reconstructed cloud systems that overlap by more than 70 %
with the ACRE and LP swaths. Furthermore, we concentrate
only on oceanic systems, defined as systems with less than
10 % of their size overlapping land, and we limit the latitude
band to 25° N–25° S because most of these systems are lo-
cated there according to Fig. 5 of Protopapadaki et al. (2017).
These criteria leave us with about 26 358 convective systems
(CSs) for the period of 2004–2018.

In order to test the coherence of the data, we compare
the diabatic profiles of different categories of convective sys-
tems. Therefore, we explore various proxies for convective
intensity: (1) the presence of heavy precipitation (e.g. Taka-
hashi et al., 2021), (2) MCS size (e.g. Roca and Fiolleau,
2020; Stubenrauch et al., 2023), and (3) the minimum of the
LW cooling above the precipitating part of the MCS. The lat-
ter is directly linked to the opacity: the larger the LW cooling

above the cloud, the denser the cloud itself (Stubenrauch et
al., 2021).

Figure 9 presents profiles of latent heating and CRE av-
eraged over CSs of different precipitation intensities distin-
guished by the proxies described in the paragraph above and
using the thresholds given in the figure caption. All profiles
show a peak in latent heating at around 450 hPa. This is much
higher than one would expect from an isolated convective
tower and is linked to additional stratiform rain from the
thick anvils (i.e. Hartmann et al., 1984; Schumacher et al.,
2004; Chang and L’Ecuyer, 2019). The CSs including heavy
precipitation, covering about 20 % of the area of all CSs, pro-
duce the largest amount of LH, with a maximum of about
40 Kd−1 around 450 hPa and a broad shoulder downwards
to 700 hPa. CSs with a large size (MCSs) or with strong LW
cooling above their precipitating parts also show a larger
amount of LH than those of smaller size or with smaller
LW cooling. Radiative heating adds a small amount of pos-
itive heating from 200 hPa downward and cooling above the
opaque parts of the CSs. Cooling and heating are much
stronger for CSs including heavy precipitation, leading to
strong vertical gradients.

The size threshold of 12 000 km2 corresponds to approx-
imately four grid cells of 0.5°, and it differentiates between
CSs and MCSs, the latter with 17 603 data points covering
about 98 % of all CSs identified by CIRS.

5 Reinforcement of latent heating by UT cloud
radiative heating

Over the deep tropics (15° N–15° S), UT clouds have a net
radiative heating effect of about 0.3 Kd−1on the troposphere
from 250 hPa downward, and this radiative heating enhances
the column-integrated latent heating by about 22± 3 % (Li
et al., 2013; Stubenrauch et al., 2021). Regionally and tem-
porally, this enhancement varies, however. It was shown that
both the ACRE and LP depend on surface temperature (Hart-
mann and Larson, 2002; Cesana et al., 2019) and column hu-
midity (e.g. Bretherton et al., 2004; Holloway and Neelin,
2009; Masunaga and Bony, 2018; Needham and Randall,
2021; Masunaga and Takahashi, 2024). Therefore, we ex-
plore the relationship between latent and radiative heating
as a function of these environmental factors (Sect. 5.1) and
then, more specifically, for mesoscale convective systems
(Sect. 5.2). Since we found the CIRS-ML LP at 01:30 and
13:30 LT to be more similar to the LP of the diurnally sam-
pled TRMM-SLH over the ocean, we consider in the follow-
ing only precipitating clouds over the ocean.

5.1 Relationship between LP, ACRE, and the
environment

On average, the radiative enhancement in ACREs increases
with LP, as seen in Fig. 10a and b (black curves) and as al-
ready discussed by Stephens et al. (2024). This increase flat-
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tens for LP larger than about 250–500 Wm−2. Figure 10a
and b also show the relationship between ACREs and LP
for different environmental conditions: (1) warm and humid,
(2) warm and dry, (3) cool and humid, and (4) cool and dry.
These environmental conditions are given by SST and by the
integrated column water vapour (CWV) obtained from the
ERA-Interim meteorological reanalyses.

When stratified by environmental conditions, we still ob-
serve the increase in the ACRE with increasing LP, but for
each LP interval, the average ACRE is largest for the warm
and humid situations and smallest for the cool and dry situa-
tions. Figure 10a (all precipitating clouds) and b (only precip-
itating UT clouds) differ mostly for smaller amounts of LP,
as lower clouds do not produce as much LP. The averages
of ACREs in dry situations at these smaller amounts of LP
show that UT clouds radiatively heat the atmosphere, while
low-level clouds cool the atmosphere (aloft). For UT clouds
with LP greater than 500 Wm−2, ACRE differences between
cool–dry and warm–humid conditions increase from 30 to
50 Wm−2 with increasing LP. It is interesting to note that the
ACRE is similar between warm–dry and cool–humid condi-
tions, and both are quite close to the ACRE in warm–humid
situations. This means that for UT clouds releasing a large
amount of latent heat, the SST has a larger impact on the
ACRE in dry than in humid environments.

Now how can UT clouds that release similar amounts of
latent heat differ so much in the ACRE? The cloud height in
these different environments plays a key role, as shown by
the cloud top pressure distributions in Fig. 10c and d for all
precipitating clouds with a small value of LP (< 500 Wm−2)
and only precipitating UT clouds with a large value of LP
(> 500 Wm−2), respectively. A larger ACRE can be ex-
plained by a higher cloud height (lower cloud top pressure):
the highest clouds (peak at 170 hPa or about 15 km) are sit-
uated in a warm and humid environment and the lowest
UT clouds (peak at 240 hPa or about 11 km) are situated
in a cool and dry environment; the cloud height distribu-
tions in cool–humid and warm–dry environments are situated
between those in warm–humid and cool–dry environments,
with each being progressively lower than those in the warm–
humid environment.

For clouds that only release a small amount of latent heat,
humidity seems to be more important than SST for slightly
larger ACREs (Fig. 10a), as already pointed out by Needham
and Randall (2021). This can be explained by the fact that
UT clouds are much more frequent in humid than in dry re-
gions, while lower-level clouds exist mostly in dry regions
(Fig. 10c).

Why does cloud height differ under varying SST–CWV
conditions? Humid environments increase the buoyancy of
convective clouds, which allows clouds to reach higher
heights (Holloway and Neelin, 2009). In contrast, in dry en-
vironments, the lower water vapour content results in smaller
plume buoyancies, limiting convection and preventing clouds
from reaching the same height as in humid conditions, a

fact confirmed by Fig. 10c. The impact of lower-tropospheric
moisture on buoyancy through entrainment seems to be par-
ticularly significant compared to other mechanisms, although
additional processes may also contribute (Derbyshire et al.,
2004). Under lower-humidity conditions, higher surface tem-
peratures lead to higher convective available potential en-
ergy (CAPE; Seeley and Romps, 2015), which provides
enough energy to lift air upwards, forming taller clouds.
This explains why cloud heights and ACREs in humid and
warm–dry conditions are similar, while both cloud heights
and ACREs are significantly lower in a cool–dry conditions
(Fig. 10b and d). In addition, low-level wind shear can also
influence cloud development: moderate low-level wind shear,
where cold pool outflow balances environmental shear, can
help convective clouds develop to greater heights and persist
longer, while too weak or too strong low-level shear tends to
suppress deep convection and reduce cloud top height (Ro-
tunno et al., 1988).

When considering the distribution of UT clouds in the LP–
ACRE plane, with SST and CWV averaged over each inter-
val in LP and ACREs, as shown in Fig. 11a and b, respec-
tively, we observe a very large spread in the ACRE for a small
value of LP, which is gradually reduced towards larger values
of LP. As one would expect, UT clouds heat the atmosphere,
and the occurrence of negative ACRE values for LP values of
less than 500 Wm−2 should correspond to thin cirrus clouds
with lower precipitating clouds underneath. In this case, the
CIRS cloud retrieval itself only provides the properties of the
uppermost cloud.

The occurrences in the LP–ACRE plane and the associ-
ated average environments can be compared to the results of
Masunaga and Takahashi (2024, Fig. 6): they have charac-
terized three convective regimes (bottom-heavy, mid-heavy,
and top-heavy) based on the net moisture and moist static en-
ergy (MSE) transport associated with vertical motion (their
Fig. 5), and then they associated different parts of the ACRE–
LP space to these convective regimes, again according to the
import and export of net moisture and MSE (their Fig. 6).
By comparing these convective regimes projected to the LP–
ACRE plane with Fig. 11a and b, UT clouds in the more
or less warm–humid conditions correspond mostly to a mid-
heavy convective regime, while the bottom-heavy convec-
tion regime, with a small value of LP and a widely spread
ACRE, occurs in a cool–dry environment, with UT clouds
on top of lower convection. For larger values of LP, the cases
of low ACREs should correspond to the top-heavy convec-
tive regime, and these are also associated with a cool–dry
environment. The results are robust when averaged over 5°
(Fig. S14).

In order to explain the smaller ACRE in the cooler and
drier environment, which corresponds to top-heavy convec-
tive regimes, Fig. 12 shows the heating profiles of the UT
clouds for the environments defined above in two LP in-
tervals, with LP> 500 Wm−2 and LP< 500 Wm−2. Indeed,
for the small LP interval and the cool environments, the LH
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Figure 10. ACRE as a function of LP of precipitating cases (a) for all cloud scenes and (b) for UT clouds only for four specific environments
(cool to warm and humid to dry). Shaded areas and error bars indicate ±67.5 % of the standard deviation. The probability density of
cloud pressure for these different environments (c) for all cloud scenes and (d) for UT clouds is shown. The environments are defined as
follows: warm–humid is SST> 302 K and CWV> 60 mm, warm–dry is SST> 302 K and CWV> 45 mm, cool–humid is SST> 298 K and
CWV> 60 mm, and cool–dry is SST> 298 K and CWV> 45 mm. All data are from the period of 2004–2013 within 30° N–30° S at a spatial
resolution of 2.5°× 2.5° over the ocean.

Figure 11. Averages of (a) SST and (b) CWV as function of LP and the ACRE released by precipitating UT clouds over the ocean for the
period of 2004–2013, spanning 30° N to 30° S at a spatial resolution of 2.5°. LP and ACREs are from CIRS-ML, while SST and CWV are
from ERA-Interim at 01:30 and 13:30 LT. Each square corresponds to an interval of 100 Wm−2 in ML LP and 5.75 Wm−2 in the ACRE.
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Figure 12. LH (a, b) and CRE (c, d) profiles of precipitating UT
clouds, segmented by an LP threshold of 500 Wm−2 and averaged
across the environments of Fig. 10. All data are from the period of
2004–2013 within 30° N–30° S at a spatial resolution of 2.5°× 2.5°
over the ocean.

profiles seem to be dominated by stratiform rain, with a rela-
tively narrow LH peak around 410 hPa, while the LH profiles
for the warmer environments also show heating in the mid-
dle and lower part of the troposphere. For larger values of
LP, the LH profiles are more similar between these different
environments, with increasing and broadening of the peak to-
wards the middle and lower troposphere. This indicates either
an increase in the latent heating produced by the convective
cores (mid-heavy) or additional heating by the bottom-heavy
lower convection underneath the anvils (as suggested by Ma-
sunaga and Takahashi, 2024). Note that the scales of LH in
Fig. 12a (−2 to 6 K d−1) and Fig. 12b (−5 to 25 Kd−1) are
different, reflecting the large difference in the LH peak values
between the two LP intervals. The relatively small ACRE in
the cool–dry environment in Fig. 11 corresponds to radiative
heating below a height of 450 hPa and relatively large and
broad cooling above this height. The reason why the ACRE is
smaller under these environmental conditions is that the UT
clouds are lower in height (as shown above) and that the cool-
ing above them is more pronounced. The larger cooling can

Figure 13. LP (a), ACRE (b), rainy area fraction (c), and minimum
cloud top temperature within the convective core (d) as a function
of the CS size, shown separately for developing, mature, and dissi-
pating CSs (distinguished by convective core fractions of 0.6–0.9,
0.4–0.6, and 0.2–0.4, respectively). All size intervals except the first
two include MCSs exclusively. Choosing the coldest part of the core
avoids the inclusion of parts of the thicker anvil. This figure shows
CSs over the ocean at 01:30 and 13:30 LT in 2004–2018 in the range
of 25° N–25° S.

be explained by the fact that lower clouds may be optically
denser in addition to their warmer temperature; thus, they
emit more LW radiation, and the atmosphere above cools
more. The larger cooling also leads to a slightly larger verti-
cal gradient in radiative heating. The smaller height may be
interpreted as anvils of convective systems having descended
at a later stage in their life cycle (Strandgren, 2018) or as rela-
tively thick clouds with diffusive tops, for which the retrieved
(radiative) height may be deeper within the cloud because of
very low ice water content in the upper part of the cloud (e.g.
Liao et al., 1995; Stubenrauch et al., 2010, 2017).

5.2 Diabatic heating of the MCS

Deep convection in the tropics leads to a large outflow of
anvil clouds. The radiative heating of these UT clouds orig-
inating from convection enhances the latent heating associ-
ated with precipitation and thereby strengthens the circula-
tion (Stephens et al., 2024). In the following, we explore the
relationship between LH andQrad within the CSs and MCSs.

First, we study how LP and the ACRE change with the size
of the MCS. It has been shown that the horizontal extent of
the CS depends on the intensity and organization of convec-
tion, but it also changes during its life cycle (e.g. Machado
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Figure 14. The relationship between the radiative enhancement
ACRE and precipitation intensity LP-averaged per MCS, shown
separately for small MCSs (below the 40th percentile) and large
MCSs (above the 60th percentile) when considering MCSs larger
than four grid cells (1°× 1°). Only mature MCSs (convective core
fraction of 0.4–0.6) are included. MCSs are over the ocean at 01:30
and 13:30 LT from 2004 to 2018 in the region of 25° N–25° S.

et al., 1998; Takahashi and Luo, 2014; Protopapadaki et al.,
2017). Therefore, we analyse the CS/MCS properties sepa-
rately at different life stages: developing, mature, and dis-
sipating, which are defined by convective core fractions of
0.6–0.9, 0.4–0.6, and 0.2–0.4, respectively. Figure 13 shows
that both LP and the ACRE increase with MCS size, as ex-
pected from Fig. 9. The increase flattens for larger MCS
sizes. Furthermore, for a similar size, LP and the ACRE de-
crease from the developing towards the dissipating stage, as
expected (e.g. Bouniol et al., 2021; Takahashi et al., 2021; El-
saesser et al., 2022). These behaviours are in line with those
of the fraction of precipitation area within the MCS and the
minimum cloud top temperature within the convective core:
the fraction of precipitating area increases similarly to LP
with CS size, and the core top temperature decreases with CS
size, which explains the increasing ACRE. On the other hand,
the slightly decreasing anvil emissivity (not shown) should
dampen the ACRE increase.

As deduced from Fig. 6, the reliability of the values of the
LP average over the CS should increase with increasing CS
size. This means that LP should be slightly more underesti-
mated in the first size intervals than in the later ones. Never-
theless, the results of Fig. 13a seem, at least qualitatively, to
agree with the expectations.

In order to isolate the effect of convective organization, we
only select mature MCSs and compare the ACRE between
smaller, less organized and larger, more organized MCSs
at similar average rain intensities in Fig. 14 (using LP as a
proxy). On average, the ACRE increases with LP, when av-
eraged over mature MCSs for both small and large MCSs.
Most importantly, we observe for each rain intensity interval

given by LP that the mean ACRE of larger, more organized
MCSs is larger by about 10 Wm−2 than the one for smaller
MCSs. Considering Fig. 6, we expect LP to be underesti-
mated by a certain factor, and this factor should be smaller
for large MCSs than for small MCSs. Such an underestima-
tion means a stretching of the LP axis, but this stretching
should be slightly larger for the small MCSs than for the large
MCSs, while their ACREs would not change. So, indeed, the
result in Fig. 14 is robust, and the enhancement effect of con-
vective organization may be even slightly underestimated.

The LP intervals shown in the legend of Fig. 15 corre-
spond to the first, third, and fifth pairs of dots in Fig. 14.
As expected (e.g. Houze, 2004), the shape differences in
the averaged LH profiles of the mature MCSs between the
larger, more organized MCSs and the smaller MCSs can be
explained by a larger contribution of stratiform rain in or-
ganized MCSs, with a larger peak in the upper troposphere
and a larger vertical gradient down towards the surface from
the anvil heating and cooling below, except for the most pre-
cipitating ones that show a large amount of heating through
the whole atmosphere. More detailed studies at a better spa-
tial resolution are required to understand if the heating in
the middle troposphere comes from more productive cores
or from an anvil with precipitating systems underneath, as
was already suggested by Masunaga and Takahashi (2024).

In general the core top temperature decreases slightly with
increasing LP, slightly more for the larger MCSs (not shown),
which is also reflected in the shapes of the radiative heat-
ing profiles of the mature MCSs in Fig. 15b. Figure 15b
reveals that the vertical gradients increase with increasing
LP for both small and large MCSs, with increasing cooling
above and increasing heating within the MCSs. Furthermore,
in each of the three chosen LP categories, the vertical gra-
dient of the larger, more organized systems is larger com-
pared to that of the smaller MCSs. This additional ACRE
and larger vertical heating gradient then may further support
stronger and more sustained convective intensity by enhanc-
ing updraughts, maintaining the system, and modifying the
larger-scale environment.

6 Conclusions and outlook

In this article we explored the relationship between latent
and radiative heating in the tropics. The diabatic heating rate
profiles have been obtained from active instruments, which
have sparse sampling. In order to expand these heating rates
in space and time, we used techniques based on artificial
neural networks (ANNs). While the radiative heating and
a precipitation classification were already expanded earlier
(CIRS-ML dataset; Stubenrauch et al., 2021, 2023) using
ANNs trained separately for different CIRS cloud scenes
with CloudSat–CALIPSO FLXHR and CloudSat PRECIP-
COLUMN data, we presented here the extension of the latent
heating rates. After assessing the consistency of the extended
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Figure 15. Profiles of latent heating (a) and of cloud radiative effect (b) averaged per mature MCS (core fraction of 0.4–0.6), shown
separately for the three LP intervals used in Fig. 14 (lowest, middle, and highest), with mean values of approximately 320, 900, and
1700 Wm−2 (LP in the legend is in Wm−2). Data are also shown separately for small MCSs (below the 40th percentile) and large MCSs
(above the 60th percentile), considering MCSs larger than four grid cells (1°× 1°). MCSs are over the ocean at 01:30 and 13:30 LT from
2004 to 2018 in the region of 25° N–25° S.

LH and Qrad fields, we examined the relationship between
latent and radiative heating for different atmospheric envi-
ronments and within MCSs.

For the expansion of the TRMM-SLH latent heating rates
(Shige et al., 2009), we used similar ANN regression meth-
ods and inputs as were used for the radiative heating expan-
sion. However, the ANNs were separately trained for differ-
ent CIRS-ML precipitation scenes with gridded data at a spa-
tial resolution of 0.5°. While for the radiative heating rates
the predicted averages as well as their variability match those
of the CloudSat–CALIPSO FLXHR target data well, the pre-
dicted LH profile means agree very well with the TRMM-
SLH target data. However, the range of the predicted values
is much narrower than the one of the target data, likely due
to insufficient input information and its coarse spatial scale.
We were further able to demonstrate that some of the noise in
the prediction comes from discrepancies in the rain fraction
between TRMM and CIRS-ML (originally CloudSat), with
different instrument sensitivities and spatial sampling. When
comparing vertically integrated LH (LP), this noise may lead
to an overestimation of LP for small TRMM-SLH values and
an underestimation of LP for large TRMM-SLH values.

We reconstructed the 3D latent heating fields at four obser-
vation times: at 01:30 and 13:30 LT (AIRS) over the period
of 2004–2018 and at 09:30 and 21:30 LT (IASI) over the pe-
riod of 2008–2018.

The zonal averages of LP at 01:30 and 13:30 LT align well
with those from the full diurnal sampling of TRMM-SLH
over the ocean. However, over land, the daily mean LP is

underestimated because the strong convection in the late af-
ternoon is not captured at these observation times. The ob-
servation times of IASI (09:30 and 21:30 LT) underestimate
the daily mean LP over both ocean and land. Therefore, we
have performed all relationship analyses of the diabatic heat-
ing fields using CIRS-ML–AIRS over the ocean. The slopes
between the monthly averages of TRMM-SLH LP and CIRS-
ML LP over the ocean increase from 0.54 to 0.82 for scales
between 1 and 10°, with slopes of 0.68 and 0.76 for 2.5 and
5°, respectively. Although the complete collocated TRMM-
CIRS datasets have less than 5 % of the data points of the ex-
panded dataset, which may lead to inhomogeneous sampling,
the comparison of the zonal LP averages between TRMM-
SLH and CIRS-ML shows a slight underestimation in bands
of strong precipitation, like the ITCZ, and a very slight over-
estimation in bands including deserts.

Geographical maps show a close association between LP
and the vertically integrated atmospheric cloud radiative ef-
fect (ACRE) and reflect the characteristics of ENSO events
well. Furthermore, the horizontal structure of LP closely
matches the one from the precipitation obtained from TRMM
and GPCP, although the range of the CIRS-ML LP values is
underestimated. Nevertheless, when taking these systematic
biases into account, this dataset can be used to study the hori-
zontal structure of LP at four specific observation times. This
is not possible with TRMM monthly averages at a specific
time because they do not fill the tropical band at all.

The main purpose of this article was to study the rela-
tionship between latent and radiative heating for UT clouds,
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first under different atmospheric environments characterized
by sea surface temperature (SST) and column water vapour
(CWV) and then within MCSs. For similar rain intensities as
given by LP, the ACRE is generally largest in warm–humid
conditions and smallest in cool–dry conditions, which is es-
sentially linked to higher and lower cloud heights, respec-
tively. For UT clouds releasing a large amount of latent heat,
SST has a larger impact on the ACRE in dry environments
than in humid ones. On the other hand, humidity plays a
larger role in cool environments.

The distribution of UT clouds in the LP–ACRE plane
shows a large spread in the ACRE for the small value of
LP, which is gradually reduced towards larger amounts of
LP. Compared to the association of convective regimes with
the LP–ACRE plane by Masunaga and Takahashi (2024), the
UT clouds in the more or less warm–humid conditions cor-
respond mostly to mid-heavy convective regimes. The cool–
dry environments are linked, on the one hand, to the bottom-
heavy convection regimes with small LP values and a widely
spread ACRE, and, on the other hand, for larger LP values
and a smaller ACRE, to the top-heavy convective regimes.
The smaller ACRE can be explained by slightly larger cool-
ing above the clouds and the smaller (radiative) height of
these clouds.

Comparing MCSs of similar size, both mean LP and the
ACRE decrease from the developing stage towards the dis-
sipating stage of the MCSs. Furthermore, both mean LP and
the ACRE slightly increase with MCS size. In order to study
the effect of convective organization, we selected MCSs in
the mature state and compared the relationship between the
ACRE and LP separately for small and large MCSs; we
found an ACRE enhanced by about 10 Wm−2 for larger,
more organized MCSs than for smaller, less organized MCSs
at similar average rain intensities. Convective organization
also increases the vertical gradient of the mean radiative heat-
ing of these systems at similar rain intensity (LP). This en-
hanced ACRE and the larger vertical heating gradient may
then further support stronger and more sustained convective
intensity by enhancing updraughts, maintaining the MCS,
and modifying the larger-scale environment. As expected, the
shapes of the LH profiles of mature MCSs show that larger,
more organized MCSs have a larger contribution of strati-
form rain than the smaller MCSs do.

Future studies should also consider the environment
around the MCSs and in particular the time dimension. The
latter can be achieved by combining the CIRS-ML heating
rates with deep-convective cloud systems; using a better spa-
tial and temporal resolution (Fiolleau and Roca, 2013; Taka-
hashi et al., 2021); and providing additional parameters such
as their life stage, lifetime, and maximum size during their
lifetime. The distribution of the UT clouds and their associ-
ated environment in the LP–ACRE plane can also be used to
evaluate climate simulations, at least qualitatively.

The ML method for the expansion of TRMM LH rates
may be further improved by undertaking an ANN training

using collocations at the scale of the AIRS/IASI footprint and
integrating a substructure of measurements at an even smaller
scale, such as that from the Moderate Resolution Imaging
Spectroradiometer (MODIS) together with an auto encoder
method, as was done in Shamekh et al. (2023).

Data availability. The TRMM latent heating rates used in
this study are from the Tropical Rainfall Measuring Mission
(TRMM) dataset: GPM PR on TRMM Spectral Latent Heat-
ing Profiles L3 1 Day 0.5°× 0.5°,V06, provided by the God-
dard Earth Sciences Data and Information Services Center
(GES DISC) at https://doi.org/10.5067/GPM/PR/TRMM/SLH/3A-
DAY/06 (TRMM, 2021) and from Shige et al. (2009). The CIRS-
ML radiative heating rates, vertical cloud structure, and rain rate
classification data are distributed by the French Data Center AERIS
(Data and Services for the Atmosphere) via the website for the
Process Evaluation Study of Upper tropospheric Clouds and Con-
vection of the Global Energy and Water Exchanges Program
(GEWEX UTCC PROES) at https://gewex-utcc-proes.aeris-data.
fr/ (CIRS-ML; Stubenrauch et al., 2021; last access: 25 June
2025). The target data for the ANN-derived rain rate classifi-
cation are the CloudSat 2C-PRECIP-COLUMN data, provided
by the Cooperative Institute for Research in the Atmosphere
(CIRA) at Colorado State University at https://www.cloudsat.
cira.colostate.edu/data-products/2c-precip-column (CloudSat 2C-
PRECIP-COLUMN; Haynes et al., 2009). The TRMM (TMPA)
Precipitation L3 1 Day 0.25° × 0.25° V7 dataset, used for the com-
parison of LH horizontal structure with ML-expanded LH, is pro-
vided by NASA’s Goddard Earth Sciences Data and Information
Services Center (GES DISC) at https://doi.org/10.5067/TRMM/
TMPA/DAY/7 (Huffman et al., 2016). The Global Precipitation
Climatology Project (GPCP) Monthly Precipitation Climate Data
Record (CDR) is provided by the NOAA’s National Centers for
Environmental Information (https://doi.org/10.7289/V56971M6;
Adler et al., 2016).
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