

Supplement of

Direct measurement of N_2O_5 heterogeneous uptake coefficients on atmospheric aerosols in southwestern China and evaluation of current parameterizations

Jiayin Li et al.

Correspondence to: Xiaorui Chen (chenxr95@mail.sysu.edu.cn) and Keding Lu (k.lu@pku.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

24 Contents

- 25 S1. Detailed description of the measurement and calculation of $\gamma(N_2O_5)$.
- 26 S2. Calculate of organic wet mass fraction.
- 27 Figure S1. Overall schematic of aerosol flow tube system. Bold arrows indicate the
- 28 main lines of the sampling gas.
- 29 Figure S2. Time series of measured concentrations of NO₂, O₃, NO, PM_{2.5} and N₂O₅,
- 30 the values of $\gamma(N_2O_5)$, and meteorological parameters of RH and T during the campaign.
- 31 Figure S3. NO₃ reactivity with VOCs.
- 32 Figure S4. Time series of N_2O_5 and NO_3 lifetime during the campaign.
- 33 Figure S5. The distribution of parameterized $\gamma(N_2O_5)$ values of GRI09 (a) and BT09
- 34 (b).
- 35 Table S1. Summary of field observation results of nocturnal NO3 and N2O5
- 36 concentrations, $P(NO_3)$, and $\tau(N_2O_5)$ from various regions around the world in recent
- 37 years.
- 38 Table S2. Summary of global field observation results of $\gamma(N_2O_5)$.
- 39 Table S3. Pearson Correlation Coefficient (r) among factors affecting $\gamma(N_2O_5)$.
- 40 Table S4. Summary of the details and performances of the parameterizations discussed
- 41 in this study.
- 42

43 S1. Detailed description of the measurement and calculation of γ (N₂O₅)

44 The Aerosol Flow Tube System (AFTS) can be divided into three main modules: the sampling control module, the reaction module, and the detection module. The 45 46 sampling of the flow tube is facilitated by a vacuum pump located at the end of the 47 system. In the sampling control module, ambient air is directly introduced into the 48 reaction pathway. The sampling gas passes through a 1-in/2-out solenoid valve that 49 directs the sample either through a HEPA filter to remove aerosols or bypasses it, 50 thereby controlling the presence of aerosols in the reaction module. The sampling gas 51 is then mixed with a high concentration of N₂O₅ generated from a N₂O₅ source before 52 entering the reaction module. At the top of the reaction module, two stainless steel static 53 mixers are installed to ensure that the gas is thoroughly mixed. The aerosol flow tube 54 is the primary site for N₂O₅ uptake reactions.

55 During detection, concentrations of NO_x and O₃ are continuously measured at the 56 top of the flow tube to facilitate subsequent simulation of gas-phase reactions within 57 the flow tube using a box model. The measurement of N₂O₅ concentration is conducted 58 through two separate 20-minute processes: one to determine the N₂O₅ loss rate in the 59 absence of aerosols (k_{wall}) and another in the presence of aerosols (k_{wall}+k_{aerosol}). The 60 only difference between the two processes is the presence or absence of aerosols. Each 61 process includes two steps: measuring N₂O₅ concentrations at both the top and bottom 62 of the flow tube, each step maintains 10 min. Throughout the measurement process, the 63 aerosol surface area (Sa) is continuously measured at the bottom of the flow tube, 64 followed by size-resolved Sa correction based on previously determined particle loss 65 coefficients(Chen et al., 2022).

By inputting the measured concentrations of NO_x, O₃, and N₂O₅ at the top of the flow tube under both aerosol-free and aerosol-present conditions into the box model, the NO₃-N₂O₅ chemical reactions and related gas-phase reactions in the flow tube are simulated until the model's output N₂O₅ concentration matches the measured value at the tube's bottom. This process yields k_{wall} and $k_{wall}+k_{aerosol}$, from which the N₂O₅ loss rate on aerosols ($k_{aerosol}$) is derived by subtraction. The γ (N₂O₅) can then be calculated using established formulas (EqS1).

$$\mathbf{k}_{N2O5} = \mathbf{0.25} \times \mathbf{Sa} \times \mathbf{\gamma} \times \mathbf{C} \tag{EqS1}$$

The uncertainty in $\gamma(N_2O_5)$ is relevant to the measurement uncertainties of each instrument and the rapid fluctuations of various parameters. To ensure accurate measurements, a rigorous data screening process was implemented. A 10% cutoff for 76 N₂O₅ variation was applied to exclude air masses that were too unstable for valid 77 analysis according to our data screening criteria. Cases showing more than a 2% 78 variation in relative humidity (RH) between HEPA inline and bypass modes were 79 excluded due to RH's significant influence on kwall of N2O5 in the aerosol flow tube. To 80 ensure significant N₂O₅ concentration differences due to heterogeneous uptake 81 reactions between the top and bottom of the flow tube, periods with low Sa conditions 82 $(<100 \ \mu\text{m}^2 \ \text{cm}^{-3})$ were filtered out. Additionally, cases where NO concentration 83 exceeded 7 ppbv were excluded to avoid significant changes in NO₃-N₂O₅ 84 concentration due to NO titration in the flow tube.

85 Therefore, the system may introduce a 2% measurement bias in $\gamma(N_2O_5)$ due to N₂O₅ concentration fluctuations, a bias of $\pm 8 \times 10^{-4}$ to $\pm 2 \times 10^{-3}$ due to RH fluctuations, a 86 16% uncertainty from Sa measurement and particle loss in the flow tube, a 4% 87 88 measurement fluctuation from Monte Carlo simulations, up to a 9% uncertainty from ambient temperature variations, and a 5% uncertainty from NO_x and O₃ concentration 89 90 fluctuations. In summary, considering all the factors and their corresponding varying 91 ranges discussed above, the overall uncertainty of $\gamma(N_2O_5)$ determined from Monte 92 Carlo simulations ranges from 16% to 43%.

93 94

95 96

Figure S1. Overall schematic of aerosol flow tube system. Bold arrows indicate the main lines of the sampling gas.

97

98

99

100

102 **S2. Calculate of organic wet mass fraction.**

103 The organic wet mass fraction is defined as the mass fraction of organics within 104 the aerosol containing water. The calculation of organic wet mass fraction is presented 105 as follows.

106Organic wet mass fraction=Organic mass/(Organic mass+NO3⁻ mass+Cl⁻107
$$mass+SO4^{2-} mass+NH4^+ mass+H2O mass)$$

- 108
- 109

Figure S2. Time series of measured concentrations of NO₂, O₃, NO, PM_{2.5} and N₂O₅, the values of γ (N₂O₅), and meteorological parameters of RH and T during the campaign. The blue line and the purple line represent Chinese national air quality standards for O₃ and PM_{2.5}, respectively.

115

Figure S3. NO₃ reactivity with VOCs. (a) Time series of VOCs contributions for
k(NO₃). (b) Mean diurnal profiles of k(NO₃). (c) The contribution of VOCs categories
for k(NO₃).

123 Figure S4. Time series of N₂O₅ and NO₃ lifetime during the campaign.

Figure S5. The distribution of parameterized $\gamma(N_2O_5)$ values of GRI09 (a) and BT09 128 (b).

Table S1. Summary of field observation results of nocturnal NO₃ and N₂O₅

131	concentrations, P(NO3), and $\tau(N_2O_5)$	from various	s regions arou	nd the world in recent
-----	-----------------------	-----------------------	--------------	----------------	------------------------

2	years.								
Location	Site type	Period	NO ₃ (pptv)	N ₂ O ₅ (pptv)	P(NO ₃)	$\tau(N_2O_5)$	Reference		
			(night)	(night)	(ppbv/h)	(s)			
Kunming,	Suburban	2021.04	5.7±3.2	33.4±75.2	0.6 ± 0.1	185±294	This work		
China				(395.1)					
Beijing,	Rural	2016.05	27	73±90 (937)	1.2 ± 0.9	270±240	(Wang et		
China							al., 2018)		
Bejing,	Urban	2016.09	-	36.7	1.4 ± 1.7		(Wang et		
China					1.4 ± 1.7	-	al., 2017a)		
Bejing,	Suburban	2016.02	-	~1400	_	_	(Wang et		
China					-	-	al., 2020b)		
Wangdu,	Rural	2014.07	-	~200 (430)	1.7 ± 0.6	76.9	(Tham et		
China							al., 2016)		
Mountain	Suburban	2014.07	-	6.8±7.7	0.5 ± 0.4	74	(Wang et		
Tai, China							al., 2017c)		
Jinan,	Urban	2014.08	-	22±12 (278)	_	_	(Wang et		
China							al., 2017b)		
Shanghai,	Urban	2011.08	16±9	310±380	1.1 ± 1.1	-	(Wang et		
China							al., 2013)		
Taizhou,	Rural	2018.05	4.4±2.2	26.0±35.7	1.0×0.5	43 ± 52	(Wang et		
China				(492)			al., 2020a)		
Taizhou,	Suburban	2018.05	4.4±2.2	26.0 ± 35.7	1.2 ± 0.4	55±68	(Li et al.,		
China							2020)		
Changzho	Suburban	2019.05	-	61.0 ± 63.1	2.8 ± 1.6	-	(Zhai et al.,		
u, China				(477.2)			2023)		

Hongkong , China	Island	2012.08	7 ±12	17±33 (336)	-	76±61	(Yan et al., 2019)
Hongkong , China	Coastal	2013.11	-	~11800	0.26	~13 h	(Brown et al., 2016)
Shenzhen, China	Coastal	2019.09	-	56±89 (1420)	2.9±0.5	-	(Niu et al., 2022)
Heshan, China	Urban	2019.09	~90	64±145	2.5±2.1	-	(Wang et al., 2022)
South China Sea	Island	2021.11	10 ± 13	120±129	1.4±0.7	30±42	(Wang et al., 2024)
Seoul, Korea	Urban, tower	2015.05	-	4100±1200, 2600±1600 (5000)	1.3	1800	(Brown et al., 2017)
Southern Spain	Coastal	2008.11	-	~500	-	-	(Crowley et al., 2011)
Northwest ern, Europe	Coastal, airborne	2010.07	-	670	-	15~120 min	(Morgan et al., 2015)
Taunus Observato	Rural	2011.08	-	~800	~1.8	-	(Phillips et al., 2016)
ry, Germanv							
East coast USA	Coastal	2002.06	17	84	-	-	(Brown et al., 2004)
California, USA	Coastal	2004.01	-	~200	-	~30 min	(Wood et al., 2005)
Salt Lake Valley, USA	Airborne	2017.01	-	0~2	0~2	-	(McDuffie et al., 2019)
Lower Fraser Valley,	Suburban	2012.07	-	1.4 (23)	-	-	(Osthoff et al., 2018)
Canada							

133 The values in brackets are the maximum of N_2O_5 concentration.

Table S2. Summary of global field observation results of $\gamma(N_2O_5)$.

Location	Period	Site type	γ(N ₂ O ₅)	Method	Reference
Kunming, China	2021.04	Suburban	0.0018~0.12 (0.23±0.21)	AFTS	This work
Beijing, China	2016.02	Suburban	0.001-0.02 (0.0046)	Box model	(Wang et al., 2020b)
Beijing, China	2016.05	Rural	0.012-0.055 (0.034)	Products	(Wang et 2018)
Beijing, China	2016.09	Urban	0.025-0.072 (0.048)	Steady-state	(Wang et
Beijing, China	2018.1	Urban	0.0075-0.0149	Steady-state	(Xia et al., 2021)
Beijing, China	2019.01	Tower	0.0005-0.2 (0.05)	Box model	(Chen et $a_1 = 2020$)
Beijing, China	2020.12	Urban	0.0045 - 0.12	AFTS	(Chen et al. 2022)
Wangdu, China	2014.06	Rural	0.005-0.039	Products	(Tham et
Wangdu, China	2014.06	Rural	0.0012-0.072	Steady-state	(Lu et al., 2012)
Wangdu, China	2017.12	Rural	0.006-0.015	Steady-state	(Xia et al., 2021)
Mountain Tai,	2014.07	Suburban	0.021-0.102 (0.061)	Steady-state	(Wang et al. 2017c)
Mountain Tai,	2018.03	Suburban	0.001-0.019 (0.01)	AFTS	(Yu et al., 2020)
Jinan, China	2014.08	Urban	0.042-0.092 (0.069)	Steady-state	(Wang et al 2017b)
Taizhou, China	2018.06	Suburban	0.027-0.107 (0.08)	Steady-state	(Li et al., 2020)
Changzhou,	2019.06	Suburban	0.057-0.123	Steady-state	(Zhai et
China			0.001-0.024	Parameterization	al., 2023)
Hongkong, China	2013.11	Suburban	0.004-0.029 (0.014)	Steady-state	(Brown et al., 2016)
Hongkong, China	2013.11	Suburban	0.0005-0.016 (0.004)	Box model	(Yun et al., 2018)
Heshan, China	2017.03	Suburban	0.002-0.067 (0.02)	AFTS	(Yu et al., 2020)
Heshan, China	2019.10	Urban	0.0019-0.077 (0.0317)	Products	(Wang et al., 2022)
Shenzhen, China	2019.10	Coastal	0.002-0.068 (0.027 ± 0.02)	Products	(Niu et al., 2022)

Location	Period	Site type	$\gamma(N_2O_5)$	Method	Reference
			0.005-0.08	Box model	
			(0.031 ± 0.02)		
New England,	2002.08	Ship	0.03-0.04	Steady-state	(Aldener
USA					et al.,
					2006)
New England,	2004.02	Airborne	0.0016-0.02	Steady-state	(Brown et
USA					al., 2006)
Texas, USA	2006.10	Airborne	0.0005-0.006 (0.0039)	Steady-state	(Brown et
					al., 2009)
Boulder, USA	2008.07	Tower	0.0009-0.012 (0.003)	AFTS	(Bertram
					et al.,
					2009)
Seattle, USA	2008.08	Coastal	0.005-0.04	AFTS	(Bertram
					et al.,
					2009)
California,	2009.09	Coastal	0.00003-0.029 (0.0054)	AFTS	(Riedel et
USA					al., 2012)
Los Angeles,	2010.05	A * 1	0.001-0.01	Steady-state	(Chang et
USA		Airborne			al., 2016)
Colorade, USA	2011.02	Tower	0.002-0.1 (0.04)	Box model	(Wagner et
					al., 2013)
Eastern, USA	2015.02		0.00002-0.175 (0.014)	Box model	(McDuffie
		Airborne			et al.,
					2018)
Salt Lake	2017.01		0.001-0.1 (0.076)	Box model	(McDuffie
Valley, USA		Airborne			et al.,
					2019)
NW	2010.06		0.0076-0.03	Steady-state	(Morgan
Europe/UK		Airborne			et al.,
					2015)
SW Germany	2011.08	Suburban	0.004-0.11 (0.028)	Products,	(Phillips et
				Steady-state	al., 2016)

141 The values in brackets are mean values of $\gamma(N_2O_5)$.

142 AFTS: aerosol flow tube system;

- 143 Steady-state: steady state approximation;
- 144 Products: products formation rate analysis;

145 Box model: inverse iterative box model simulation.

146

147

149 Table S3. Pearson Correlation Coefficient (r) among factors affecting $\gamma(N_2O_5)$,

Factors	Temp	RH	Aerosol	Aerosol	H ₂ O/NO ₃ -	Aerosol	Cl ⁻ /NO ₃ ⁻	Org dry	Org wet	Org/SO ₄ ²⁻
	1		Water	Nitrate	Molar	Chloride	Molar	mass	mass	0
					ratio		ratio	fraction	fraction	
Temp	1.00	-0.85	-0.45	-0.27	0.09	-0.30	-0.12	0.15	0.24	0.09
RH	-	1.00	0.49	0.45	-0.27	0.24	-0.09	-0.12	-0.23	-0.08
Aerosol	-	-	1.00	-0.40	0.62	-0.10	0.19	-0.66	-0.79	-0.68
Water										
Aerosol	-	-	-	1.00	-0.80	0.24	-0.39	0.34	0.38	0.43
Nitrate										
H ₂ O/NO ₃ -	-	-	-	-	1.00	-0.21	0.45	-0.64	-0.67	-0.67
Molar ratio										
Aerosol	-	-	-	-	-	1.00	0.69	-0.02	0.01	0.06
Chloride										
Cl ⁻ /NO ₃ ⁻	-	-	-	-	-	-	1.00	-0.37	-0.35	-0.33
Molar ratio										
Org dry	-	-	-	-	-	-	-	1.00	0.98	0.97
mass										
fraction										
Org wet	-	-	-	-	-	-	-	-	1.00	0.96
mass										
fraction										
Org/SO ₄ ²⁻	-	-	-	-	-	-	-	-	-	1.00

150 the statistical data are limited to the period in which measured $\gamma(N_2O_5)$ is available.

Parameterization	Factors	Parameterization	Reference	R ²	RMSE	Median
name	considered					
RIE03	Mass	$\gamma = f \times r_1 + (1-f) \times r_2$	(Riemer et	0	0.0223	0.017
	concentration	where,	al., 2003)			
	of aerosol	r ₁ =0.02				
	sulfate and	r ₁ =0.002				
	nitrate	$f = \text{mass SO}_4^2 / (\text{mass SO}_4^2 + \text{mass NO}_3)$				
	$(\mu g/m^3)$					
DAV08	[SO ₄ ²⁻],	$\gamma = x_1 \times \gamma_1^* + x_2 \times \gamma_2^* + x_3 \times \gamma_3^*$	(Davis et al.,	0.02	00317	0.034
	[NO ₃ ⁻],	where,	2008)			
	[NH4 ⁺], RH,	λ_1 =-4.10612+0.02386×RH-0.23771×max((T-291),0)				
	Т	$\gamma_1 = 1/(1 + e^{-\lambda 1})$				
		$\gamma_1^* = \min(\gamma_1, 0.08585)$				
		$\lambda_2 = (-4.10612 - 0.80570) + 0.02386 \times RH + (-$				
		0.23771+0.10225) ×max((T-291),0)				
		$\gamma_2 = 1/(1 + e^{-\lambda 2})$				
		$\gamma_2^* = \min(\gamma_2, 0.053)$				
		$\lambda_3 = -8.10774 + 0.04902 \times RH$				
		$\gamma_3 = 1/(1 + e^{-\lambda_3})$				
		$\gamma_3^* = \min(\gamma_3, 0.0154)$				
		x ₃ =[NO ₃ ⁻]/([NO ₃ ⁻]+[SO ₄ ²⁻])				
		$x_2=max(0, min(1-x_3, [NH_4^+]/([NO_3^-]+[SO_4^{2-}])-1))$				
		$x_1 = 1 - x_2 - x_3$				

Table S4. Summary of the details and performances of the parameterizations discussed in this study.

Parameterization	Factors	Parameterization	Reference	R ²	RMSE	Median
name	considered					
		(1=NH ₄ HSO ₄ , 2=(NH ₄) ₂ SO ₄ , 3=NH ₄ NO ₃)				
BT09	ALWC, [NO ₃ ⁻], [Cl ⁻],	$\gamma = \frac{4}{c} \frac{V_a}{S_a} K_H k'_{2f} \left(1 \right)$	(Bertram and	0.06	0.0228	0.034
	V _a , S _a	" (Thornton,			
		1	2009)			
		$-\frac{\left(\frac{k_{3}[\mathrm{H}_{2}\mathrm{O}]}{k_{2b}[\mathrm{NO}_{3}^{-}]}\right)+1+\left(\frac{k_{4}[Cl^{-}]}{k_{2b}[\mathrm{NO}_{3}^{-}]}\right)}{\right)}$				
		where,				
		K_H =51, Henry's Law Coefficient (Fried et al., 1994)				
		$k'_{2f} = \beta - \beta_e^{(-\delta[H_2O])}$				
		$\beta = 1.15 \times 10^6 (s^{-1})$				
		δ=0.13 (M ⁻¹)				
		$\frac{k_3}{k_{2b}} = 0.06$				
		$\frac{k_4}{k_{2b}} = 29$				
BT09 w/o Cl	ALWC,		(Bertram	0.07	0.0202	0.020
	[NO ₃ ⁻], V _a ,	$\gamma = \frac{4 v_a}{c S} K_H k'_{2f} \left(1 - \frac{1}{(k_0 [H_0 \Omega])} \right)$	and			
	$\mathbf{S}_{\mathbf{a}}$	$\left(\frac{k_{3}\left[112O\right]}{k_{2b}\left[NO_{3}^{-}\right]}\right) + 1$	Thornton,			
		parameters are same as BT09.	2009)			
GRI09	ALWC,		(Griffiths et	0.06	0.0533	0.063
	[NO ₃ ⁻], V _a , S _a	$\gamma = \frac{4}{c} \frac{v_a}{S_a} K_H k'_{2f} \left(1 - \frac{1}{\left(\frac{k_3 [H_2 0]}{k_{2b} [N0_3^-]}\right) + 1} \right)$	al., 2009)			

Parameterization	Factors	Parameterization	Reference	R ²	RMSE	Median
name	considered					
		Where,				
		<i>K_H</i> =51				
		$\frac{k_3}{k_{2b}} = 1/30$				
		$k'_{2f} = 5 \times 10^{6}$				
YU20	ALWC, [NO ₃ ⁻], [Cl ⁻],	$\gamma = \frac{4}{c} \frac{V_a}{S_a} K_H k'_{2f} \left(1 \right)$	(Yu et al., 2020)	0.09	0.02	0.019
	· a) ~a	$-\frac{1}{\left(\frac{k_{3}[H_{2}O]}{k_{2b}[NO_{3}^{-}]}\right)+1+\left(\frac{k_{4}[Cl^{-}]}{k_{2b}[NO_{3}^{-}]}\right)}\right)$				
		where,				
		$K_H = 51$				
		$k'_{2f} = [H_2O] \times 3 \times 10^4$				
		$\frac{k_3}{k_{2b}} = 0.033$				
		$\frac{k_4}{k_{2b}} = 3.4$				
EJ05	Mass	γ=mass SO ₄ ²⁻ /dry mass×γ ₁ +mass organic/dry mass×γ ₂	(Evans and	0	0.0228	0.019
	fraction of	where,	Jacob, 2005)			
	aerosol	$\gamma_1 = \alpha \times 10^{\beta}$				
	sulfate and	$\alpha = 2.79 \times 10^{-4} + 1.3 \times 10^{-4} \times RH - 3.43 \times 10^{-6} \times RH^2 + 7.52 \times 10^{-8}$				
	organic, RH,	×RH ³				

Parameterization	Factors	Parameterization	Reference	R ²	RMSE	Median
name	considered					
	Т	$\beta = 4 \times 10^{-2} \times (T - 294), (T \ge 282K)$				
		β=-0.48, (T<282K)				
		γ ₂ =RH×5.2×10 ⁻⁴ , (RH<57%)				
		γ ₂ =0.03, (RH≥57%)				
BT09+Rie09	ALWC,	$\frac{1}{1} - \frac{1}{1} + \frac{1}{1}$	(Bertram	0.03	0.0278	0.012
	[NO ₃ ⁻], [Cl ⁻],	Y Ycore Yorg.coat	and			
	V _a , S _a ,	where,	Thornton,			
	organic	γ_{core} =BT09	2009;Anttila			
	coating	$\gamma = \frac{4RTD_{org}H_{org}R_c}{4RTD_{org}H_{org}R_c}$	et al.,			
		rorg.coat clR _p	2006;Riemer			
		R, gas constant (atm \cdot m ³ /mol \cdot K)	et al., 2009)			
		T, temperature (K)				
		$D_{org}H_{org} = \epsilon D_{aq}H_{aq}$				
		ε=0.03				
		H _{aq} =5000, Henry's Law Coefficient in aqueous core (mol				
		$m^{-3} atm^{-1}$)				
		$D_{aq}=1\times10^{-9}$, N ₂ O ₅ Liquid Diffusion Coefficient (m ² s ⁻¹)				
		R _p , median particle total radius, (m)				
		$R_c=R_p-l$, particle core radius (m)				
		$l=R_p \times (1-\beta^{1/3})$, organic coating thickness (m)				
		$\beta = V_{inorganic} / (V_{organic} + V_{inorganic})$				
BT09+Rie09(wG14)	ALWC,	$\frac{1}{2} = \frac{1}{2} + \frac{1}{2}$	(Gaston et	0.07	0.0201	0.019
	[NO ₃ ⁻], [Cl ⁻],	Y Ycore Yorg.coat	al., 2014)	(O/C=0.8);	(O/C=0.8);	(O/C=0.8);

Parameterization	Factors	Parameterization	Reference	R ²	RMSE	Median
name	considered					
	V _a , S _a ,	same as BT09+Rie09 except,		0.07	0.0248	0.006
	organic	ϵ =0.06, (RH \leq 30% and O/C \geq 0.7)		(O/C=0.5)	(O/C=0.5)	(O/C=0.5)
	coating, O/C,	ϵ =0.008, (RH \leqslant 30% and O/C \leqslant 0.7)				
	RH	ϵ =0.3, (30% \leq RH \leq 70% and O/C \geq 0.7)				
		ϵ =0.05, (30% \leq RH \leq 70% and O/C \leq 0.7)				
		$\epsilon = 1.0, (70\% \leq \text{RH and O/C} \geq 0.7)$				
		ϵ =0.8, (70% \leq RH and O/C \leq 0.7)				
MD18	ALWC,	$\frac{1}{1} - \frac{1}{1} + \frac{1}{1}$	(McDuffie et	0.05	0.0205	0.022
	[NO ₃ ⁻], [Cl ⁻],	$\frac{\gamma}{\gamma} - \frac{\gamma}{\gamma_{core}} + \frac{\gamma}{\gamma_{org.coat}}$	al., 2018)	(O/C=0.8);	(O/C=0.8);	(O/C=0.8);
	$V_a, S_a,$	same as BT09+Rie09 except,		0.04	0.0208	0.018
	organic	γ_{core} =BT09 w/o Cl		(O/C=0.5)	(O/C=0.5)	(O/C=0.5)
	coating, O/C,	$k'_{2f} = [H_2O] \times 2.14 \times 10^5$				
	RH	$\frac{k_3}{k_{2b}} = 0.04$				
		ε=0.15×O/C+0.0016×RH				

References:

Aldener, M., Brown, S. S., Stark, H., Williams, E. J., Lerner, B. M., Kuster, W. C., Goldan, P. D., Quinn, P. K., Bates, T. S., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactivity and loss mechanisms of NO₃ and N_2O_5 in a polluted marine environment: Results from in situ measurements during New England Air Quality Study 2002, Journal of Geophysical Research-Atmospheres, 111, 10.1029/2006jd007252, 2006.

Anttila, T., Kiendler-Scharr, A., Tillmann, R., and Mentel, T. F.: On the reactive uptake of gaseous compounds by organic-coated aqueous aerosols: Theoretical analysis and application to the heterogeneous hydrolysis of N₂O₅, Journal of Physical Chemistry A, 110, 10435-10443, 10.1021/jp062403c, 2006.

Bertram, T. H., and Thornton, J. A.: Toward a general parameterization of N₂O₅ reactivity on aqueous particles: the competing effects of particle liquid water, nitrate and chloride, Atmospheric Chemistry and Physics, 9, 8351-8363, 10.5194/acp-9-8351-2009, 2009.

Bertram, T. H., Thornton, J. A., and Riedel, T. P.: An experimental technique for the direct measurement of N_2O_5 reactivity on ambient particles, Atmospheric Measurement Techniques, 2, 231-242, 10.5194/amt-2-231-2009, 2009.

Brown, S. S., Dibb, J. E., Stark, H., Aldener, M., Vozella, M., Whitlow, S., Williams, E. J., Lerner, B. M., Jakoubek, R., Middlebrook, A. M., DeGouw, J. A., Warneke, C., Goldan, P. D., Kuster, W. C., Angevine, W. M., Sueper, D. T., Quinn, P. K., Bates, T. S., Meagher, J. F., Fehsenfeld, F. C., and Ravishankara, A. R.: Nighttime removal of NOx in the summer marine boundary layer, Geophysical Research Letters, 31, 10.1029/2004gl019412, 2004.

Brown, S. S., Ryerson, T. B., Wollny, A. G., Brock, C. A., Peltier, R., Sullivan, A. P., Weber, R. J., Dube, W. P., Trainer, M., Meagher, J. F., Fehsenfeld, F. C., and Ravishankara, A. R.: Variability in nocturnal nitrogen oxide processing and its role in regional air quality, Science, 311, 67-70, 10.1126/science.1120120, 2006.

Brown, S. S., Dube, W. P., Fuchs, H., Ryerson, T. B., Wollny, A. G., Brock, C. A., Bahreini, R., Middlebrook, A. M., Neuman, J. A., Atlas, E., Roberts, J. M., Osthoff, H. D., Trainer, M., Fehsenfeld, F. C., and Ravishankara, A. R.: Reactive uptake coefficients for N₂O₅ determined from aircraft measurements during the Second Texas Air Quality Study: Comparison to current model parameterizations, Journal of Geophysical Research-Atmospheres, 114, 10.1029/2008jd011679, 2009.

Brown, S. S., Dube, W. P., Tham, Y. J., Zha, Q. Z., Xue, L. K., Poon, S., Wang, Z., Blake, D. R., Tsui, W., Parrish, D. D., and Wang, T.: Nighttime chemistry at a high altitude site above Hong Kong, Journal of Geophysical Research-Atmospheres, 121, 2457-2475, 10.1002/2015jd024566, 2016.

Brown, S. S., An, H., Lee, M., Park, J. H., Lee, S. D., Fibiger, D. L., McDuffie, E. E., Dube, W. P., Wagner, N. L., and Min, K. E.: Cavity enhanced spectroscopy for measurement of nitrogen oxides in the Anthropocene: results from the Seoul tower during MAPS 2015, Faraday Discussions, 200, 529-557, 10.1039/c7fd00001d, 2017.

Chang, W. L., Brown, S. S., Stutz, J., Middlebrook, A. M., Bahreini, R., Wagner, N. L., Dube, W. P., Pollack, I. B., Ryerson, T. B., and Riemer, N.: Evaluating N₂O₅ heterogeneous hydrolysis parameterizations for CalNex 2010, Journal of Geophysical Research-Atmospheres, 121, 5051-5070, 10.1002/2015jd024737, 2016.

Chen, X., Wang, H., Zhai, T., Li, C., and Lu, K.: Direct measurement of N₂O₅ heterogeneous uptake coefficients on ambient aerosols via an aerosol flow tube system: design, characterizationand performance, Atmospheric Measurement Techniques, 15, 7019-7037, 10.5194/amt-15-7019-2022, 2022.

Chen, X. R., Wang, H. C., Lu, K. D., Li, C. M., Zhai, T. Y., Tan, Z. F., Ma, X. F., Yang, X. P., Liu, Y. H., Chen, S. Y., Dong, H. B., Li, X., Wu, Z. J., Hu, M., Zeng, L. M., and Zhang, Y. H.: Field Determination of Nitrate Formation Pathway in Winter Beijing, Environmental Science & Technology, 54, 9243-9253, 10.1021/acs.est.0c00972, 2020.

Crowley, J. N., Thieser, J., Tang, M. J., Schuster, G., Bozem, H., Beygi, Z. H., Fischer, H., Diesch, J. M., Drewnick, F., Borrmann, S., Song, W., Yassaa, N., Williams, J., Pohler, D., Platt, U., and Lelieveld, J.: Variable lifetimes and loss mechanisms for NO₃ and N₂O₅ during the DOMINO campaign: contrasts between marine, urban and continental air, Atmospheric Chemistry and Physics, 11, 10853-10870, 10.5194/acp-11-10853-2011, 2011.

Davis, J. M., Bhave, P. V., and Foley, K. M.: Parameterization of N₂O₅ reaction probabilities on the surface of particles containing ammonium, sulfate, and nitrate, Atmospheric Chemistry and Physics, 8, 5295-5311, 10.5194/acp-8-5295-2008, 2008.

Evans, M. J., and Jacob, D. J.: Impact of new laboratory studies of N₂O₅ hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH, Geophysical Research Letters, 32, 10.1029/2005gl022469, 2005.

Fried, A., Henry, B. E., Calvert, J. G., and Mozurkewich, M.: The reaction probability of n_{205} with sulfuric-acid aerosols at stratospheric temperatures and compositions, Journal of Geophysical Research-Atmospheres, 99, 3517-3532, 10.1029/93jd01907, 1994.

Gaston, C. J., Thornton, J. A., and Ng, N. L.: Reactive uptake of N₂O₅ to internally mixed inorganic and organic particles: the role of organic carbon oxidation state and inferred organic phase separations, Atmospheric Chemistry and Physics, 14, 5693-5707, 10.5194/acp-14-5693-2014, 2014.

Griffiths, P. T., Badger, C. L., Cox, R. A., Folkers, M., Henk, H. H., and Mentel, T. F.: Reactive Uptake of N₂O₅ by Aerosols Containing Dicarboxylic Acids. Effect of Particle Phase, Composition, and Nitrate Content, Journal of Physical Chemistry A, 113, 5082-5090, 10.1021/jp8096814, 2009.

Li, Z. Y., Xie, P. H., Hu, R. Z., Wang, D., Jin, H. W., Chen, H., Lin, C., and Liu, W. Q.: Observations of N_2O_5 and NO_3 at a suburban environment in Yangtze river delta in China: Estimating heterogeneous N_2O_5 uptake coefficients, Journal of Environmental Sciences, 95, 248-255, 10.1016/j.jes.2020.04.041, 2020.

Lu, X., Qin, M., Xie, P. H., Duan, J., Fang, W., and Liu, W. Q.: Observation of ambient NO₃ radicals by LP-DOAS at a rural site in North China Plain, Science of the

Total Environment, 804, 10.1016/j.scitotenv.2021.149680, 2022.

McDuffie, E. E., Fibiger, D. L., Dube, W. P., Lopez-Hilfiker, F., Lee, B. H., Thornton, J. A., Shah, V., Jaegle, L., Guo, H. Y., Weber, R. J., Reeves, J. M., Weinheimer, A. J., Schroder, J. C., Campuzano-Jost, P., Jimenez, J. L., Dibb, J. E., Veres, P., Ebben, C., Sparks, T. L., Wooldridge, P. J., Cohen, R. C., Hornbrook, R. S., Apel, E. C., Campos, T., Hall, S. R., Ullmann, K., and Brown, S. S.: Heterogeneous N₂O₅ Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations, Journal of Geophysical Research-Atmospheres, 123, 4345-4372, 10.1002/2018jd028336, 2018.

McDuffie, E. E., Womack, C. C., Fibiger, D. L., Dube, W. P., Franchin, A., Middlebrook, A. M., Goldberger, L., Lee, B., Thornton, J. A., Moravek, A., Murphy, J. G., Baasandorj, M., and Brown, S. S.: On the contribution of nocturnal heterogeneous reactive nitrogen chemistry to particulate matter formation during wintertime pollution events in Northern Utah, Atmospheric Chemistry and Physics, 19, 9287-9308, 10.5194/acp-19-9287-2019, 2019.

Morgan, W. T., Ouyang, B., Allan, J. D., Aruffo, E., Di Carlo, P., Kennedy, O. J., Lowe, D., Flynn, M. J., Rosenberg, P. D., Williams, P. I., Jones, R., McFiggans, G. B., and Coe, H.: Influence of aerosol chemical composition on N₂O₅ uptake: airborne regional measurements in northwestern Europe, Atmospheric Chemistry and Physics, 15, 973-990, 10.5194/acp-15-973-2015, 2015.

Niu, Y. B., Zhu, B., He, L. Y., Wang, Z., Lin, X. Y., Tang, M. X., and Huang, X. F.: Fast Nocturnal Heterogeneous Chemistry in a Coastal Background Atmosphere and Its Implications for Daytime Photochemistry, Journal of Geophysical Research-Atmospheres, 127, 10.1029/2022jd036716, 2022.

Osthoff, H. D., Odame-Ankrah, C. A., Taha, Y. M., Tokarek, T. W., Schiller, C. L., Haga, D., Jones, K., and Vingarzan, R.: Low levels of nitryl chloride at ground level: nocturnal nitrogen oxides in the Lower Fraser Valley of British Columbia, Atmospheric Chemistry and Physics, 18, 6293-6315, 10.5194/acp-18-6293-2018, 2018.

Phillips, G. J., Thieser, J., Tang, M. J., Sobanski, N., Schuster, G., Fachinger, J., Drewnick, F., Borrmann, S., Bingemer, H., Lelieveld, J., and Crowley, J. N.: Estimating N₂O₅ uptake coefficients using ambient measurements of NO₃, N₂O₅, ClNO₂ and particle-phase nitrate, Atmospheric Chemistry and Physics, 16, 13231-13249, 10.5194/acp-16-13231-2016, 2016.

Riedel, T. P., Bertram, T. H., Ryder, O. S., Liu, S., Day, D. A., Russell, L. M., Gaston, C. J., Prather, K. A., and Thornton, J. A.: Direct N₂O₅ reactivity measurements at a polluted coastal site, Atmospheric Chemistry and Physics, 12, 2959-2968, 10.5194/acp-12-2959-2012, 2012.

Riemer, N., Vogel, H., Vogel, B., Schell, B., Ackermann, I., Kessler, C., and Hass, H.: Impact of the heterogeneous hydrolysis of N_2O_5 on chemistry and nitrate aerosol formation in the lower troposphere under photosmog conditions, Journal of Geophysical Research-Atmospheres, 108, 10.1029/2002jd002436, 2003.

Riemer, N., Vogel, H., Vogel, B., Anttila, T., Kiendler-Scharr, A., and Mentel, T.

F.: Relative importance of organic coatings for the heterogeneous hydrolysis of N_2O_5 during summer in Europe, Journal of Geophysical Research-Atmospheres, 114, 10.1029/2008jd011369, 2009.

Tham, Y. J., Wang, Z., Li, Q. Y., Yun, H., Wang, W. H., Wang, X. F., Xue, L. K., Lu, K. D., Ma, N., Bohn, B., Li, X., Kecorius, S., Gross, J., Shao, M., Wiedensohler, A., Zhang, Y. H., and Wang, T.: Significant concentrations of nitryl chloride sustained in the morning: investigations of the causes and impacts on ozone production in a polluted region of northern China, Atmospheric Chemistry and Physics, 16, 14959-14977, 10.5194/acp-16-14959-2016, 2016.

Tham, Y. J., Wang, Z., Li, Q. Y., Wang, W. H., Wang, X. F., Lu, K. D., Ma, N., Yan, C., Kecorius, S., Wiedensohler, A., Zhang, Y. H., and Wang, T.: Heterogeneous N₂O₅ uptake coefficient and production yield of ClNO₂ in polluted northern China: roles of aerosol water content and chemical composition, Atmospheric Chemistry and Physics, 18, 13155-13171, 10.5194/acp-18-13155-2018, 2018.

Wagner, N. L., Riedel, T. P., Young, C. J., Bahreini, R., Brock, C. A., Dube, W. P., Kim, S., Middlebrook, A. M., Ozturk, F., Roberts, J. M., Russo, R., Sive, B., Swarthout, R., Thornton, J. A., VandenBoer, T. C., Zhou, Y., and Brown, S. S.: N₂O₅ uptake coefficients and nocturnal NO₂ removal rates determined from ambient wintertime measurements, Journal of Geophysical Research-Atmospheres, 118, 9331-9350, 10.1002/jgrd.50653, 2013.

Wang, H. C., Lu, K. D., Chen, X. R., Zhu, Q. D., Chen, Q., Guo, S., Jiang, M. Q., Li, X., Shang, D. J., Tan, Z. F., Wu, Y. S., Wu, Z. J., Zou, Q., Zheng, Y., Zeng, L. M., Zhu, T., Hu, M., and Zhang, Y. H.: High N₂O₅ Concentrations Observed in Urban Beijing: Implications of a Large Nitrate Formation Pathway, Environmental Science & Technology Letters, 4, 416-420, 10.1021/acs.estlett.7b00341, 2017a.

Wang, H. C., Lu, K. D., Guo, S., Wu, Z. J., Shang, D. J., Tan, Z. F., Wang, Y. J., Le Breton, M., Lou, S. R., Tang, M. J., Wu, Y. S., Zhu, W. F., Zheng, J., Zeng, L. M., Hallquist, M., Hu, M., and Zhang, Y. H.: Efficient N₂O₅ uptake and NO₃ oxidation in the outflow of urban Beijing, Atmospheric Chemistry and Physics, 18, 9705-9721, 10.5194/acp-18-9705-2018, 2018.

Wang, H. C., Chen, X. R., Lu, K. D., Hu, R. Z., Li, Z. Y., Wang, H. L., Ma, X. F., Yang, X. P., Chen, S. Y., Dong, H. B., Liu, Y., Fang, X., Zeng, L. M., Hu, M., and Zhang, Y. H.: NO₃ and N₂O₅ chemistry at a suburban site during the EXPLORE-YRD campaign in 2018, Atmospheric Environment, 224, 10.1016/j.atmosenv.2019.117180, 2020a.

Wang, H. C., Chen, X. R., Lu, K. D., Tan, Z. F., Ma, X. F., Wu, Z. J., Li, X., Liu, Y. H., Shang, D. J., Wu, Y. S., Zeng, L. M., Hu, M., Schmitt, S., Kiendler-Scharr, A., Wahner, A., and Zhang, Y. H.: Wintertime N₂O₅ uptake coefficients over the North China Plain, Science Bulletin, 65, 765-774, 10.1016/j.scib.2020.02.006, 2020b.

Wang, H. C., Yuan, B., Zheng, E., Zhang, X. X., Wang, J., Lu, K. D., Ye, C. S., Yang, L., Huang, S., Hu, W. W., Yang, S. X., Peng, Y. W., Qi, J. P., Wang, S. H., He, X. J., Chen, Y. B., Li, T. G., Wang, W. J., Huangfu, Y. B., Li, X. B., Cai, M. F., Wang, X. M., and Shao, M.: Formation and impacts of nitryl chloride in Pearl River Delta, Atmospheric Chemistry and Physics, 22, 14837-14858, 10.5194/acp-22-14837-2022, 2022.

Wang, J., Wang, H. C., Tham, Y. J., Ming, L. L., Zheng, Z. L., Fang, G. Z., Sun, C. Z., Ling, Z. H., Zhao, J., and Fan, S. J.: Measurement report: Atmospheric nitrate radical chemistry in the South China Sea influenced by the urban outflow of the Pearl River Delta, Atmospheric Chemistry and Physics, 24, 977-992, 10.5194/acp-24-977-2024, 2024.

Wang, S. S., Shi, C. Z., Zhou, B., Zhao, H., Wang, Z. R., Yang, S. N., and Chen, L. M.: Observation of NO₃ radicals over Shanghai, China, Atmospheric Environment, 70, 401-409, 10.1016/j.atmosenv.2013.01.022, 2013.

Wang, X. F., Wang, H., Xue, L. K., Wang, T., Wang, L. W., Gu, R. R., Wang, W. H., Tham, Y. J., Wang, Z., Yang, L. X., Chen, J. M., and Wang, W. X.: Observations of N₂O₅ and ClNO₂ at a polluted urban surface site in North China: High N₂O₅ uptake coefficients and low ClNO₂ product yields, Atmospheric Environment, 156, 125-134, 10.1016/j.atmosenv.2017.02.035, 2017b.

Wang, Z., Wang, W. H., Tham, Y. J., Li, Q. Y., Wang, H., Wen, L., Wang, X. F., and Wang, T.: Fast heterogeneous N₂O₅ uptake and ClNO₂ production in power plant and industrial plumes observed in the nocturnal residual layer over the North China Plain, Atmospheric Chemistry and Physics, 17, 12361-12378, 10.5194/acp-17-12361-2017, 2017c.

Wood, E. C., Bertram, T. H., Wooldridge, P. J., and Cohen, R. C.: Measurements of N₂O₅, NO₂, and O₃ east of the San Francisco Bay, Atmospheric Chemistry and Physics, 5, 483-491, 10.5194/acp-5-483-2005, 2005.

Xia, M., Peng, X., Wang, W. H., Yu, C. A., Wang, Z., Tham, Y. J., Chen, J. M., Chen, H., Mu, Y. J., Zhang, C. L., Liu, P. F., Xue, L. K., Wang, X. F., Gao, J., Li, H., and Wang, T.: Winter ClNO₂ formation in the region of fresh anthropogenic emissions: seasonal variability and insights into daytime peaks in northern China, Atmospheric Chemistry and Physics, 21, 15985-16000, 10.5194/acp-21-15985-2021, 2021.

Yan, C., Tham, Y. J., Zha, Q., Wang, X., Xue, L., Dai, J., Wang, Z., and Wang, T.: Fast heterogeneous loss of N₂O₅ leads to significant nighttime NOx removal and nitrate aerosol formation at a coastal background environment of southern China, Science of the Total Environment, 677, 637-647, 10.1016/j.scitotenv.2019.04.389, 2019.

Yu, C., Wang, Z., Xia, M., Fu, X., Wang, W. H., Tham, Y. J., Chen, T. S., Zheng, P. G., Li, H. Y., Shan, Y., Wang, X. F., Xue, L. K., Zhou, Y., Yue, D. L., Ou, Y. B., Gao, J., Lu, K. D., Brown, S. S., Zhang, Y. H., and Wang, T.: Heterogeneous N₂O₅ reactions on atmospheric aerosols at four Chinese sites: improving model representation of uptake parameters, Atmospheric Chemistry and Physics, 20, 4367-4378, 10.5194/acp-20-4367-2020, 2020.

Yun, H., Wang, T., Wang, W. H., Tham, Y. J., Li, Q. Y., Wang, Z., and Poon, S. C. N.: Nighttime NOx loss and ClNO₂ formation in the residual layer of a polluted region:

Insights from field measurements and an iterative box model, Science of the Total Environment, 622, 727-734, 10.1016/j.scitotenv.2017.11.352, 2018.

Zhai, T. Y., Lu, K. D., Wang, H. C., Lou, S. R., Chen, X. R., Hu, R. Z., and Zhang, Y. H.: Elucidate the formation mechanism of particulate nitrate based on direct radical observations in the Yangtze River Delta summer 2019, Atmospheric Chemistry and Physics, 23, 2379-2391, 10.5194/acp-23-2379-2023, 2023.