
Atmos. Chem. Phys., 25, 6497–6537, 2025
https://doi.org/10.5194/acp-25-6497-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Data-driven modeling of environmental
factors influencing Arctic methanesulfonic

acid aerosol concentrations

Jakob Boyd Pernov1,a, William H. Aeberhard2, Michele Volpi2, Eliza Harris2,b, Benjamin Hohermuth3,
Sakiko Ishino4, Ragnhild B. Skeie5, Stephan Henne6, Ulas Im7, Patricia K. Quinn8,

Lucia M. Upchurch8,9, and Julia Schmale1

1Extreme Environments Research Laboratory, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
2Swiss Data Science Center, ETH Zurich and École Polytechnique Fédérale de Lausanne, Switzerland

3Schroders Capital ILS, Zurich, Switzerland
4Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Japan

5CICERO, Center for International Climate Research, Oslo, Norway
6Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland

7Department of Environmental Science/Interdisciplinary Centre for Climate Change,
Aarhus University, Roskilde, Denmark

8Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration,
Seattle, WA, USA

9Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington,
Seattle, WA, USA

anow at: School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Australia
bnow at: Climate and Environmental Physics, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland

Correspondence: Jakob Boyd Pernov (jakob.pernov@epfl.ch) and Julia Schmale (julia.schmale@epfl.ch)

Received: 30 October 2024 – Discussion started: 14 November 2024
Revised: 28 March 2025 – Accepted: 5 April 2025 – Published: 27 June 2025

Abstract. Natural aerosol components such as particulate methanesulfonic acid (MSAp) play an important role
in the Arctic climate. However, numerical models struggle to reproduce MSAp concentrations and seasonal-
ity. Here we present an alternative data-driven methodology for modeling MSAp at four High Arctic stations
(Alert, Gruvebadet, Pituffik (formerly Thule), and Utqiaġvik (formerly Barrow)). In our approach, we create
input features that consider the ambient conditions experienced during atmospheric transport (e.g., dimethyl sul-
fide (DMS) emission, temperature, radiation, cloud cover, precipitation) for use in two data-driven models: a
random forest (RF) regressor and an additive model (AM). The most important features were selected through
automatic selection procedures, and their relationships with MSAp model output was investigated. Although the
overall performance of our data-driven models on test data is modest (max. R2

= 0.29), the models can cap-
ture variability in the data well (max. Pearson correlation coefficient= 0.77), outperform the current numerical
models and reanalysis products, and produce physically interpretable results.

The data-driven models selected features which can be grouped into three categories, the sources, chemical
processing, and removal of MSAp, with specific differences between stations. The seasonal cycles and selected
features suggest gas-phase oxidation is relatively more important during peak concentration months at Alert,
Gruvebadet, and Pituffik (Thule), while aqueous-phase oxidation is relatively more important at Utqiaġvik (Bar-
row). Alert and Pituffik (Thule) appear to be more influenced by processes aloft than in the boundary layer. Our
models usually selected chemical-processing-related features as the main factors influencing MSAp predictions,
highlighting the importance of properly simulating oxidation-related processes in numerical models.
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1 Introduction

Natural marine biogenic aerosols, e.g., particulate methane-
sulfonic acid (MSAp), are becoming an increasingly impor-
tant part of the Arctic climate system, especially during sum-
mer, due to sea ice retreat as well as changing environmental
conditions and circulation patterns (Willis et al., 2023), yet
their environmental drivers remain understudied (Schmale et
al., 2021). Processes leading to natural aerosol emissions are
affected by climate change, leading to ongoing changes in
the natural aerosol baseline. Understanding natural aerosols
has implications for accurate modeling of the pre-industrial
atmosphere and thus estimation of the indirect aerosol effect
(Carslaw et al., 2013; Menon et al., 2002). Natural aerosols,
such as MSAp, are important seeds for low-level mixed-
phase clouds in the Arctic (Abbatt et al., 2019; Beck et al.,
2021). Low-level clouds can have a significant effect on the
surface energy budget, influencing snow cover, sea ice ex-
tent, and the Greenland ice sheet behavior (Arouf et al.,
2024; Wendisch et al., 2019). The current understanding of
the Arctic climate system is limited, due to, amongst other
reasons, an insufficient representation of low-level Arctic
mixed-phase clouds in large-scale models (Morrison et al.,
2012; Pithan et al., 2016; Taylor et al., 2022). The inadequate
representation of aerosol particles acting as cloud condensa-
tion nuclei and ice-nucleating particles may partly explain
the shortcomings of cloud representation in large-scale mod-
els (Mauritsen et al., 2011; Stevens et al., 2018). While sig-
nificant progress has been made (Abbatt et al., 2019; Shupe et
al., 2022; Wendisch et al., 2019, 2024), there are still impor-
tant gaps in the current understanding and modeling efforts
of natural Arctic aerosols (Schmale et al., 2021).

In the Arctic atmosphere, MSAp mainly derives from the
oxidation of natural, marine emissions of dimethyl sulfide
(DMS) (Barnes et al., 2006a), although other sources can
make minor contributions such as lakes, coastal tundra, melt
ponds, and biomass burning (Levasseur, 2013; Mungall et
al., 2016; Park et al., 2019). Arctic marine phytoplankton
and algae produce dimethylsulfoniopropionate as an osmo-
protectant (Yoch, 2002), which is enzymatically cleaved to
produce seawater DMS (Andreae, 1990; Kettle et al., 1999),
which is the main source of marine biogenic sulfur in the at-
mosphere (Hulswar et al., 2022; Lana et al., 2011). Although
the majority of DMS is oxidized within seawater, a fraction
is ventilated into the atmosphere where it is photochemically
oxidized by OH, O3, NO3, and halogen species via two path-
ways (addition or abstraction), both of which depend on tem-
perature (Barnes et al., 2006a; Jiang et al., 2021; Shen et al.,
2022). The atmospheric lifetime of DMS is on the order of
1–2 d (Breider et al., 2010; Lundén et al., 2007), depending
on latitude and environmental conditions (Ghahreman et al.,
2019). DMS oxidation to MSAp involves a variety of gas-
and aqueous-phase reactions, the latter occurring in cloud

droplets or on deliquesced particles (Barnes et al., 2006a;
Chen et al., 2018; Fung et al., 2022; Hoffmann et al., 2016).
DMS is first oxidized through two major branches. One is the
abstraction pathway by reactions with OH, NO3, and Cl rad-
icals in the gas phase to yield methylthiomethylperoxy radi-
cal (MTMP: CH3SCH2OO) (Berndt et al., 2019; Hoffmann
et al., 2016). MTMP can undergo isomerization to form hy-
droperoxymethylthioformate (HPMTF) (Berndt et al., 2019;
Veres et al., 2020) or oxidation by NO or RO2 to produce
CH3SO2, which can then form SO2, sulfuric acid (H2SO4),
or MSA with strongly temperature-dependent yields (Berndt
et al., 2023; Chen et al., 2023; Shen et al., 2022). The other
DMS oxidation branch is the addition pathway through reac-
tions with OH, BrO, Cl, and O3 to yield dimethyl sulfox-
ide (DMSO), which occurs mainly through the gas phase
but partly in the aqueous phase through reaction with O3
(Hoffmann et al., 2016). DMSO is a semi-volatile species
which reacts with OH in both the gas and aqueous phase to
form methanesulfinic acid (MSIA). MSIA then reacts with
OH or O3 in the aqueous phase to produce MSAp (Chen et
al., 2018; von Glasow and Crutzen, 2004; Hoffmann et al.,
2016; Wollesen de Jonge et al., 2021), although it can also
undergo gas-phase oxidation by OH to yield CH3SO2, thus
contributing to the temperature-dependent pathway to pro-
duce gaseous MSA (Chen et al., 2023; Shen et al., 2022). The
produced gas-phase MSA can condense onto cloud droplets
or existing particles to form MSAp (Hoffmann et al., 2016).
Aqueous-phase reactions are dominant formation mecha-
nisms for MSAp in a typical marine boundary layer con-
dition (Baccarini et al., 2021; Chen et al., 2018; Hoffmann
et al., 2016; Kecorius et al., 2023). In the Arctic, cold tem-
peratures (Barnes et al., 2006a; Chen et al., 2023; Shen et
al., 2022) and elevated halogen levels will favor MSA/MSAp
formation relative to SO2 (Chalif et al., 2024; Jongebloed et
al., 2023; Sørensen et al., 1996) especially in the springtime,
through both gas- and aqueous-phase pathways. The pres-
ence of ice-containing clouds may limit the aqueous-phase
production since reactions between DMS and its interme-
diates and oxidants are mainly able to occur at the surface
(Chen et al., 2018). For a full description of DMS oxidation
mechanisms and pathways, see Barnes et al. (2006a). After
formation in the aqueous phase, MSAp can be released into
the gas phase during droplet evaporation and go on to fur-
ther impact secondary aerosol production (Baccarini et al.,
2021; Fung et al., 2022; Kecorius et al., 2023). Currently, the
relative importance of gas- versus aqueous-phase oxidation
of DMS is a topic of active research (Baccarini et al., 2021;
Chen et al., 2018; Fung et al., 2022; von Glasow and Crutzen,
2004; Hoffmann et al., 2016; Kecorius et al., 2023; Wollesen
de Jonge et al., 2021). The lifetime of MSAp is on the order
of several days in the Arctic depending on the environmen-
tal conditions (Mungall et al., 2018). MSA mainly resides in
the accumulation mode (aerosols with a diameter > 100 nm)
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(Kerminen et al., 1997; Phinney et al., 2006; Xavier et al.,
2022), although MSA can also be present in the Aitken mode
(∼ 25< diameter< 100 nm) (Lawler et al., 2021) and makes
a minor contribution to the coarse mode (> 1 µm) (Kerminen
et al., 1997). Depending on location, maximum MSAp con-
centrations are reached during early, middle, or late summer,
which are related to differences in atmospheric circulation
patterns in relation to biologically active waters and marginal
ice zones, microbiological differences in these sources re-
gions that produce different DMS emissions, meteorologi-
cal conditions (e.g., solar radiation and precipitation), and
other environmental factors (different atmospheric oxidants
and sea ice coverage) (Becagli et al., 2016, 2019; Moffett
et al., 2020; Moschos et al., 2022; Nielsen et al., 2019; Nøj-
gaard et al., 2022; Sharma et al., 2012, 2019). Dry deposition
and wet deposition are the main atmospheric removal mech-
anisms (with wet deposition making a larger contribution) as
well as oxidation into sulfate (Chen et al., 2018; Fung et al.,
2022).

The low accumulation-mode particle concentrations char-
acterize the summertime Arctic atmosphere as an aerosol-
sensitive cloud condensation nuclei (CCN) regime (Birch et
al., 2012; Mauritsen et al., 2011; Motos et al., 2023); there-
fore any variations in the number of CCN-active aerosols
can have large consequences for the cloud radiative balance
(Carslaw et al., 2013). The low accumulation-mode concen-
trations also create conditions conducive to new particle for-
mation and growth. While modeling studies indicate MSA
can participate in new particle formation (Chang et al., 2011;
Li et al., 2024; Ning and Zhang, 2022), this has yet to be
directly observed in the field (Beck et al., 2021; Dall’Osto
et al., 2018) but has been demonstrated through chamber
(Rosati et al., 2021) and flow tube studies (Johnson and Jen,
2023). Before these new particles can act as CCN they must
first grow to sufficient sizes. MSA is especially critical for the
condensational growth of aerosols to CCN sizes (Ghahreman
et al., 2019, 2021; Park et al., 2021), thereby affecting cloud
microphysical properties such as cloud lifetime, albedo, and
precipitation efficiency (Hansen et al., 1997; Ramanathan et
al., 2001; Rosenfeld, 1999; Twomey et al., 1984). Elucidat-
ing the sources and atmospheric drivers of MSAp is crucial
for reliable modeling of the Arctic climate system when con-
sidering that aerosol–cloud interactions are one of the largest
sources of uncertainty in global climate modeling (Regayre
et al., 2020).

The Arctic climate system is driven by many intercon-
nected processes and feedback mechanisms, making it diffi-
cult to disentangle the role of specific processes, which is es-
pecially evident for aerosol-climate interactions (Schmale et
al., 2021). Numerical modeling is currently the best method
for exploring these complex processes and phenomena. Nu-
merical models are defined here as global models, based
on physical and chemical equations, used to simulate at-
mospheric composition and conditions. Numerical models
can simulate Arctic aerosols, although some of the key un-

derlying aerosol processes are often simplified, approxi-
mated, or not represented due to lack of observations, un-
known physical properties, or poorly parameterized mech-
anisms (Eckhardt et al., 2015; Emmons et al., 2015; Im et
al., 2021; Monks et al., 2015; Whaley et al., 2022). Many
of these shortcomings are due to lack of knowledge con-
cerning natural processes including rates and spatial distri-
bution of DMS emission, oxidation mechanisms, and cloud
processes. Ghahreman et al. (2017) showed that GEOS-
Chem overestimated (underestimated) gaseous DMS in sum-
mer (spring) in the Canadian archipelago. The overestima-
tion could be attributable to missing aqueous-phase oxida-
tion mechanisms in GEOS-Chem, while the underestimation
in spring could be due to errors in the DMS source strength
(Lana et al., 2011), with missing emissions from melt ponds
and marginal ice zones (Gourdal et al., 2018; Hayashida et
al., 2017; Mungall et al., 2016). Ghahreman et al. (2021)
used the Global Environmental Multi-scale model–Modeling
Air quality and Chemistry (GEM-MACH) model to demon-
strate that the inclusion of DMS greatly improved the simu-
lated size distribution compared to observations in the Arc-
tic. However, errors in the parameterized nucleation mecha-
nisms led to discrepancies for particles smaller than 50 nm,
having implications for cloud formation as aerosols of these
sizes have been shown to activate in the Arctic (Leaitch et
al., 2016). Hoffmann et al. (2021) were able to improve sim-
ulations of gaseous MSA in the ECHAM-HAMMOZ model
by implementing aqueous-phase oxidation mechanisms on
deliquesced particles and by considering the reactive up-
take of methanesulfinic acid (MSIA). However, in-cloud pro-
cessing of MSA is still missing from this model configura-
tion, and reactive uptake coefficients are not well parame-
terized as they depend on aerosol acidity; thus further im-
provements are required. There are also differences between
models that create large uncertainties about future processes
and their effects on aerosols, as well as aerosols’ effect on
Arctic climate. For instance, sea ice is drastically declining
(Stroeve and Notz, 2018), and while models predict an in-
crease in natural aerosols, they do not agree on the climate
effects (Browse et al., 2014; Gilgen et al., 2018; Struthers et
al., 2011). Constraining numerical model uncertainty can be
achieved by incorporating in situ observations (Regayre et
al., 2020) but also through machine learning (or data-driven
modeling; see below). This can be achieved through bias-
correction methods (Lapere et al., 2023; Ran et al., 2023),
using data-driven modeling algorithms to parameterize unre-
solved processes (Brajard et al., 2021; Yuval and O’Gorman,
2020) or combining data-driven modeling with ambient ob-
servations to model key atmospheric species and identify its
drivers (Gilardoni et al., 2023; Hu et al., 2022). Improving
the skill of numerical models in the Arctic can greatly aid in
our ability to understand, predict, and possibly mitigate the
effects of climate change, not only in the Arctic but globally,
and data-driven modeling is an important avenue for accom-
plishing this.
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Data-driven models, coming from the statistical and ma-
chine learning literature, tend to rely less on prior knowledge
of physical processes than numerical models and attempt to
learn dependencies across data directly from some available
observations. The rationale of “letting the data speak” is that
a relevant relation across variables should in principle be
found with the appropriate amount of data and a proper rep-
resentation of it, as long as the data-driven model is flexible
enough and the signal-to-noise ratio is adequate (Breiman,
2001). As such, these data-driven models can confirm known
processes and relations as well as potentially discover un-
known ones. Such data-driven models can also be tailored
to maximize out-of-sample prediction (e.g., forecasting in
time) while retaining interpretability (Rudin et al., 2022).
The general framework of non-linear regression appears ap-
propriate for modeling and predicting complex environmen-
tal processes (Hastie et al., 2009) as represented by hetero-
geneous data sources: the relation between the target variable
(here MSAp) and different input variables, hereafter referred
to as features, can be approximated by training a data-driven
model. Estimated relations can be ranked in terms of their
contribution to the minimization of a loss function, and non-
relevant relations can be removed, making for more compact
and parsimonious data-driven models and simplifying post-
hoc interpretation. Any unexplained variability in the target
variable, i.e., not captured by the approximated relations, is
represented by an additive random error term. This class of
data-driven models includes (generalized) additive models
(Hastie and Tibshirani, 1990) as well as variants and exten-
sions of regression trees (Breiman et al., 1984), among oth-
ers. Additive models (AM), and generalized additive mod-
els (GAMs) more broadly, are fairly established for empiri-
cal modeling in various fields such as ecology, epidemiology,
and Earth sciences when the interpretability of results is im-
portant (Wood, 2017; Zuur et al., 2009). In climate science
and meteorology, GAMs are often used for spatial interpo-
lation (Aalto et al., 2013; Pearce et al., 2011) and simulat-
ing sources of atmospheric constituents (Yue et al., 2023).
Machine learning models like a random forest (RF) are in-
creasingly recognized to outperform AMs/GAMs in terms
of out-of-sample prediction (Bonsoms and Ninyerola, 2024).
Nonetheless, some recent studies still advocate for the ben-
efit of easily identifying drivers of natural phenomena, and
directly interpreting their effect, with AMs/GAMs (Deger et
al., 2024; Gao et al., 2023), highlighting their applicability
to this study. RF models have been utilized for investiga-
tions of environmental phenomena. Song et al. (2022) used a
random forest regressor to investigate the drivers of different
aerosol types on Svalbard with accurate results (R2

= 0.79)
and found that solar radiation, surface pressure, and tempera-
ture were drivers of biogenic-type aerosols (which contained
high amounts of MSA). Nair and Yu (2020) trained an RF
model on long-term simulations of a global size-resolved
particle microphysics model (GEOS-Chem-Advanced Parti-
cle Microphysics) to simulate cloud condensation nuclei con-

centrations, which was robust and accurate. Overall, these
studies highlight the applicability of RF regressor and addi-
tive models in understanding complex atmospheric phenom-
ena.

Modeling natural aerosol processes in the Arctic remains
a challenge but is critical to investigating the energy balance
of this fast-changing, pristine region. In this study, we aim to
(1) evaluate the performance of numerical models at simulat-
ing MSAp in the Arctic, (2) develop a data-driven methodol-
ogy to simulate the seasonal cycle of MSAp at various loca-
tions, and (3) investigate the environmental drivers of MSAp.
The study is structured in the following manner.

– In Sect. 2, we describe the input data (Sect. 2.1, in
situ observations, reanalysis products, satellite, and nu-
merical model output), feature engineering procedure
(Sect. 2.2), preparation of input data (Sect. 2.3, temporal
aggregation, feature grouping, and multi-site merging),
model performance evaluation (Sect. 2.4), and data-
driven models (model details, feature selection proce-
dure, and model interpretation).

– In Sect. 3, we analyze the seasonal cycles of in situ
MSAp at the High Arctic stations (Sect. 3.1), evaluate
the current performance of numerical models (Sect. 3.2)
and our data-driven models at simulating MSAp at each
station (Sect. 3.3), and lastly explore the features se-
lected by the models as being important for MSA pro-
duction (Sect. 3.4) and how they affect model output of
MSAp (Sect. 3.5).

We show that existing numerical models struggle to re-
produce the seasonal cycles and magnitudes of MSAp com-
pared to observations; however, investigation of the under-
lying causes of these discrepancies is beyond the scope of
this work. Our data-driven models outperform the numer-
ical models although the evaluation metrics are modest at
best. The data-driven models select features related to the
source and chemical processing of MSA precursors as well
as MSAp removal, indicating that the data-driven models
give physically interpretable results. While both gas-phase
oxidation and aqueous-phase oxidation are likely occurring
at all sites, the seasonal cycles and selected features sug-
gest that during peak concentration months gas-phase oxi-
dation is more relatively important at Alert, Gruvebadet, and
Pituffik (formerly Thule), while aqueous-phase oxidation is
more relatively important at Utqiaġvik (formerly Barrow).
Results also indicate that Gruvebadet and Utqiaġvik (Bar-
row) are more influenced by surface-related processes com-
pared to Alert and Pituffik (Thule), which are more influ-
enced by processes aloft.
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Table 1. Details of the four Arctic stations.

Station name Latitude Longitude Altitude Sampling
(m a.s.l.) Frequency

(d)

Alert 82.5° N 62.4° W 210 7
Gruvebadet 78.9° N 11.9° E 50 1
Pituffik (Thule) 76.5° N 68.8° W 220 2
Utqiaġvik (Barrow) 71.3° N 156.6° W 10 1–5

2 Methods

2.1 Datasets

2.1.1 In situ aerosol observations

In situ filter samples of particulate methanesulfonic acid
(MSAp) were measured at four Arctic stations (Alert, Gru-
vebadet, Pituffik (Thule), and Utqiaġvik (Barrow)) (Becagli
et al., 2016, 2019; Moffett et al., 2020; Sharma et al., 2019).
Figure 2a displays the location of each station, and details
about each station are given in Table 1. For Alert, Gruve-
badet, and Pituffik (Thule), samples from 2010–2017 were
used as each site contained sufficient data coverage and a
consistent sampling frequency, while for Utqiaġvik (Bar-
row), samples included 2008–2014 due to data availability
and changes in sampling frequency (Moffett et al., 2020).
Details about the analytical instrumentation and methods are
described in Supplement Text S1. While there are differ-
ences in sampling (different inlet and temporal resolution)
and analysis (different ion chromatographs) at each station,
these measurements are considered comparable as an anal-
ysis by two different laboratories for samples from Alert in
2018 showed good agreement (Moschos et al., 2022), and
ion chromatography is a reproducible methodology (Xu et
al., 2020).

2.1.2 ERA5

ERA5 is the fifth-generation atmospheric reanalysis product
from ECMWF (Hersbach et al., 2020), based on the Inte-
grated Forecast System (IFS) cycle 41r2 numerical model. In
this study, ERA5 data on a 0.5°× 0.5° resolution for north of
45° N and every third hour were used to match the geographi-
cal extent and temporal resolution of the output derived from
the atmospheric transport model FLEXPART (Sect. 2.1.3).
Surface-level (SL) and vertically resolved ERA5 data on
model levels (ML) were used. The height of each model level
on each grid cell was converted to geopotential height us-
ing the vertically resolved temperature and specific humid-
ity as well as the logarithm of the surface pressure and the
surface geopotential. Relative humidity was calculated us-
ing 2 m air temperature and dew point temperature follow-
ing the method of Pernov et al. (2024a). Here we use ERA5
data from 1 April to 30 September for 2008–2017. Recently,
ERA5 surface level variables were compared against conti-

nental ground-based stations spanning at least 1 decade for
most sites. Overall ERA5 performed well for temperature,
solar radiation, and pressure although less so for relative
humidity and wind speed/direction (Pernov et al., 2024a).
ERA5 is one of the best reanalysis datasets for reproducing
precipitation (Loeb et al., 2022) and has shown skill in re-
producing precipitation for various regions (Bandhauer et al.,
2022; Beck et al., 2019) as well as for the Arctic (Handong et
al., 2021). Overall, these limitations should not affect the use
of ERA5 or our interpretations. The ERA5 variables were se-
lected based on domain knowledge of the atmospheric con-
ditions which could plausibly affect DMS emission, oxida-
tion to MSA, and removal of MSA aerosols. These include
oceanic variables such as sea ice concentration (used to fil-
ter ocean biology features; see below) and sea surface tem-
perature; physical atmospheric variables such as wind speed
(WS), temperature at the surface (T2M), boundary layer
(T_BL), free troposphere (T_FT), shortwave and longwave
downwelling radiation (SSRD and STRD, respectively), and
boundary layer height (BLH); and hydrological atmospheric
variables such as relative humidity (RH), specific humidity
(Q), low cloud cover (LCC), large-scale rain rate (LSRR),
total column cloud liquid water content (TCLW), and spe-
cific cloud liquid water content (LWC). Table 2 lists more
details about the ERA5 variables used in this study.

2.1.3 FLEXPART

Air mass residence times were simulated with the Lagrangian
particle dispersion model FLEXPART v9.1 (Pisso et al.,
2019), driven with meteorological data from the ERA5 re-
analysis with 0.5°× 0.5° resolution and 137 vertical levels
available every three hours. ERA5 data for FLEXPART were
obtained using the Flex extract package (Tipka et al., 2020).
A total of 50 000 passive air tracer model particles, repre-
senting a passive air tracer without removal processes, were
released every 3 h at each of the atmospheric observatories
and tracked for up to 10 d backward in time with an output
frequency of 3 h. The vertical limit of the FLEXPART out-
put was 15 000 m. For Alert, Pituffik (Thule), and Utqiaġvik
(Barrow), a release height of 10 m above ground level (a.g.l.)
was used. For Gruvebadet, to account for the complex to-
pography, a range of 10–100 m a.g.l. was used as the release
height. The main output from FLEXPART consists of 3-
dimensional fields of residence time in units of seconds (s).
In contrast to Eulerian models, Lagrangian dispersion mod-
els can be applied in time-reversed mode and are superior in
representing plumes emerging from point releases (Pisso et
al., 2019). However, the quality of their results can be lim-
ited by the offline nature of the coupling to meteorological
fields, which are restricted in spatial and especially tempo-
ral resolution (Brioude et al., 2013). The FLEXPART output
was combined (Sect. 2.2) with other data sources for cal-
culating additional input variables for the data-driven mod-
els. FLEXPART residence time was combined with bound-
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ary layer height from ERA5 to calculate the residence time
air masses within the boundary layer (RT_BL) or free tro-
posphere (RT_FT). Sea ice concentrations from ERA5 were
combined with FLEXPART to calculate the residence time
of air masses over open water (OPEN_WATER, sea ice
concentration < 20 %), open-pack ice (OPEN_PACK_ICE,
> 20 % and < 80 %), and consolidated pack ice (CONSOL-
IDATED_PACK_ICE, > 80 %), which was normalized by
the grid cell area to give units of s km−2. The precipitation
type from ERA5 (no precipitation, rain, freezing rain, snow,
wet snow, mixture of rain and snow, ice pellets) was com-
bined with FLEXPART to calculate the residence time of air
masses experiencing no precipitation (NO_PRECIP) or pre-
cipitation (sum of the amount of time air masses experienced
any precipitation types, PRECIP), which was normalized by
the grid cell area to give units of s km−2.

2.1.4 CAMS

The Copernicus Atmosphere Monitoring Service Re-
Analysis dataset (hereafter referred to as CAMS) is the lat-
est reanalysis product produced by ECMWF, including three-
dimensional fields of meteorological variables, chemical, and
aerosol species for the period from 2003 onwards. CAMS
data were obtained from the Copernicus Atmospheric Data
Store (ADS) (https://ads.atmosphere.copernicus.eu/, last ac-
cess: 8 November 2022). CAMS is based on the ECMWF’s
IFS CY42R1 cycle and the 4D-VAR data assimilation sys-
tem (Inness et al., 2019) and uses an extended version of
the Carbon Bond 2005 (CB05) tropospheric chemical mech-
anism (Flemming et al., 2015). Emissions consist of MACC-
ity (MACC and CityZEN EU projects) anthropogenic emis-
sions (Granier et al., 2011), GFAS (Global Fire Assimilation
System) fire emissions (Kaiser et al., 2012), and MEGAN2.1
(Model of Emissions of Gases and Aerosols from Nature)
biogenic emissions (Guenther et al., 2006). The CAMS data
have a spatial resolution of 0.75°× 0.75° with 60 hybrid
sigma–pressure (model) levels (13 levels between approxi-
mately 400 and 100 hPa) in the vertical (top level at 0.1 hPa)
and a temporal resolution of 3 h. The two oxidants, ozone
(O3) and the hydroxyl radical (OH) in the boundary layer
and free troposphere, were used from CAMS as they are re-
lated to the gas- and aqueous-phase oxidation of DMS and
its intermediates to MSA (Barnes et al., 2006a). CAMS out-
put of MSAp was extracted using the nearest grid cell to the
stations’ location (Table 1) for the lowest level and converted
from mass mixing ratio to mass concentration using the am-
bient temperature and pressure from CAMS for comparison
to numerical models. CAMS output of MSAp was not in-
cluded in the data-driven models. To match the spatial reso-
lution of different datasets, re-gridding, using bilinear inter-
polation from the xESMF (v0.8.2) Python package (Zhuang
et al., 2023), was applied to the FLEXPART dataset to match
the CAMS spatial resolution.

2.1.5 Chlorophyll a

Chlorophyll a (ChlA) is commonly used as a proxy for phy-
toplankton biomass and oceanic productivity (Arnold et al.,
2010; Huot et al., 2007) and was included for that purpose in
this study. Level 3 datasets of satellite-derived daily surface
chlorophyll a concentration with a spatial resolution of 4 km
from the European Space Agency’s GlobColour Project3
(https://www.globcolour.info/, last access: 1 October 2022)
were obtained from the Copernicus Marine Environment
Monitoring Service (CMEMS4). This product is produced by
reprocessing the merged observations from five satellite ra-
diometers (OLCI from Sentinel 3a and 3b, MODIS on Aqua,
and VIIRS from Suomi-NPP and JPSS-1); therefore missing
data due to the presence of clouds are minimized. The Glob-
Colour dataset is a common and suitable choice for inves-
tigating phytoplankton (Ardyna et al., 2017; Becagli et al.,
2022; Cole et al., 2015; Xi et al., 2020). The ChlA datasets
were re-gridded using bilinear interpolation (xESMF v0.8.2
Python package, Zhuang et al., 2023) to match the 0.5° spa-
tial resolution of FLEXPART.

2.1.6 DMS flux

Oceanic emissions of dimethyl sulfide (DMS) were
used to evaluate the ocean–air exchange of DMS and
were downloaded from the Copernicus ADS web page
(https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/cams-
global-emission-inventories?tab=overview, last access:
15 September 2022) and were not calculated offline for
this study. DMS is the initial precursor for MSA formation;
therefore, information on its oceanic emission is central
to investigating processes related to MSA variation. The
estimation of oceanic DMS emissions to the atmosphere
requires DMS concentrations in the ocean as well as mete-
orological variables, specifically the u and v components
of 10 m wind speed, as well as the sea surface tempera-
ture. The oceanic DMS concentrations used for the flux
estimation were provided by Lana et al. (2011). The data
are derived from numerous measurements obtained for the
period 1989–2009 and were obtained from the Surface
Ocean Lower Atmosphere Study (SOLAS) web page
(https://www.bodc.ac.uk/solas_integration/implementation_
products/group1/dms/, last access: 15 September 2022).
It should be noted that these oceanic DMS concentrations
are based on a monthly climatology. Formulas for the
calculation of the DMS flux were provided by Nightingale et
al. (2000). Meteorological data computed by the Norwegian
Meteorological Institute using the ECMWF-IFS model
version Cy40r1 were used. The daily mean emission data are
provided on a regular longitude–latitude grid at 0.5°× 0.5°
resolution for the period 2000–2018.
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2.2 Feature engineering: residence-time-weighted
average of environmental variables

For our data-driven modeling efforts, we engineered appro-
priate input features to capture the air mass history (envi-
ronmental conditions and surface interactions) in a time-
resolved manner, i.e., capturing the environmental conditions
where an air mass was actually located for different inter-
vals backward in time. To create a time-resolved air mass
history, FLEXPART residence time and environmental vari-
ables from the datasets described in Sect. 2.1 were combined.
A total of five time steps backward in time was selected as
the duration of the air mass history: as the lifetime of DMS
in the atmosphere is approximately 2 d (Breider et al., 2010;
Lundén et al., 2007), this can account for the emission and
oxidation of DMS and the detection of MSA at the ground-
based stations. Daily intervals were selected as the temporal
resolution of this air mass history as a compromise between
a high-enough time resolution to capture physical and chem-
ical processes and the number of input features in our mod-
els. We also selected daily resolution for the time-resolved
air mass history to match the highest sampling frequency
(daily at Gruvebadet). For each variable and observation, we
calculated aggregations for daily intervals (up to five daily
time steps before release time) backward in time as indicated
in Table 2. For the vertically resolved environmental vari-
ables (ERA5 and CAMS), the geopotential height of each
grid cell was calculated according to the ERA5 documenta-
tion using temperature, surface level pressure, and geopoten-
tial height (IFS Documentation CY41R2, 2024). This geopo-
tential height of each grid cell was compared to the bound-
ary layer height from ERA5. Grid cells inside the bound-
ary layer were averaged to create a boundary layer average
of the environmental variables. Grid cells above the bound-
ary layer height were averaged up to the ERA5 model level
corresponding to the highest non-zero FLEXPART level to
create a free troposphere average of the environmental vari-
ables. The residence time in the boundary layer and free tro-
posphere was calculated by summing the FLEXPART resi-
dence time over all longitudes and latitudes for grid cells be-
low or above the boundary layer height, respectively. The rel-
ative residence time (boundary layer or free troposphere) was
calculated by normalizing the FLEXPART residence time in
each grid cell to the sum of FLEXPART residence times over
all grid cells and was applied to the boundary layer and free
troposphere separately. To account for different sized grid
cells, the relative FLEXPART residence time was weighted
by the area of each grid cell (grid-cell-area-weighted rela-
tive residence time). The grid-cell-area-weighted relative res-
idence time was used to calculate a weighted average of the
environmental variables. In this manner, we could ascertain
the environmental conditions while accounting for where air
masses actually were, directly accounting for transport at our
locations of interest. A schematic for the feature engineering

procedure is displayed in Fig. 1 using SSRD at Gruvebadet
on 1 June 2010 as an example.

2.3 Preparation of input data

Measurements of MSAp at the ground-based stations var-
ied in terms of frequency and regularity, while the feature-
engineered variables (described above in Sect. 2.2) were ini-
tially processed at hourly resolution for every third hour (the
temporal resolution of the FLEXPART output). The variables
therefore needed to be temporally aggregated to match the
station measurements. The aggregation was done over non-
overlapping time windows corresponding to the sampling pe-
riods of each installed aerosol filter. For this aggregation,
some features were summed, while others were averaged, ac-
cording to the physical nature of each variable and how it
relates to MSA formation/removal (see Table 2 for more de-
tails). For instance, time over open water (OPEN_WATER)
was summed as the total amount of time air masses spent
over open water is more informative than an average, whilst
for the 2 m temperature (T2M), a sum is not physically
meaningful; therefore an arithmetic mean was applied. LSRR
(originally expressed as mm d−1 in ERA5) was summed over
the daily intervals to give units of millimeters. Total DMS
emission is originally expressed as kg m−2 s−1. During the
feature engineering procedure, the time unit was converted
to days; the area unit was converted to km−2; and the emis-
sion was summed over the daily intervals, normalized to the
grid cell area, and summed over all grid cells for a given daily
interval to give units of kilograms (which was then summed
over the filter collection period).

The four stations only measure MSAp concentrations lo-
cally; therefore, models were first trained and tested on the
specific stations individually, as indicated by “St” through-
out the text. To model pan-Arctic MSAp, we created two ad-
ditional datasets to train our models. The first one is called
All Stations Full (ASF), which is simply the merger of all
data from the four stations. For this, the stations’ geograph-
ical coordinates were not used: stations were implicitly con-
sidered independent replicates (in a statistical sense) if they
had data on the same day. The second additional dataset is
called All Stations (AS), which is another merger of a subset
of data from the four stations: we sub-sampled measurements
from the stations with higher temporal frequency (e.g., Gru-
vebadet with mostly daily measurements) to match those of
the lowest temporal frequency (Alert, with roughly weekly
measurements). Therefore, in AS all four stations are repre-
sented equally in terms of the number of observations.

The feature engineering presented in the previous sections
produced a large number of variables we could include in
our models as predictors. The different data sources also
had varying degrees of accuracy and reliability. We there-
fore manually subset the features into two groups, denoted
as Group A and B. Group A included the variables that we
deemed to be the most related and reliable among the pre-
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Figure 1. Schematic of the feature engineering process. The top row represents the relative FLEXPART boundary layer residence time,
and the bottom row shows the average surface solar radiation downwards (SSRD, Table 1) for the different daily intervals backward from
1 June 2010 00:00 UTC for Gruvebadet. Calculating a weighted average of the SSRD using the relative residence time as weights results in
the weighted average listed below each SSRD subpanel.

dictors of MSAp, using domain knowledge of atmospheric
chemistry and physics. For instance, surface air temperature
affects the oxidation pathways of DMS and the thermody-
namic phase of water in the atmosphere. Furthermore this
variable is well reproduced by ERA5 in the Arctic (Pernov
et al., 2024a); hence it was included in Group A. Group B
includes features which were expected to be good predictors
for MSA, although the accuracy of these variables may be
lower in the areas covered by our study. For instance, mea-
surements of hydroxyl radical mixing ratios (OH) are ana-
lytically challenging and datasets are sparse (Lelieveld et al.,
2016; Stone et al., 2012); therefore CAMS cannot be vali-
dated against sufficient in situ observations, especially in the
Arctic. Hence it was included in Group B. DMS flux is based
on a monthly climatology of seawater DMS concentrations
(Lana et al., 2011); therefore, short-term variations depend
only on parameterizations based on wind speed and sea sur-
face temperature. Hence was included in Group B. Table 2
lists all features in Groups A and B. Table A1 lists commonly
used abbreviations throughout this paper.

2.4 Model evaluation

We evaluated our models by assessing the out-of-sample pre-
diction error. To this end, we first performed a training–test
split: for every station, we left out some observations cor-
responding to one or two summers, before attempting any
modeling (Table 3). These were our test subsets, and they
were used to assess prediction error as a last step for the fi-
nal versions of the models presented below. The remaining
data are our training subsets on which we applied a temporal
cross-validation (CV) scheme. This CV scheme was mainly
used for hyperparameter tuning for the baseline models (see
Sect. 2.6.1) and was the criterion in the feature selection pro-
cedure for the additive model (see Sect. 2.6.2). We used a 6-
fold CV, corresponding to leaving out 1 year of data from the

training set (between 2010 and 2015; see Table 3) for each
station. Thus, data spanning 5 years were used for fitting the
models, and out-of-sample prediction could be performed on
the 1 year of data in the left-out fold. Details about both train-
ing and test data for all stations are summarized in Table 3.
Among other accuracy metrics, the CV-based mean squared
error (MSE) was computed as an average over the 6 folds.
MSE is defined by Eq. (1):

MSE=

∑n
i=1
(
yi − ŷi

)2
n

, (1)

where yi is an observation, ŷi is the prediction of the model
on this data point (from either RF or AM), and n stands for
the number of observations in a given fold for a given sta-
tion. MSE values lie within [0,∞], where a value closer to 0
represents better predictions (lower error). Another two im-
portant metrics we report are the prediction coefficient of de-
termination (or R2 value) as defined by Eq. (2):

R2
= 1−

∑n
i=1
(
yi − ŷi

)2∑n
i=1
(
yi − ŷi

)2 , (2)

where y denotes the mean of the observations in all other
folds for a given station (constant prediction). We also report
the Pearson (linear) correlation coefficient (PCC) as defined
by Eq. (3):

PCC =
∑n
i=1(yi − y)(ŷi − ŷ)√∑n

i=1(yi − y)2
∑n
i=1(ŷi − ŷ)2

, (3)

where ŷ denotes the mean of the predictions. Note that the
R2 can take values within (−∞, +1]: a value of 0 means
that the model prediction is equivalent to the average of the
MSA values in the training set, a negative value means that
the model predictions are worse than this average, and a value
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closer to 1 means that the model predicts better than the train-
ing set average (a value of 1 meaning perfect prediction). It
should be noted that the R2 metric we use in this study is not
the square of the PCC. The PCC is calculated using the stats
module from the Python package scipy.

We compute all metrics on two scales: the original scale of
values and the natural logarithm scale, the one used to train
the models. The purpose of training the models and assessing
their prediction on the log scale as well is that large obser-
vations are compressed by the transformation; thus squared
errors on the log scale may be more informative for the ma-
jority of the observations (i.e., less sensitive to potential out-
liers). The same metrics were also computed on the test set.

2.5 Imputing missing values

Missing data for both the in situ MSAp measurements (target
variable) and for the input variables (features) exist and po-
tentially could affect or bias our analyses. Regarding the in
situ MSAp measurements, we considered the station-specific
aerosol filter collection duration (called hereafter nominal
resolution) as a reference over which features were aggre-
gated. These nominal resolutions were daily for Gruvebadet
and Utqiaġvik (Barrow), every 2 d for Pituffik (Thule), and
every 7 d for Alert. Based on a trial-and-error approach, we
decided to enforce the rule that any sequence of consecutive
missing values longer than 3 times this nominal resolution
would be deemed too long to be imputed without introducing
artifacts. These long patches were thus left as is, and features
were aggregated over time windows according to the nomi-
nal resolution. Shorter sequences of consecutive missing val-
ues were imputed at the nominal resolution. For Gruvebadet
and Pituffik (Thule), this was done by linear interpolation
using the two closest available measurements. For Utqiaġvik
(Barrow), the variable temporal resolution depending on the
time of year (Table 1) complicated this procedure, and gaps
of 3 and 4 d occurred too often for our rule to be applied
strictly at a daily nominal resolution. Here we left gaps up
to 5 d (as these could be valid measurements) as is and im-
puted by linear interpolation based on the two closest val-
ues to those gaps lasting between 5 and 10 d. Finally, Alert
required more care, as missing values could last for long
periods (> 3 weeks), making linear interpolation unreliable.
Here, we used different imputation methods for short gaps
(up to two missing values) and long gaps (3-weekly values
missing), targeting at most 10 d between values. For short
gaps, we used local quadratic fits, fitted by minimizing the
sum of squared residuals on the natural logarithm scale. We
used neighborhoods of three available values before and after
the gaps, weighted by a Gaussian kernel. For the single long
gap, we used a model with a polynomial of degree 5 repre-
senting long-term time trends and yearly seasonality repre-
sented by a linear combination of cubic B splines, also fitted
by minimizing the sum of squared residuals on the log scale.

Figure S14 illustrates the imputation of such short and long
gaps for Alert in situ measurements.

Regarding the input feature, ChlA, to minimize the impact
of short gaps due to clouds or the presence of sea ice, we
studied different data imputation strategies. We first assessed
seven different algorithms (mean, median, imputeTS (Moritz
and Bartz-Beielstein, 2017), k nearest neighbor, principle
component analysis, and MissForest) based on randomized
masking of measurements for Alert and measured the re-
construction error over the imputed values. Within the fea-
ture set, there are strong correlations that can be exploited
to fill measurements. We found that MissForest (Stekhoven
and Bühlmann, 2012) was the best-performing method, and
we used this to impute values for the entirety of the feature
input dataset. MissForest is based on the application of ran-
dom forests iteratively. First, it imputes missing input data
using the mean. Then it trains a random forest regressor on
a set of fixed features, to predict missing values on a sepa-
rate feature to be filled. It proceeds iteratively and stops when
the predicted missing values converge or when the maximum
number of iterations is reached. MissForest is highly flexible
and does not make any assumptions about the data distri-
bution. However, purely statistically driven data imputation
might lead to physically implausible values. To achieve con-
sistency, we set all ocean biology variables (DMS and ChlA)
to 0 if the sea ice concentration from ERA5 was > 80 % as
no ocean–atmosphere exchange is expected for these con-
ditions. For each station, measurements below the reported
limit of detection were imputed with half the detection limit
(Becagli et al., 2016, 2019; Moffett et al., 2020; Sharma et
al., 2019).

2.6 Data-driven models

For this task, we considered non-linear regression models
approximating the log-transformed target, MSAp concen-
tration, plus a constant as Yi = ln(MSAi + 10−3), for i =
1,2, . . ., N , where N is the sample size (different for each
station, Table 3). Our choice of log transformation and addi-
tion of a constant was based on achieving a somewhat sym-
metrical target distribution, which is better suited when using
a mean squared error loss function, as well as improving nu-
merical stability in the optimization. All models make use
of the same engineered features presented above as inputs to
predict Y . We considered two main approaches for model-
ing these relationships. The first is a “baseline model” com-
posed of a common random forest (RF) regressor (Breiman
et al., 1984), which is a standard and well-accepted regres-
sion model, also offering some insights on feature impor-
tance. We also developed a specific additive model (AM),
which models the temporal relationships across the features
and the target in a more principled manner while provid-
ing a more interpretable model overall. The interpretability
of estimated effects in the AM is a key aspect here and the
main reason that we developed it. The goal is to identify
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Table 2. Key details of the features used for data-driven modeling of MSAp. Variables for the boundary layer and free troposphere are
denoted by “BL” and “FT”, respectively. ERA5 data on surface and model levels are denoted by “SL” and “ML”, respectively. For the
Aggregation method column, “Average” indicates the arithmetic mean.

Abbreviation Description Units Dataset Aggregation method Group

WS_BL Wind speed BL m s−1 ERA5 ML Average A
WS_FT Wind speed FT m s−1 ERA5 ML Average A
OPEN_WATER Time over open water (< 20 % sea ice) s km−2 ERA5 SL Sum A
OPEN_PACK_ICE Time over open-pack ice (> 20 % and < 80 % sea ice) s km−2 ERA5 SL Sum A
CONSOLIDATED_PACK_ICE Time over consolidated pack ice (> 80 % sea ice) s km−2 ERA5 SL Sum A
RT_BL Residence time BL s FLEXPART and ERA5 Sum A
RT_FT Residence time FT s FLEXPART and ERA5 Sum A
SP Surface pressure hPa ERA5 SL Average A
SST Sea surface temperature K ERA5 SL Average A
Q_BL Specific humidity BL kg kg−1 ERA5 ML Average A
Q_FT Specific humidity FT kg kg−1 ERA5 ML Average A
T_BL Temperature BL K ERA5 ML Average A
T_FT Temperature FT K ERA5 ML Average A
T2M Air temperature at 2 m K ERA5 SL Average A
SSRD Solar shortwave radiation downwards W m−2 ERA5 SL Sum A
STRD Solar thermal radiation downwards W m−2 ERA5 SL Sum A
ChlA Chlorophyll a mg m−3 Chlorophyll a Average B
DMS DMS emitted kg DMS Flux Sum B
TCLW Total column cloud liquid water kg m−2 ERA5 SL Average B
O3_BL Ozone mixing ratio BL ppbv CAMS Average B
O3_FT Ozone mixing ratio FT ppbv CAMS Average B
LWC_BL Specific cloud liquid water BL kg kg−1 ERA5 ML Average B
LWC_FT Specific cloud liquid water FT kg kg−1 ERA5 ML Average B
BLH Boundary layer height m ERA5 SL Average B
OH_BL OH radical mixing ratio BL ppbv CAMS Average B
OH_FT OH radical mixing ratio FT ppbv CAMS Average B
LCC Low cloud cover (0–1) ERA5 SL Average B
RH Relative humidity % ERA5 SL Average B
PRECIP Time with precipitation s km−2 ERA5 SL Sum B
NO_PRECIP Time with no precipitation s km−2 ERA5 SL Sum B
LSRR Large-scale rain rate mm ERA5 SL Sum B

Table 3. Train–test splits for all stations. N is the number of obser-
vations in each set.

Training set years N Test set years N

Alert 2010–2015 166 2016–2017 56
Gruvebadet 2010–2015 937 2017 173
Pituffik (Thule) 2010–2015 360 2016–2017 107
Utqiaġvik (Barrow) 2010–2015 311 2008–2009 109

drivers and describe their relation with the target variable
while at the same time to have full control over the optimiza-
tion process and variable selection procedure. We present the
baseline RF model and its setup in the following Sect. 2.6.1
and the AM in Sect. 2.6.2. Other modeling approaches were
explored; we summarize their performance in Supplement
Text S2 and Fig. S1. These other approaches were not re-
tained because their predictive performance was no better
than that of RF and AM. In the case of similar performance,
RF and AM still had interpretability benefits, notably in iden-
tifying which features contributed the most to the model pre-
diction power, and thus were the ones we retained.

2.6.1 Baseline model: random forest

Random forests (RFs) are among the top-performing models
in a wide variety of classification and regression tasks and
are known to be robust to overfitting while being fast to train
and fast at inference (Biau and Scornet, 2016). RFs are often
a nominal selection for most data-driven applications. RFs
are composed of an ensemble of decision trees, where each
tree is trained on a random subset of data (a bootstrap) and
by testing a random subset of features for each decision tree
node optimizing an impurity measure. Averaging the output
of each trained tree allows the RF to predict a given input
data point. In addition, RFs provide an implicit ranking of
features, which for regression tasks is based on the average
reduction in the squared error at node splits for a given fea-
ture, which we will refer to as an importance score. Although
ranking features according to their explicit relationship with
the target variable is a difficult problem, RFs provide a simple
yet effective way to sort features from more to less important.
This will be used to qualitatively compare with the selected
features based on our proposed AM described in Sect. 2.6.2.

For each experiment with RFs, we performed a grid search
for the depth of each tree and for the minimum number of
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data points per node to make it a leaf. Those two hyperpa-
rameters control how much each tree in the random forest
can grow, trading off training accuracy for speed as well as
avoiding overfitting. The number of trees was set to 500 and
kept constant for all the experiments; a larger number of trees
did not result in better models but only in increased compu-
tational time.

We selected the most important features for the RFs using
a method analogous to the additive model forward selection
procedure described in Sect. 2.6.2. First, for each of the 500
trees in each RF model, the list of features with a model im-
portance score ≥ 5 % of the maximum importance score for
that tree was found. We then took the summed importance
scores for each feature across all trees in which they were se-
lected and divided them by the total number of trees (500) to
estimate the mean score of each feature only from the trees
where it was selected. If this mean score was ≥ 5 % of the
mean of the maximum importance scores for each tree, the
feature was selected for that model. Re-training the RF with
only the selected features did not materially change its pre-
dictive performance; see Fig. S1.

2.6.2 Additive model

To maximize predictive performance while retaining inter-
pretable feature effects we developed an additive model
(AM) (Buja et al., 1989; Hastie and Tibshirani, 1990). This
assumes that the mean of the log-transformed MSA Y is
linked to the features by smooth (non-linear) functions. As
these functions are unknown, we approximate them by lin-
ear combinations of user-specified basis functions. To this
end, we used the standard cubic B splines as bases (de Boor,
2001). The ith aggregated value of the kth feature is de-
noted by xi,k , for k = 1, 2, . . ., K , where K is the number
of features used in the model (the maximum being K = 80
for Group A and K = 155 for Group A+B). The cubic B-
spline basis function is generically written as B. The AM
main equation can be expressed according to Eq. (4):

Yi = α0 +
∑K

k=1

∑J

j=1
αj,kBj (xi,k) + εi, (4)

where α0 is an intercept, J is the number of spline bases we
use for every feature effect represented by the linear combi-
nation

∑J
j=1αj,kBj (xi,k), the αj,k values denote coefficients

weighting the different spline bases for the kth feature effect,
and εi is an independent error term assumed to have mean
zero and constant variance. To reduce the computational cost
and as an indirect regularization (see below), we set J = 5
throughout. This implies that the spline function relies on
J−2= 3 knots; these were set as the minimum, median, and
maximum observed values for each feature. There are thus
P =K(J− 1) + 1 free model parameters. These were esti-
mated on the training data by minimizing the mean squared
error (Eq. 1). The mean squared error loss function relies on
the assumed independence between the values of εi . Even

though the MSA measurements were recorded sequentially
in time, with the possibility of temporal dependence (auto-
correlation), we believe the independence assumption is ten-
able here. The rationale is that if theK features include a sub-
set of relevant variables that explain and predict Y , then all
that remains is indeed white noise represented by ε. In other
words, we assume any (marginal) temporal dependence in Y
is captured by the effect of the available features.

The main challenge when fitting such a model is that K
can be potentially large, leading the number of parameters
P to exceed the number of observations N . That is, the AM
can easily overfit the training data, with estimated feature ef-
fects appearing overly complex (i.e., wiggly) and difficult to
interpret. As we want the model to predict out-of-sample ob-
servations well, some regularization is required. Typical reg-
ularization approaches allow for a large J and involve adding
penalties to the mean squared error loss so that many values
of αj,k are shrunk towards zero or even exactly set to zero
(Wood, 2017). We explored such approaches, notably using
effect-specific ridge penalties or a group lasso penalty to se-
lect features as part of model fitting, but could not obtain sat-
isfying results. These also came with undue computational
overhead involved in part in selecting the penalty/smooth-
ness hyperparameters. We thus opted for a simpler strategy:
we set J = 5, which is rather small and guarantees on its
own that the estimated feature effects are relatively smooth
albeit flexible enough. Rather than enforcing some penalty
to counteract a large K , we selected features with a forward
stepwise selection (FSS) procedure (Hastie et al., 2020). This
scheme starts with an empty model, only with the intercept
α0, and sequentially adds features based on an objective cri-
terion. Our criterion here is the prediction MSE based on
the temporal CV described in the previous section. At each
FSS step, the feature that reduces this CV-based MSE the
most is selected and kept in the model in subsequent steps.
The scheme ends when the MSE reduction is smaller than a
threshold of 5 % of the initial reduction from an empty model
to a model with one feature. That way, the model never in-
cludes too many variables, P remains low relative to N , and
we have the guarantee that the selected features are useful
in predicting/forecasting MSA observations. This also comes
with computational gains, since the independent fits at each
step (one for each candidate feature) can be parallelized. Af-
ter this FSS round, we explored if any pairwise interaction
(product of two features) between the selected features was
worth including. For this, we applied the FSS in a similar
fashion and only kept the most useful interactions with the
same 5 % MSE reduction threshold.

In addition to predictions, the AM yields interpretable ef-
fects as output. After training, the estimated effect of fea-
ture k on the response is calculated similarly to the mean
prediction ŷi presented above, where all features except the
kth are set to their mean observed value. Therefore, only the
marginal contribution of the kth feature remains, and this can
be represented as a curve, typically represented over a scatter
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plot of the response plotted against the kth feature. We refer
to these curves (and the plots by extension) as “partial ef-
fects”. These partial effects can also be constructed for pair-
wise interactions. In this case, the interaction between fea-
tures k and l is computed as the mean prediction where all
other features except k and l are set to their arithmetic mean.
The interaction partial effect plot is then a three-dimensional
surface represented as a function of features k and l. The par-
tial effects were calculated using only the training set.

2.6.3 Strengths and limitations of RF and AM

Both RF and AM are non-linear regression models, although
they differ in a few key aspects. First, RF’s output is the aver-
age of predictions from many decision trees which are based
on random subsets of the training data and random subsets of
features, while AM considers the entire training set at once
(i.e., without random subsets). This randomization generally
reduces the risk of overfitting (yielding a smaller prediction
variance) compared to constructing a single, large decision
tree. For AM, the risk of overfitting was minimized by keep-
ing the number of splines bases low (J = 5) and enforcing
this stepwise variable selection scheme so that the number
of parameters P stayed relatively low. In that sense, AM is
generally a simpler model than RF. Second, the predictions
from decision trees, and thus from RF, as seen as a math-
ematical mapping from a feature space to a target variable
space, are piecewise constant functions. By contrast, the pre-
dictions from AM are smooth by design, as they are com-
puted as the sum of cubic splines (with continuous second
derivatives). In practice, this means that the predicted tar-
get surface from RF looks like jagged stairs, with jumps at
feature splits, while for AM this looks like a smooth sur-
face. Finally, the additive structure of AM in Eq. (4) is quite
constrained: features have their respective effects, and these
add up to a prediction. We considered pairwise interactions
but no higher-level terms (e.g., three-way interactions). By
comparison, RF inherently can include higher-level interac-
tions, as splits are being added sequentially (i.e., conditioned
on previous splits) when growing a decision tree (up to a
maximum depth, which we tuned as a hyperparameter). This
higher complexity makes RF generally more flexible than
AM. Although this flexibility comes at the cost of harder
interpretability as one cannot easily visualize the estimated
effect of a feature on the target, specifically because of such
interactions likely being different from tree to tree within the
ensemble. The additive constraint of AM is what makes the
estimated partial effects directly interpretable, say, as a curve
displayed in a plot.

2.7 Numerical model output for comparison to in situ
observations

We compare in situ MSAp measurements from each Arc-
tic station to output from three numerical models (GEOS-

Chem, OsloCTM3, and GISS-E2.1) and one reanalysis prod-
uct (CAMS) to gauge their current predictive abilities. De-
tails about CAMS are given in Sect. 2.1.4, and details about
the numerical models are given below. For a quantitative
comparison using a regression analysis, we focus on the same
evaluation metrics used for evaluating the data-driven mod-
els (R2, PCC, and MSE) and limit our evaluation to the same
months (April–September), we calculated the slope of pre-
dicted versus measured MSAp as an additional metric. For
a qualitative comparison, we compare the average seasonal
cycles of numerical model output to in situ observations. For
both the quantitative and qualitative comparison, we utilize
all available years at a given station to obtain as large a sam-
ple size (and therefore a more robust statistical analysis) as
possible.

2.7.1 GEOS-Chem

Output from the global chemical transport model, GEOS-
Chem (v12.9.3: https://zenodo.org/records/3974569, last ac-
cess: 15 June 2023), for atmospheric concentrations of
MSAp for the years 2016 and 2017 was used in this study.
Transport processes and cloud properties are driven by
NASA MERRA-2 (Modern-Era Retrospective Reanalysis
for Research and Applications, Version 2) reanalysis meteo-
rology (Gelaro et al., 2017), which has a horizontal resolution
of 0.5°× 0.625°. GEOS-Chem has a 4°× 5° horizontal res-
olution with 47 vertical levels. The chemical reactions were
calculated every 60 min, and the monthly averaged data were
produced as model output. Boundary layer MSAp is calcu-
lated from GEOS-Chem output of boundary layer height,
air density, temperature, and surface pressure. The oceanic
DMS emission flux is parameterized using a sea-surface-
temperature-dependent and wind-speed-dependent gas trans-
fer velocity (Johnson, 2010) and the climatology of sea-
water DMS concentrations (Lana et al., 2011; Nightingale
et al., 2000). GEOS-Chem contains comprehensive HOx–
NOx–VOC–O3–halogen tropospheric oxidant chemistry in-
cluding recent updates to halogen chemistry and cloud pro-
cessing (Bey et al., 2001; Holmes et al., 2019; Wang et al.,
2019). In addition to the original version of GEOS-Chem
v12.9.3, we used the multiphase DMS oxidation chemistry
scheme recently developed by Tashmim et al. (2024), while
the aqueous-phase reaction of MSA and OH was omitted due
to the high uncertainty in its reaction rate (Chen et al., 2018).
The wet and dry deposition schemes for aerosols and gas
species are based on previous studies (Amos et al., 2012; Liu
et al., 2001; Wesely, 1989).

2.7.2 OsloCTM3

The OsloCTM3 is an offline global three-dimensional chem-
istry transport model with total MSA (gaseous and particu-
late MSA) and output for 2008–2017 was used in this study.
We opted to include this model output even though it was
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for total MSA as modeled MSAp in the Arctic is scarce, and
from measurements of gaseous and particulate MSA from the
MOSAiC expedition (Boyer et al., 2023; Heutte et al., 2023;
Shupe et al., 2022) the ratio of gaseous to particulate MSA
in the central Arctic Ocean is approx. 0.03; thus it would
not likely significantly influence the results of this study.
OsloCTM3 is driven by meteorological forecast data from
the European Centre for Medium-Range Weather Forecasts
Integrated Forecast System (ECMWF-IFS) model with a 3-
hourly temporal resolution. OsloCTM3 has a 2.25°× 2.25°
horizontal resolution, 60 vertical layers, and monthly tem-
poral resolution. The lowest layer was taken as representa-
tive of surface concentrations. OsloCTM3 consists of a tro-
pospheric and stratospheric chemistry scheme (Søvde et al.,
2012) as well as aerosol modules for sulfate, nitrate, black
carbon, primary organic carbon, secondary organic aerosols,
mineral dust, and sea salt (Lund et al., 2018). The sulfur cy-
cle chemistry scheme and aqueous-phase oxidation are de-
scribed by Berglen et al. (2004). The oceanic DMS emis-
sion flux in OsloCTM3 is parameterized using wind fields
from ECMWF-IFS, gas transfer velocity calculations from
Nightingale et al. (2000), and seawater DMS concentrations
from Kettle and Andreae (2000). Aerosol removal includes
dry deposition and washout by convective and large-scale
rain from ECMWF-IFS.

2.7.3 GISS-E2.1

The NASA Goddard Institute of Space Studies (GISS-E2.1)
Earth system model (ESM), GISS-E2.1, is a fully coupled
ESM; for a full description of GISS-E2.1, see Kelley et
al. (2020). GISS-E2.1 has a horizontal resolution of 2°× 2.5°
and 40 vertical layers and produced monthly output for
2008–2017. The output of the GISS-E2.1 model used his-
torical CEDS emissions from 2008–2014 and SSP2-4.5 from
2015–2017. The lowest layer was taken as representative of
surface concentrations. The tropospheric chemistry scheme
used in GISS-E2.1 (Shindell et al., 2001, 2003) includes in-
organic chemistry of Ox , NOx , HOx , CO, and organic chem-
istry using the CBM4 scheme (Gery et al., 1989). The mete-
orology was nudged to the NCEP reanalysis (Kalnay et al.,
1996). The one-moment aerosol (OMA) scheme used (Bauer
et al., 2020) is a mass-based scheme in which aerosols are
assumed to remain externally mixed and have a prescribed
and constant size distribution. The OMA scheme treats sul-
fate, nitrate, ammonium, carbonaceous aerosols (including
methanesulfonic acid formation), dust, and sea salt. The nat-
ural emissions of DMS are calculated interactively using pre-
scribed and fixed maps of DMS concentration in the ocean
(Im et al., 2021).

3 Results and discussion

This section begins with an analysis of the seasonal cycles
and source regions of in situ MSAp observations at the High

Arctic stations for context. We then evaluate current numeri-
cal models’ ability to simulate MSAp, followed by a perfor-
mance analysis of our data-driven models. The most relevant
features selected by the models are discussed, and their ef-
fects on the AM output of MSAp are investigated.

3.1 In situ MSA observations from Arctic stations

The locations and seasonal cycles of MSAp at each of the
Arctic stations are displayed in Fig. 2a and b, respectively.
For all stations, MSAp is elevated beginning in April and
ending in September. This period corresponds to polar day,
receding sea ice, increase in atmospheric oxidants, and phy-
toplankton blooms. Details about each station’s seasonal cy-
cle and source regions are given below.

Alert, the most northern station located at 210 m a.s.l.
on the Canadian Archipelago (Fig. 2a and Table 1), which
is surrounded by sea ice and land, experiences air mass
transport mainly from the central Arctic Ocean, Canadian
Archipelago, and Greenland Sea (Sharma et al., 2012). Alert
exhibits a maximum in MSAp during May (0.014 [0.011,
0.021] µg m−3 and a median [25th, 75th percentiles]) fol-
lowed by lower levels during June and July until reach-
ing a second smaller maximum in August (0.009 [0.006,
0.011] µg m−3). The maximum in May is likely due to ef-
ficient transport from regions of biologically active waters in
the Northern Atlantic (Sharma et al., 2012; Xie et al., 1999),
while the second maximum in August likely arises from bi-
ological emissions from regions of retreating sea ice in the
Arctic Ocean (Sharma et al., 2019).

Gruvebadet, located on the coast of the Svalbard
Archipelago with sea ice to the north and open ocean to the
south, experiences air mass transport mainly from the Green-
land and Barents Sea (Becagli et al., 2016). Gruvebadet dis-
plays the highest MSAp concentrations of all the stations,
with a maximum in May (0.022 [0.011, 0.046] µg m−3). As
the summer progresses, monthly median MSAp concentra-
tions steadily decrease, although the 75th percentile does dis-
play a shoulder in July showing the increased variability of
MSAp during the later summer months. The May maximum
is likely related to the spring bloom in the Barents Sea, and
the variability in the later summer is likely biological activity
in the Greenland Sea as well as differences in oceanic DMS-
producing species in these regions and timing/location of sea
ice retreat (Becagli et al., 2019).

Pituffik (Thule), located in northwestern Greenland at
220 m a.s.l., experiences air mass transport almost exclu-
sively from Baffin Bay (Becagli et al., 2016). Although lo-
cated close to each other, Pituffik (Thule) experiences similar
levels of MSAp compared to Alert but interestingly a differ-
ent seasonal cycle. From May to July, median MSAp con-
centrations at Pituffik (Thule) plateau around 0.011 [0.007
and 0.018 µg m−3], while Alert experiences two local max-
ima (May and August as discussed above). The northern sec-
tion of Baffin Bay regularly experiences the North Water
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(NOW) polynya, which is characterized by sea-ice-free ar-
eas and upwelling of nutrients (Tremblay et al., 2002). The
NOW polynya begins to form in early spring and stays open
until late July when sea ice is largely absent from the region.
The timing of the NOW polynya and the associated exposure
of the underlying ocean to the atmosphere and solar radia-
tion as well as nutrient-rich upwelling (which is crucial for
DMS production) are the likely cause of the rather flat MSAp
seasonal cycle at Pituffik (Thule) (Becagli et al., 2016).

Utqiaġvik (Barrow), located on the shores of the Beau-
fort Sea in the North American Arctic, experiences air mass
transport from the central Arctic Ocean (Chukchi and Beau-
fort Seas), the Bering Sea/Strait, and surrounding continen-
tal areas (Alaska, Canada, and Russia) (Moffett et al., 2020;
Quinn et al., 2002; Sharma et al., 2012). Utqiaġvik (Barrow)
displays a different seasonal cycle compared to the other sta-
tions (Fig. 2b), with maximum MSAp concentrations occur-
ring in later summer. Utqiaġvik (Barrow) experiences an in-
creasing pattern in MSAp concentration from April culmi-
nating in a maximum monthly median during August (0.012
[0.006, 0.016] µg m−3). Interestingly, the maximum 75th per-
centile (June) at Utqiaġvik (Barrow) is not concurrent with
the maximum monthly median (August), which indicates
higher variability in June but on average higher values dur-
ing August. The low values in early spring could be due to
the low amounts of biological activity in the surrounding seas
(Hulswar et al., 2022; Lana et al., 2011) during this time (as
opposed to the biologically active waters in the Northern At-
lantic during spring), whilst the late summer peak could be
due to transport from more warmer, local waters in the North-
ern Pacific during August (Moffett et al., 2020; Quinn et al.,
2002), which is a hotspot of DMS emission (Wang et al.,
2020).

The differences between the stations could be credited to
the different locations, sea ice retreat timing/location, differ-
ences in the DMS-producing communities, oxidant species
and levels, precipitation patterns, and different air mass trans-
port patterns. The differences in the seasonal cycles, envi-
ronmental conditions, and circulation patterns of these geo-
graphically dispersed measurement stations allow for an in-
vestigation and modeling of the processes unique to each sta-
tion from a pan-Arctic perspective. While much research has
gone into elucidating the source regions, geographic differ-
ences, and seasonal behavior of MSAp, few have investigated
the environmental drivers of MSAp, which is one of the goals
of this study.

3.2 Comparison of numerical model output to in situ
MSA concentrations

For this comparison, our intent is to quantitatively gauge the
current level of predictive performance for MSAp in numer-
ical models, especially for the seasonal cycle, and for com-
parison against our data-driven models. We do not intend to
identify and explore the underlying causes of the discrepan-

cies between the numerical models and observations which
are beyond the scope of this work. The regression analy-
sis and seasonal cycles of the numerical models against in
situ observations for Alert, Gruvebadet, Pituffik (Thule), and
Utqiaġvik (Barrow) are presented in Figs. 3, S2, S3, and S4,
respectively.

Output from GEOS-Chem was only obtained for 2016–
2017; therefore only a comparison at Alert, Gruvebadet, and
Pituffik (Thule) was possible. MSAp from GEOS-Chem is
calculated over the height of the boundary layer for com-
parison to observations. For all three stations, a negative R2

value is observed, indicating that GEOS-Chem is worse at
predicting MSAp values than the mean of the observations.
PCC values range from 0.16 (Pituffik (Thule)) to 0.85 (Gru-
vebadet), although only 1 year was available for compari-
son at Gruvebadet (Sect. 2.1.1 and 2.7.1), making this result
less statistically robust. MSE values range from 6.27× 10−3

(Alert) to 3.5× 10−2 µg m−3 (Gruvebadet) (Figs. 3, S2, and
S3). Slopes larger than 1 are observed for all stations, ranging
from 1.28 (Pituffik (Thule)) to 6.67 (Gruvebadet), indicating
GEOS-Chem overestimates MSAp relative to observations.
The seasonal cycle of observed MSAp is best reproduced
by GEOS-Chem at Alert, with the model able to capture the
double maxima in spring and autumn (Fig. 3), although the
timing and relative magnitude of the second peak in autumn
are not aligned with observations.

The OsloCTM3 output is available for the entire study pe-
riod; therefore, all data from all stations could be used. MSAp
concentrations from the lowest model level were taken as
representative of the surface level. OsloCTM3 overestimates
in situ MSAp observations at all locations, with slopes rang-
ing from 3.5 (Pituffik (Thule)) to 6.5 (Gruvebadet). Addition-
ally, the variation and magnitude are poorly reproduced with
negative R2 values for all stations. The PCC slightly captures
variability with values ranging from 0.18 (Utqiaġvik (Bar-
row)) to 0.47 (Gruvebadet). MSE values range from 0.013
(Pituffik (Thule)) to 0.066 µg m−3 (Gruvebadet). The month
of peak MSAp concentrations is consistently during June in
OsloCTM3, which does not reflect the variations in the tim-
ing of the seasonal maxima at the various locations. At no
station does the model correctly predict the peak month of
MSA concentration.

GISS-E2.1 output is available for the entire period and the
lowest model level was taken as representative of the sur-
face. The GISS-E2.1 model generally overestimates in situ
MSAp at Gruvebadet, Pituffik (Thule), and Utqiaġvik (Bar-
row) (slopes ranging from 1.63 to 4.2), and the observed vari-
ation is poorly captured with negative R2 values and MSE
values ranging from 1.78× 10−4 (Alert) to 0.014 µg m−3

(Gruvebadet). At Alert, the magnitude of MSAp concen-
trations is best reproduced by the GISS-E2.1 model com-
pared to other stations as evidenced by the lowest MSE
(1.78× 10−4 µg m−3), although concentrations are underes-
timated with a slope of 0.52, and the variation and magni-
tude are poorly captured with a negative R2 value. PCC val-
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Figure 2. Station locations and seasonal cycles. (a) Map of Arctic stations marked with a red star. The map background is from Natural
Earth. (b) MSAp seasonal cycle at Alert (red), Gruvebadet (blue), Pituffik (Thule) (cyan), and Utqiaġvik (Barrow) (magenta). The median is
represented by the thick lines, and the interquartile range is represented by the shading.

ues range from 0.19 (Alert) to 0.64 (Gruvebadet). The peak
month of MSAp concentration from the GISS-E2.1 model
is consistently during June. Several features from the in situ
MSAp seasonal cycles are captured by the GISS-E2.1 model,
for example, the second, minor peak of MSAp during Au-
gust at Alert. The peak month of MSAp concentrations at
Utqiaġvik (Barrow) is August, and while GISS-E2.1 does
not capture this, it does show elevated levels during Au-
gust. At Pituffik (Thule), the seasonal cycle is quite well cap-
tured apart from greatly overestimating concentrations dur-
ing June. Overall, the GISS-E2.1 model reproduces MSAp
concentrations at similar magnitudes to those from in situ
observations and can capture certain features of the observed
seasonal cycle, although it incorrectly predicts the timing and
concentrations during the peak month of MSAp levels.

The CAMS MSAp data were averaged using the median
according to the start and stop time of filter samples for the
respective stations. CAMS output generally, but only slightly,
underestimates in situ MSAp observations, with slopes for all
stations ranging from 0.45 to 0.80. The variability and mag-
nitude are poorly captured, with negative R2 values for all
stations. The PCC is consistent for each station, with values
between 0.3 and 0.4, and MSE values range from 2.1× 10−4

(Pituffik (Thule)) to 1.46× 10−3 µg m−3 (Gruvebadet). The
absolute values of the seasonal cycle are close to observed
values, although the peak MSA month is incorrectly pre-
dicted by CAMS at each station. A slight shoulder is ob-
served during May for CAMS MSAp at Alert; however, no
other noticeable features of the in situ seasonal cycle are re-
produced. Overall, the CAMS reanalysis product most accu-
rately reproduces the levels, seasonal cycle, and spatial distri-
bution of MSAp in the Arctic, although it does not reproduce
the timing of peak MSA concentrations.

In summary, we find that, in general, numerical models
struggle to accurately reproduce the variability, magnitude,
and seasonal cycles of in situ MSAp observations. GEOS-
Chem, GISS-E2.1, and OsloCTM3 overestimate MSAp lev-

els and miss the timing of peak MSA concentrations. CAMS
is generally able to reproduce MSAp levels with a similar
magnitude to observations, although the seasonal cycle is
usually inconsistent. Although CAMS was able to most ac-
curately reproduce the behavior of MSAp, it will not be able
to predict long-term future concentrations for climate anal-
ysis, being a reanalysis product capable of only short-term
forecasting. Therefore, our science community still lacks the
appropriate modeling tools to accurately explore the climatic
importance and future changes of MSAp.

3.3 Data-driven model performance

In this section, we present and discuss the implemented data-
driven models used to estimate ambient MSAp concentra-
tions. We use RF as a baseline model and focus on AM as
a tailored model developed for the task at hand. Figure 4
summarizes the prediction performance in the temporal CV
scheme and on the test set (Table 3) for the RF and AM with
Group A+B on the four stations. The R2, PCC, and MSE
metrics are computed on the MSAp original scale in Fig. 4a
and c and on the log scale in Fig. 4b and d, respectively.

Prediction performance is relatively good on the log scale,
with R2 values up to 0.49 and 0.54 and PCC up to 0.74
and 0.82 for the temporal CV and test datasets, respectively.
Comparing the two models, AM has systematically higher
CV R2 (correspondingly lower MSE and similar PCC) in the
St evaluations. This is expected since its variable selection
procedure was designed to minimize the CV-based MSE. In
the AS and ASF evaluations, neither model seems to clearly
outperform the other. The R2 values on the original MSAp
concentration scale are lower than on the log-transformed
data, with a maximum of 0.37 and 0.29 for the temporal
CV and test datasets, respectively. A likely explanation for
the better performance on the log scale could be the inter-
annual, short-term variations in MSAp concentrations, which
tend to be underpredicted by the models, particularly affect-
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Figure 3. Comparison of modeled against in situ MSAp observations from Alert. Scatter plots on the left compare only April to September
(over the available period for each station) with the 1 : 1 line in blue, linear fit in black, 95 % confidence intervals estimated through boot-
strapping in the shading, and seasonal cycles on the right (thick line is the median and shading is interquartile range) for GEOS-Chem (a,
b), OsloCTM3 (c, d), GISS-E2.1 (e, f), and CAMS (g, h). The MSE, R2, and PCC values are calculated according to Eqs. (1), (2), and (3),
respectively.

ing the original scale data (Figs. 5 and S6), but less so for
the log-transformed data which the models were trained on.
The underprediction of MSAp peaks is particularly notice-
able for Gruvebadet, whereR2 values on the log-transformed
data are much higher than for the original data (Fig. 3c and
d). Scatter plots and regression lines of the measured versus
modeled MSAp are displayed in Fig. S7. The regression lines
for RF and AM against observations often overlap or have
similar slopes, but with a slight vertical shift particularly evi-
dent for Utqiaġvik (Barrow), indicating that different models
are producing different amounts of background MSAp for

this station. Comparing the left side of Fig. S7 with the right
side, the log transformation clearly facilitates model fitting
as mentioned above, especially for Gruvebadet (Fig. S7b and
f).

Our two data-driven models are relatively complex and
rely on a large number of features for this prediction task.
However, the results suggest that our models might be miss-
ing important variables or critical relationships that are not
captured due to either inaccuracies in the original datasets
(ERA5, CAMS, FLEXPART, etc.) or an effect of the fea-
ture engineering (averaging over daily intervals smooths out
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short-term temporal/spatial variation or important processes
are occurring on timescales further backward in time than
5 d). For instance, models underpredict high observations of
MSAp, which could be due to large DMS emissions not be-
ing captured in the input features due to either being based on
a climatology of seawater DMS (Lana et al., 2011; Nightin-
gale et al., 2000) or occurring further back in time than 5 d.
The models also overpredict low MSAp observations, which
could be due to extreme precipitation events not being cap-
tured by ERA5 (Loeb et al., 2022) or being smoothed out in
the feature engineering procedure. Although the summation
was used as an aggregation method for precipitation, smooth-
ing over 1 d should not affect extreme events (Table 2). In
addition, interannual variability can cause seasons in some
years to be markedly different than in other years, making
the out-of-sample prediction quite challenging for low-time
resolution datasets of 8 years. This is exacerbated by split-
ting the dataset into training and test sets, which further re-
duces the number of available data for the algorithm to learn
from the data, although this is an essential step in data-driven
modeling. The best MSE values on the original data scale are
found with the AM for Alert and Pituffik (Thule), whereas
the results on the log scale are clearly best at Gruvebadet
(Fig. 4c and d). The better performance for Gruvebadet, with
a daily temporal resolution, can likely be explained by its
training sample size (N = 937) being roughly 3 to 6 times
larger than that of the three other stations, highlighting the
importance of high temporally resolved data. On the original
MSA scale, Alert shows the lowest prediction performance,
with Utqiaġvik (Barrow) being a close second. Alert, with
weekly temporal resolution, has the smallest training sample
size (N = 166), again hinting at the importance of having
enough observations to achieve better prediction. The mod-
eled MSAp values from RF and AM show similar tempo-
ral patterns relative to the observations for the test set years
(Fig. 5), although capturing both the timing and magnitude
of peaks and troughs is difficult, and often only one of the
two is captured at a time (i.e., either the magnitude or timing
is predicted correctly but not both).

Importantly, by comparing the St and ASF fits for both
models, it seems that the ASF-fitted values tend to have a
higher spread (higher MSE, Fig. 4). That is, pooling all four
stations together for a single pan-Arctic model often yields
more variable predictions and thus rarely improves the fit lo-
cally. These geographically dispersed stations with varying
seasonal cycles (Fig. 2) should theoretically allow the mod-
eling of MSAp from a pan-Arctic perspective (i.e., modeling
processes occurring throughout the Arctic and not only at
a specific station). However, the time series from the indi-
vidual stations might behave differently enough that pooling
all observations together does not allow for improved mod-
eling. The fact that models trained and tested on individual
stations do not show particularly high evaluation metrics ei-
ther (St. in Fig. 4) could also contribute to this observation.
The chemical and physical processes of MSAp production

are necessarily similar across the Arctic; however, the rela-
tive importance of certain processes might change depending
on time and location. If a station-specific model cannot cap-
ture the relationships in the data, due to either missing input
variables, inaccuracies in the original input datasets used for
feature engineering, inter-annual variability, or the low time
resolution, then these errors will propagate into the AS and
ASF datasets. These compound errors may in effect prevent
the model from capturing these processes. Pooling several
geographic locations into a single data-driven model is com-
mon in ML and has been shown to provide promising results
(Bertrand et al., 2023; Mansour et al., 2023; McNabb and
Tortell, 2022; Zhou et al., 2023). Here our results suggest this
likely only has an advantage if the individual stations can be
accurately modeled.

While our data-driven models struggle to accurately re-
produce the observed MSAp (max R2

= 0.29), they can cap-
ture the variability (PCC up to 0.77), and they outperform the
classic numerical models. This is evident from a comparison
of the negative R2 values for the numerical models (Figs. 3,
S2, S3, and S4), indicating the numerical models are worse
at predicting MSAp compared to the mean of the observa-
tions versus the evaluation metrics for the data-driven models
(Fig. 4). This shows that data-driven modeling (as opposed to
the numerical modeling) has the potential to more accurately
represent ambient MSAp concentrations when only consid-
ering the input data, and there is still significant progress to
be made in modeling natural, biogenic Arctic aerosols from
a numerical and data-driven perspective.

3.4 Selected features

Features contributing significantly to the RF and AM model
outputs for different backward time steps were selected from
the Group A and A+B subsets for each model using the FSS
(see Methods for more details). Group A included reliable
features for prediction of MSAp, and Group B included fea-
tures expected to be good predictors of MSAp, although less
reliable. The right-hand panel in Fig. 6 summarizes which
features are selected by which model over all time steps, for
both the Group A and Group A+B subsets of variables, for
every station, and for the two additional merged datasets AS
and ASF. Generally, AM selects fewer features than RF over
the four stations (Table 4). AM selects between two and eight
variables for Group A and between three and six for Group
A+B, whereas RF selects between 14 and 44 features for
Group A (an exception being Pituffik (Thule), for which the
models select five variables at most in Group A; see below)
and between 14 and 17 features for Group A+B. This sug-
gests that the variables in Group A+B can explain the MSA
variance using fewer variables.

The differences in selected variable counts between RF
and AM can likely be explained by the fact that RF has some
difficulty distinguishing between features computed at vari-
ous time steps backward for the same feature type, in com-
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Figure 4. Prediction performance for the temporal cross-validation (CV) scheme and on the test set for the four stations, using the selected
features from Group A+B for the random forest (RF) and additive model (AM). Panels (a) and (b) show CV performance on original and
log scales, respectively. Panels (c) and (d) show performance on the test set on original and log scales, respectively. In each panel, R2 is
shown in the top sub-panel, the Pearson correlation coefficient (PCC) in the middle sub-panel, and the mean squared error (MSE) at the
bottom. St refers to a model trained and tested on the specified station, AS refers to a subset of the data with an equal number of observations
from each station, and ASF refers to all data from all four stations and tested only on the specified station. MSE is multiplied by 104 to
display three significant digits. The color scale indicates performance, where the darkest blue signifies the best performance (lowest MSE,
highest R2, and highest PCC within each row). The MSE, R2, and PCC values are calculated according to Eqs. (1), (2), and (3), respectively.

parison to AM. This is because each of the features computed
for a given backward time step tends to correlate substan-
tially (e.g., meteorological conditions are usually correlated
to the previous days’ conditions), which can make RF fea-
ture ranking inconsistent across the different decision trees.
Therefore, each decision tree will likely only select one spe-
cific time step of a feature, if that feature group happens
to be important for MSAp overall. Thus, by averaging over
all trees, the different time steps of a given feature type are
likely to be ranked similarly and the strength of the rank-
ing score is averaged out. In contrast, AM is not an ensem-
ble, and its variable selection operates sequentially; there-
fore if a backward time step for a given feature (among the
five time steps) is already included and if the other four are
strongly dependent and not adding additional information
to the model, then they will likely not be selected. There-
fore, the most relevant time step is selected consistently with

AM, while RF selects different time steps of the same vari-
able. Another contributing factor to the difference between
the number of features selected by each model could be the
sensitivity of the cutoff threshold (5 %) in the FSS proce-
dure, which would disproportionately impact the ensemble
RF model over AM. The prediction performance is similar
for both models (Fig. 4); therefore we can compare the se-
lected features for each model on an equal footing. The two
models were also compared with features grouped for all five
backward time steps (left-hand panel of Fig. 6), which shows
that a similar number of features were chosen for RF and
AM when the backward time steps were not considered sep-
arately. While the models disagree on the number and which
backward time step is important for MSAp prediction, im-
portantly, they do agree on which features are most impor-
tant, indicating these models can learn the same underlying
factors that drive MSAp levels.
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Figure 5. Observed and modeled time series of MSAp for the test dataset at all four stations: (a, b) Alert, (c) Gruvebadet, (d, e) Pituffik
(Thule), and (f, g) Utqiaġvik (Barrow). St refers to a model trained and tested on the specified station, and ASF refers to all data from all four
stations and tested only on the specified station. The observations are shown in black. Data from Gruvebadet during 2016 are not available.

The features selected by each model and station com-
bination for Group A+B are listed in Table 4, where a
common theme for the type of features selected emerges.
Each model and station combination tends to select a source-
related feature (related to either marine biogenic emissions,
total DMS emitted or ChlA, or air mass contact with surface
environments, time spent over open water, OPEN_WATER,
residence time in the boundary layer, BL_RT), a chemical-
processing-related feature (solar radiation (SSRD), OH, O3,
specific humidity (Q), cloud liquid water content (LWC)),
and a removal-related feature (large-scale rain rate, LSRR).
For instance, AM for Gruvebadet selected four features,
which are related to marine emissions of DMS (ChlA_1.2
and DMS_4.5), oxidation of DMS and its intermediates to
MSA (OH_BL_0.1), and removal (LSRR_1.2). There are,
however, exceptions to this tendency; notably a removal-
related feature is mainly absent from the model–station com-
binations (Alert RF, Gruvebadet RF, Pituffik (Thule) RF/AM,
and AS RF) and for Utqiaġvik (Barrow) AM and RF, a
source-related features are absent.

Another important observation from the analysis of the se-
lected features is that models trained on Group A+B tend
to select much fewer meteorological features than models
trained on only Group A. For example, specific humidity
(Q) and temperature (T ) are often selected if the smaller
group, Group A, is being used but are almost never selected
when using Group A+B. A possible explanation for this is
that some features that are in Group B but not in Group A

correlate with such meteorological variables, likely because
they are driven by or co-vary with meteorological processes,
e.g., solar radiation being a proxy for OH levels. This sug-
gests that the smaller number of features selected from Group
A+B (including oceanic biological, oxidant, and precipita-
tion features, Tables 2 and 4) is better suited to capturing the
variability in MSA compared to a larger number of mainly
meteorological features selected from Group A. We sepa-
rated the input features into two groups to examine how the
data-driven models predict MSAp when only using reliable
meteorological features and when additional chemical and
oceanic related features were used as input. Comparing the
evaluation metrics between models trained on Group A vari-
ables (Fig. S5) and Group A+B (Fig. 4), we can see there
are no clear systematic differences between station–model
combinations trained on different input data groups. Models
trained only on reliable features (Group A) can perform sim-
ilarly to models trained on all features (Group A+B); there-
fore modeling MSAp in the Arctic can likely be achieved
only using meteorological features that act as proxies for
chemical and oceanic processes without negatively compro-
mising model performance.

3.4.1 Source-related features

For the source-related feature type, which is related to the
marine emission of DMS either directly (DMS emission) or
indirectly (ChlA or OPEN_WATER), RF and AM do not
agree on the selection of DMS. RF never selects DMS, while
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AM selects it for all sites except Pituffik (Thule). A possi-
ble explanation for this is that ChlA acts as a proxy for the
biological activity that drives seawater DMS production and
emission (Mansour et al., 2020; Rinaldi et al., 2013). Indeed,
ChlA is chosen by RF for Gruvebadet, AS, and ASF. Im-
portantly, AM never selects the 0–1 d back version of DMS,
and the earliest time step selected is 2–3 d back for ASF
as well as the 3–4 d back version for Utqiaġvik (Barrow)
and Pituffik (Thule). Conversely, both AM and RF select
early time steps of ChlA, with the latest being 2–3 d back.
This could be due to differences in the nature of the data
source, with ChlA being a satellite product vs. DMS emis-
sions being parameterized based on wind speed, sea surface
temperature, and seawater DMS climatologies (see Meth-
ods). The presence of clouds, which obscure the satellite
view, could also affect the time steps selected for ChlA. Even
though the ChlA dataset used should minimize the effect of
clouds, their influence is still present, while the DMS clima-
tology is unaffected by their presence. Missing ChlA was im-
puted, and this could also affect the results shown here. The
other source-related feature selected is the time air masses
spent within the boundary layer and over open water (sea
ice< 20 %, OPEN_WATER), with both models selecting this
feature for different stations and days backward. RF selected
OPEN_WATER_3.4 for Alert, while AM selected the 0–1
and 4–5 d back versions for ASF and Pituffik (Thule), re-
spectively (Table 4). Overall, while there is some disagree-
ment between RF and AM on which source-related features
are selected, both models can learn that a certain time lag
seems necessary for air mass contact with biologically active
marine environments to predict MSAp well, which indicates
the results from the models are physically plausible.

3.4.2 Chemical-processing-related features

For the chemical-processing-related feature type, which is re-
lated to the photo-chemical oxidation of DMS and its inter-
mediates into MSA either in the gas or aqueous phase, sur-
face shortwave radiation downwards (SSRD) is commonly
selected by all models when training models on Group A
features only. When training models on Group A+B fea-
tures, RF also always selects at least one version of SSRD,
while AM only selects SSRD for Alert and Pituffik (Thule).
Thus, SSRD generally appears to be a strong predictor of
MSAp, which is expected given the need for solar radia-
tion in the generation of photochemical oxidants required for
MSAp production, in both the gas and aqueous phases (Jiang
et al., 2023; Wollesen de Jonge et al., 2021). AM almost ex-
clusively selects the 0–1 time step of SSRD, which hints at
the near-immediacy of a causal relation between solar radi-
ation and MSAp generation, likely through the production
of OH radicals and other photochemical oxidants (e.g., BrO
and aqueous-phase O3). Gas-phase OH radical mixing ratios
(for either the boundary layer or the free troposphere) are di-
rectly selected by both models at all sites except Utqiaġvik

(Barrow). When AM selects OH, it is mainly the 0–1 or 1–
2 d back time step, and either the BL or FT versions are se-
lected depending on the station. This indicates that OH mix-
ing ratios are making the largest impact on the model both
aloft and close to the surface in the preceding 2 d before
measurement. The lifetime of DMS is estimated to be on
the order of days in the Arctic (Breider et al., 2010; Lundén
et al., 2007), although the lifetime of the intermediate com-
pounds dimethylsulfoxide (DMSO) and methanesulfinic acid
(MSIA) is both less than 1 d (Hoffmann et al., 2016; Zhu
et al., 2003). This indicates that the detected MSAp could
be formed in close proximity to the measurement stations
when sufficient solar radiation and photochemical oxidants
become readily available (Collins et al., 2017; Jiang et al.,
2023). Interestingly, neither model selected any version of
OH for Utqiaġvik (Barrow) (Table 4); instead specific hu-
midity (Q) and cloud liquid water content (LWC) were se-
lected, and Utqiaġvik (Barrow) is the only station where gas-
phase O3 was selected (RF). It should be noted that gas-phase
OH and O3 will dissolve into the aqueous phase, thus also
affecting aqueous-phase reactions as well. The selection of
SSRD and OH at Alert, Gruvebadet, and Pituffik (Thule),
as well as the selection of LWC and Q at Utqiaġvik (Bar-
row), hints at differences between the chemical processing
between these stations during months of peak concentration.
Utqiaġvik (Barrow), with its MSAp seasonal cycle peaking
in late summer (Fig. 2b), is located in the Pacific sector of
the Arctic, while the other stations, with MSAp peaking in
early summer, are located in the Atlantic sector (Fig. 2a).
The selection of different chemical-processing-related fea-
tures for Utqiaġvik (Barrow) and the geographic differences
in relation to biologically active waters, sea ice, and ocean
dynamics could explain the different seasonal cycle observed
at Utqiaġvik (Barrow) compared to the other stations. This
analysis cannot quantitatively determine the relative impor-
tance of gas- vs. aqueous-phase oxidation; previous research
indicates that both are likely contributing to Arctic MSAp
production (Chen et al., 2023; Kecorius et al., 2023; Per-
nov et al., 2024b; Shen et al., 2022). This study suggests that
depending on the time of year and geographic location, dif-
ferent chemical processing mechanisms might be relatively
more important. While there is disagreement between the
most frequently selected time step for DMS (4–5 d back)
and ChlA (2–3 d back), the selected time steps for these fea-
tures still mainly occur temporally before SSRD or OH when
these features are selected together, indicating that our data-
driven models can learn the temporal dependencies of the
source- and chemical-processing-related feature types affect-
ing MSAp.

3.4.3 Removal-related features

The main removal pathway for MSAp is wet deposition,
and LSRR (large-scale rain rate, Table 4) was selected by
most model–station combinations to represent the removal
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of aerosols. Interestingly, the only other removal-related fea-
ture (time air masses experienced precipitation, PRECIP, in-
cluding rain, snow, and a mix of both) is never selected by
any model–station combination (Fig. 6 and Table 4). Partic-
ulate mass quickly decreases with initial increases in accu-
mulated precipitation during air mass transport and levels off
with larger amounts of precipitation (Isokääntä et al., 2022;
Tunved et al., 2013). The PRECIP feature only estimates the
time air masses experienced precipitation and does not ac-
count for the intensity. This could explain the selection of
LSRR over PRECIP and suggests that the time air masses
experienced precipitation (regardless of type – rain, snow, or
mix) is less important compared to the intensity of precipi-
tation (estimated by LSRR). The LSRR time steps selected,
however, showed no consistent pattern, with different daily
intervals being selected for different model–station combina-
tions (Table 4). Precipitation can have dual effects on MSAp,
where precipitation closer to the station can act to remove
aerosols resulting in lower MSAp, while precipitation further
back along the trajectory can create conditions conducive for
secondary aerosol formation (for which MSA is an important
component) (Khadir et al., 2023; Tunved et al., 2013; Xavier
et al., 2022). These dual effects could complicate the consis-
tent selection of time steps for LSRR. The below-cloud scav-
enging coefficient of aerosol particles reaches a minimum in
the accumulation mode (Andronache, 2003), which is where
MSAp mainly resides (Kerminen et al., 1997); these aspects
could also complicate the selection of removal-related fea-
tures. Overall, this shows that the data-driven models can
discern removal mechanisms for MSAp, although it does not
specify when precipitation is important and suggests that pre-
cipitation intensity (LSRR) is relatively more important than
the total time air masses experienced precipitation (PRECIP).

3.4.4 Physical-meteorology-related features

Other feature types born out of the FSS procedure include
physical-meteorology-related features (e.g., boundary layer
height (BLH) and wind speed (WS)), which can affect the
sources, oxidation, and removal of precursors and MSAp de-
pending on the prevailing environmental conditions. High
wind speed can bring nutrients to the ocean surface, thus
stimulating marine biological activity and enhancing the
ocean–atmosphere flux of DMS (Huebert et al., 2010; Park
et al., 2013), but can also increase the oceanic mixed layer
depth, thus acting to delay spring phytoplankton blooms
(Henson et al., 2009). Dry deposition of trace gases and
aerosol particles is largely determined by turbulence, which
is driven by wind speed (Farmer et al., 2021); thus higher
wind speeds can enhance dry deposition velocities (Mari-
raj Mohan, 2016), enhancing the removal of aerosols. High
boundary layer heights can promote or diminish MSA bur-
dens: high BLHs can dilute DMS in the lower atmosphere,
thus enhancing emissions but also diluting the oxidants and
lowering the efficacy of MSAp production. High BLHs close

to the station can also dilute MSAp concentrations. While the
models mainly selected source-, chemical-processing-, and
removal-related features, this shows that specific meteoro-
logical conditions can also affect MSAp variability.

3.4.5 Vertical origins

Certain datasets (CAMS and ERA5 on model levels; see
Methods) were vertically resolved, which allowed for analy-
sis of environmental conditions near the surface (or bound-
ary layer, BL) and aloft (or free troposphere, FT). Similar
to the different days back time steps of a feature, AM se-
lects only the most pertinent feature that contributes the most
to the model output, as our variable selection procedure for
AM performs this process sequentially by design, while RF
trees select several different time steps, and vertical origins
for each feature from a random subset thus might not be
a globally optimal choice. This highlights the complemen-
tary nature of these two models for the feature-engineered
input data – AM selects fewer features but specifically the
ones that make the largest contribution to the model output,
while RF can broadly indicate the important features regard-
less of time step or vertical origins. While this analysis can-
not quantify the relative importance of BL or FT processes
to MSA production, it is worth noting that AM for Alert and
Pituffik (Thule) (two stations located above the sea surface,
Table 1) selected OH_FT_1.2, while Gruvebadet, Utqiaġvik
(Barrow), AS, and ASF selected more BL than FT features
(Table 4), and OH_BL was selected at these stations except
for Utqiaġvik (Barrow) where Q_BL_0.1 and LWC_BL_2.3
were selected. This suggests that the two stations located at
elevation are more influenced by FT processes than the sta-
tions located close to the surface and the pan-Arctic merged
datasets (AS and ASF).

3.5 Contribution of selected features to model output
(partial effects) for Alert and Utqiaġvik (Barrow)

We investigated the relationships between the selected fea-
tures and the AM output of MSAp, which produces estimated
partial effects (representing the contribution of a feature to
the model output after accounting for all other features; see
Methods for more details) for every selected feature for ev-
ery station and the merged datasets (AS and ASF). Figures 7
and 8 present the partial effects (as the solid red line) for
the selected features at Alert and Utqiaġvik (Barrow), respec-
tively, and the partial effects for Gruvebadet, Pituffik (Thule),
AS, and ASF are displayed in Figs. S8–11, respectively. We
present the partial effects for Alert and Utqiaġvik (Barrow) as
they are good examples of the relative importance of the two
chemical processing methods observed in the study, gas- and
aqueous-phase oxidation, respectively. The partial effects for
each feature are discussed in order of importance from the
feature selection process (Table 4). It should be noted that
due to the different aggregation methods (sum or mean, Ta-
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Figure 6. Overview of features selected by the RF and AM based on Group A and Group B, by station. The left panel shows selected features
grouped over the 0–5 d prior to each MSAp measurement, and the right panel shows the features grouped for 0–1 (0), 2–3 (2), and 4–5 (4) d
before each MSAp measurement. Features in Group A have their name in boldface and blue type, while the additional features that are only
in Group B are in regular black typeface. The grey shaded area indicates that Group B features cannot be chosen in these model runs. St
refers to a model trained and tested on the specified station, AS refers to a subset of the data with an equal number of observations from each
station, and ASF refers to all data from all four stations and tested only on the specified station. Feature abbreviations are defined in Table 2.
Only features selected at least once by a model–station combination are presented in this figure (i.e., if a feature is not included in the figure,
then it was not selected).

ble 1) over the different temporal resolutions at each station
(Table 2), the magnitude and units of certain features are
not comparable between stations; therefore for display pur-
poses only the summed features were divided by the average
number of input data contributing to the summed feature. In
this manner, the partial effects plots are comparable between
stations. For each subpanel, a scatter plot of the input vari-
ables and the corresponding model output of MSAp is also
included. The partial effects should not be interpreted as a
fitted value of this scatter plot. The scatter plot was included
to show the data distribution and the low signal-to-noise ratio
visible in the data: the observations have quite a large spread
relative to the magnitude of the solid red curves, representing
the partial effects. It should also be noted that spline func-
tions, like the B splines used in the AM model (see Meth-
ods), are generally sensitive near the edges of the observed
domain space if they contain few data points. Therefore, cau-
tion is urged when interpreting the partial effects if the data
are highly skewed or if a few data points are contained at the
edges of the domain space.

3.5.1 Alert

AM selected the following features at Alert, which are
discussed in order of importance: SSRD_0.1, DMS_4.5,
LSRR_3.4, CONSOLIDATED_PACK_ICE_0.1, and
OH_FT_1.2, as well as the interactions between DMS_4.5
and SSRD_0.1 (Fig. 7).

SSRD_0.1, a chemical-processing-related feature, makes
a non-linear contribution to the model output of MSAp, with
the maximum impact on model output in a certain range of
values as well as low and high values of SSRD making simi-

lar contributions to model output (Fig. 7a). This indicates that
there is a certain activation threshold of SSRD_0.1 required
before this variable begins to increase MSAp in the model
output, which is likely connected to the production of photo-
chemical oxidants (Barnes et al., 2006a; Song et al., 2022).
Increasing SSRD above this threshold reduces the model out-
put, which could be due to photolysis of intermediate prod-
ucts during DMS oxidation or the continued oxidation of
MSA to sulfate (Chen et al., 2018).

DMS emissions during 4–5 d prior to observation, a
source-related feature, shows a linearly positive relationship
to model output of MSAp, as expected (Fig. 7b). However,
a slight change in the slope of this relationship is observed,
indicating that the model output of MSAp is more sensitive
to DMS emissions at lower values (with MSAp production
likely being in a DMS-limited regime) and less sensitive at
higher values (with MSAp production likely not limited by
DMS availability but by other environmental conditions such
as oxidants, Barnes et al., 2006a).

LSRR, a removal-related feature, makes a linearly, neg-
ative contribution to the model output of MSAp, indicating
that precipitation acts to reduce the model output of MSAp
(Fig. 7c), as expected (Isokääntä et al., 2022; Tunved et al.,
2013). While this result is unsurprising, it adds validity to the
model results by highlighting how they are physically inter-
pretable.

The partial effect of CONSOLIDATED_PACK_ICE, here
treated as an indirect source-related feature, shows a non-
linear relationship to model output of MSAp (Fig. 7d), with a
maximum (minimum) at∼ 200 (∼ 400) s km−2, respectively.
Alert, being the northernmost station (Table 1), is usually sur-
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Table 4. Features selected by the different models using the Group A+B set of variables. N is the number of selected features. The chosen
features are listed in order of importance for the model. Feature names are in the following format: ABBREVIATION_DAYS.BACK with
the ABBREVIATION for each feature taken from Table 2 and DAYS.BACK the daily interval backward in time preceding the measurement
with the interval separated by a period. Whether the feature represents the boundary layer (BL) or free troposphere (FT) is also indicated;
e.g., OH_BL_2.3 refers to the OH radical mixing ratio in the boundary layer 2–3 d before MSAp measurement.

Station Model N Selected features

Alert AM 5 SSRD_0.1; DMS_4.5; LSRR_3.4; CONSOLIDATED_PACK_ICE_0.1; OH_FT_1.2

Alert RF 17 BLH_0.1; SSRD_3.4; SSRD_4.5; SSRD_1.2; SSRD_0.1; SSRD_2.3;
OH_BL_2.3; OH_BL_3.4; OH_BL_1.2; OH_FT_4.5; OH_FT_1.2; OH_BL_4.5;
OPEN_WATER_3.4; OH_BL_0.1; OH_FT_0.1; OH_FT_3.4; OH_FT_2.3

Gruvebadet AM 4 OH_BL_0.1; ChlA_1.2; DMS_4.5; LSRR_1.2

Gruvebadet RF 14 OH_FT_0.1; OH_BL_0.1; OH_FT_1.2; SSRD_4.5; SSRD_3.4; OH_FT_3.4;
ChlA_1.2; OH_BL_1.2; SSRD_2.3; SSRD_1.2; OH_FT_2.3;
SSRD_0.1; OH_FT_4.5; ChlA_2.3

Pituffik (Thule) AM 3 SSRD_0.1; OPEN_WATER_4.5; OH_FT_1.2

Pituffik (Thule) RF 14 SSRD_0.1; SSRD_1.2; OH_BL_0.1; OH_FT_0.1; OH_BL_1.2; SSRD_2.3;
OH_FT_3.4; OH_FT_4.5; OH_BL_2.3; OH_FT_1.2; SSRD_3.4;
OH_FT_2.3; SSRD_4.5; OH_BL_3.4

Utqiaġvik (Barrow) AM 6 Q_BL_0.1; DMS_3.4; BLH_4.5; LSRR_4.5; LWC_BL_2.3; LWC_FT_0.1

Utqiaġvik (Barrow) RF 16 O3_BL_1.2; SSRD_2.3; Q_FT_1.2; Q_FT_0.1; SSRD_4.5; LSRR_0.1; SSRD_1.2;
Q_BL_0.1; BLH_4.5; Q_BL_4.5; O3_BL_0.1; O3_BL_2.3; O3_BL_4.5;
O3_BL_3.4; Q_FT_3.4; SSRD_3.4

AllStations AM 7 OH_BL_1.2; WS_BL_0.1; DMS_3.4; LSRR_2.3; BL_RT_0.1; Q_FT_2.3; ChlA_2.3

AllStations RF 17 OH_FT_3.4; OH_BL_0.1; OH_FT_0.1; OH_BL_1.2; OH_FT_1.2; OH_FT_4.5;
OH_BL_2.3; OH_FT_2.3; SSRD_2.3; SSRD_3.4; WS_BL_0.1; SSRD_1.2;
ChlA_2.3; OH_BL_3.4; OH_BL_4.5; WS_ FT_0.1; SSRD_4.5

AllStationsFull AM 6 OH_BL_0.1; DMS_2.3; WS_BL_0.1; LSRR_2.3; DMS_4.5; OPEN_WATER_0.1

AllStationsFull RF 16 OH_FT_1.2; OH_FT_0.1; OH_BL_0.1; OH_BL_1.2; OH_FT_3.4; OH_FT_2.3;
OH_FT_4.5; OH_BL_2.3; ChlA_2.3; SSRD_2.3; ChlA_1.2; SSRD_3.4; SSRD_1.2;
OH_BL_3.4; SSRD_4.5; OH_BL_4.5

rounded by consolidated pack ice (Kwok, 2018); hence the
transport time over consolidated pack ice will usually be non-
zero. The maximum at ∼ 200 s km−2 could indicate that air
masses traversed biologically productive marginal ice zones
before passing over consolidated pack ice and ultimately ar-
riving at Alert (Sharma et al., 2012). The minimum of the
partial effects at ∼ 400 s km−2 is likely related to air masses
spending time over the central Arctic Ocean and that did not
come into recent contact with any major DMS source re-
gions.

OH_FT_1.2, a chemical-processing-related feature, shows
a non-monotonic pattern, with a maximum of around
∼ 1.5× 10−5 ppbv and a minimum at ∼ 4× 10−5 ppbv
(Fig. 7e). The maximum and minimum could indicate that
a certain level of OH in the FT acts to produce MSAp, and
increasing OH above this level in the FT tends to decrease
the model output of MSAp. A possible explanation could be

the oxidation of intermediate compounds, DMSO and MSIA,
to produce MSAp, and the continued oxidation of MSA to
sulfate to diminish MSAp (Hoffmann et al., 2016). It should
be noted that gas-phase OH will dissolve into the aqueous
phase; therefore these reactions could both occur in either
phase.

Interactions between input features were also explored by
multiplying the values of two input features together. Of the
combinations tested for all features and stations, only the in-
teractions between DMS_4.5 and SSRD_0.1 at Alert were
retained (using the FSS with a 5 % MSE reduction thresh-
old; see Sect. 2.6.2). A contour plot of the model output
of MSAp for different values of DMS_4.5 and SSRD_0.1
is shown in Fig. 7f. The results overall suggest that model
output of MSAp is more sensitive to DMS_4.5 compared to
SSRD_0.1, as indicated by the higher variability of MSAp
model output over the range of DMS_4.5 at a fixed value of
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SSRD_0.1. This is especially evident for values of SSRD_0.1
above 400 W m−2, with a ridge of the maximum model out-
put of MSAp for values of SSRD_0.1 around ∼ 700 W m−2

(Fig. 7f). Taken together, this could indicate that at Alert,
MSAp production is likely limited by DMS emissions and
not necessarily by the availability of solar radiation (and
therefore photochemical oxidants).

3.5.2 Utqiaġvik (Barrow)

For Utqiaġvik (Barrow), AM selected the following features:
Q_BL_0.1, DMS_3.4, BLH_4.5, LSRR_4.5, LWC_BL_2.3,
and LWC_FT_0.1.

Specific humidity is the mass of water vapor per mass
of moist air and here is used as a proxy of aqueous-phase
processing of DMS and its intermediates. For Q_BL_0.1,
which represents the specific humidity in the boundary 0–
1 d prior to measurement, the lower end of the feature
range (<∼ 0.0025 kg kg−1) shows a small local maximum at
∼ 0.00125 kg kg−1. At the upper end, a linear, positive rela-
tionship between Q_BL_0.1 and the model output of MSAp
is observed (Fig. 8a). This indicates that at lower values of
Q_BL_0.1, the model output is showing a slight increase in
MSAp and little variation with low values Q_BL_0.1 levels,
and at higher values of Q_BL_0.1 the model output of MSAp
responds linearly. This relationship hints that at low values
of Q_BL, particles are not deliquesced yet and gas-phase ox-
idation could be more important, while at higher values of
Q_BL, sufficient aerosol liquid water is present for aqueous-
phase processes to become dominant. Another explanation
for this relationship could be that moist air masses arrived
from within the boundary layer and from marine regions,
which would carry a higher signal of moisture uptake, al-
though no air mass history features indicating transport from
marine regions (e.g., DMS, ChlA, OPEN_WATER, RT_BL)
were selected for Utqiaġvik (Barrow), suggesting this is im-
probable.

The partial effects for DMS_3.4 display a U-shaped re-
lationship for values <∼ 200 kg and afterward increase lin-
early (Fig. 8b). The partial effects start to decrease at high
values of DMS_3.4, although the few data points in the re-
gion add uncertainty to this slope change. The majority of
the data for DMS_3.4 are skewed towards lower values,
which likely contributes to the U-shaped partial effects be-
low ∼ 200 kg. Overall, the model output of MSAp increases
with increasing DMS, again showing physically plausible re-
sults.

The BLH 4–5 d prior to observation shows an overall pos-
itive, linear relationship with the model output of MSAp, al-
though with some complex structure present (Fig. 8c). In the
Arctic, and especially over sea ice, the BLH is largely con-
trolled by wind-shear-induced turbulence and cloud top ra-
diative cooling (Nilsson, 1996; Overland, 1985; Tjernström
et al., 2015). Recently, a gridded dataset of in situ-produced
biogenic MSA (generated using machine learning) was pub-

lished (Mansour et al., 2024) for the North Atlantic. An
inverse relationship between BLH and in situ MSA was
found, indicating that higher BLHs dilute the concentrations
of MSA (Mansour et al., 2024). A machine learning study on
the drivers of aerosol chemical composition from Svalbard
indicated an inverse relationship between BLH and biogenic-
type aerosols (Song et al., 2022). These studies indicate that
lower BLHs act to increase the concentration of MSA, while
higher BLHs dilute MSA in the lower troposphere. Our re-
cent study analyzing the environmental drivers of MSA from
a geographic perspective revealed that the relationship be-
tween MSA and BLH is complex and displays different pat-
terns in different months (Pernov et al., 2024b), with high
values of BLH tending to increase the model output of MSA
in all months but low BLHs also increasing modeled MSA
during June and July. Our recent study and this work indi-
cate that higher BLHs act to increase the modeled output of
MSAp, which could be due to higher wind speeds (and thus
higher BLHs) diluting atmospheric DMS levels and therefore
increasing the ocean–air flux of DMS. This also highlights
the differences of considering air mass history when ana-
lyzing the relationships between aerosols and environmental
drivers as opposed to considering only local, in situ explana-
tory variables.

The partial effects for LSRR_4.5 show a somewhat unex-
pected relationship, with a maximum at ∼ 1 mm and a lin-
early, negative relationship afterward (Fig. 8d). The mini-
mum at >∼ 4 mm is likely highly uncertain due to the low
number of data points at the end of the feature domain space.
A negative relationship is expected (and observed at other
stations in this study and the literature) since precipitation
acts to remove aerosols. The maximum of the LSRR par-
tial effects at a non-zero value could be related to enhanced
cloudiness and thus enhanced aqueous-phase processes al-
though unlikely since AM selected the version of this fea-
ture 4–5 d back. Another possible explanation could be that
low values of precipitation 4–5 d prior to measurement act to
remove particles containing a high fraction of (possibly an-
thropogenic) sulfate (which are acidic and hygroscopic). De-
pending on the acidity of the remaining aerosols, this would
create conditions that would favor the selective condensation
of gas-phase MSA or diminish the evaporation of aqueous-
phase produced MSA in less acidic particles since MSA
has been shown to selectively condense on alkaline particles
(Dada et al., 2022; Yan et al., 2020). The exact cause of the
maximum LSRR_4.5 partial effect remains to be seen at this
time and requires further investigation.

LWC_BL_2.3 (defined as the boundary layer cloud liquid
water content 2–3 d prior to measurement) is the amount of
cloud liquid water and thus an excellent proxy for aqueous-
phase processing. The partial effects for LWC_BL_2.3 dis-
play two local maxima: one at ∼ 0.5× 10−5 and another at
∼ 4 kg kg−1 (Fig. 8e) albeit with an overall linearly, positive
relationship with the model output of MSAp. The decrease
in the partial effects after ∼ 4 kg kg−1 carries added uncer-
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Figure 7. AM-St partial effects for the selected features at Alert. (a) SSRD_0.1, (b) DMS_4.5, (c) LSRR_3.4, (d) CONSOLI-
DATED_PACK_ICE_0.1, (e) OH_FT_1.2, and (f) DMS_4.5 and SSRD_0.1. For all panels except the bottom-right one, the solid red line is
the partial effect for a different feature, blue points are the training observations, and orange crosses are the test data. The contour plot in the
bottom-right panel shows the interaction effect between SSRD_0.1 and DMS_4.5, where the joint partial effect is represented by the color
gradient. Feature abbreviations are defined in Table 2. St refers to models trained and tested on the specified station. Features aggregated as
sums over filter time windows (see Table 2) are rescaled here by the average number of 3-hourly samples in each summation to help compare
partial effects between stations.

tainty due to the few data points but could possibly suggest
the effect of precipitation at high values of LWC, thus acting
to remove MSA. These two local maxima of LWC_BL_2.3
could indicate that gas-phase oxidation and aqueous-phase
oxidation are the dominant mechanisms at lower and higher
values of LWC_BL_2.3, respectively. If so, then the overall
linearly, positive relationship for LWC_BL_2.3 and model
output of MSAp could also indicate that aqueous-phase ox-
idation produces relatively greater amounts of MSAp com-
pared to gas-phase oxidation, which is in line with the the-
oretical understanding (Chen et al., 2018; Hoffmann et al.,
2016).

The amount of cloud liquid water in the free troposphere
0–1 d prior to measurement (LWC_FT_0.1) shows a similar
relationship to model output of MSAp as does LWC_BL_2.3,
with two local maxima, an overall positive relationship and
a decrease in model output after the second local maxima
(Fig. 8f). Noticeable exceptions include the overall response
of model output of MSAp being less sensitive to increases
in LWC_FT_0.1 compared to LWC_BL_2.3 and the de-
crease in model output after the second local maxima being
more substantial. This relationship likely points towards gas-
and aqueous-phase oxidation occurring at differing levels of
LWC but also that the model output of MSAp is less sensitive

to LWC in the FT than in the boundary layer and that high
values of LWC in the FT more strongly remove aerosols than
in the BL.

3.5.3 Summary of Gruvebadet, Pituffik (Thule), AS, and
ASF

For Gruvebadet, AS, and ASF, a source-, chemical-
processing-, and removal-related feature type were selected
for AM, except for a removal-related feature being selected
at Pituffik (Thule). The partial effects of the selected fea-
tures for AM are discussed in detail in Sect. 3 of the Sup-
plement. The chemical-processing-related feature type was
usually OH for Alert, Gruvebadet, Pituffik (Thule), and ASF,
while for Utqiaġvik (Barrow), Q and LWC were selected
(Table 4), and interestingly the removal-related feature type
(LSRR) showed a maximum at a non-zero value (Fig. 8d).
The partial effects of Q and LWC show the presence of two
local maxima and an overall positive relationship to model
output of MSAp, suggesting that the dual effects of gas- and
aqueous-phase chemical processing can be detected. Our pre-
vious study showed the importance of both gas- and aqueous-
phase oxidation for the geospatial modeling of pan-Arctic
MSA, with shortwave surface radiation (SSRD in this study),
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Figure 8. AM-St partial effects for the selected features at Utqiaġvik (Barrow). (a) Q_BL_0.1, (b) DMS_3.4, (c) BLH_4.5, (d) LSRR_4.5,
(e) LWC_BL_2.3, and (f) LWC_FT_0.1. The solid red line is the partial effect for a different feature in each panel, the blue points are the
training observations, and the orange crosses are the test data. Feature abbreviations are defined in Table 2. St refers to models trained and
tested on the specified station. Features aggregated as sums over filter time windows (see Table 2) are rescaled here by the average number
of 3-hourly time steps to help compare partial effects between stations.

temperature (T2M), longwave surface radiation (STRD), and
low cloud cover (LCC) being the top four important features.
Interestingly, neither T2M, STRD, nor LCC was selected
for any station–model combination (Table 4). It should be
noted that Pernov et al. (2024b) utilized a different feature
engineering procedure to account for air mass transport pat-
terns, a different data-driven model (gradient boosted trees
vs. RF/AM in this study), and different explainability meth-
ods (SHAP (Lundberg and Lee, 2017) vs. partial effects in
this study) and focused on geospatial source regions from a
pan-Arctic perspective and not time series of time-resolved
air mass history features at individual stations; therefore a
direct comparison is complicated by these facets. However,
for the AS partial effects, the dual mechanisms of gas- and
aqueous-phase oxidation are observed (both OH_BL_1.2 and
Q_FT_2.3 were selected), indicating that modeling a merged
pan-Arctic dataset can detect these dual processes are oc-
curring, similar to our previous research. The ASF features
selected by AM and RF did not include an aqueous-phase
related oxidation feature (Table 4), which could be due to
Gruvebadet contributing the greatest number of samples to
the ASF-merged dataset; thus features selected at this sta-
tion could dominate the selected features for ASF. Overall,
the selected features and their partial effects for the individ-

ual stations and merged datasets show that our data-driven
model produces physically realistic and interpretable results.

4 Conclusions

The Arctic is undergoing drastic environmental changes, in-
ducing alterations in the natural aerosol population, which
in turn affect the Arctic climate. Due to complex feedback
mechanisms in the Arctic climate system, numerical model-
ing is vital for understanding and predicting upcoming cli-
mate change and the role of natural aerosols therein. How-
ever, numerical models are deeply challenged in representing
natural aerosols across the Arctic. Data-driven modeling can
be a faster and less computationally intensive alternative for
simulating Arctic aerosol processes, which can also identify
important processes and variables to inform improvement ef-
forts for numerical models. Therefore, we developed an al-
ternative data-driven modeling approach for modeling Arctic
MSAp using long-term in situ observations of MSAp from
four High Arctic stations.

We developed an AM for the task of predicting MSAp
observations. This tailored model allowed for more inter-
pretable estimated relations (partial effects) in a more parsi-
monious format than the RF model, which served as a base-
line, and this with both data-driven models achieves simi-
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Figure 9. Comparison of seasonal cycles for observations, St data-driven model, and numerical models. (a) Alert (b) Gruvebadet, (c) Pituffik
(Thule), and (d) Utqiaġvik (Barrow). Monthly medians for observations (solid black), data-driven model (AM-St in solid red and RF-St in
solid light blue), CAMS (dashed orange), GEOS-Chem (dashed dark blue), GISS-E2.1 (dashed cyan), and OsloCTM3 (dashed magenta).
Only data for the tests were included in this analysis for a fair comparison; see Table 3 for dates. St refers to models trained and tested on the
specified station. The evaluation metrics for each data-driven and numerical model against in situ observations are given in Fig. 10.

lar out-of-sample prediction performance. We incorporated
feature selection procedures into both data-driven models,
which selected similar features when not considering the
temporal dimension (time step) of the features. However, RF
selected more features compared to AM, when considering
the time step, which could be attributed to the importance
of different time steps being averaged out over the ensemble
of decision trees in RF versus AM, which only selected the
most important time step for each feature. We utilized two
groups of features for data-driven modeling: one with only
reliable features and one with all features related to MSA
production regardless of data source and degree of reliabil-
ity. When modeling using only reliable features (which were
mainly meteorological), they can act as a proxy for unreli-
able features (e.g., solar radiation (SSRD) acting as a proxy
for OH radical mixing ratios), although no systematic change
in model performance was detected when including all fea-
tures. Indicating that a similar model performance can be
achieved by only using meteorological features but incor-
porating source-, chemical-processing-, and removal-related
features (albeit with added feature uncertainty) resulted in
fewer features being selected.

We show that existing numerical models struggle to accu-
rately simulate MSAp in terms of the magnitude, seasonality,
and peak months of concentrations, which can have conse-
quences for accurate estimations of the surface energy budget
and climate projections given the role of MSAp in the climate
system (Fung et al., 2022; Mahmood et al., 2019). Our data-
driven models outperform current numerical models for re-

producing observations of MSAp, which is especially evident
for the seasonal cycle. While data-driven models trained on
merged datasets (AS and ASF) already outperform numeri-
cal models, the accuracy achieved by training on individual
stations (St), is even higher (Fig. 4). A comparison of the sea-
sonal cycle from numerical vs. data-driven models for only
the test set years (thus a direct comparison of the same peri-
ods) is shown in Fig. 9, and evaluation metrics are shown in
Fig. 10. Based on the correlation of monthly medians for the
test set for each station, both the additive model (AM) and
random forest (RF) can generally reproduce the seasonal cy-
cle of MSAp, with greater accuracy than the numerical mod-
els based on the evaluation metrics used (Figs. 9, 10, S12,
and S13), although there are few exceptions depending on
station, dataset, and numerical model.

Both models consistently selected features that were re-
lated to the source of MSA precursors (emission of DMS
and air mass contact with biologically productive marine ar-
eas), chemical processing of DMS (and its intermediates) to
MSA (SSRD, OH, specific humidity (Q) and cloud liquid
water content (LWC)), and removal of aerosols (large-scale
rain rate, LSRR). The time steps selected by both models in-
dicate that they can learn the correct timing of important pro-
cesses related to MSA production; for instance when DMS
and SSRD were selected together, the time steps for DMS
emission always preceded those of SSRD. The features also
included a vertical dimension (boundary layer vs. free tro-
posphere). Results showed that the two stations located at
elevated altitudes (Alert and Pituffik (Thule)) were likely
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Figure 10. Prediction performance for the data-driven and numeri-
cal models on the test set for the four stations for the random forest
(RF) and additive model (AM). (a) Alert (b) Gruvebadet, (c) Pituffik
(Thule), and (d) Utqiaġvik (Barrow). In each panel, R2 is shown in
the top sub-panel, the Pearson correlation coefficient (PCC) in the
middle sub-panel, and the mean squared error (MSE) at the bot-
tom. St refers to a model trained and tested on the specified station,
AS refers to a subset of the data with an equal number of obser-
vations from each station, and ASF refers to all data from all four
stations and tested only on the specified station. MSE is multiplied
by 104 to display three significant digits. The color scale indicates
performance, where the darkest blue signifies the best performance
(lowest MSE, highest R2, and highest PCC within each row). The
MSE, R2, and PCC values are calculated according to Eqs. (1), (2),
and (3), respectively.

more influenced by processes in the free troposphere than in
the boundary layer, while the other stations (Gruvebadet and
Utqiaġvik (Barrow)) and merged pan-Arctic datasets showed
greater influences from the boundary layer. The relationships
between the input features and the model output of MSAp
were investigated through the partial effects produced by
AM.

For Alert, Gruvebadet, Pituffik (Thule), and ASF, OH was
the main chemical-processing-related feature selected, while
for Utqiaġvik (Barrow), LWC and Q were selected, and
for AS, both OH and Q were selected (Table 4). The se-
lected features for AS suggest that the dual effects of gas-
and aqueous-phase processing are occurring on a pan-Arctic
scale. The selected features and their partial effects for in-
dividual stations reveal site-specific characteristics that are
likely contributing to the differing MSAp seasonal cycles for
stations located in different sectors of the Arctic.

While our methodology can outperform current numer-
ical models, there is room for improvement. Our in situ
observations were based on long-term datasets of low-
temporal-resolution aerosol filter samples and were there-
fore limited in sample size. The input features were aggre-
gated to the same temporal resolution as the collected fil-
ters, therefore fully capturing processes occurring on shorter
timescales than the filter collection periods can be challeng-
ing. This is reflected in the ranking of data-driven model per-
formance for the individual stations (Gruvebadet>Pituffik
(Thule)>Utqiaġvik (Barrow)>Alert), which directly mir-
rors the decreasing temporal resolution of these stations (Ta-
ble 1). Long-term, high-temporal-resolution MSAp measure-
ments are essential for accurately capturing processes that are
short-lived and highly variable. When sufficient long-term
high-resolution data become available, leveraging the power
of other data-driven approaches (e.g., neural networks) could
be an option for advancing data-driven modeling of Arctic
aerosols. However, when limited by the sample size, less
complex tree-based models and statistical methods can of-
ten perform on par or better than neural networks (Grinsz-
tajn et al., 2022). One option would be to combine data-
driven modeling with physically constrained loss mecha-
nisms, known as physics-informed neural networks (PINNs)
(Cuomo et al., 2022). This avenue could help ensure the
proper ingredients (precursors, oxidants, meteorology, etc.)
are present at sufficient levels and with the correct tempo-
ral occurrence. The multi-input/output functionality of neu-
ral networks could also help elucidate the branching ratio
of DMS oxidation mechanisms and the partitioning between
gaseous and particulate phase MSA. However, satisfactory
long-term, high-resolution, concurrent measurements of gas-
phase DMS, gas-phase MSA, and particulate phase MSA
need to become available at appropriate locations dispersed
around the Arctic region, which remains a challenge both lo-
gistically and monetarily. Essential sources and sinks related
to the burden of MSA, e.g., DMS emission and precipitation,
while included in our model, are difficult to accurately repre-
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sent using climatology-based parameterizations and reanaly-
sis products, respectively, and improved estimations, through
either an updated climatology (Hulswar et al., 2022) or data-
driven estimations (Wang et al., 2020), could be incorporated
in future data-driven model updates. Representation of spe-
cific oxidants (e.g., halogen radicals and dissolved oxidants)
is missing from our input features due to a lack of adequate
datasets. Incorporating accurate representations of these cru-
cial species would help the data-driven models elucidate the
relative importance of gas- versus aqueous-phase oxidation
of DMS and specific oxidants. Another missing component
from our feature list is aerosol chemical and physical prop-
erties (e.g., surface area, mixing state, hygroscopicity, and
composition), which largely determines the reactive uptake
of gaseous MSA (and its intermediates) onto preexisting
aerosols (Dada et al., 2022; Yan et al., 2020). Acidic and
effloresced aerosols are less likely to uptake gaseous MSA,
while alkaline and deliquesced aerosols are more likely; in-
cluding these parameters in future data-driven approaches
could help resolve the equilibrium partitioning between gas
and condensed phase MSA, thus representing another sink
term for MSAp. One of the main shortcomings of the data-
driven models is the inability to capture peak or minimum
concentrations, which could be due to the low temporal res-
olution of the input target data into the models, inadequate
representation of sources/sinks, the input data missing impor-
tant features (such as dissolved oxidants or halogen species),
processes occurring on timescales longer than the 5 d utilized
in this study, or the daily interval between time steps being
too coarse. Future data-driven modeling efforts could focus
on capturing the drivers related to these extremes of the MSA
distribution.

This data-driven modeling methodology using the time-
resolved air mass history can be applied to other atmospheric
constituent datasets at these Arctic stations for the study pe-
riod, allowing researchers to investigate other natural aerosol
components or precursor species (e.g., sea salt or dimethyl
sulfide) in a consistent and time-efficient manner.

We recommend that numerical models be evaluated for the
following processes that we identified as critical with our two
data-driven model approaches: DMS emission, chemical pro-
cessing, and removal.

– Oceanic emission of DMS is the initial step for
MSA formation, and AM identified DMS emission,
OPEN_WATER, and ChlA as key features. The nu-
merical models in this study all utilized climatologies
of seawater DMS concentrations and parameterizations
for estimating the DMS flux. Updating DMS emissions
schemes using data-driven modeling can help improve
estimates of MSA and sulfate as well as radiative forc-
ing (Mansour et al., 2023; McNabb and Tortell, 2022;
Regayre et al., 2020; Wang et al., 2020; Zhao et al.,
2022). Current DMS emission parameterizations rely
on seawater concentration, sea surface temperature, and

wind speed (Johnson, 2010; Lana et al., 2011; Nightin-
gale et al., 2000), although studies show real-world
emissions are affected by atmospheric DMS levels, air
temperature, pH, and nutrient availability (Hopkins et
al., 2023; Kloster et al., 2007; Steiner et al., 2012; Sunda
et al., 2007; Zhao et al., 2024; Zindler et al., 2014).
Improved DMS emission inventories should be a focus
of the modeling community going forward through ei-
ther updated parameterizations or data-driven estimates
(Joge et al., 2024a, b).

– The data-driven models identified gas- and aqueous-
phase oxidation to be affecting peak concentration
months at different locations around the Arctic, namely
OH, SSRD, LWC, and Q. Numerical models employ a
plethora of chemical schemes for the oxidation of DMS
and its intermediates, although shortcomings exist re-
garding aqueous phase oxidation, rate reaction coeffi-
cients, and oxidant concentrations (Bhatti et al., 2024;
Cala et al., 2023; Chin et al., 1996; Fung et al., 2022;
Hoffmann et al., 2021; Revell et al., 2019; Tashmim et
al., 2024). This work and our previous work (Pernov et
al., 2024b) point towards the dual effects of gas- and
aqueous-phase oxidation both being key processes. Im-
provements to chemical processing schemes, especially
aqueous-phase oxidation, as well as the inclusion of oxi-
dants (halogens) and intermediates (DMSO, MSIA, and
HPMTF) and their concentration levels, should be a pri-
ority of the modeling community going forward (Chen
et al., 2018; Hoffmann et al., 2021; Jongebloed et al.,
2024; Tashmim et al., 2024).

– The removal of MSA through wet deposition (LSRR)
was found to be a key feature identified via AM at
all stations/datasets except for Pituffik (Thule) and
Utqiaġvik (Barrow) (Table 4); however wet deposition
is the key removal mechanism of MSA (Chen et al.,
2018). Although dry deposition was not explicitly rep-
resented by our features, wind speed can be used as a
proxy and was only selected by AM when consider-
ing the AS and ASF datasets and when their relation-
ship with MSAp output was negative (Figs. 10 and 11).
Numerical models could benefit from improvements in
representations in wet deposition including aerosol ac-
tivation, below- and in-cloud scavenging, and precipi-
tation efficiency (Stier et al., 2024) as well as improve-
ments in dry depositional processes.

Altogether, this study shows that (1) existing numeri-
cal models cannot yet simulate Arctic MSAp accurately,
(2) data-driven models can outperform current numerical
models although with modest performance, and (3) data-
driven models can capture physically meaningful relation-
ships between input features and MSA predictions quite well
and reveal specific processes occurring at the different sta-
tions. While data-driven modeling can aid in simulating lev-
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els of natural Arctic aerosol and provide understanding of its
drivers, it struggles with extrapolating beyond the distribu-
tion space of its training dataset; therefore numerical mod-
eling is ultimately needed to predict the effects of a future
climate on natural Arctic aerosol.

Appendix A

Table A1. Commonly used abbreviations.

MSAp Particulate methanesulfonic acid
AM Additive model
RF Random forest
BL Boundary layer
FT Free troposphere
St Station-specific model
AS AllStations
ASF AllStationsFull
DMS Dimethyl sulfide
OH Hydroxyl radical
O3 Ozone
CCN Cloud condensation nuclei
GAM Generalized additive model
CV Cross-validation
MSE Mean squared error
PCC Pearson correlation coefficient
FSS Forward stepwise selection

Code availability. The underlying code for this study is avail-
able as a Renkulab project (https://gitlab.renkulab.io/arcticnap/
msamodeling, Volpi et al., 2025) and by contacting the corre-
sponding author Jakob Boyd Pernov (jakob.pernov@epfl.ch) or
Michele Volpi (michele.volpi@sdsc.ethz.ch). Code for FLEXPART
and Python packages (xESMF, cdsapi, and RF) is available online
https://github.com/pangeo-data/xESMF, last access: 24 June 2025.

Data availability. The datasets used and/or analyzed during the
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