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Abstract. Coal-fired power plants are a major source of global carbon emissions, and accurately accounting
for these significant emission sources is crucial in addressing global warming. Many previous studies have used
Gaussian plume models to estimate power plant emissions, but there is a gap in observation capabilities for high-
latitude regions and nighttime emissions. However, large emitting power plants exist in high-latitude areas. The
DQ-1 satellite is equipped with the world’s first active remote sensing lidar for detecting CO2 column concen-
trations, which, compared to passive remote sensing satellites, enables observations in these regions. This paper
applies a two-dimensional Gaussian plume model to the XCO2 results from the DQ-1 satellite and analyses the
instantaneous CO2 emissions of 10 power plants globally. Among these, 15 cases of data are from nighttime
observations, and 3 cases are from power plants located above 60° N latitude. The estimation results show good
consistency when compared with emission inventories such as Climate TRACE and Carbon Brief, with a corre-
lation coefficient R= 0.97. The correlation coefficient between the model fits and satellite observations ranges
from 0.49 to 0.88, and the overall relative random error in the estimates is 15.11 %. This paper also analyses the
diurnal differences in CO2 emissions from power plants and finds emission fluctuations directly correlated with
regional electricity demand dynamics. This method is very effective for monitoring emissions from strong point
sources such as power plants.
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1 Introduction

Global warming is caused by the continuous increase in
greenhouse gases in the atmosphere. The Kyoto Protocol
under the United Nations Framework Convention on Cli-
mate Change classifies six gases, including carbon dioxide
(CO2), methane (CH4), nitrous oxide (N2O), hydrofluorocar-
bons (HFCS), perfluorocarbons (PFCS), and sulfur hexaflu-
oride (SF6), as major greenhouse gases, with CO2 being the
largest contributor and a key anthropogenic greenhouse gas
(Kyoto Protocol, 1997). Changes in atmospheric composi-
tion due to industrial development, land-use changes, defor-
estation, and livestock farming have led to global warming
and a series of severe events impacting the Earth’s ecological
environment, such as frequent natural disasters. These effects
are further exacerbated by increasing greenhouse gas emis-
sions (Arias et al., 2021; Searchinger et al., 2018). Currently,
greenhouse gas emissions are accelerating, with global an-
nual CO2 emissions rising from 27 to 49 Pg over the past
40 years (Friedlingstein et al., 2022). In response to the se-
vere challenges posed by climate change, countries world-
wide are actively participating in CO2 growth control ini-
tiatives and formulating strategies. China aims to peak CO2
emissions by 2030 and achieve carbon neutrality by 2060 to
curb the sharp rise in atmospheric CO2 concentrations (Li et
al., 2022).

Effective control of CO2 emissions relies on accurate,
timely, and transparent monitoring. Currently, countries as-
sess emission reduction measures through greenhouse gas in-
ventories, but challenges such as data lag, inconsistent stan-
dards, and insufficient information transparency undermine
comparability and credibility (Tubiello et al., 2015; Peters et
al., 2012). For monitoring urban CO2 emissions, most meth-
ods employ emission models based on inventory data, fol-
lowing a “bottom-up” approach (Gurney et al., 2017; Turn-
bull et al., 2018; Lauvaux et al., 2016). In recent years, some
studies have used “top-down” approaches, such as combin-
ing satellite observation data with WRF-STILT or WRF-
Chem models to quantify urban greenhouse gas emissions
(Turner et al., 2020; Pillai et al., 2012; Hu et al., 2022; Wu
et al., 2018; Ye et al., 2020). For small point sources like
power plants, airborne or ground-based monitoring is typi-
cally used to measure CO2 concentrations. Relevant studies
have employed the mass balance method to assess CO2 emis-
sions from power plants and cities through airborne obser-
vations (Ahn et al., 2020). Some research teams have also
utilized the inverse Gaussian plume model with Methane
Airborne MAPper (MAMAP) instruments to remotely sense
the column-averaged dry-air mole fractions of CO2 (XCO2)
from power plants (Krings et al., 2018, 2011). Ground-based
equipment, such as portable Fourier transform spectrome-
ters (EM27/SUN), combined with the Gaussian plume model
and the cross-sectional flux method, has also been used to
measure ground-level CO2 concentrations for specific power

plants and urban areas (Ohyama et al., 2021; Luther et al.,
2019).

Satellite remote sensing technology holds significant po-
tential for monitoring atmospheric CO2 due to its capability
for long-term, periodic observations on a global scale (Zhang
et al., 2021). Monitoring point-source emissions using satel-
lites is challenging. Compared to the budgeting approach for
estimating point-source emissions (Amediek et al., 2017),
the Gaussian plume model (GPM) is highly influenced by
the precision of atmospheric background driving fields (Nas-
sar et al., 2017; Brunner et al., 2023), it is not constrained
by the spatial resolution of the model, and it is more sta-
ble and effective in modelling point-source dispersion if lim-
ited by the background wind field (Toja-Silva et al., 2017;
Schwandner et al., 2017). The Orbiting Carbon Observatory-
2 (OCO-2) has high measurement accuracy and stable results
(Sheng et al., 2023; Crisp et al., 2017; Miller et al., 2007),
and its XCO2 product can be used in conjunction with GPM
for the estimation of point-source emissions. When it passes
downwind of a single point source, a significant increase in
XCO2 can be observed due to strong CO2 emissions, and by
fitting the observed XCO2 with plume simulations, instanta-
neous CO2 emissions can be quantified (Nassar et al., 2017).
In recent years, a series of studies have been conducted to
estimate CO2 emissions from power plants, volcanoes, and
cities based on OCO-2’s XCO2 data (Nassar et al., 2017;
Guo et al., 2023; Zheng et al., 2020; Crisp et al., 2017). Nas-
sar et al. (2021) used the Gaussian plume model to estimate
CO2 emissions and uncertainties from 20 power plants and
related facilities in the USA, India, South Africa, Poland,
Russia, and South Korea, noting an average difference of
15.1 % between the estimated emissions and reported values
for US power plants (Nassar et al., 2021). However, OCO-
2 and OCO-3 are passive remote sensing satellites, which
present data gaps in high-latitude and nighttime observations,
and their spatial resolution of 1.5 km× 2.25 km poses limi-
tations for monitoring small-scale strong point sources (Shi
et al., 2023; Eldering et al., 2019). For power plants, due to
variations in power demand, nighttime emissions differ sig-
nificantly from daytime levels, and there may be instances
of illegal nighttime over-emissions at certain plants, making
nighttime CO2 emission observations necessary (Letu et al.,
2014).

Spaceborne active remote sensing of CO2 primarily em-
ploys the integrated path differential absorption (IPDA) prin-
ciple (Ehret et al., 2008), enabling nighttime and high-
latitude observations. Kiemle et al. (2017) discussed the
ability to monitor CO2 emissions using spaceborne lidar in
combination with the plume model and a mass budget ap-
proach (Kiemle et al., 2017). Recent studies have demon-
strated the feasibility of laser-based detection techniques for
CO2 emission monitoring (Menzies et al., 2014; Wolff et al.,
2021). In 2022, China launched the Atmospheric Environ-
ment Monitoring Satellite (AEMS, also known as DQ-1), the
first equipped with a spaceborne IPDA lidar capable of global

Atmos. Chem. Phys., 25, 6725–6740, 2025 https://doi.org/10.5194/acp-25-6725-2025



X. Zhang et al.: Estimation of diurnal emissions of power plants 6727

XCO2 measurements. This technology addresses the gap in
XCO2 observations at high latitudes and during nighttime
(Cai et al., 2022; Fan et al., 2024). The XCO2 results from
DQ-1 were validated against TCCON (Total Carbon Column
Observing Network) observations, showing an average devi-
ation of less than 1 ppm at a 50 km (149 footprints averaged)
resolution (Zhang et al., 2024). Additionally, its satellite foot-
print interval is 330 m, significantly enhancing the estima-
tion accuracy for small power plants (Zhang et al., 2023).
Han et al. (2024) applied the EMI-GATE model, based on
the Gaussian plume, to evaluate power plant emissions us-
ing DQ-1 data (Han et al., 2024). The main differences be-
tween the Gaussian plume model used in this study and the
EMI-GATE model used by Han et al. (2024) are the methods
used to calculate the Gaussian plume model parameters such
as the atmospheric instability parameters and the wind field,
as well as the fact that we additionally quantify the uncer-
tainty due to atmospheric instability. This paper also analy-
ses 2 years of satellite data, examining emission variations in
a single power plant over time. Section 2 introduces the data
sources and methods of this study. In Sect. 3, the improved
Gaussian plume model is integrated with DQ-1 satellite ob-
servations, selecting 10 globally high-emission power plants,
including 15 nighttime observations and 23 observations of
power plants in high-latitude regions, estimating their CO2
emissions. Analyses of diurnal and seasonal variations in
CO2 emissions are also conducted. Section 4 provides a sum-
mary and discusses the potential applications of the Gaussian
plume model with spaceborne IPDA lidar.

2 Data and methodology

2.1 Data

2.1.1 DQ-1 satellite data

On 16 April 2022, China launched the world’s first satel-
lite designed for the active remote sensing of carbon dioxide.
This satellite is equipped with an aerosol and carbon dioxide
laser detection lidar (ACDL). The primary scientific objec-
tives are to measure high-resolution vertical profiles and the
optical properties of global atmospheric aerosols and clouds,
as well as to obtain global atmospheric CO2 column con-
centration data. This provides precise quantitative informa-
tion for studies on CO2 sources and sinks (Fan et al., 2024).
The satellite utilizes integrated path differential absorption
(IPDA) technology to measure CO2 column concentration. It
employs a 1572 nm pulsed laser and the IPDA lidar method,
using two wavelengths (λon and λoff, corresponding to re-
gions of strong and weak absorption lines). The difference in
absorption cross-sections (σ ) between these two wavelengths
is used to determine the CO2 column concentration. XCO2
can be calculated using these two wavelength echo signal
strengths combined with the following equation (Ehret et al.,

2008):

XCO2 =
DAOD
IWF

=

1
2 ln PoffEon

PonEoff∫ PG
PTOA

1σ (p,T )(
mdryair+ρH2O(p)mH2O

)
g

dp
. (1)

DAOD is differential absorption optical depth, IWF is the in-
tegral weight function, Pon/Poff represents the echo power of
the two laser beams, Eon/Eoff represents the emitted power,
pTOA and pG are the pressure at the top of the atmosphere
and at the ground, 1σ (p,T ) represents the differential ab-
sorption cross-section, mdryair is the molecular mass of dry
air, and ρH2O is the relative humidity of the air. On-orbit
tests of ACDL have yielded high-precision remote sensing
data, confirming that the CO2 column concentration mea-
surement accuracy is better than 1 ppm. Notably, this satel-
lite provides the first global CO2 column concentration mea-
surements at night and over the poles (Zhang et al., 2024).
The satellite’s footprint spacing of 330 m ensures high spa-
tial resolution. This study utilizes the satellite’s L2D product,
which includes global XCO2 data derived from raw observa-
tion data combined with the IPDA lidar inversion method.
The datasets include XCO2 values, uncertainty for XCO2,
and the corresponding surface elevation and geographic co-
ordinates for each footprint.

2.1.2 Wind data

This study utilizes horizontal (U ) and vertical (V ) wind
components from the fifth-generation European Centre for
Medium-Range Weather Forecasts (ECMWF) global climate
atmospheric reanalysis dataset (ERA-5). The dataset features
a temporal resolution of 1 h, a spatial resolution of 0.25°, and
37 vertical pressure levels (Hersbach et al., 2020). A four-
dimensional interpolation method is applied to the U and V
vectors at the plume lift height, which is set to a default chim-
ney height of 240 m and a plume vertical lift height of 250 m
(Hu and Shi, 2021). To evaluate the impact of wind speed
uncertainty on power plant emission predictions, the study
also compares results using MERRA-2 horizontal wind data
(Gelaro et al., 2017). In this study, atmospheric instability
is calculated from surface 2 m wind speeds and cloud cover,
with surface wind speed data selected from spatially interpo-
lated ERA5-Land hourly wind speed U and V vectors. Ad-
ditionally, the conversion of emissions into XCO2 enhance-
ments requires surface pressure and water vapour column
content data, which were derived from ERA5-Land datasets.

2.1.3 CO2 emissions data

The power plant validation data used in this study
are sourced from the Carbon Brief database (https:
//www.carbonbrief.org/mapped-worlds-coal-power-plants/,
last access: 12 December 2024). However, many power
plants in high-latitude regions do not provide emission data.
Therefore, this study also compares the results with those
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from Climate TRACE (https://climatetrace.org/explore/
#admin=&gas=co2e&year=2024&timeframe=100&sector=
power,electricity-generation&asset=, last access: 30 June
2025). Climate TRACE estimates the activity levels (capac-
ity factors) of power plants and other facilities using satellite
observations and machine learning methods. The database
provides annual and monthly CO2 emissions and generating
capacity for more than 500 power plants worldwide. We also
compared the emissions of Climate TRACE’s top 30 power
plants with Carbon Brief, which had an average deviation of
9.2 %, and we considered their results to be reliable.

2.2 Emission inversion and emission uncertainties

Gaussian plume models are widely used for monitoring
point-source emissions due to their stability (Brusca et al.,
2016). This study applies this method to a spaceborne IPDA
lidar to estimate CO2 emissions from power plants. The ba-
sic equation of the model is as follows (Pasquill and Smith,
1983):

1Q (x,y)=
F

√
2πa ·

(
x
x0

)0.894
µ

e

−
1
2

 y

a·
(
x
x0

)0.894

2

, (2)

where x and y represent the distances from the chimney
along the wind direction and vertical to the wind direction
(m), 1Q is the total CO2 column increment (g m−2), F is
the point-source CO2 emission rate (g s−1), and a is the at-
mospheric stability parameter which is related to the solar ra-
diation index and surface wind speed. The solar radiation in-
dex can be assessed using high cloud cover, low cloud cover,
and solar elevation angle (Pasquill, 1961; Beals, 1971). The
total CO2 column amount converted to the increment of col-
umn concentration 1XCO2 (ppm) can be calculated using
the following equation (Zheng et al., 2020):

1XCO2 (x,y)=1Q (x,y) ·
Mair

MCO2

·
g

Psurf−w · g
·1000, (3)

whereMair is the molecular mass of dry air (g mol−1),MCO2

is the molecular mass of carbon dioxide (g mol−1), g is the
acceleration due to gravity, Psurf is the surface pressure (Pa),
and w is the water vapour column content (kg m−2).

The satellite-observed XCO2 results need to be converted
into the CO2 increment1XCO2 caused by power plant emis-
sions. The diffusion of CO2 plumes can be simplified using a
two-dimensional Gaussian model, where the footprint of the
spaceborne lidar is tangent to the two-dimensional Gaussian
plume, leading to a shape similar to a one-dimensional Gaus-
sian distribution. It is assumed that the background CO2 con-
centration might exhibit a small gradient linear change, and
XCO2 distribution is considered to follow the distribution

XCO2 (x)= XCO2b+B · x+
A

σ
√

2π
e
[
−(x−µ)2/2σ 2]

, (4)

whereA, B, σ , andµ are the parameters in the linear fit func-
tion, obtained by least-squares fit; XCO2b+B ·x is the back-
ground value of XCO2; and A

σ
√

2π
e
[
−(x−µ)2/2σ 2]

is 1XCO2

caused by power plant emissions (Reuter et al., 2019).
The specific calculation process is illustrated in Fig. 1.

For a power plant with an emission rate of 1000 kg s−1,
the downwind XCO2 enhancement at 50 km under 10 m s−1

winds is< 1 ppm, which is less than the uncertainty of XCO2
observed by the DQ-1, indicating low reliability in distant
plume detection. Therefore, to improve the model’s fit with
satellite observation results, the selected DQ-1 orbital data
require that the downwind direction of the point source in-
tersects with the satellite footprint and that the distance be-
tween the XCO2 enhancement location and the point source
is less than 50 km. In the simulation, the x axis of the Gaus-
sian plume represents the direction of diffusion. Most stud-
ies use interpolated wind vectors from sources like ERA-
5 at the plume height as the plume’s direction (Guo et al.,
2023). However, in practice, wind direction may deviate and
change continuously, making instantaneous wind direction
insufficient for accurate plume propagation. In this model,
the plume propagation direction is defined as the vector from
the chimney location to the centre of the Gaussian peak. This
direction is then compared with the interpolated wind direc-
tion. Only results where the wind direction difference is less
than 25° are selected for further comparison and validation.

The selected satellite observation results are ultimately fit-
ted to the model’s plume results at the satellite footprint using
the least-squares method to obtain the CO2 emission rate of
the target power plant. The model’s results can be calculated
using Eqs. (2) and (3), where the atmospheric stability pa-
rameter significantly affects the dispersion of the plume. Di-
rect fitting with a specific value can easily lead to estimation
bias. In this study, empirical interpolation of atmospheric sta-
bility parameters was implemented by accounting for surface
wind speed, cloud coverage, and solar elevation angle, the
latter calculated from latitude and time of observation (Nas-
sar et al., 2021). The uncertainty in the stability parameter
was quantified through the uncertainty in surface wind speed
measurements. Subsequently, a least-squares fitting approach
was applied under the assumption that prior estimates of at-
mospheric stability parameters varied within 1 standard devi-
ation. The optimal solution was then selected as the represen-
tative atmospheric instability value for the target location. A
10 km moving average was applied to DQ-1 data, reducing
the uncertainty of XCO2 to below 1 ppm, which facilitated
the detection of enhanced XCO2 signals (Zhang et al., 2023).
Therefore, during the least-squares fitting process, the model
results are also smoothed similarly. The primary differences
between the Gaussian plume model used in this study and the
EMI-GATE model employed by Han et al. (2024) lie in the
calculation methods for the atmospheric instability parame-
ter, background CO2 column concentration, wind speed, and
wind direction. Our approach involves varying these parame-
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Figure 1. Inversion framework for Gaussian plume models.

ters within their respective error ranges based on the original
observational values, with each parameter being calculated
independently to maximize the interpretability of the results.

This study estimates the uncertainty in power plant emis-
sions using a Gaussian plume model considering five factors:
uncertainty in wind speed, uncertainty in wind direction, un-
certainty in plume height, uncertainty in atmospheric stabil-
ity, and uncertainty in background field. The total uncertainty
can be calculated using Eq. (5):

ε =

√
ε2

s + ε
2
d + ε

2
h + ε

2
a + ε

2
b, (5)

where εs represents the error caused by wind speed. This is
estimated by comparing the CO2 emissions from the target
power plant using wind speeds interpolated from MERRA-
2 and ERA-5 data with the wind speed uncertainty given by
the standard deviation between the two predictions. εd rep-
resents the error caused by wind direction, calculated as the
difference in CO2 emissions using wind directions interpo-
lated from ERA-5 versus the plume direction computed in
this study. εh represents the error caused by the emission
height of the power plant. The plume height is equal to the
stack height plus the plume lift height (Brunner et al., 2019),
and if there is no information on the stack height for a specific
power plant, the default stack height is 240 m; given the un-
certainty in the plume lift height, the standard deviation of the
emissions for lift heights of 160, 200, 240, 280, and 320 m is

used to estimate the uncertainty. εa represents the error in-
duced by atmospheric instability, which is quantified using
surface wind speed and net radiation index. The uncertainty
in atmospheric instability is derived from the uncertainty in
surface wind speed data. εb represents the error in calculat-
ing the CO2 background value. This is determined by com-
paring the average CO2 concentration at points upwind of
the source, outside the Gaussian plume, with the background
value computed using the Gaussian fitting method employed
in this study, thus providing the uncertainty in the CO2 back-
ground field.

3 Results and discussion

In this study, we utilized the DQ-1 satellite’s Level 2D
XCO2 data and selected power plants with characteristics
such as being located at mid-to-high latitudes and having
large CO2 emissions from Climate TRACE. A total of 97
satellite overpasses within 50 km circular regions centred on
plant stacks were retrieved. For 10 typical coal-fired power
plants, 47 satellite overpasses intersecting the downwind di-
rection were identified within the power plant area. Strict
data-filtering standards were applied when using the Gaus-
sian plume model, requiring the absence of thick clouds (DQ-
1 measured elevation discrepancies from DEM< 100 m) and
ensuring that the deviation of the wind direction from the
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plume spreading direction at the point source was less than
25°. We consider that deviations of wind direction from the
plume axis of less than 25° are mainly attributable to mete-
orological data uncertainties, while larger deviations (≥ 25°)
may be due to atmospheric turbulence effects (Panofsky and
Dutton, 1984), when Gaussian plume modelling is not appro-
priate. After filtering, 34 % of the overpasses were discarded
due to excessive differences in wind direction, and a total of
28 overpasses were finally selected, including 15 nighttime
cases and 3 cases when the power plant was located above
60° N.

3.1 Emissions from high-latitude power plants

Reftinskaya GRES (61.7° E, 57.1° N) is the largest solid-
fuel-fired power plant in Russia, generating electricity by
burning coal. The plant emits not only CO2 and other green-
house gases but also large amounts of SO2, NOx , and other
pollutants, making the monitoring of its emissions highly sig-
nificant. Located in Sverdlovsk Oblast, the plant has a total
installed capacity of 3800 MW and produces 20×109 kWh of
electricity annually. Climate TRACE data show that its CO2
emissions in 2022 were 22.7 Mt, ranking it eighth among
global power plants. This plant is a major power source for
the Sverdlovsk, Tyumen, Perm, and Chelyabinsk regions.
The plant’s Chimney No. 4, at 330 m, is one of the tallest
chimneys in the world, while the heights of the other chim-
neys are still uncertain. Due to the plant’s high latitude,
around 57° N, passive remote sensing satellite data are sparse
(insufficient OCO-2 overpasses were available for GPM at
this plant), making it difficult to estimate. However, active
remote sensing methods provide high data coverage in high-
latitude regions, allowing for more accurate estimates of the
plant’s emissions. In this study, we retrieved 2 years of ob-
servational data from July 2022 to July 2024, identifying a
total of 27 valid satellite orbits passing over the plant, as
shown in Fig. 2. Based on ERA-5 wind direction data and
the XCO2 distribution, 19 valid observations were identified,
covering both daytime and nighttime during autumn–winter
and spring–summer. These data enable analysis of the plant’s
emissions over time, with typical daytime and nighttime ob-
servation results presented in Fig. 3.

For the nighttime observation on 17 August 2022, the
satellite orbit (Fig. 4a) was approximately 12 km from the
power plant. Using Gaussian fitting, the background CO2
column concentration was calculated to be 419.97 ppm, with
an XCO2 increment of about 1.3 ppm (Fig. 4b). Within
the plume, there were 76 data points, assuming a plume
height of 530 m above ground level (the sum of the stack
height and the assumed uplift height). The CO2 emission
rate of the inventory is 721.3 kg s−1. Combined with the two-
dimensional Gaussian model, the theoretical XCO2 enhance-
ment results were calculated (as shown in Fig. 4c), and us-
ing the least-squares method, the fitted CO2 emission result
was 806.0± 108.2 kg s−1, with a correlation coefficient of

R= 0.88 (Fig. 4d). The average deviation between the model
results and satellite-measured data was 0.32 ppm. The total
relative error of 13.4 %, which included an uncertainty of
70.5 kg s−1 due to wind conditions; 39.8 kg s−1 due to back-
ground levels; and 26.1 and 64.4 kg s−1 due to plume height
and atmospheric stability, respectively. The slightly higher
result from the model compared to the emissions inventory
can be attributed to the fact that the emissions inventory rep-
resents annual averages. When converting these averages into
instantaneous emission rates, the result tends to be lower
than the actual instantaneous emission due to shutdowns
for maintenance throughout the year. In mild summers, de-
spite reduced nighttime electricity demand and plant output,
low-load operations impair combustion efficiency, increasing
fuel use per kilowatt-hour and exacerbating CO2 emissions
through frequent start–stop cycles (Hendriks, 2012).

On the night of 10 December 2023, the satellite also
passed over this power plant, with the corresponding satellite
trajectory (Fig. 5a) located about 31 km from the plant. Using
Gaussian fitting, the background value was determined to be
432.42 ppm, and the XCO2 enhancement was 1.2 ppm. There
were 57 points within the Gaussian plume, and the Gaussian
plume model predicted the instantaneous emission rate of the
plant to be 1027.5± 177 kg s−1, with a correlation coefficient
R= 0.87. During the error calculation, the wind speeds from
ERA-5 and MERRA-2 were 6.9 and 7.8 m s−1, respectively,
contributing an uncertainty of 110.6 kg s−1 due to wind con-
ditions. Additionally, the atmospheric stability was calcu-
lated to be category D, leading to an emissions uncertainty
of 94.4 kg s−1. Considering all factors, the total relative error
was 17.3 %. Since December is already winter in Russia, the
increased electricity demand for city lighting, transportation,
and residential heating systems (Savić et al., 2014) required
the plant to maintain higher power output to meet the sur-
rounding cities’ electricity needs, leading to an increase in
instantaneous emissions.

On 8 February 2024, the DQ-1 satellite passed over the
power plant again during the day at 08:29 UTC (Fig. 6a),
with the Gaussian plume centre located about 21 km down-
stream of the wind direction. In this observation, the atmo-
spheric background field exhibited a strong linear variation
trend (about 0.015 ppm km−1 along the track), and the Gaus-
sian linear fitting results are shown in Fig. 6b, with an aver-
age XCO2 background concentration of 428.9 ppm. The sur-
face wind speed was 4.2 m s−1, and the atmospheric stability
was calculated to be class B. There were 51 points within the
plume. Using the Gaussian plume model, the plant’s instan-
taneous emission rate was predicted to be 1109± 169 kg s−1,
with a correlation coefficient R= 0.875 between the model
results and satellite observations. The total uncertainty in the
estimated emission rates was 168.9 kg s−1, with a relative er-
ror of 15.3 %. The largest contribution to this uncertainty was
from the variation in the CO2 background field, which caused
an emission calculation uncertainty of 109.3 kg s−1. The un-
certainties due to wind field, plume height, and atmospheric
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Figure 2. The DQ-1 satellite passed through all orbits around the Reftinskaya GRES power plant, where the red hexagonal star indicates the
position of the power plant (map source: Esri, Maxar, Earthstar Geographics, and the GIS User Community).

Figure 3. Typical daytime and nighttime DQ-1 overpasses around the Reftinskaya GRES power station, with the red hexagonal star indicating
the location of the power station and the arrow representing the wind direction at the plume (map source: Esri, Maxar, Earthstar Geographics,
and the GIS User Community).

stability were 88.9, 31.5, and 85.4 kg s−1, respectively. Com-
pared to the observation in December, the CO2 emissions
were higher in this February observation, which can be at-
tributed to the fact that the observation was conducted during
the day when electricity demand is higher due to residents’

work activities, leading the power plant to increase output,
thereby raising CO2 emissions (Waite et al., 2017).

By analysing 2 years of observation data from the GRES
power plant (as shown in Fig. 7 and Table 1), the overall es-
timated average emission rate is higher than the emissions
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Figure 4. (a) DQ-1 satellite observation on 17 August 2022, where the red hexagonal star indicates the location of the power plant, and the
red arrow indicates the result of the wind interpolation of the height of the smoke plume at that location (map source: Earthstar Geographics).
(b) The result of one-dimensional linear Gaussian fitting of the satellite observation of XCO2 results; the red line is the fitted result. (c) Gaus-
sian plume distribution corresponding to the emission results calculated by the model; the blue point is the position of the satellite through
the plume. (d) Comparison between the XCO2 enhancement results fitted by the model and the measured results, with the red and green
points indicating the model results, where the green points are the parts contained in the plume, the black and blue points are the measured
results of the satellites, and the blue points are the points in the plume.

reported in the inventory. The plant undergoes annual shut-
downs for maintenance, and the satellite observations rep-
resent instantaneous emissions, which may differ slightly
from the annual average emissions. Additionally, the Cli-
mate TRACE data reflect the 2022 annual average emissions,
and the plant’s yearly emissions fluctuate due to varying lo-
cal electricity demand. Figure 7 shows that summer emis-
sions are lower than winter emissions. It was found that the
plant is located in a high-latitude region where the climate
is mild in summer and cold in winter. During winter, resi-
dents use electrical appliances and heating systems more fre-
quently, and the power demand for urban infrastructure is
higher than in summer. As a result, the power plant adjusts
its output, leading to higher CO2 emissions in winter (Savić

et al., 2014). The comparison between daytime and night-
time observations shows that the average CO2 emission rate
during the day is 1022 kg s−1, while the nighttime average is
796 kg s−1. The ratio of daytime to nighttime emission rates
is 1.28. This ratio can be used to estimate the full-day CO2
emissions when only daytime or nighttime observations are
available. The power plant is the primary source of electric-
ity for the region, and electricity demand from production
activities during the day is much higher than at night. Conse-
quently, the plant increases its load during the day, resulting
in higher CO2 emissions. This also indicates that the plant
does not engage in unauthorized nighttime emissions during
the observation period.
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Figure 5. (a) Observations from the DQ-1 satellite on 20 December 2023 (map source: Earthstar Geographics). (b) The result after fitting the
satellite observation of XCO2 results to a one-dimensional linear Gaussian; the red line is the fitted result. (c) Gaussian plume distribution
corresponding to the emission results calculated by the model. (d) Comparison of the model-fitted XCO2 enhancement results with the
observation results.

3.2 Comparison with emission inventories

The estimations from this study were compared with the
emission inventories provided by Climate TRACE and Car-
bon Brief, as shown in Table 2. Both inventories present the
annual total emission values, whereas the model results cal-
culated from satellite observations represent instantaneous
emission rates. Due to the power plant’s ability to adjust
its output based on local electricity demand, some differ-
ences between the two sets of results are expected. However,
most results fall within the error range of the model predic-
tions. The study includes three observation cases for latitudes
above 60° N and 15 cases of nighttime emission detections.
The use of spaceborne lidar to detect XCO2 effectively com-
pensates for the limitations of passive remote sensing satel-
lites in high-latitude and nighttime observations. A compar-
ison of all observation results with the Climate TRACE in-

ventory is shown in Fig. 8, with a correlation coefficient of
0.97.

Overall, the CO2 emissions predicted by the Gaussian
plume model are generally higher than those in the emis-
sions inventory. This discrepancy may be due to the timing
of observations, as some were conducted during winter and
summer in the Northern Hemisphere when increased elec-
tricity demand prompts power plants to elevate generation
capacity. Comparisons between nighttime and daytime CO2
emissions reveal lower nighttime emissions at some plants,
potentially attributable to reduced electricity demand (Waite
et al., 2017) and real-time adjustments to avoid power storage
saturation. However, nighttime emissions at certain plants
exceed inventory values, which could result from subopti-
mal equipment load levels reducing overall efficiency and
causing incomplete fuel combustion. Additionally, frequent
start–stop operations during low-load conditions may con-
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Figure 6. (a) Observations from the DQ-1 satellite on 8 February 2024 (map source: Earthstar Geographics). (b) Fitting the satellite obser-
vation of XCO2 results to a one-dimensional linear Gaussian; the red line is the fitted result. (c) Gaussian plume distribution corresponding
to the CO2 emissions calculated by the model. (d) Comparison between the XCO2 enhancement results fitted by the model and the measured
results.

tribute to unstable combustion, further amplifying emissions
(Hendriks, 2012). Overall, the emission rates measured in
this study exceed those reported by Carbon Brief and Climate
TRACE, a difference that might arise because conventional
power plants undergo annual shutdowns for inspections, low-
ering annual averages relative to instantaneous emissions. It
is critical to acknowledge that direct validation against stack
monitor measurements is unavailable, and emission invento-
ries are inherently uncertain and not independently validated.
Therefore, comparisons between estimated results and inven-
tories should be interpreted cautiously and serve as a provi-
sional reference rather than definitive conclusions. Moreover,
by utilizing the high spatial resolution of the DQ-1 satel-
lite, it is possible to monitor low-CO2-emitting power plants
(F < 100 kg s−1), with results fitting well with the inventory
data.

3.3 Emissions uncertainty analysis

The uncertainty in the model calculations was assessed using
Eq. (5) from Sect. 2.2, revealing that the uncertainty contri-
butions vary across different power plants and influencing
factors. The overall uncertainty results are presented in Ta-
ble 3. The average relative random error is 15.11 %, which is
lower than the 18.8 % random error in the EMI-GATE model
(Han et al., 2024). The primary contributors to this uncer-
tainty are errors in the background field calculation, wind
field errors, and atmospheric stability errors. Regarding wind
fields, both the ERA-5 and MERRA-2 datasets are reanaly-
sis results. However, discrepancies can occur between these
datasets, particularly in high-latitude regions where wind
speed observations are sparse. When these wind speeds are
used in the Gaussian model to estimate power plant emis-
sions, differences can lead to errors in Gaussian diffusion ve-
locity, thereby affecting prediction accuracy (Nassar et al.,
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Figure 7. Daytime (red) and nighttime (blue) CO2 emission rates from GRES power plants (2022–2024). Solid lines represent modelled
estimates with uncertainty bounds (shaded areas), dashed red and blue lines represent average daytime and nighttime emissions, and dashed
black lines represent Climate TRACE emission inventory values.

Table 1. Emission estimates and uncertainty for GRES power plant.

Date Day Estimated Climate Estimated
(yyyy-mm-dd) or emissions TRACE uncertainty

night (kg s−1) (kg s−1) (kg s−1)

2022-08-17 Night 966 697.1 156.5
2022-10-23 Day 1018.5 748.1 186.9
2022-11-20 Night 1029.9 772 150.8
2023-02-09 Day 1157.6 815.2 153.1
2023-03-30 Night 958.5 892.4 130.9
2023-04-01 Day 918.6 772.8 142.6
2023-05-20 Night 897.5 746.1 100.4
2023-05-22 Day 876.5 746.1 173.5
2023-06-23 Night 764.4 725.3 118.9
2023-07-24 Night 887.6 748.8 83.0
2023-09-08 Day 951.5 733 147.4
2023-10-17 Night 957.8 808.6 139.8
2023-11-05 Day 988.6 834.1 131.5
2023-12-10 Night 1177.6 904.3 169.2
2024-02-01 Day 1158.6 844.1 187.6
2024-02-08 Day 1105 844.1 150.4
2024-03-17 Night 1070.5 892.4 168.7
2024-06-24 Night 819.7 725.3 93.6
2024-07-01 Night 874.5 748.8 126.8

2021). In this study, wind-field-related uncertainty accounts
for 26.7 % of the total error, with an average relative ran-
dom error of 7.4 %. Atmospheric stability is another signifi-
cant factor contributing to uncertainty. Atmospheric stability
is not constant and varies in real time with solar radiation,
which is influenced by factors such as cloud cover and so-

Figure 8. Comparison of power plant emissions predicted by Gaus-
sian plume model with Climate TRACE statistics; the solid black
line represents the 1 : 1 line, and the dashed line indicates the linear
fitting line.

lar elevation angle (Ashrafi and Hoshyaripour, 2010). Since
atmospheric stability directly impacts the shape of Gaussian
diffusion, it introduces errors in predicted CO2 emissions.
For all results considered, uncertainty due to atmospheric
stability contributes 25.1 % to the total error, with an aver-
age relative random error of 7.3 %. Plume height uncertainty
also plays a role in the overall error. While some power plants
provide chimney height data, allowing for the consideration
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Table 2. Information on different power plants and the comparison of model predictions with emission inventories.

Country Station Stack Latitude UTC time Model result Climate Carbon Day or
height (yyyy/mm/dd) (kg s−1) TRACE Brief night

(m) (kg s−1) (kg s−1)

Russia GRES 330 57.11° N 2022/08/17 22:12 806.0± 108 721.3 638 Night
Russia GRES 330 57.11° N 2023/05/22 08:35 876.2± 153 721.3 638 Day
Russia GRES 330 57.11° N 2023/11/05 22:10 988.6± 161 721.3 638 Night
Russia GRES 330 57.11° N 2023/12/10 22:08 1027.5± 177 721.3 638 Night
Russia GRES 330 57.11° N 2024/02/08 08:29 1109± 169 721.3 638 Day
Russia GRES 330 57.11° N 2024/07/01 22:08 724.5± 115 721.3 638 Night
America Scherer 305 33.06° N 2022/05/03 02:37 478± 72 267.4 607.5 Night
Poland Belchatow 300 51.26° N 2022/05/08 19:18 771± 134 867.5 925 Day
South Africa Medupi 240∗ 23.71° S 2022/07/24 07:21 598± 98 516.6 515.3 Day
South Africa Matimba 240∗ 23.60° S 2022/07/24 07:21 708± 118 617 664.6 Day
Russia CHP-1 240∗ 69.33° N 2022/06/14 21:07 109.7± 18 83 – Night
Russia CHP-3 240∗ 69.32° N 2022/06/14 21:07 57.1± 12 44.1 – Night
Russia GRES-2 420 61.28° N 2022/07/24 21:36 1287.3± 143 1001.1 – Night
Korean Taean 240∗ 36.90° N 2022/06/03 04:44 991.5± 73 1022.2 900.5 Day
Korean Daesan 240∗ 36.99° N 2022/06/03 04:44 30.4± 3.4 23.9 – Day

∗ The default stack height is 240 m (Nassar et al., 2021).

of plume rise uncertainty only, others require an assumed
chimney height (Guo et al., 2023). This assumption can lead
to relatively high errors, primarily because wind speed and
direction near the ground can vary with height, resulting in
inaccuracies in wind field calculations. Plume height uncer-
tainty contributes 6.5 % to the total error, with an average rel-
ative random error of 3.3 %. Uncertainty in the background
field is mainly due to inaccuracies in its calculation. In areas
with significant anthropogenic interference, a linear function
may not adequately represent changes in background CO2
concentration. Additionally, satellite observations are sub-
ject to inherent errors, and uncertainties in XCO2 retrievals
can introduce errors into point-source emission estimation.
Background field errors account for 40.7 % of the total error,
with an average relative random error of 9.5 %. For space-
borne lidar, the spatial distribution of satellite nadir points
differs from that of passive remote sensing satellites, leading
to fewer observed points within the plume. This increases
the weight of background field uncertainty in the total er-
ror (Nassar et al., 2021; Shi et al., 2023). The uncertainty
of XCO2 around the studied power plants is less than 1 ppm
by moving average, but the average relative error in XCO2
enhancement at the peak of the plume is as high as 47.3 %.
Compared to the statistical uncertainties reported in Han et
al. (2024), both investigations identified that uncertainties in
the DQ-1 satellite’s XCO2 observations dominate the error
budget, accounting for approximately 50 % of the total error.
Beyond this, the significant contribution of wind field uncer-
tainties aligns with findings from Nassar et al. (2017; Guo
et al., 2023). In contrast to previous studies, this work incor-
porates uncertainties in atmospheric instability. Due to the
influence of turbulence and other factors within the bound-

ary layer, the uncertainty in surface wind speed also exerts a
significant influence on atmospheric instability calculations.

Unlike prior studies, this research explicitly accounts for
atmospheric instability uncertainty. Surface wind speed un-
certainty, influenced by boundary layer turbulence and other
factors, is significantly higher during daytime. Our analysis
of 28 cases reveals that the optimized atmospheric instabil-
ity parameter a shows average deviations of 19.5 % from its
prior value in daytime versus 15.8 % at night. The results
indicate that, under the assumption that plume dispersion
aligns with the Gaussian plume model, ERA-5 surface wind
speeds exhibit higher accuracy at night. However, daytime
turbulence introduces small-scale wind field errors, which
further amplify uncertainties in atmospheric instability.

4 Conclusions

This study utilized the IPDA lidar on board the DQ-1 satel-
lite to monitor emissions from localized strong point sources
and, for the first time, observed the diurnal variation in CO2
emissions from a high-latitude power plant, effectively cov-
ering areas that passive remote sensing satellites fail to mon-
itor. The two-dimensional Gaussian plume model was op-
timized in terms of plume direction and atmospheric sta-
bility and applied to XCO2 observation results. Validation
and comparison results indicate that the improved Gaussian
plume model has a strong correlation with the emissions
inventory, with a correlation coefficient of 0.97. The aver-
age relative random error in the predicted results is 15.11 %,
which is lower than that of the EMI-GATE model, due to
different parameter selections in the Gaussian plume model,
thus reducing the random error. The main factors affecting
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Table 3. Uncertainty caused by different error factors in the forecast results of different power plants.

Power Wind Plume Stability Background Total Relative
station field height (kg s−1) field error error

(kg s−1) (kg s−1) (kg s−1) (kg s−1)

Scherer 34.2 13.9 59.4 47.4 72.4 15.1 %
Belchatow 48.3 14.5 72.9 98.8 134.2 15.4 %
Medupi 64 45.8 12.3 52.8 98 16.4 %
Matimba 81.3 21.7 34.8 75.5 118.3 16.7 %
CHP-1 4.3 1.9 9.5 15.2 18.4 16.7 %
CHP-3 5.2 1.8 5.8 9.1 12.1 21.2 %
GRES-2 43.2 31.2 72.3 107.2 143.5 12.6 %
GRES 80.3 27.8 71.8 90.7 147.3 15.9 %
Taean 51.8 27.4 10.8 27.8 73.3 7.4 %
Daesan 2.8 0.9 1.6 1.2 3.5 12.7 %

estimation errors are the uncertainty in the atmospheric wind
field (26.7 % of total error), uncertainty in atmospheric sta-
bility (25.1 %), and uncertainty in background field calcula-
tions (40.7 %). The results show that during the daytime, the
error in the surface wind field is higher due to turbulence,
which can cause some invalid observations or increase the
error caused by atmospheric instability and wind field to the
model. Utilizing high-resolution wind fields simulated by the
WRF-LES model around power plants to drive the Gaussian
plume model may reduce uncertainties in the wind field. Es-
tablishing automatic weather stations around the power plant
for real-time monitoring of atmospheric radiation and sur-
face wind speed could reduce errors caused by uncertainties
in atmospheric stability. Overall, power plant CO2 emissions
were largely consistent with local electricity consumption
patterns, with most plants emitting less at night than dur-
ing the day, and with higher emissions in winter and sum-
mer compared to spring and autumn. This research provides
a new approach for global carbon accounting. In 2025, China
plans to launch the DQ-2 satellite, equipped with the same
IPDA lidar for carbon dioxide observation. As satellite den-
sity increases, global coverage of emission detection data
will significantly improve.
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