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S1. In situ aerosol observations 

At Alert, Canada (82.5° N, 62.4° W, 210 m above sea level (asl)), aerosols, with no upper size limits, were sampled 

onto filters (20x25 cm Whatman 41) using a high-volume sampler with a nominal duration of seven days. MSA was extracted 

using deionized water and sonication (>97 % extraction efficiency) (Li and Barrie, 1993). MSA was quantified using a Dionex 

4500i ion chromatograph with a 200 µL injection loop, AS4A column, conductivity detector, and an eluent of 5 mM Na2B4O7 5 

at 2.0 mL min-1. In between analyses, the column was flushed with 28 mM Na2B4O7 and then re-equilibrated with 5 mM 

Na2B4O7. A micromembrane suppressor (H2SO4) was included to reduce the baseline conductivity and therefore background 

noise. The step function for the eluent concentration during analysis was incorporated to avoid interferences from the later 

elution of stronger anions (Li and Barrie, 1993). The analytical precision and accuracy are listed at 5 and 2 %, respectively, 

the uncertainty is estimated to be < 13% (Barrie et al., 1989), and the detection limits range from 0.03 to 0.4 ng m-3 (Sharma 10 

et al., 2012, 2019). 

Gruvebadet Observatory, in Ny-Ålesund, Norway on the Svalbard Archipelago (78.9° N, 11.9° E, 50 m asl) has 

collected aerosol chemical composition since 2010 from March to September with a time resolution of 24 hours. The Thule 

High Arctic Atmospheric Observatory (THAAO) in Pituffik, Greenland (hereafter referred to as Pituffik/Thule) (76.5° N, 

68.8° W, 220 m asl) began sampling aerosol chemical composition in 2010 with a time resolution of 48 hours. For both stations, 15 

dominant wind directions indicate that local emissions are not influencing either station (Maturilli et al., 2013; Muscari et al., 

2014). 

For both Gruvebadet and Pituffik/Thule, the same sampling and analytical methodology was applied. Aerosols of less 

than 10 micrometers diameter (PM10) were sampled onto 47 mm diameter Teflon filters with 2 µm nominal porosity (99 % 

capture efficiency for 0.3 µm diameter particles) at a flow rate of 2.3 m3 h-1 using a TECORA Skypost sequential sampler 20 

following UNI-EN1234 (Becagli et al., 2019). The filters were stored in plastic Petri dishes, frozen, and shipped to Italy for 

extraction and analysis. Filter quarters were extracted using 10 mL of Milli-Q water (>18 MΩ) and sonicated for 20 min. Three 

chromatographic systems were used: one system for cations, one for inorganic anions and oxalate, and one for fluoride, MSA, 

and other low molecular weight organic acids (e.g., acetate, glycolate, propionate, formate, and pyruvate). MSA concentrations 

were determined by injecting 1 mL (Gilson 222 autosampler) into a Dionex Thermo-Fischer DX600 ion chromatograph 25 

utilizing a Thermo-Fischer Dionex TAC-2 pre-concentration column with a 50 mL dead-volume and a Thermo-Fischer Dionex 

AS11 separation column with a gradient elution of Na2B4O7 from 0.075 mM to 2.5 mM and electrochemical suppression. This 

allows for the complete separation of MSA from pyruvate (peak resolution = 0.9). A 45 mM Na2B4O7 cleaning solution was 

injected prior to each analysis to ensure reproducible results (Becagli et al., 2011). Field blanks were always below the 

detection limit of 0.1 µg L-1 (Becagli et al., 2011). The MSA analysis was reproducible with a relative standard deviation of < 30 

5% (Becagli et al., 2016, 2019).  
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The Barrow Atmospheric Baseline Observatory, located near Utqiaġvik, Alaska (referred to as Utqiaġvik (Barrow)) 

(71.3° N, 156.6° W, 10 m asl), is part of the National Oceanic and Atmospheric Administration (NOAA) Earth System 

Research Laboratory (ESRL) Global Monitoring Division (GMD). The real-time wind direction was used to avoid local 

pollution by only sampling from the clean air sector (0°–129°) (Delene and Ogren, 2002; Kolesar et al., 2017; Quinn et al., 35 

2002). Aerosols were sampled onto a Berner-type multi-jet cascade impactor with 1 and 10 µm aerodynamic D50 cutoff 

diameters (in this study only submicron chemical composition data was used). Depending on the time of year, sample durations 

(volumes) of 1 (43 m3) to 5 (172 m3) days were collected. Samples were sealed and shipped to NOAA's Pacific Marine 

Environmental Laboratory (PMEL) for chemical analysis by ion chromatography (Metrohm Compact IC 761). Filters were 

extracted in 1 mL of spectral grade methanol and then an additional 5 mL of distilled deionized water and sonicated for 30 40 

min. A Phenomenex Star IonTM A300 anion column in front of a Metrosep ASUPP5 250/4.0 column with a 1.0 mM NaHCO3 

and 5.0 mM Na2CO3 eluent and a 70 mM H2SO4 regenerant was used MSA analysis. The column and eluent combination 

ensure the separation of MSA from other organic acids (i.e., pyruvic acid). The detection limit was 0.001 mg L-1 (Moffett et 

al., 2020). MSA concentrations are reported at 0 °C and 1013 mbar. The relative uncertainty is ±11% (95% confidence level) 

(Quinn et al., 2000, 2002, 2009).  45 
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S2. Models set up 

Here we briefly discuss here some modeling choices and approaches we explored but did not retain as they generally performed 

worse than the RF and AM presented in the main body of the paper. Figure S1 below summarizes the performance comparison. 

First, we considered various CV schemes to assess out-of-sample prediction error in the training data. Specifically, we 50 

considered temporal versus completely random splits. While the latter is generally convenient from an implementation point 

of view, it did not estimate the prediction error we were interested in. The purpose was to assess the forecasting ability of the 

models in time, and thus random splits too often led to interpolation in time (with observations directly before and after) rather 

than extrapolation in time (observations only available before or only available in more distant time windows). 

Second, we investigated different transformations of the target MSA concentrations. In conjunction with a mean 55 

squared error loss function, this can have a substantial impact on how well a model can predict high peaks versus low values 

on average. The natural logarithm transformation with a constant of 10−3 yielded the best predictive performance overall. The 

purpose of this constant is to avoid applying a logarithm on a number too close to zero, yielding a very low negative value 

which in turn can dominate the optimization in the training process. Third, we considered other baseline models in addition to 

the RF. Ridge regression (Ri in Figure S1) performed generally quite poorly, most likely because many feature effects are far 60 

from a linear function. Gradient-boosted regression trees (GB) were nearly on par with the RF, although the latter was generally 

better. 

Finally, for AM we explored various out-of-sample prediction error criteria, specifically the Akaike Information 

Criterion (AIC in Figure S1) and the Bayesian Information Criterion (BIC). While these information-theoretic criteria have 

the advantage of being inexpensive to compute we systematically found that AIC led to including too many features in the 65 

forward stepwise selection (FSS) procedure (overfit), while the BIC tended to include too few. Both yielded poor 

generalizations as measured by the temporal cross-validation (CV) mean squared error (MSE). We thus opted to directly use 

CV MSE as the criterion in the FSS procedure. 

 

  70 
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S3. Contribution of selected features to the model output (Partial effects) for Gruvebadet, Pituffik/Thule, AllStations, 
and AllStationsFull 

In Sect. 3.5 of the main text, we discussed the contribution of the selected features to the model output for Alert and Utqiaġvik 

(Barrow) in detail and summarized the remaining stations and merged datasets, while here we provide a more detailed 

description. 75 

S3.1. Gruvebadet 

For Gruvebadet, AM selected the following features, OH_BL_0.1, ChlA_1.2, DMS_4.5, and LSRR_1.2.  

OH_BL_0.1 shows a linearly, positive effect on the model output of MSAp from low levels to ~0.75 × 10-5 ppbv, 

thereafter a plateau is reached and only increases MSAp above 2 × 10-5 ppbv (Fig. S8a), although there are few data points in 

this range. This shows an OH-limited regime where MSAp increases proportionately with OH_BL_0.1 and a plateau regime 80 

where MSAp is insensitive to increasing OH_BL levels. The plateau regime could be due to MSAp production is likely limited 

by other environmental factors, such as DMS and/or its intermediates, warm temperatures affecting the oxidation pathways of 

DMS to SO2 (gas-phase MSA formation is favored over SO2 at lower temperatures), or steady-state conditions where MSA is 

formed at a similar rate as it is further oxidized (Barnes et al., 2006; Chen et al., 2018; Shen et al., 2022).  

DMS_4.5 displays a mostly linearly, positive relationship with model output of MSAp, although the slope of this 85 

relationship is steeper at lower and higher regimes of DMS emissions (Fig. S8b). This could indicate the presence of a DMS-

limited regime (over the range of 0-200 kg), a DMS-insensitive regime where MSAp is only slightly increasing with increased 

DMS emissions (likely limited by other factors such as oxidant levels) from ~200-600 kg, and a DMS-abundant regime where 

the model output of MSAp again becomes sensitive to DMS emissions after 600 kg. Mansour et al. (2024) used a Gaussian 

process regressor to reconstruct MSA concentrations in the North Atlantic with good accuracy (R2 values up to 0.86) and 90 

showed that the relationship between DMS ocean-air flux and model output of MSA is exponential and only significantly 

contributes after a certain level, similar to the results shown here.  

Exposure of air masses to chlorophyll-a (ChlA) 1-2 days prior to measurement shows a linearly, positive relationship 

to model output of MSAp from the lowest values up to ~4 mg m-3 (Fig. S8c). After 4 mg m-3, the slope of the relationship 

between model output of MSAp and ChlA becomes negative although the few data points in this range do not invoke confidence 95 

in this pattern. This shows that while DMS emissions 4-5 days back along the air mass are important for MSAp model output, 

air masses recently spending time over biologically active open waters closer to the measurement site are also important.  

For air masses recently experiencing precipitation (LSRR_1.2), a sharp reduction in model output of MSAp is noticed 

with a slight increase in precipitation (Fig. S8d). After this initial reduction of MSAp with increasing precipitation, a plateau 

is reached where increasing precipitation does not remove additional MSAp up to ~2 mm. This relationship has been observed 100 

at Arctic and sub-Arctic sites (Isokääntä et al., 2022; Tunved et al., 2013). After this level, a gradual decrease in MSAp is 

observed with increasing precipitation from ~2-3 mm. The initial sharp reduction in MSAp with a slight increase in 

precipitation is likely due to the removal of the activated particles containing MSA which formed cloud droplets, these droplets 
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would be the first to precipitate during a rain event. With increasing precipitation after this initial reduction, the model output 

of MSAp plateaus, which could be due to the remaining MSA-containing-particles do not possess the proper microphysical 105 

properties to be removed efficiently by precipitation. This could be due to particles either being too small or hydrophobic to 

nucleate into cloud droplets as well as being interstitially scavenged within a cloud or being scavenged below-cloud (or 

impaction scavenging) by falling raindrops (Andronache, 2003; Zanatta et al., 2023). After ~2 mm, the model output of MSAp 

gradually decreases, which could be due to intense precipitation removing all particles in the atmosphere regardless of 

microphysical properties. 110 

S3.2. Pituffik (Thule) 

For Pituffik (Thule), AM selected the following features, SSRD_0.1, OPEN_WATER_4.5, and OH_FT_1.2. 

SSRD_0.1 shows a minimum effect on the model output of MSAp at ~200 W m-2 where after this value a linearly, 

positive relationship is observed which begins to plateau at high values of SSRD (Fig. S9a). Below 200 W m-2, the model 

output of MSAp increases with decreasing values of SSRD, although with few data points contributing to this pattern. This 115 

relationship resembles the one observed for Alert (Fig. 7a) but the model output of MSAp for Pituffik (Thule) does not decrease 

for very high values of SSRD. The beginning of plateau for the partial effects at high values of SSRD suggests that if Pituffik 

(Thule) experienced higher values of SSRD then a more similar relationship compared to Alert might be observed.  

The partial effects for the time air masses spent within the BL and over open water (OPEN_WATER, defined as sea 

ice concentration < 20 %, Table 2) for 4-5 days prior to measurement, used here as a source-related feature for MSAp, shows 120 

an initial sharp increase in the lowest range of values and a mostly linearly, positive relationship afterward until ~25 sec km-2 

(Fig. S9b). At higher values, the model output of MSAp decreases which could be indicative of air masses arriving from marine 

areas that experienced moisture uptake and thus precipitation. Pituffik (Thule) experiences almost exclusively air mass 

transport from Baffin Bay (Becagli et al., 2016, 2019) and lower Baffin Bay does experience frequent rainfall days (Boisvert 

et al., 2023), supporting this postulate. Another explanation could be these air masses originated from areas experiencing low 125 

biological activity at the time of air mass contact (thus minorly up-taking precursor material), although the low data density in 

this range shows a higher uncertainty.   

The partial effects for OH_FT_1.2 show little variation, reaching a maximum between ~1 and ~2 × 10-5 ppbv, 

plateauing until reaching ~4.5 × 10-5 ppbv, and decreasing for higher values (Fig. S9c). The maximum partial effects for 

OH_FT_1.2 at ~1 × 10-5 ppbv could indicate an oxidant limited regime for DMS oxidation and maximum production occurs 130 

with OH_FT_1.2 levels between ~1 and ~2 × 10-5 ppbv. The plateau of the partial effects between ~2 and ~4 × 10-5 ppbv could 

indicate that MSAp production is less sensitive to OH levels in this regime and possibly limited by other environmental factors 

(levels of DMS or its intermediates). The decrease of the partial effects after 4.5 × 10-5 ppbv could indicate the continued 

oxidation of MSA to sulfate (similar to the partial effects of OH_FT_1.2 at Alert, Fig. 7e). The selection of OH in the FT over 

the BL could indicate processes in the FT are relatively more important at Pituffik (Thule) than BL processes but given that 135 

Pituffik (Thule) is located ~200 m asl this is not unexpected (Table 1).   
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S3.3. AllStations 

The selected features for the AllStations subset (AS), with an equal number of test observations from each station, 

are OH_BL_1.2, WS_BL_0.1, DMS_3.4, LSRR_2.3, RT_BL_0.1, Q_FT_2.3, and ChlA_2.3 (Table 4). Each of these features 

was selected by AM for the individual stations with the exception of WS_BL_0.1 and RT_BL_0.1. Model output of MSAp is 140 

sensitive to OH_BL_1.2 at low values and insensitive at higher values which could possibly be due to MSA production being 

oxidant limited at low values (Fig. S11a), similar to the relationship observed for Gruvebadet for OH_BL_0.1 (Fig. S8a). 

WS_BL_0.1 exhibits a linearly, negative relationship with model output of MSAp (Fig. S11b), showing higher wind speeds 

act to decrease MSAp concentrations either through dilution in a deeper boundary layer or increased dry deposition. This 

relationship agrees with other studies investigating the drivers of Arctic MSA showing a negative relationship (Song et al., 145 

2022). Our recent study on Pan-Arctic MSA mainly displays a U-shaped relationship between wind speed and MSAp, which 

was attributed to low and high wind speed affecting gas- and aqueous-phase oxidation, respectively, although the absolute 

magnitude of wind speed’s effect on MSA was low (Pernov et al., 2024). This current study suggests that for models trained 

on the merged Pan-Arctic dataset, low wind speeds are generally conducive towards MSAp production in the model, possibly 

due to low BLHs confining precursors and oxidants into a smaller volume of air. DMS_3.4 shows an overall positive 150 

relationship with the model output of MSAp, although non-linear (Fig. S11c), which resembles the DMS partial effects 

observed at Alert, Gruvebadet, and Utqiaġvik (Barrow). The partial effects of LSRR_2.3 on model output of MSAp resembles 

one of exponential decay, indicating that precipitation acts to remove MSAp in the model but the efficiency decreases with 

increasing intensity (Fig. S11d) as observed for Alert,  Gruvebadet, and Utqiaġvik (Barrow) (after a certain threshold) as well 

as at other high-latitude sites (Isokääntä et al., 2022; Tunved et al., 2013). The retention time of air masses within the boundary 155 

layer 0-1 days prior to measurement (RT_BL_0.1) has two local maxima: one at ~0.5 × 106 sec and another at ~3 × 106 sec, 

with the latter having a greater impact on the model output of MSAp (Fig. S11e).  These two local maxima could possibly 

indicate the effect of both boundary layer and free troposphere processes contributing to the model output of MSAp as discussed 

above. Q_FT_2.3 displays two local maxima: one at ~0.001 and another at ~0.00375 kg kg-1 (Fig. S11f), likely suggesting gas-

phase oxidation at lower values and aqueous-phase oxidation at higher values. The partial effects for Q_FT_2.3 for AS show 160 

a similar pattern as does LWC_BL_2.3 and LWC_FT_0.1 (Fig. 10e and f) and slightly similar to Q_BL_0.1 (Fig. 10a) as those 

observed at Utqiaġvik (Barrow). ChlA_2.3 exhibits a local maximum at ~20 mg m-3, which slightly decreases afterwards until 

~60 mg m-3, the partial effects increase after this level but there are few data points in this region (Fig. S8g).  

S3.4. AllStationsFull 

 For the AllStationsFull (ASF) subset, utilizing all test data from all stations, the selected features are OH_BL_0.1, 165 

DMS_2.3, WS_BL_0.1, LSRR_2.3, DMS_4.5, OPEN_WATER_0.1 (Table 4). OH_BL_0.1 displays a sharp increase in the 

model output of MSAp up to ~0.5 × 10-5 ppbv and plateaus afterward (Fig. S12a), similar to the AS OH_BL_1.2 relationship 

(Fig. S11a) and likely due to similar reasons. DMS_2.3 shows an almost linear, positive relationship with model output of 
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MSAp for ASF (Fig. S12b) as opposed to the non-linearity present in the AS subset for DMS_3.4 (Fig. S11c). WS_BL_0.1 

shows a linearly, negative relationship with model output of MSAp that reaches a minimum at ~10 m s-1 and increases slightly 170 

thereafter (Fig. S12c). These partial effects suggest that low wind speeds act to enhance MSAp concentrations in the model 

output and that higher wind speeds slightly increase MSAp, which could be due to enhanced transport of MSAp-containing air 

masses, enhanced oceanic nutrient mixing, or elevated DMS emissions (Becagli et al., 2016, 2019). LSRR_2.3 exhibits a 

linearly, negative relationship with model output of MSAp with some complex structure present (Fig. S12d) as opposed to the 

exponential decay observed for AS  for the same feature (Fig. S11d). DMS_4.5, similar to DMS_2.3, displays a linearly, 175 

positive relationship to model output of MSAp (Fig. S12d), showing the straightforward impact of MSA precursors on all 

Arctic stations. OPEN_WATER_0.1 shows a rather flat relationship with the model output of MSAp with an initial increase 

and local maximum (minimum) at ~250 (~1500) sec km-2 and increases thereafter (Fig. S12f). This timestamp of the 

OPEN_WATER feature (0-1) was only selected for the ASF subset (Table 4). Each station has different surrounding marine 

environments and the rather flat relationship could be a result of a smoothing effect induced by the model due to the merger 180 

of all test data, given that the effect of OPEN_WATER_0.1 would likely be vastly different at Alert (inland station usually 

surrounded by ice-covered oceans) versus Gruvebadet (coastal station with open water located to the south).   
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 185 
Figure S1: Overview of model performance for the AM (a) and RF (b) models using the Group A+B set of features. 

‘CV split’ refers to the cross-validation split used during feature selection (random or temporal). ‘Metric’ in (a) refers to the 

metric used to evaluate the AM within the cross-validation during feature selection: AIC = Akaike information criterion, BIC 

= Bayesian information criterion, MSE = mean squared error. ‘Model’  in (b) refers to the different baseline models tested: RF 

= random forest regression tree, Ri = ridge regression. Model performance (MSE and R2) is shown for the models run using 190 

the selected features and then trained and then tested on the full dataset (‘Full dataset’) and using a yearly cross-validation 

scheme (‘Yearly CV’) for the original data (MSAp) and the log and log+constant transformed data (log(MSA) and log(MSA 

+ 10−3) respectively). The color scale shows the ranking of the performance for the column where darkest = best performance 

and the best-performing models in each column are highlighted with an overlaid red cross. 
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 195 

 
Figure S2. Comparison of modeled MSA against in situ MSA observations from Gruvebadet. Scatterplots on the left 

compare only April to September (over the available period for each station) with the 1:1 line in blue, linear fit in black, 95% 

confidence intervals estimated through bootstrapping in the shading and seasonal cycles on the right (the thick line is the 

median and shading is the interquartile range) for GEOS-Chem (a and b), OsloCTM3 (c and d), GISS-E2.1 (e and f), and 200 

CAMS (g and h). The MSE, R2, and PCC values are calculated according to Eqs. (1), (2), and (3), respectively. 
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Figure S3. Comparison of modeled MSA against in situ MSA observations from Pituffik (Thule). Scatterplots on the left 

compare only April to September (over the available period for each station) with the 1:1 line in blue, linear fit in black, 95% 205 

confidence intervals estimated through bootstrapping in the shading and seasonal cycles on the right (the thick line is the 

median and shading is the interquartile range) for GEOS-Chem (a and b), OsloCTM3 (c and d), GISS-E2.1 (e and f), and 

CAMS (g and h). The MSE, R2, and PCC values are calculated according to Eqs. (1), (2), and (3), respectively. 

 

 210 
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Figure S4. Comparison of modeled MSA against in situ MSA observations from Utqiaġvik (Barrow). Scatterplots on the 215 

left compare only April to September (over the available period for each station) with the 1:1 line in blue, linear fit in black, 

95% confidence intervals estimated through bootstrapping in the shading and seasonal cycles on the right (the thick line is the 

median and shading is the interquartile range) for OsloCTM3 (a and b), GISS-E2.1 (c and d), and CAMS (e and f). The MSE, 

R2, and PCC values are calculated according to Eqs. (1), (2), and (3), respectively. 

 220 
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Figure S5: Prediction performance for the temporal cross-validation (CV) scheme and on the test set for the four 

stations, using the selected features from Group A for the RF and AM. (a) and (b) show CV performance on original and 

log scales, respectively. (c) and (d) show performance on the test set on original and log scales, respectively. In each panel, R2 

is shown in the top sub-panel, the PCC in the middle sub-panel, and the MSE at the bottom. St refers to a model trained and 230 

tested on the specified station, AS refers to a subset of the data with an equal number of observations from each station, and 

ASF refers to all data from all four stations and tested only on the specified station. MSE is multiplied by 104 to easily display 

three significant digits. The color scale indicates performance, where the darkest blue signifies the best performance (lowest 

MSE, highest R2, and highest PCC within each row). 

 235 
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Figure S6: Observed and modeled time series of log-transformed MSA for the test dataset. (a) and (b) Alert, (c) 

Gruvebadet, (d) and (e) Pituffik (Thule), and (f) and (g) Utqiaġvik (Barrow). RF-St and AM-St refer to models trained and 

tested on the specified station; RF-ASF and AM-ASF refer to models trained on the ASF merged dataset and tested on the 240 

specified site dataset. The observations are shown in black. 
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Figure S7: Scatterplots of modeled vs observed MSAp. The left column (a-d) is for the original scale and the right column 245 

(e-h) is for the natural logarithm-transformed data for the RF (green and blue) and AM (yellow and orange) models for the 

four stations (row). The colored dots and lines indicate the model and data subset used with St referring to models trained and 

tested on the specified station, AS refers to a subset of the data with an equal number of observations from each station, and 

ASF refers to all data from all four stations and tested only on the specified station. The dashed lines are the ASF subsets. The 

black solid line shows a 1:1 line, and the linear regression lines for each model are shown, with the R2 indicated in the legend. 250 
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Figure S8: AM-St partial effects for the selected features at Gruvebadet. The red solid line is the partial effect for a 

different feature in each panel, the blue points are the training observations, and the orange crosses are the test data. Feature 255 

abbreviations are defined in Table 2. St refers to models trained and tested on the specified station. Features aggregated as 

sums over filter time windows (see Table 2) are rescaled here by the average number of 3-hourly time steps to help compare 

partial effects between stations. 

 

 260 
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Figure S9: AM-St partial effects for the selected features at Pituffik (Thule). The red solid line is the partial effect for a 265 

different feature in each panel, the blue points are the training observations, and the orange crosses are the test data. Feature 

abbreviations are defined in Table 2. St refers to models trained and tested on the specified station. Features aggregated as 

sums over filter time windows (see Table 2) are rescaled here by the average number of 3-hourly time steps to help compare 

partial effects between stations. 

 270 
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Figure S10: AM partial effects for the selected features for the AllStations dataset. The red solid line is the partial effect 

for a different feature in each panel, the blue points are the training observations, and the orange crosses are the test data. 280 

Feature abbreviations are defined in Table 2 of the main article. Features aggregated as sums over filter time windows (see 

Table 2) are rescaled here by the average number of 3-hourly time steps to help compare partial effects between stations. 

 

 
 285 
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Figure S11: AM partial effects for the selected features for the AllStationsFull dataset. The red solid line is the partial 

effect for a different feature in each panel, the blue points are the training observations, and the orange crosses are the test data. 

Feature abbreviations are defined in Table 2 of the main article. Features aggregated as sums over filter time windows (see 

Table 2) are rescaled here by the average number of 3-hourly time steps to help compare partial effects between stations. 290 
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Figure S12: Comparison of seasonal cycles for observations, AS data-driven models, and numerical models. Monthly 

medians for observations (solid black), data-driven models (AM-AS in solid red and RF-AS in solid light blue), CAMS (dashed 295 

orange), GEOS-Chem (dashed dark blue), GISS-E2.1 (dashed cyan), and OsloCTM3 (dashed magenta) for (a) Alert, (b) 

Gruvebadet, (c) Pituffik (Thule), and (d) Utqiaġvik (Barrow). Only data for the tests were included in this analysis for a fair 

comparison, see Table 3 for dates. AS refers to a subset of the data with an equal number of observations from each station. 

The evaluation metrics for each data-driven and numerical model against in situ observations are given in Fig. 10.   

 300 

 

 

 

 

 305 
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Figure S13: Comparison of seasonal cycles for observations, ASF data-driven model, and numerical models. Monthly 

medians for observations (solid black), data-driven model (AM-ASF in solid red and RF-AS in solid light blue), CAMS 

(dashed orange), GEOS-Chem (dashed blue), GISS-E2.1 (dashed cyan), and OsloCTM3 (dashed magenta) for (a) Alert, (b) 310 

Gruvebadet, (c) Pituffik/Thule, and (d) Utqiaġvik (Barrow). Only data for the tests were included in this analysis for a fair 

comparison, see Table 3 for dates. ASF refers to all data from all four stations and tested only on the specified station. The 

evaluation metrics for each data-driven and numerical model against in situ observations are given in Fig. 10. 
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 315 
Figure S14: Illustration of missing value imputation schemes for Alert MSAp in situ measurements. Local quadratic fit 

with Gaussian kernel weighting (red curve), the fitted model with long-term time trends and yearly seasonality (blue curve), 

overlaid on top of the log-transformed MSAp observations (black dots), and the imputations (dots colored according to which 

method was applied). The vertical dashed lines over the shaded background indicate where missing values are to be imputed 

at Alert's weekly nominal temporal resolution. (a) Example of a short gap:14 days between available observations, starting on 320 

2017-02-13, where a single value is imputed with the local quadratic fit. (b) Example of a long gap: 23 days between available 

observations, starting on 2014-08-24, where three values are imputed with long-term time trends and yearly seasonality. 
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