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Abstract. Black carbon (BC) is an essential component of particulate matter (PM), with a significant impact
on climate change. Few studies have investigated the long-term changes in BC and its sources, particularly
considering primary emissions of BC, which is crucial for developing effective mitigation strategies. Here, 3-year
BC observations (2019–2021) are reported in Nanjing, a polluted city in the Yangtze River Delta (YRD) region,
eastern China. The results revealed that the average BC concentration was 2.5± 1.6 µgm−3, peaking in winter,
with approximately 80 % attributed to liquid fuel combustion. Based on 3-year monitoring data, the random
forest (RF) algorithm was employed to reconstruct BC concentrations in Nanjing from 2014 to 2021. Source
apportionment was conducted on the reconstructed time series, which revealed a significant decrease (p< 0.05)
in BC levels over the 8-year period, primarily due to reduced emissions from liquid fuels. Compared to the earlier
control policy period (P1: 2013–2017), BC concentrations declined more steeply after 2018 (P2) due to reduced
solid fuel burning. The seasonal analysis indicated significant reductions (p< 0.05) in BC, BCliquid (black carbon
from liquid fuel combustion) and BCsolid (black carbon from solid fuel combustion) during winter, with BCliquid
accounting for 77 % of the reduction. Overall, emission reduction was the dominant factor in lowering BC levels,
contributing between 62 % and 86 %, though meteorological conditions played an increasingly important role
in P2, particularly for BC and BCliquid. Our results demonstrate that targeted control measures for liquid fuel
combustion are necessary, as it is a major driver of BC reduction, and highlight the non-negligible influence of
meteorological factors on long-term BC variations.
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1 Introduction

Black carbon (BC), also known as elemental carbon (EC), is
a carbonaceous component of particulate matter (PM) pro-
duced through incomplete combustion processes, including
domestic cooking, heating and coke making (Bond et al.,
2013; Liu et al., 2020a). BC particles significantly influ-
ence the Earth’s energy balance and are major contributors to
global warming due to their strong absorption of solar radi-
ation across visible–infrared wavelengths (Ramanathan and
Carmichael, 2008; IPCC, 2023). Additionally, the presence
of BC particles in the atmosphere reduces atmospheric vis-
ibility and causes air quality to deteriorate, especially in ur-
ban areas, due to their significant absorption properties (Ding
et al., 2016). Exposure to BC aerosols has also been linked to
increased health risks, such as heart attacks and cardiovascu-
lar diseases (Sarigiannis et al., 2015; Li et al., 2019). Owing
to BC’s short atmospheric lifetime of only 3 to 14 d, much
shorter than that of greenhouse gases, which can persist for
decades, reducing BC emissions can quickly mitigate global
warming and benefit human health.

Accurate quantification of BC from different sources is
essential to propose efficient mitigation strategies. Various
methods in the past have been applied to BC source appor-
tionment, including emission inventories (Zhu et al., 2020),
radiocarbon isotope analysis (Zhang et al., 2014; Yu et al.,
2023), and receptor models (Zong et al., 2016). However,
uncertainties arise due to a lack of reliable emission factors,
and receptor models require additional aerosol composition
data. The radiocarbon source apportionment method is lim-
ited by its low temporal resolution, which hinders its ability
to capture the dynamic changes in BC sources. In contrast,
the Aethalometer model, with its high temporal resolution
and rapid analysis, has been widely adopted for quantifying
BC derived from liquid fuel (BCliquid) and solid fuel (BCsolid)
combustion (Lin et al., 2021; Sandradewi et al., 2008; Helin
et al., 2018).

To address the severe air pollution issue, the Chinese gov-
ernment implemented the “China Clean Action Plan” during
2013–2017 and the “Three-Year Action Plan” during 2018–
2020. Several studies in recent years have focused on long-
term BC mass concentrations in major cities or regions of
China to evaluate the impact of emission reduction measures
implemented by the Chinese government (Sun et al., 2022a;
He et al., 2023). However, while most of these studies doc-
ument changes in BC concentrations, few have explored the
specific contributions of different BC sources. Such an un-
derstanding is essential for identifying the drivers behind ob-
served changes and for developing targeted mitigation strate-
gies. Moreover, comprehensive datasets of BC are crucial
for a better understanding of BC mass concentration vari-
ations and their implications for air quality policy. How-
ever, newly established monitoring stations often lack suf-
ficient long-term observations, making it difficult to evalu-
ate historical variations in BC concentrations. This limita-

tion hinders efforts to understand BC dynamics in regions
with limited prior monitoring, ultimately complicating the
formulation of effective emission reduction policies. Chem-
ical transport models (CTMs), which integrate meteorologi-
cal conditions and emission inventories, are effective in sim-
ulating near-surface BC concentrations over short-term pe-
riods (Cheng et al., 2019; Zhou et al., 2023). Nonetheless,
their computational intensity and time-consuming nature of-
ten limit their application to long-term simulation. In con-
trast, the prediction of PM or other air pollutants can be effi-
ciently achieved through statistical models that establish re-
lationships between measured values and various variables,
including co-emitted pollutants, air humidity and air tem-
perature. Recently, the historical values of nitrate δ15N and
PM2.5 have been accurately reproduced based on the statisti-
cal relationships established between measured variables and
other influencing factors (Fan et al., 2023; Zhao et al., 2020;
Wu et al., 2024). This method provides a relatively straight-
forward approach for simulating historical air pollutants and
is accurate enough for examining their long-term variations.

The long-term variation in atmospheric aerosol composi-
tion can be attributed to both meteorological conditions and
emissions. CTMs are one of the often-used tools to quan-
tify the impact of meteorology and emission on aerosols,
as they consider the physical and chemical processes that
air pollutants undergo during their time in the atmosphere
(Li et al., 2023; Zhang et al., 2019; Du et al., 2022). How-
ever, the accuracy of CTMs is often constrained by their ini-
tial conditions and the uncertainty in emission inventories as
well as in models’ underlying assumptions. Another com-
monly used method for separating the influences of mete-
orology and emissions on target atmospheric pollutants is
the Kolmogorov–Zurbenko (KZ) filter. For example, Sun
et al. (2022b) found that the meteorological contribution to
the PM2.5 trend presented a distinct spatial pattern over the
Twain-Hu Basin, with northern positive rates up to 61 % and
southern negative rates down to −25 %. Chen et al. (2019)
reported that anthropogenic emissions contributed to 80 % of
reduction in PM2.5 in Beijing from 2013 to 2017. Compared
to CTMs, the KZ filter is easier to operate and is suitable for
long-term datasets of air pollutants, making it a practical tool
for analyzing trends in atmospheric pollutants.

In the present study, a 3-year BC mass concentration mea-
surement was conducted to clarify BC characteristics and
quantify contributions from different sources. The measured
BC values at two wavelengths (370 and 880 nm) were used
in a random forest model to establish the nonlinear relation-
ships with predictor variables, such as air pollutants and me-
teorological factors. Historical BC concentrations at the two
wavelengths were reconstructed from 2014–2021 using the
trained models to investigate the long-term temporal varia-
tion in BC and sources, with a focus on the two distinct emis-
sion reduction periods: the China Clean Action Plan and the
Three-Year Action Plan. Finally, the impacts of meteorology
and emissions on the long-term trend of BC were quantified
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to provide deeper insights into the factors driving its histori-
cal changes.

2 Data and methods

2.1 Sampling site and data

Nanjing is located in the eastern part of China and is a vi-
tal industrial and economic center. The sampling instrument
used for monitoring BC mass concentration was positioned
on the rooftop of a seven-story building at the campus of the
Nanjing University of Information Science and Technology
(NUSIT; 32.21° N, 118.72° E; Fig. S1 in the Supplement),
Nanjing, China. The sampling site represents a typical ur-
ban atmosphere, encircled by local roads with an expressway
approximately 1 km away. Moreover, a steel manufacturing
plant and a petroleum chemical factory were about 5 km
away from the sampling site. Traffic and industrial emissions
are the primary sources of air pollution at the sampling site.
Nanjing experiences four dominant seasons each year: winter
(December–February), spring (March–May), summer (June–
August) and autumn (September–November).

A dual-spot Aethalometer (AE33, Magee Scientific) was
used to measure BC mass concentration from January 2019
to December 2021. The flow rate of AE33 was set to
5 Lmin−1, and the inlet cutoff size was 2.5 µm throughout the
entire period. In brief, aerosol particles were collected on a
filter tape automatically, and light attenuations (ATNs) were
measured in seven distinct spectral regions (370, 470, 520,
590, 660, 880, 950 nm) with a time resolution of 1 min. The
ATNs were then converted to BC mass concentrations with
seven different mass absorption cross sections (18.47, 14.54,
13.14, 11.58, 10.35, 7.77, 7.19 m2 g−1). In this study the BC
concentration calculated by the 880 nm spectral region was
used, as BC is the predominant absorber at this wavelength
(Drinovec et al., 2015). The BC data were missing due to
instrument maintenance from 13 to 31 July 2020 and from
23 July to 26 September 2021. Hourly averaged concentra-
tions of PM2.5, carbon monoxide (CO), sulfur dioxide (SO2)
and nitrogen dioxide (NO2) were obtained from the China
National Air Quality Monitoring Station, located approxi-
mately 10 km from the sampling site. Hourly resolution me-
teorological data, including temperature (T ), relative humid-
ity (RH), wind speed (WS), wind direction (WD) and bound-
ary layer height (BLH), were sourced from the ERA5 reanal-
ysis datasets provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF).

2.2 Aethalometer measurements and source
apportionment

The absorption Ångström exponent (AAE) describes the
spectral dependence of BC and is determined through a
power-law fit between light absorption (babs(λ)) and seven

wavelengths; the equation can be written as

babs(λ)= β · λ−AAE, (1)

where β is a constant dependent on aerosol mass concen-
tration and size distribution. Subsequently, the Aethalome-
ter model is utilized to quantify the contribution of liquid
and solid fuels to BC. The model assumes that ambient BC
primarily originates from liquid fuel and solid fuel combus-
tion, with BC from two distinct combustion sources having
differing light absorption spectra. Hence, the total light ab-
sorption at 880 nm is attributed to liquid-fuel-generated BC
(BCliquid) and solid-fuel-derived BC (BCsolid). The relation-
ships between babs(λ), λ and AAE can thus be expressed as
follows:

babs(λ1)liquid

babs(λ2)liquid
=

(
λ1

λ2

)−AAEliquid

, (2)

bαbs(λ1)solid

bαbs(λ2)solid
=

(
λ1

λ2

)−AAEsolid

, (3)

babs(λ)= babs(λ)liquid+ babs(λ)solid , (4)

where AAEliquid and AAEsoild are the AAE values of BC
from liquid and solid fuel combustion and λ1 and λ2 are dif-
ferent wavelengths. The selection of wavelengths can impact
source apportionment results. Considering that brown carbon
exhibits strong absorption at 370 nm and that BC source ap-
portionments at 470 and 950 nm are more consistent with us-
ing radiocarbon techniques (Zotter et al., 2017), the absorp-
tions at 470 and 950 nm were ultimately chosen for source
apportionment. Moreover, the source apportionment results
of the Aethalometer model highly depend on the selection
of AAE pairs, with the value of AAE being determined by
the type of biomass, combustion processes and long-range
transport conditions (Gul et al., 2021). The effect of different
AAE values on the results is discussed in Sect. 3.3.2 (“Source
diagnostic tracers”). Combining Eqs. (2)–(4), we can obtain
the contribution of solid fuel combustion (BB %) to total BC:

BB(%)=
babs(λ2)solid

babs(λ2)
× 100%. (5)

Then, BCsolid can be obtained as follows:

BCsolid = BC(880nm)×BB(%). (6)

Finally, BCliquid can be calculated as

BCliquid = BC(880nm)−BCsolid. (7)

2.3 Building the random forest model and tuning
hyperparameters

The random forest (RF) machine learning algorithm is uti-
lized to reproduce historical time series data of BC. RF,
a model comprising hundreds of decision trees, splits data
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based on informative features to avoid overfitting. However,
decision trees can easily overfit, resulting in inaccurate model
predictions. RF selects random samples of observation data
for each decision tree, a common problem in decision trees,
using random data samples for each tree. The RF algorithm
has been effectively applied in atmospheric chemistry stud-
ies for predicting PM10 and organic carbon (OC) in different
regions (Grange et al., 2018; Qin et al., 2022), demonstrating
its strong predictive capabilities.

In this work, the BC concentrations from 2019–2021 (tar-
get variables) along with pollutant gases (SO2, CO, NO2)
and meteorology factors such as T , RH, WS, WD and BLH
(independent variables) were input into the RF models. Al-
though precipitation plays a key role in the wet scavenging
of BC (Liu et al., 2020b; Ding et al., 2024), its inclusion in
the RF model showed a minimal contribution to predicting
BC concentrations. The relatively low contribution of pre-
cipitation can be attributed to the fact that its impact on BC
typically appears over a longer timescale and the model input
is based on hourly precipitation, which may not adequately
capture the cumulative effect. Furthermore, including precip-
itation in the model had no significant impact on its predic-
tive performance; therefore, precipitation was excluded from
the RF model. To train the RF model and assess the predictive
ability of RF model, the whole dataset was randomly divided
into training and testing sets at a ratio of 8 : 2. Given that
observational data followed a lognormal distribution, most
of the data are concentrated within a specific interval, re-
sulting in poor model performance for extreme values. To
ensure a good model performance, some data augmentation
methods were used to achieve data balance by interpolating
or duplicating less frequent data, ensuring that the overall
dataset roughly follows a uniform distribution (Hong et al.,
2023; Huang et al., 2023). To obtain optimal hyperparameter
values, 10-fold cross-validation was utilized on the training
sets, dividing the datasets into 10 subsamples, with 9 sub-
samples used for training and 1 subsample for testing. The
model performance of the 10-fold cross-validation is shown
in Figs. S2 and S3. The results indicate that the RF-predicted
BC at 880 nm correlated well with the observations, with an
average R2 of 0.97, MAE varying from 0.29 to 0.30 and
RMSE ranging from 0.47 to 0.54. For BC at 370 nm, the
cross-validation results were also robust, with a mean R2 of
0.98, MAE values ranging from 0.37 to 0.41, and RMSE val-
ues varying from 0.57 to 0.74, confirming the stability and
reliability of the model. Optimized parameters for the mod-
els were chosen based on the best mean square error (MSE),
root mean square error (RMSE) and R squared (R2) values
obtained from the 10-fold cross-validation. Finally, the test
sets were input into the models and their predictive abili-
ties were evaluated. The optimized parameters selected for
the models are presented in Table 1. The BC monitored by
Aethalometer at 370 nm wavelength was also predicted by
RF models with the same independent variables to explore
changes in BC sources in Nanjing from 2014 to 2021.

2.4 Kolmogorov–Zurbenko filter

The KZ filter, a method for decomposing time series data into
distinct components, is widely utilized in air pollutants stud-
ies to differentiate the influence of meteorology and emission
strength on the long-term trend of air pollutants (Wise and
Comrie, 2005; Yin et al., 2019; Chen et al., 2019). Since the
original concentration of BC follows a lognormal distribu-
tion, the data (χ ) were transformed into natural logarithmic
form (X= ln(χ )) before applying the KZ filter, allowing the
data to follow a normal distribution (Zheng et al., 2023). The
KZ filter assumes that the original time series of a certain air
pollutant comprises short-term, seasonal and long-term com-
ponents. Thus, the original time series of BC [X(t)] can be
expressed as

X(t)= E(t)+ S(t)+W (t). (8)

Here, E(t) represents the long-term component, mainly af-
fected by climate, the long-range transport of air pollutants
and emission intensity changes due to shifts in energy struc-
ture. S(t) is the seasonal component, attributed to variations
in meteorological conditions and emission intensity across
different seasons. W (t) is the short-term component driven
by weather patterns and fluctuations in local-scale emissions.

The KZ filter is a low-pass filter characterized by a window
length (m) and iterations (p). Differentm and p values can be
used to separate each component of an air pollutant. KZ(15,5)
can eliminate cycles that are less than 33 d and obtain the
baseline component of the original data. The W (t) can be
easily obtained by subtracting XBL(t) from X(t). Therefore,
the long-term, short-term and seasonal components can be
extracted as follows:

XBL(t)= KZ(15,5)[X(t)] =X(t)−W (t). (9)

XBL is assumed to consist of its repeated climatological sea-
sonal cycle (Xclm

BL ) and residuals (ε).

XBL =X
clm
BL (t)+ ε (10)

Xclm
BL contains most of the seasonality in XBL, while ε con-

sists of E(t) along with minor seasonal variability unconsid-
ered in Xclm

BL . Applying a KZ filter with a window length of
365 and an iteration of 3 (KZ(365,3)) to ε, E(t) and S(t) can
be obtained:

E(t)= KZ(365,3)[ε(t)] =XBL(t)− S(t). (11)

Emissions and meteorological condition changes can influ-
ence the long-term trend of BC; the long-term component
can be assumed to consist of emission-related (Eemi

LT ) and
meteorology-related (Emet

LT ) components. Thus, XBL can be
expressed as follows:

XBL(t)= S(t)+Eemi
LT +E

met
LT . (12)

To derive the Eemi
LT in Eq. (12), the multiple linear regression

model was applied to the baseline component of BC and the
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Table 1. Parameters used in random forest models.

Parameters Parameter search range Optimal value

BC880 nm BC370 nm

n_estimators 100–350 95 100
max_depth 10–30 25 23
max_feature auto, sqrt, log2 sqrt sqrt
criterion friedman_mse, poisson, squared_error, absolute_error absolute_error absolute_error

baseline components of six meteorological factors compris-
ing T , RH, WS, WD, BLH and surface pressure (SP). Then,
the formulas can be written as follows:

XBL(t)= a0+
∑
i

aiMETBL+ ε
′ , (13)

where a0 denotes the intercepts of multiple linear regression
model outcomes. METBL denotes the baseline components
of meteorology factors which are obtained by KZ(15,5). ε′ is
the sum of emission-related long-term variability and some
minor seasonal variability unexplained by the multiple linear
regression model. Therefore,Eemi

LT can be extracted by apply-
ing KZ(365,3) to ε′. Then,Emet

LT can be obtained by subtracting
Eemi

LT from the long-term component (E(t)) (Seo et al., 2018).

Eemi
LT (t)= KZ(365,3)

[
ε′(t)

]
= E(t)−Emet

LT (t) (14)

3 Results and discussion

3.1 General characteristics of BC in Nanjing

Figure 1a shows the hourly (dots) and daily (line) mean vari-
ation in BC, PM2.5 mass concentrations, and the proportion
of BC to PM2.5 in Nanjing. A 400-fold variation was found
in the hourly BC concentration, which ranged from 0.04 to
16.05 µgm−3. Daily BC levels fluctuated much less than the
hourly concentration, from the lowest value of 0.40 µgm−3

(15 May 2021) to the highest value of 9.58 µgm−3 (24 Jan-
uary 2019). The average BC level during the whole sam-
pling period was 2.52± 1.62 µgm−3. Figure 1b illustrates
the frequency distributions of hourly BC concentrations dur-
ing different sampling periods. Over 3 years, BC distribu-
tions shifted toward lower values. In 2019, the most frequent
BC concentrations were observed in the 2–3 µgm−3 range,
accounting for 26.2 % of samples. In 2020 and 2021, most
BC levels were found in the 1–2 µgm−3 range, with fre-
quencies of 38.0 % and 41.9 %, respectively. BC levels ex-
ceeding 7 µgm−3 accounted for 5.1 %, 0.8 % and 0.01 % in
the 3 years. PM2.5 showed a similar variation to BC, with
a significant correlation (r = 0.74, p< 0.05) observed be-
tween daily PM2.5 and BC concentrations during the sam-
pling period. The hourly ratio of BC to PM2.5 varied from
0.6 % to 26 %, with an annual average of 10 %. Compared to
a previous study conducted in the Yangtze River Delta, the

BC /PM2.5 ratio in Nanjing was much higher than in Shang-
hai (5.6 %) (Wei et al., 2020), implying greater importance
of primary emissions in Nanjing.

Table 2 lists long-term (equal to or more than 1 year) BC
mass concentrations monitored by the optical method in Nan-
jing and other sampling sites around the world from previ-
ous studies. Nanjing’s 3-year average BC level was the low-
est among previous studies performed in Nanjing, indicat-
ing that primary emissions in Nanjing are decreasing year by
year. While BC levels in other southern Chinese cities like
Shanghai and Wuhan were at least 12.0 % lower than those
in Nanjing, they were at least 13.9 % higher in northern Chi-
nese cities like Beijing and Baoji. Additionally, BC concen-
trations in Nanjing were 5 times higher than in the baseline
station of Mt. Waliguan.

3.2 Temporal variation in BC mass concentrations in
Nanjing

3.2.1 Interannual, seasonal and monthly variations

The annual, seasonal and monthly variations in BC mass con-
centrations are illustrated in Fig. 2. The annual average BC
mass concentration in 2019 (3.2± 2.0 µgm−3) was higher
than in 2020 (2.3± 1.4 µgm−3) and 2021 (2.0± 1.1 µgm−3).
A significant reduction of 28.1 % in the BC mass concen-
tration was observed from 2019 to 2020, much higher than
the reduction (13.0 %) observed during 2020–2021. Consis-
tently with BC, PM2.5 concentrations reduced more sharply
during 2019–2020 (24.1 %) than in 2020–2021 (6.2 %). To
prevent the spread of COVID-19, a series of lockdown mea-
sures were imposed in China in late January 2020, resulting
in a remarkable decrease in concentrations of air pollutants
(Bauwens et al., 2020; Li et al., 2020; Wang et al., 2020).

Seasonally, the highest averaged BC level over 3 years
occurred in winter (2.9± 2.0 µgm−3), with no obvious
variation identified in spring (2.5± 1.5 µgm−3), summer
(2.4± 1.4 µgm−3) or autumn (2.3± 1.5 µgm−3), suggesting
a generally locally dominated source of BC emissions. The
results of bivariate polar plots showed the highest BC levels
in low wind speeds (WS < 4 ms−1) in all seasons (Fig. S4),
further indicating that local sources are the predominant con-
tributors to atmospheric BC in Nanjing. High BC mass con-
centrations in winter are mainly caused by enhanced emis-
sions during cold weather and deteriorating meteorological
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Figure 1. (a) Hourly (dots) and daily (line) concentration of BC, PM2.5 and BC /PM2.5 and (b) frequency of BC for each year during 2019,
2020 and 2021. N represents the number of hourly BC concentration values for 1 year.

Table 2. Comparison of BC mass concentration in Nanjing with other sites.

Location Site type Instrument Study period BC (µgm−3) Reference
(yyyy.mm)

Nanjing, China urban AE33 2019.01–2021.12 2.52± 1.62 Present study
Nanjing, China suburban AE31 2012.01–2012.12 4.2± 2.6 Zhuang et al. (2014)
Nanjing, China urban MAAP∗ 2017.12–2018.11 2.8± 2.0 Zhang et al. (2020)
Mt. Waliguan, China baseline AE31 2008.01–2017.12 0.45± 0.37 Dai et al. (2021)
Beijing, China urban AE31 2016.01–2016.12 3.4± 3.0 Li et al. (2022)
Benxi, China urban AE31 2017.01–2017.12 2.9± 2.3 Ding et al. (2024)
Baoji, China urban AE31 2015.01–2015.12 2.9± 1.7 Zhou et al. (2018)
Xianghe, China rural AE31 2013.04–2015.03 5.4± 4.4 Ran et al. (2016)
Shanghai, China urban AE33 2017.01–2017.12 2.2± 1.3 Wei et al. (2020)
Wuhan, China urban AE33 2013.06–2018.12 1.4± 1.2 Zheng et al. (2020)
Nanning, China urban AE31 2017.01–2017.12 1.0± 0.5 Ding et al. (2023)
Panchgaon, India suburban AE42 2015.04–2016.03 7.2± 0.3 Dumka et al. (2019)

∗MAAP: multi-angle absorption photometer.

dispersion conditions in low temperatures. A similar sea-
sonal pattern was also found in previous studies conducted
in other Yangtze River Delta cities like Shanghai and Hefei
(Chang et al., 2017; Zhang et al., 2015). Seasonal average
concentrations of BC varied from 1.83 (autumn of 2021) to
3.40 µgm−3 (spring of 2019) across different years. In 2019,
the BC concentration in spring (3.4± 1.9 µgm−3) was higher
than in winter (2.6± 1.5 µgm−3), likely due to decreased hu-
man activities during the lockdown period. In contrast to the
spring of 2019, higher levels of BC were found in winter dur-
ing 2020 and 2021.

The monthly mean concentrations of BC showed rela-
tively large variation, ranging from 1.6 (November of 2021)
to 5.1 µgm−3 (January of 2019). The highest monthly aver-
age BC levels were found in January (3.5± 2.3 µgm−3), fol-
lowed by December (2.9± 1.7 µgm−3). The monthly varia-
tion pattern of BC is consistent with previous studies in Nan-
jing, which reported the highest BC levels in January and De-
cember (Zhang et al., 2020; Xiao et al., 2020). Additionally,
the BC concentration in January was 37 % higher than in Au-
gust (2.2± 1.1 µgm−3), attributed to relatively low emission
strength and higher precipitation in summer in Nanjing.

Atmos. Chem. Phys., 25, 6161–6178, 2025 https://doi.org/10.5194/acp-25-6161-2025
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Figure 2. (a) Interannual, (b) seasonal and (c) monthly variations in BC. The insets in panels (b) and (c) are overall average seasonal and
monthly values. The blue dots represent average BC values. The rectangles in panels (a) and (b) represent the 25 % and 75 % quantiles. The
vertical lines in panels (a)–(c) represent 10 % and 90 % quantiles.

3.2.2 Diurnal variation in BC

The diurnal variations in BC mass concentrations for each
year are plotted in Fig. 3a. The diurnal cycles of BC, like
those in previous studies conducted in Nanjing (Xiao et al.,
2020; Zhang et al., 2020; Zhuang et al., 2014), exhibited bi-
modal distributions in the whole study period. BC mass con-
centrations remained relatively flat at midnight and then in-
creased from 03:00 LT (local time) to 07:00 LT. After reach-
ing the highest value at 07:00 LT, BC levels decreased, reach-
ing the lowest values at 16:00 LT, then increased again, and
higher values were maintained in the evening. The bimodal
diurnal patterns of BC were attributed to the intensity of
emissions and variations in meteorological conditions (Cao
et al., 2009). The morning peak of BC was mainly caused
by vehicle emissions during the rush hour, as indicated by
the similar diurnal cycles of CO and NO2 (Fig. S5). After
the morning peak, the boundary layer height developed and
WS increased, increasing atmospheric dilution capability and
lowering the BC levels. After 14:00 LT, due to a decrease in
boundary layer height and WS, BC was gathered on the sur-
face layer, resulting in higher BC loading from the evening
to midnight. The peak BC concentration in 2019 was 29 %
and 38 % higher than in 2020 and 2021, respectively, indi-
cating air quality in Nanjing is getting better due to the strict
implementation of air pollution control plans. Additionally,
the impact of COVID-19 lockdown measures during selected
years also contributed to the reduction in BC concentrations.

To further explore the impacts of human activities on am-
bient BC concentrations, the diurnal variation in BC was sep-

arately investigated for weekdays and weekends. As shown
in Fig. 3b, the diurnal patterns of BC on both weekdays and
weekends exhibited bimodal distributions, with similar peak
times in morning vehicle rush hours (07:00 LT), suggesting
that local emission sources of BC in northern Nanjing do not
differ significantly between weekdays and weekends.

3.3 Source apportionment of BC

3.3.1 Source apportionment of BC by the Aethalometer
model

The AAE values, calculated by a power-law fit between
light absorbance and seven wavelengths, followed a lognor-
mal distribution in 3 years, with an hourly variation rang-
ing from 0.71 to 2.59 (Fig. S6). The 3-year average AAE
value was 1.25± 0.14, with the highest value of 1.28± 0.13
in 2021, which was 4.0 % and 4.3 % higher than those values
in 2019 and 2020, respectively, indicating similar BC emis-
sion sources during the sampling period. Seasonally, the low-
est AAE value of 1.13± 0.14 was found in summer, while
the highest AAE value of 1.32± 0.11 appeared in winter.
The monthly variation in AAE showed a valley in the sum-
mer months (particularly in July) and high values in winter
(December), suggesting that Nanjing was predominantly in-
fluenced by traffic-related liquid fuel burning in summer and
coal-related combustion in winter.

To quantify the relative contribution of liquid and solid
fuel combustion to BC concentration, the Aethalome-
ter model, as mentioned in Sect. 2.2, was applied. The
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Figure 3. Diurnal variation in BC (a) for each year during 2019–2020 and (b) during weekdays and weekends. Shaded areas represent the
standard deviation at each time of day.

Aethalometer model was initially used for BC source ap-
portion in Europe, where fossil fuel and biomass burning
emissions were two major sources. However, China’s en-
ergy structure differs from Europe’s, with coal combustion
still playing a significant role. Liu et al. (2018) summarized
AAE values from different coal-burning sources in China,
finding that AAE values of coal burning were close to those
of biomass combustion. Thus, AAE values of 1.0 for liquid
fuel (AAEliquid) and 2.0 for solid fuel (AAEsolid) were se-
lected for this work. The same AAE pairs were also used for
source apportionment of BC in a previous study carried out
in Nanjing (Lin et al., 2021). Figure 4 shows the time se-
ries of absolute BC concentrations derived from liquid and
solid fuel combustion, along with a depiction of their relative
contributions to BC in different seasons for each year. The 3-
year average concentration of BCliquid was 2.0± 0.5 µgm−3,
approximately 4 times that of BCsolid. Liquid fuel combus-
tion is the dominant source of BC in Nanjing, with 79 %
of BC generated from the consumption of liquid fuel. Inter-
annually, the contributions of liquid fuel ranged from 76 %
to 81 %, which is comparable to other cities in China such
as Wuhan (81 %) and Shanghai (88 %–94 %) (Zheng et al.,
2020; Wei et al., 2020). The contribution of liquid fuel burn-
ing to BC was highest in summer (85 %), in contrast to the
lowest value observed in winter (72 %) and much higher than
that of Beijing (35.7 %) (Li et al., 2022). Beijing is heavily
affected by heating activities in winter, such as power plants
and residential heating using coal and biomass, resulting in
higher solid fuel emissions. The seasonal average contribu-
tion of BB varied by 5 % (from 19 % to 24 %), influenced by
coal-fired emissions from surrounding factories and the long-
range transport of domestic cooking emissions in rural areas
in the Yangtze River Delta region (Wei et al., 2020).

It is important to highlight that the results of the
Aethalometer model are highly dependent on the determina-
tion of AAE values, with AAEliquid ranging from 0.8 to 1.1
and AAEsolid values ranging from 1.8 to 2.2, as widely used
in this model (Helin et al., 2018; Dumka et al., 2019; Fuller

et al., 2014). To estimate the uncertainty in the Aethalome-
ter model, we calculated source apportionment results using
different AAE pairs; the results are shown in Table S1 in the
Supplement. An uncertainty estimation of 11.0 % for BCliquid
was found in this work. Although there are uncertainties in
source apportionment results, our results indicate that liquid
fuel combustion is the main source of BC in Nanjing during
the study period.

3.3.2 Source diagnostic tracers

The ratios of BC /PM2.5 and BC /CO have been utilized
to estimate emission sources in previous studies since they
can vary when emitted from different sources (Chow et al.,
2011; Zhang et al., 2009). The proportion of BC in PM2.5 is
higher in traffic sources than that from other sources (such
as residential coal combustion and forest fires). As listed in
Table S2, higher BC /PM2.5 ratios were found for heavy-
duty diesel (33 %–74 %) and light-duty diesel (62 %–64 %),
followed by those emissions from agricultural burning (6 %–
13 %) and forest fire (3 %) (Table S2) (Chow et al., 2011).
The highest ratio of BC /PM2.5 appeared in summer (13 %),
while the lowest was observed in winter (8 %), suggesting an
increase in biomass and coal burning during winter. Previous
studies reported that the BC /CO ratio was lower for traffic
emissions (0.52 %) than those from industry (0.72 %), power
plants (1.77 %), and residential sources (3.71 %) (Table S2)
(Zhang et al., 2009). The average ratios of BC /CO in spring,
summer, autumn and winter were 0.39 %, 0.49 %, 0.49 % and
0.31 %, respectively, further suggesting that the traffic source
was dominant in Nanjing (Table 3).

To further support the source apportionment results of BC,
a correlation analysis was conducted between BC and trace
gases such as SO2, and NO2, mainly derived from coal com-
bustion and vehicle emissions, respectively. As listed in Ta-
ble 3, the correlations of BC with NO2 (0.54–0.67) were
higher than the correlations of BC with SO2 (0.16–0.59), fur-
ther indicating the dominance of traffic emissions in Nanjing.
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Figure 4. (a) Hourly variation in BCliquid and BCsolid (date format: yyyy/m/d) and (b) their relative contribution to BC. The pie charts in
panel (a) show the annual average relative contribution of BCliquid and BCsolid to BC.

Table 3. Mass ratios and correlations between BC and other pollutants.

Spring Summer Autumn Winter Annual

Mass ratios (%)
BC /PM2.5 9.42 13.44 10.76 7.63 10.31
BC /CO 0.39 0.49 0.49 0.31 0.42

Correlation
BC–SO2 0.49 0.16 0.32 0.59 0.38
BC–NO2 0.66 0.61 0.54 0.67 0.60

3.4 Long-term trend of BC

3.4.1 Black carbon simulation results

After training the RF models with optimal hyperparameters,
the models for BC at 880 and 370 nm were evaluated on test
sets to assess predictive performance. The density scatterplot
as displayed in Fig. 5 shows the relationship between the
test set and the RF model predictions. The results showed
that the RF model explained over 90 % of the variation in
BC concentrations, with R2 values of 0.90 and 0.91 between
the monitored and predicted results at 370 and 880 nm, re-
spectively. The RF model’s predictions for the test dataset
were close to those for the training dataset, indicating con-
sistent performance across both datasets and demonstrating
the RF model’s stability and reliability. In addition to eval-
uating the RF model using the test set, further validation
was conducted using Tracking Air Pollution in China (TAP)
(10 km× 10 km, http://tapdata.org.cn, last access: 13 June,
2025, Liu et al., 2022) data. The predicted BC values at
880 nm from the RF model showed good agreement with

the TAP dataset, with an R2 of 0.72 (Fig. S7). Using the
trained model and available predictors, hourly BC concen-
tration at the sampling site can be accurately reconstructed
for any given period, consistent with AE33.

After training the RF models with input data, Shapley Ad-
ditive exPlanations (SHAP) values were used to assess the
importance of each predictor for model outcomes (Lundberg
and Lee, 2017). Figure S8 presents the ranked average SHAP
values for each predictor for BC at the two wavelengths.
NO2, BLH and SO2 were identified as having the greatest
impact on model’s prediction. As with BC, NO2 and SO2 are
primarily emitted from incomplete combustion processes in-
volving fossil fuels (Lee et al., 2017; Yao et al., 2002). As
a result, BC, NO2 and SO2 are often co-emitted by facto-
ries or traffic near the sampling site. BLH determines the
diffusion capacity of the atmosphere; a lower BLH means
stronger atmospheric stability, resulting in increased BC lev-
els in the surface air. Unlike BLH, the contribution of other
meteorology predictors, such as T , RH, WS and WD, were
relatively low compared to those of pollutant gases. One pos-
sible reason for this is meteorological condition changes may
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Figure 5. Density scatterplots of hourly observed and modeled BC at (a) 370 nm and (b) 880 nm from the test dataset.

not have an immediate effect on atmospheric BC levels; in-
stead, there may be a certain lag in their effects.

3.4.2 Long-term temporal variation in BC

Meteorological data and air pollutant concentrations were
used in the trained RF model to estimate BC concentra-
tions at 370 and 880 nm from 2014 to 2021. The Aethalome-
ter model was then applied to the simulated BC to explore
the long-term temporal variation in source-specific BC. It
is important to highlight that the results of the Aethalome-
ter model are highly dependent on the determination of
AAE values, with AAEliquid ranges between 0.8 and 1.1
and AAEsolid ranges between 1.8 and 2.2, as widely used in
this model (Helin et al., 2018; Dumka et al., 2019; Fuller
et al., 2014; Jing et al., 2019). To assess the model’s un-
certainty, source apportionment was conducted using various
AAE pairs (Fig. S9). The results revealed that liquid fuel re-
mained a dominant source of BC even when different AAE
paired values were used, with the pattern of source apportion-
ment results consistent across different AAE combinations.
AAEliqiud= 1 and AAEsolid= 2 were used in this study, as
the same combination of AAE values was utilized in Nanjing
and other sites in China (Ding et al., 2024; Liu et al., 2018;
Lin et al., 2021). Additionally, the uncertainty in source ap-
portionment was estimated based on the relative differences
between results obtained with other AAE values and those
set to 1 and 2. As a result, the uncertainty in the BCliquid was
estimated to be 10 %. Between 2014 and 2021, average BC
concentrations decreased by 35.7 % from 3.12± 1.39 µgm−3

in 2014 to 2.04± 0.33 µgm−3 in 2021. The statistical sig-
nificance of the reduction in BC and source-specific BC
was assessed using the Mann–Kendall test on monthly me-
dian values, with results presented in Fig. 6. A significant

decreasing trend (p< 0.01) in BC concentrations was ob-
served, with a slope of −0.13 µgm−3 yr−1. Similar reduc-
tions have also been reported across various regions in China
since 2013 (He et al., 2023; Sun et al., 2022a; Chow et al.,
2022; Dai et al., 2023). Significant decreases were also ob-
served in BCliquid (p< 0.01) and BCsolid (p< 0.05) concen-
trations. From 2014 to 2021, BCliquid decreased by 38.4 %
(from 2.55± 1.14 to 1.57± 0.89 µgm−3 in 2021) at an ab-
solute rate of−0.10 µgm−3 yr−1, while BCsolid decreased by
20.3 % (from 0.59± 0.52 to 0.47± 0.33 µgm−3) at a rate of
−0.03 µgm−3 yr−1. The contributions of different sources to
the overall BC reduction were estimated by comparing the
absolute decrease slopes of BCliquid and BCsolid to the over-
all BC decrease slope. It was found that 77 % of total BC
reduction was due to the decreased liquid fuel combustion,
highlighting the significant role of BCliquid in reducing BC
concentrations from 2014 to 2021. Pollutants commonly co-
emitted with BC, such as NO2, CO and SO2, exhibited sig-
nificant declining trends (p< 0.05) during the study period
(Fig. S10). In contrast, the BC /PM2.5 ratio showed a sig-
nificant increasing trend (p< 0.01), suggesting that while
emission reduction policies have been effective in decreasing
precursors of secondary aerosol (SO2−

4 , NO−3 , NH+4 ), stricter
regulations regarding BC emissions may also be necessary.
The variation in the BC /CO ratio was not significant, with
the mean value remaining stable at approximately 0.38 %
throughout the period.

Throughout the study period, BC concentrations exhib-
ited two distinct declining trends, which align with the im-
plementation of the Air Pollution and Control Action Plan
(2013–2017, P1) and the Three-Year Action Plan (starting in
2018, P2) by the Chinese government. To compare the de-
creasing trends of BC in the two periods, the absolute trends
were normalized by the average values for each period. The
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Figure 6. Trends in BC, BCliquid and BCsolid at the sampling site. The solid black line represents the monthly medians, the grey shading
represents the 10th and 90th monthly percentiles, and the orange line is the fitted long-term trend.

change rates of BC and other air pollutants are shown in
Table 4. During P1, the relative slopes of BC and BCliquid
were −4.18 %yr−1 (p< 0.1) and −4.26 %yr−1 (p< 0.05),
respectively, with BCliquid accounting for 83 % of the total
decrease in atmospheric BC concentrations. Since the de-
crease in BCsolid is insignificant, the actual contribution of
BCliquid may be higher than estimated. Compared to P1,
the decline in BC, BCliquid and BCsolid concentration dur-
ing P2 was much steeper, reaching −11.2 %yr−1 (p< 0.01),
−10.3 %yr−1 (p< 0.01) and −11.6 %yr−1 (p< 0.1), re-
spectively. During P2, reductions in both BCliquid and BCsolid
contributed to the overall decrease in BC concentration,
with BCliquid still being the dominant factor, accounting
for 72 % of the total reduction. SO2 and NO2, which
shared the same sources as BC, also decreased more rapidly
in P2 (−33.2 %yr−1 and −8.7 %yr−1) compared to P1
(−10.1 %yr−1 and −1.3 %yr−1), suggesting that air pollu-
tants have been decreasing much faster since 2018 than they
were before.

The seasonal trends in BC and its different sources were
further investigated in Nanjing. As shown in Fig. 7, sig-
nificant reductions in BC concentrations were observed
across all seasons. The decreasing slopes of BC in
spring (−7.2 %yr−1, p< 0.01) and winter (−10.0 %yr−1,
p< 0.01) were steeper than those in summer (−5.07 %yr−1,
p< 0.05) and autumn (−4.9 %yr−1, p< 0.05). The re-
duction rate of PM2.5 in spring (−15.9 %yr−1, p< 0.01),
summer (−25.4 %, p< 0.01) and autumn (−20.0 %yr−1,
p< 0.01) was 3 to 6 times that of BC (Table S3). In

winter, the reduction rate (−14.2 %yr−1, p< 0.01) was
closer to that of BC, suggesting that the reduction in pri-
mary pollutants in Nanjing during winter might be more
effective than in other seasons. The seasonal variation in
BCliquid showed distinct trends across different seasons.
Significant reductions were observed in spring, summer,
autumn and winter, with absolute slopes of −7.6 %yr−1

(p< 0.01), −4.1 %yr−1 (p< 0.05), −5.1 %yr−1 (p< 0.01)
and −10.5 %yr−1 (p< 0.01), respectively. The reduction
rate of BCliquid in summer was the lowest compared to other
seasons, potentially attributable to increased traffic activity
associated with the peak tourism season. BCsolid showed a
similar decreasing slope in spring (−8.7 %yr−1, p< 0.05)
and winter (−8.5 %yr−1, p< 0.01), while summer exhibited
a relatively high reduction (−12.2 %yr−1, p< 0.01). The
more pronounced decline in BCsolid during the summer can
be attributed to the seasonal variation in significant BCsolid
emission sources in Nanjing, such as biomass burning activ-
ities, which are minimal during this period. The reduction
in BCsolid in autumn was insignificant, which may be influ-
enced by the long-range transport of biomass burning, as well
as by increased agricultural activities during this season. It is
worth noting that BCliquid contributed 92 % to the overall BC
reduction in autumn. However, since the decreasing trend of
BCsolid in autumn was not statistically significant, the contri-
butions may have been underestimated.
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Table 4. The change rates of BC and other air pollutants during different periods.

Study period Air pollutants Absolute slopea Relative slopeb (%) p

BC −0.12 −4.18 0.08
BCliquid −0.10 −4.26 0.02
BCsolid −0.02 −3.48 0.6

Air Pollution Prevention and Control Action Plan PM2.5 −12.00 −26.29 0.0001
NO2 −0.46 −1.26 0.74
SO2 −1.69 −10.08 0.06
CO 0.02 1.76 0.62

BC −0.29 −11.22 0.0002
BCliquid −0.21 −10.26 0.0001
BCsolid −0.05 −11.55 0.06

After 2018 PM2.5 −4.62 −17.20 0.0009
NO2 −2.91 −8.73 0.02
SO2 −2.32 −33.23 0.0001
CO 0.00 0.00 0.66

a µg m−3 yr−1. b % yr−1.

Figure 7. Seasonal variation in (top row) BC, (middle row) BCliquid and (bottom row) BCsolid in spring, summer, autumn and winter. The
circles in different colors represent the average concentration of BC, BCliquid and BCsolid. The vertical lines represent the standard deviations
of BC, BCliquid and BCsolid. The grey circles in each panel represent the monthly average values.
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3.4.3 The impact of emission and meteorology

In addition to changes in emissions, meteorological condi-
tions can also affect the long-term trends of pollutants by
influencing their long-range transport and processes of dry
and wet deposition. To explore these impacts on the long-
term trends of BC, the KZ filter was applied to distinguish
between emission-related (Eemi

LT ) and meteorology-related
(Emet

LT ) trends. The daily averaged log-transformed original
time series along with the decoupled short-term, baseline
and seasonal components of BC are depicted in Fig. S11.
The short-term component of BC displays notable fluctu-
ations, while the seasonal component shows a clear cycle,
with higher levels in winter and lower levels in summer.
The largest variances for BC (69 %), BCliquid (73 %) and
BCsolid (52 %) are found in the short-term component, re-
flecting the essential role of synoptic weather in the daily
variations in primary aerosol content in Nanjing (Table S4).
BCsolid exhibits seasonal dependence with a relatively high
seasonal component (40 %) compared to BC (16 %) and
BCliquid (12 %). The sum of variances explained by the short-
term, seasonal and long-term components for BC, BCliquid
and BCsolid is 93 %, 92 % and 92 %, respectively. A total
variance close to 100 % indicates that these three compo-
nents are largely independent of each other, suggesting that
most of the meteorological influence has been effectively ac-
counted and removed (Chen et al., 2019; Sun et al., 2022b;
Zheng et al., 2020). To separate emission-related (Eemi

LT ) and
meteorology-related components (Emet

LT ) from the long-term
component (ELT), multiple linear regression was conducted
using the baseline component of meteorological parame-
ters and BC. The model incorporating these meteorologi-
cal parameters accurately reproduced the baseline of BCsolid
(R2
= 0.84, p< 0.001). In contrast, it was less effective in

explaining the baseline for BC (R2
= 0.59, p< 0.001) and

BCliquid (R2
= 0.51, p< 0.001), suggesting that local emis-

sion changes across different seasons play an important role
in impacting BC and BCliquid in Nanjing.

Figure S12 exhibits the long-term variation in Eemi
LT and

Emet
LT for BC, BCliquid and BCsolid, and the corresponding

linear trends are summarized in Table 5. It is important to
note that the linear trend slope of ELT represents the rela-
tive change rate (% yr−1) of the baseline concentration, since
the original time series of BC was log-transformed before
applying the KZ filter. To convert the fractional change rate
into an absolute change rate (µgm−3 yr−1), it is multiplied
by the average baseline concentration (not log-transformed).
The ELT of BC and its distinct source exhibited signifi-
cant (p< 0.01) declining trends, with slopes of −0.1, −0.08
and −0.02 µgm−3 yr−1 for BC, BCliquid and BCsolid, respec-
tively. BCliquid was the dominant contributor to BC reduc-
tion, accounting for 80 % of the overall decrease, suggest-
ing that when the influence of seasonal and synoptic varia-
tions is excluded, its contribution to BC temporal variations
becomes more evident. The emission-related components of

BC, BCliquid and BCsolid exhibited similar long-term trends
(Fig. S12). From 2014 to 2016, the emission-related trends
remained relatively stable, reaching a lower level by the end
of 2017. Subsequently, the emission-related components of
BC, BCliquid and BCsolid increased, peaking in 2019, fol-
lowed by a sharp decline until mid-2020 and then rebounding
to another peak at the end of 2021, which may be related to
the recovery of production activities following the pandemic.
In contrast, meteorology-related trends of BC and BCliquid
showed a sharp decrease after 2020, while BCsolid exhibited a
downward trend between 2014 and 2021, with meteorology-
related trends of BCsolid following a fluctuating downward
pattern. In addition, the relative contributions of Eemi

LT and
Emet

LT to BC reduction were quantified by calculating the ra-
tio of their absolute slopes to the slope of ELT (Zheng et al.,
2023). Both meteorological conditions and emission reduc-
tions played crucial roles in reducing BC and its sources.
While emission reductions dominated the decrease in BC
concentrations throughout the study period, their relative in-
fluence compared to meteorological conditions varied be-
tween the P1 (before 2018) and P2 (after 2018) phases. As
shown in Fig. 8, emission reductions played a more promi-
nent role, contributing 78 %, 62 % and 86 % to the reduc-
tions in BC, BCliquid and BCsolid, respectively. However, dur-
ing P2, meteorological conditions played a leading role in
reducing BC and BCliquid, contributing 66 % and 70 %, re-
spectively. Moreover, meteorology conditions had a notable
impact on BCsolid in P2, with its contribution increasing from
14 % in P1 to 31 %. This suggests that the rapid reduction in
BC in P2 was largely due to favorable meteorological condi-
tions, which played a crucial role in facilitating its decline.
It is worth noting that the impact of meteorological condi-
tions on BCliquid and BCsolid differs significantly, especially
in P2. While meteorology contributed 70 % to the reduction
in BCliquid, its impact on BCsolid was only 31 %. This dif-
ference is because BCliquid, mainly from vehicle exhaust, re-
mains stable year-round, whereas BCsolid, from activities like
biomass burning and coal combustion, varies seasonally. The
results of significance analysis further confirmed that there
was no significant difference in BCliquid and BCsolid, while
significant (p< 0.05) differences were observed in autumn
and winter, when BCsolid emissions are more pronounced due
to increased biomass burning and coal combustion activities
(Fig. S13). This seasonal variability in emission sources ex-
plains the differing impacts of meteorology on BCliquid and
BCsolid.

4 Conclusion

In this work, BC mass concentrations were continuously
monitored in Nanjing, China, from 2019 to 2021. Combin-
ing observations with random forest algorithms, the BC con-
centrations from 2014–2021 were reconstructed to explore
the long-term trends of BC and its sources during two dis-
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Table 5. Linear trends of the long-term components of BC and its sources including BCliquid and BCsolid.

Components BC BCliquid BCsolid

Absolutea Relativeb p Absolutea Relativeb p Absolutea Relativeb p

ELT −0.10 −3.76 0.01 −0.08 −3.54 0.01 −0.014 −4.91 0.01

EEMI
LT −0.07 −2.63 0.01 −0.05 −2.20 0.01 −0.012 −3.62 0.01

EMET
LT −0.03 −1.13 0.01 −0.03 −1.32 0.01 −0.002 −1.27 0.01

a µg m−3 yr−1. b % yr−1.

Figure 8. Contributions of emission reduction policies and meteorological conditions to the decrease in BC concentrations before and after
2018. The (a)–(c) panels represent BC, BCliquid and BCsolid, respectively.

tinct emission reduction periods. The results showed that BC
concentrations were analyzed to reveal BC’s characteristics
and sources. The annual average BC mass concentration dur-
ing the study period was 2.5± 1.6 µgm−3. Relatively high
BC mass concentrations were found in winter, while no clear
variation was observed during other seasons, implying a lo-
cally dominant BC source. Diurnal variations showed a bi-
modal pattern, with lower concentrations in the daytime and
higher values at night, primarily influenced by traffic rush
hours and boundary layer heights. Liquid fuel combustion
contributed more than 75 % to BC in all years, with the high-
est contribution appearing in summer (85 %) and the lowest
in winter (72 %).

The RF models explained over 90 % of the variation and
accurately captured the seasonal cycle of BC at both wave-
lengths, demonstrating the strong predictive capability of
the trained models. The long-term trends of BC, BCliquid
and BCsolid all exhibited significant (p< 0.05) declines, with
BCliquid contributing the most to the overall BC reduction,
accounting for 77 % of the total decrease over the entire pe-
riod. Notably, BC levels decreased most rapidly during win-
ter, while the reduction in summer was much slower. The
trend in BC reduction varied between two distinct phases: in
P2 (after 2018), BC levels declined much more steeply com-
pared to those in P1 (2014–2017), indicating that policies
aimed at replacing coal with cleaner energy have been par-
ticularly effective in reducing primary pollutants. Over the
entire period, emission reduction was the primary driver of

BC reduction, contributing to BC, BCliquid and BCsolid re-
duction, with contributions of 70 %, 63 % and 86 %, respec-
tively, while meteorological conditions accounted for 30 %,
37 % and 24 %, respectively. Although emission reduction
dominated BC reduction over the entire period, the contribu-
tions of emission reduction and meteorological conditions to
BC reduction differed between the two phases. In P1, emis-
sion reduction played a dominant role, while in P2, meteo-
rological conditions became the primary driver of BC reduc-
tion. Our results highlight that to further reduce atmospheric
BC, targeted policies should be implemented to restrict liquid
fuel combustion, especially during the summer. Additionally,
the impact of meteorological factors on BC concentrations
should not be overlooked during emission reduction efforts.

Data availability. The hourly meteorological reanaly-
sis data of ERA5 are available from the ECMWF at
https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al., 2023).
Hourly averaged concentrations of PM2.5, CO, SO2 and NO2 were
obtained from China National Environmental Monitoring Centre
https://quotsoft.net/air/ (CNEMC, 2025). All the observational
and predicted data were openly accessible at the Open Science
Framework at https://doi.org/10.17605/OSF.IO/8N32T (Abulimiti,
2025).
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Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruck-
stuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wieden-
sohler, A., and Hansen, A. D. A.: The ”dual-spot” Aethalome-
ter: an improved measurement of aerosol black carbon with real-
time loading compensation, Atmos. Meas. Tech., 8, 1965–1979,
https://doi.org/10.5194/amt-8-1965-2015, 2015.

Du, H., Li, J., Wang, Z., Chen, X., Yang, W., Sun, Y., Xin,
J., Pan, X., Wang, W., Ye, Q., and Dao, X.: Assessment of

https://doi.org/10.5194/acp-25-6161-2025 Atmos. Chem. Phys., 25, 6161–6178, 2025

https://doi.org/10.17605/OSF.IO/8N32T
https://doi.org/10.17605/OSF.IO/8N32T
https://doi.org/10.1029/2020GL087978
https://doi.org/10.1002/jgrd.50171
https://doi.org/10.1016/j.atmosres.2009.05.009
https://doi.org/10.5194/acp-17-9945-2017
https://doi.org/10.5194/acp-17-9945-2017
https://doi.org/10.5194/acp-19-13519-2019
https://doi.org/10.5194/acp-19-6125-2019
https://air.cnemc.cn:18007/
https://air.cnemc.cn:18007/
https://doi.org/10.1016/j.atmosenv.2011.07.011
https://doi.org/10.5194/acp-22-11557-2022
https://doi.org/10.1029/2021JD035273
https://doi.org/10.1029/2023JD038696
https://doi.org/10.1002/2016GL067745
https://doi.org/10.1016/j.scitotenv.2023.166747
https://doi.org/10.1016/j.envpol.2024.124470
https://doi.org/10.5194/amt-8-1965-2015


6176 A. Abulimiti et al.: Source and trends of black carbon after China’s mitigation plan

the effect of meteorological and emission variations on winter
PM2.5 over the North China Plain in the three-year action plan
against air pollution in 2018–2020, Atmos. Res., 280, 106395,
https://doi.org/10.1016/j.atmosres.2022.106395, 2022.

Dumka, U. C., Kaskaoutis, D. G., Devara, P. C. S., Ku-
mar, R., Kumar, S., Tiwari, S., Gerasopoulos, E., and
Mihalopoulos, N.: Year-long variability of the fossil fuel
and wood burning black carbon components at a rural
site in southern Delhi outskirts, Atmos. Res., 216, 11–25,
https://doi.org/10.1016/j.atmosres.2018.09.016, 2019.

Fan, M.-Y., Hong, Y., Zhang, Y.-L., Sha, T., Lin, Y.-C.,
Cao, F., and Guo, H.: Increasing Nonfossil Fuel Contribu-
tions to Atmospheric Nitrate in Urban China from Observa-
tion to Prediction, Environ. Sci. Technol., 57, 18172–18182,
https://doi.org/10.1021/acs.est.3c01651, 2023.

Fuller, G. W., Tremper, A. H., Baker, T. D., Yttri, K.
E., and Butterfield, D.: Contribution of wood burn-
ing to PM10 in London, Atmos. Environ., 87, 87–94,
https://doi.org/10.1016/j.atmosenv.2013.12.037, 2014.

Grange, S. K., Carslaw, D. C., Lewis, A. C., Boleti, E., and
Hueglin, C.: Random forest meteorological normalisation mod-
els for Swiss PM10 trend analysis, Atmos. Chem. Phys., 18,
6223–6239, https://doi.org/10.5194/acp-18-6223-2018, 2018.

Gul, C., Mahapatra, P. S., Kang, S., Singh, P. K., Wu, X., He, C.,
Kumar, R., Rai, M., Xu, Y., and Puppala, S. P.: Black carbon
concentration in the central Himalayas: Impact on glacier melt
and potential source contribution, Environ. Pollut., 275, 116544,
https://doi.org/10.1016/j.envpol.2021.116544, 2021.

He, C., Niu, X., Ye, Z., Wu, Q., Liu, L., Zhao, Y., Ni, J., Li,
B., and Jin, J.: Black carbon pollution in China from 2001 to
2019: Patterns, trends, and drivers, Environ. Pollut., 324, 121381,
https://doi.org/10.1016/j.envpol.2023.121381, 2023.

Helin, A., Niemi, J. V., Virkkula, A., Pirjola, L., Teinilä,
K., Backman, J., Aurela, M., Saarikoski, S., Rönkkö,
T., Asmi, E., and Timonen, H.: Characteristics and
source apportionment of black carbon in the Helsinki
metropolitan area, Finland, Atmos. Environ., 190, 87–98,
https://doi.org/10.1016/j.atmosenv.2018.07.022, 2018.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum,
I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut,
J.-N.: ERA5 hourly data on single levels from 1940 to present,
Copernicus Climate Change Service (C3S) Climate Data Store
(CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2023.

Hong, Y., Zhang, Y., Bao, M., Fan, M., Lin, Y. C., Xu, R., Shu, Z.,
Wu, J. Y., Cao, F., Jiang, H., Cheng, Z., Li, J., and Zhang, G.:
Nitrogen-Containing Functional Groups Dominate the Molecu-
lar Absorption of Water-Soluble Humic-Like Substances in Air
From Nanjing, China Revealed by the Machine Learning Com-
bined FT-ICR-MS Technique, J. Geophys. Res.-Atmos., 128,
e2023JD039459, https://doi.org/10.1029/2023JD039459, 2023.

Huang, Z.-J., Li, H., Luo, J.-Y., Li, S., and Liu, F.: Few-
Shot Learning-Based, Long-Term Stable, Sensitive Chemosen-
sor for On-Site Colorimetric Detection of Cr(VI), Anal. Chem.,
95, 6156–6162, https://doi.org/10.1021/acs.analchem.3c00604,
2023.

IPCC: Climate Change 2022 – Impacts, Adaptation and Vul-
nerability: Working Group II Contribution to the Sixth
Assessment Report of the Intergovernmental Panel on Cli-

mate Change, Cambridge University Press, Cambridge,
https://doi.org/10.1017/9781009325844, 2023.

Jing, A., Zhu, B., Wang, H., Yu, X., An, J., and Kang, H.: Source
apportionment of black carbon in different seasons in the north-
ern suburb of Nanjing, China, Atmos. Environ., 201, 190–200,
https://doi.org/10.1016/j.atmosenv.2018.12.060, 2019.

Lee, B. P., Louie, P. K. K., Luk, C., and Chan, C. K.: Evalu-
ation of traffic exhaust contributions to ambient carbonaceous
submicron particulate matter in an urban roadside environ-
ment in Hong Kong, Atmos. Chem. Phys., 17, 15121–15135,
https://doi.org/10.5194/acp-17-15121-2017, 2017.

Li, L., Li, Q., Huang, L., Wang, Q., Zhu, A., Xu, J., Liu,
Z., Li, H., Shi, L., Li, R., Azari, M., Wang, Y., Zhang,
X., Liu, Z., Zhu, Y., Zhang, K., Xue, S., Ooi, M. C. G.,
Zhang, D., and Chan, A.: Air quality changes during the
COVID-19 lockdown over the Yangtze River Delta Region:
An insight into the impact of human activity pattern changes
on air pollution variation, Sci. Total Environ., 732, 139282,
https://doi.org/10.1016/j.scitotenv.2020.139282, 2020.

Li, R., Han, Y., Wang, L., Shang, Y., and Chen, Y.: Differences
in oxidative potential of black carbon from three combustion
emission sources in China, J. Environ. Manage., 240, 57–65,
https://doi.org/10.1016/j.jenvman.2019.03.070, 2019.

Li, W., Liu, X., Duan, F., Qu, Y., and An, J.: A one-year study
on black carbon in urban Beijing: Concentrations, sources and
implications on visibility, Atmos. Pollut. Res., 13, 101307,
https://doi.org/10.1016/j.apr.2021.101307, 2022.

Li, Y., Lei, L., Sun, J., Gao, Y., Wang, P., Wang, S., Zhang, Z., Du,
A., Li, Z., Wang, Z., Kim, J. Y., Kim, H., Zhang, H., and Sun, Y.:
Significant Reductions in Secondary Aerosols after the Three-
Year Action Plan in Beijing Summer, Environ. Sci. Technol., 57,
15945–15955, https://doi.org/10.1021/acs.est.3c02417, 2023.

Lin, Y.-C., Zhang, Y.-L., Xie, F., Fan, M.-Y., and Liu,
X.: Substantial decreases of light absorption, concentra-
tions and relative contributions of fossil fuel to light-
absorbing carbonaceous aerosols attributed to the COVID-
19 lockdown in east China, Environ. Pollut., 275, 116615,
https://doi.org/10.1016/j.envpol.2021.116615, 2021.

Liu, D., He, C., Schwarz, J. P., and Wang, X.: Lifecycle of light-
absorbing carbonaceous aerosols in the atmosphere, npj Climate
and Atmospheric Science, 3, 40, https://doi.org/10.1038/s41612-
020-00145-8, 2020a.

Liu, D., Ding, S., Zhao, D., Hu, K., Yu, C., Hu, D., Wu, Y.,
Zhou, C., Tian, P., Liu, Q., Wu, Y., Zhang, J., Kong, S., Huang,
M., and Ding, D.: Black Carbon Emission and Wet Scaveng-
ing From Surface to the Top of Boundary Layer Over Bei-
jing Region, J. Geophys. Res.-Atmos., 125, e2020JD033096,
https://doi.org/10.1029/2020JD033096, 2020b.

Liu, S., Geng, G., Xiao, Q., Zheng, Y., Liu, X., Cheng, J., and
Zhang, Q.: Tracking Daily Concentrations of PM2.5 Chemical
Composition in China since 2000, Environ. Sci. Technol., 56,
16517–16527, https://doi.org/10.1021/acs.est.2c06510, 2022.

Liu, Y., Yan, C., and Zheng, M.: Source apportionment of black
carbon during winter in Beijing, Sci. Total Environ., 618, 531–
541, https://doi.org/10.1016/j.scitotenv.2017.11.053, 2018.

Lundberg, S. M. and Lee, S.-I.: A unified approach to inter-
preting model predictions, Adv. Neur. Inf., 30, 4765–4774,
https://doi.org/10.5555/3295222.3295230, 2017.

Atmos. Chem. Phys., 25, 6161–6178, 2025 https://doi.org/10.5194/acp-25-6161-2025

https://doi.org/10.1016/j.atmosres.2022.106395
https://doi.org/10.1016/j.atmosres.2018.09.016
https://doi.org/10.1021/acs.est.3c01651
https://doi.org/10.1016/j.atmosenv.2013.12.037
https://doi.org/10.5194/acp-18-6223-2018
https://doi.org/10.1016/j.envpol.2021.116544
https://doi.org/10.1016/j.envpol.2023.121381
https://doi.org/10.1016/j.atmosenv.2018.07.022
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1029/2023JD039459
https://doi.org/10.1021/acs.analchem.3c00604
https://doi.org/10.1017/9781009325844
https://doi.org/10.1016/j.atmosenv.2018.12.060
https://doi.org/10.5194/acp-17-15121-2017
https://doi.org/10.1016/j.scitotenv.2020.139282
https://doi.org/10.1016/j.jenvman.2019.03.070
https://doi.org/10.1016/j.apr.2021.101307
https://doi.org/10.1021/acs.est.3c02417
https://doi.org/10.1016/j.envpol.2021.116615
https://doi.org/10.1038/s41612-020-00145-8
https://doi.org/10.1038/s41612-020-00145-8
https://doi.org/10.1029/2020JD033096
https://doi.org/10.1021/acs.est.2c06510
https://doi.org/10.1016/j.scitotenv.2017.11.053
https://doi.org/10.5555/3295222.3295230


A. Abulimiti et al.: Source and trends of black carbon after China’s mitigation plan 6177

Qin, Y., Ye, J., Ohno, P., Liu, P., Wang, J., Fu, P., Zhou,
L., Li, Y. J., Martin, S. T., and Chan, C. K.: Assess-
ing the Nonlinear Effect of Atmospheric Variables on Pri-
mary and Oxygenated Organic Aerosol Concentration Using
Machine Learning, ACS Earth Space Chem., 6, 1059–1066,
https://doi.org/10.1021/acsearthspacechem.1c00443, 2022.

Ramanathan, V. and Carmichael, G.: Global and regional cli-
mate changes due to black carbon, Nat. Geosci., 1, 221–227,
https://doi.org/10.1038/ngeo156, 2008.

Ran, L., Deng, Z. Z., Wang, P. C., and Xia, X. A.: Black
carbon and wavelength-dependent aerosol absorption in
the North China Plain based on two-year aethalome-
ter measurements, Atmos. Environ., 142, 132–144,
https://doi.org/10.1016/j.atmosenv.2016.07.014, 2016.

Sandradewi, J., Prévôt, A. S. H., Szidat, S., Perron, N., Alfarra,
M. R., Lanz, V. A., Weingartner, E., and Baltensperger, U.: Us-
ing Aerosol Light Absorption Measurements for the Quantitative
Determination of Wood Burning and Traffic Emission Contri-
butions to Particulate Matter, Environ. Sci. Technol., 42, 3316–
3323, https://doi.org/10.1021/es702253m, 2008.

Sarigiannis, D., Karakitsios, S. P., Zikopoulos, D., Nikolaki, S.,
and Kermenidou, M.: Lung cancer risk from PAHs emit-
ted from biomass combustion, Environ. Res., 137, 147–156,
https://doi.org/10.1016/j.envres.2014.12.009, 2015.

Seo, J., Park, D.-S. R., Kim, J. Y., Youn, D., Lim, Y. B., and Kim,
Y.: Effects of meteorology and emissions on urban air quality:
a quantitative statistical approach to long-term records (1999–
2016) in Seoul, South Korea, Atmos. Chem. Phys., 18, 16121–
16137, https://doi.org/10.5194/acp-18-16121-2018, 2018.

Sun, J., Wang, Z., Zhou, W., Xie, C., Wu, C., Chen, C., Han, T.,
Wang, Q., Li, Z., Li, J., Fu, P., Wang, Z., and Sun, Y.: Mea-
surement report: Long-term changes in black carbon and aerosol
optical properties from 2012 to 2020 in Beijing, China, Atmos.
Chem. Phys., 22, 561–575, https://doi.org/10.5194/acp-22-561-
2022, 2022a.

Sun, X., Zhao, T., Bai, Y., Kong, S., Zheng, H., Hu, W., Ma, X.,
and Xiong, J.: Meteorology impact on PM2.5 change over a re-
ceptor region in the regional transport of air pollutants: observa-
tional study of recent emission reductions in central China, At-
mos. Chem. Phys., 22, 3579–3593, https://doi.org/10.5194/acp-
22-3579-2022, 2022b.

Wang, Y., Yuan, Y., Wang, Q., Liu, C., Zhi, Q., and Cao, J.: Changes
in air quality related to the control of coronavirus in China: Im-
plications for traffic and industrial emissions, Sci. Total Environ.,
731, 139133, https://doi.org/10.1016/j.scitotenv.2020.139133,
2020.

Wei, C., Wang, M. H., Fu, Q. Y., Dai, C., Huang, R., and Bao,
Q.: Temporal Characteristics and Potential Sources of Black Car-
bon in Megacity Shanghai, China, J. Geophys. Res.-Atmos., 125,
e2019JD031827, https://doi.org/10.1029/2019JD031827, 2020.

Wise, E. K. and Comrie, A. C.: Extending the Kolmogorov–
Zurbenko Filter: Application to Ozone, Particulate Matter, and
Meteorological Trends, J. Air Waste Manage., 55, 1208–1216,
https://doi.org/10.1080/10473289.2005.10464718, 2005.

Wu, B., Wu, C., Ye, Y., Pei, C., Deng, T., Li, Y. J., Lu, X., Wang,
L., Hu, B., Li, M., and Wu, D.: Long-term hourly air quality data
bridging of neighboring sites using automated machine learning:
A case study in the Greater Bay area of China, Atmos. Environ.,

321, 120347, https://doi.org/10.1016/j.atmosenv.2024.120347,
2024.

Xiao, S., Yu, X., Zhu, B., Kumar, K. R., Li, M., and Li, L.: Char-
acterization and source apportionment of black carbon aerosol
in the Nanjing Jiangbei New Area based on two years of mea-
surements from Aethalometer, J. Aerosol Sci., 139, 105461,
https://doi.org/10.1016/j.jaerosci.2019.105461, 2020.

Yao, X., Chan, C. K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He,
K., and Ye, B.: The water-soluble ionic composition of PM2.5 in
Shanghai and Beijing, China, Atmos. Environ., 36, 4223–4234,
https://doi.org/10.1016/S1352-2310(02)00342-4, 2002.

Yin, C., Deng, X., Zou, Y., Solmon, F., Li, F., and
Deng, T.: Trend analysis of surface ozone at suburban
Guangzhou, China, Sci. Total Environ., 695, 133880,
https://doi.org/10.1016/j.scitotenv.2019.133880, 2019.

Yu, M., Zhang, Y.-L., Xie, T., Song, W., Lin, Y.-C., Zhang, Y.,
Cao, F., Yang, C., and Szidat, S.: Quantification of fossil and
non-fossil sources to the reduction of carbonaceous aerosols
in the Yangtze River Delta, China: Insights from radiocar-
bon analysis during 2014–2019, Atmos. Environ., 292, 119421,
https://doi.org/10.1016/j.atmosenv.2022.119421, 2023.

Zhang, L., Shen, F., Gao, J., Cui, S., Yue, H., Wang, J., Chen, M.,
and Ge, X.: Characteristics and potential sources of black carbon
particles in suburban Nanjing, China, Atmos. Pollut. Res., 11,
981–991, https://doi.org/10.1016/j.apr.2020.02.011, 2020.

Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H.,
Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen,
D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emis-
sions in 2006 for the NASA INTEX-B mission, Atmos. Chem.
Phys., 9, 5131–5153, https://doi.org/10.5194/acp-9-5131-2009,
2009.

Zhang, Q., Zheng, Y., Tong, D., Shao, M., Wang, S., Zhang, Y., Xu,
X., Wang, J., He, H., Liu, W., Ding, Y., Lei, Y., Li, J., Wang,
Z., Zhang, X., Wang, Y., Cheng, J., Liu, Y., Shi, Q., Yan, L.,
Geng, G., Hong, C., Li, M., Liu, F., Zheng, B., Cao, J., Ding,
A., Gao, J., Fu, Q., Huo, J., Liu, B., Liu, Z., Yang, F., He, K.,
and Hao, J.: Drivers of improved PM2.5 air quality in China
from 2013 to 2017, P. Natl. Acad. Sci. USA, 116, 24463–24469,
https://doi.org/10.1073/pnas.1907956116, 2019.

Zhang, X., Rao, R., Huang, Y., Mao, M., Berg, M. J.,
and Sun, W.: Black carbon aerosols in urban cen-
tral China, J. Quant. Spectrosc. Ra., 150, 3–11,
https://doi.org/10.1016/j.jqsrt.2014.03.006, 2015.

Zhang, Y.-L., Li, J., Zhang, G., Zotter, P., Huang, R.-J., Tang, J.-H.,
Wacker, L., Prévôt, A. S. H., and Szidat, S.: Radiocarbon-Based
Source Apportionment of Carbonaceous Aerosols at a Regional
Background Site on Hainan Island, South China, Environ. Sci.
Technol., 48, 2651–2659, https://doi.org/10.1021/es4050852,
2014.

Zhao, C., Wang, Q., Ban, J., Liu, Z., Zhang, Y., Ma, R., Li, S.,
and Li, T.: Estimating the daily PM2.5 concentration in the
Beijing-Tianjin-Hebei region using a random forest model with
a 0.01°× 0.01° spatial resolution, Environ. Int., 134, 105297,
https://doi.org/10.1016/j.envint.2019.105297, 2020.

Zheng, H., Kong, S. F., Zheng, M. M., Yan, Y., Yao, L., Zheng,
S., Yan, Q., Wu, J., Cheng, Y., Chen, N., Bai, Y., Zhao, T.,
Liu, D., Zhao, D., and Qi, S.: A 5.5-year observations of
black carbon aerosol at a megacity in Central China: Levels,

https://doi.org/10.5194/acp-25-6161-2025 Atmos. Chem. Phys., 25, 6161–6178, 2025

https://doi.org/10.1021/acsearthspacechem.1c00443
https://doi.org/10.1038/ngeo156
https://doi.org/10.1016/j.atmosenv.2016.07.014
https://doi.org/10.1021/es702253m
https://doi.org/10.1016/j.envres.2014.12.009
https://doi.org/10.5194/acp-18-16121-2018
https://doi.org/10.5194/acp-22-561-2022
https://doi.org/10.5194/acp-22-561-2022
https://doi.org/10.5194/acp-22-3579-2022
https://doi.org/10.5194/acp-22-3579-2022
https://doi.org/10.1016/j.scitotenv.2020.139133
https://doi.org/10.1029/2019JD031827
https://doi.org/10.1080/10473289.2005.10464718
https://doi.org/10.1016/j.atmosenv.2024.120347
https://doi.org/10.1016/j.jaerosci.2019.105461
https://doi.org/10.1016/S1352-2310(02)00342-4
https://doi.org/10.1016/j.scitotenv.2019.133880
https://doi.org/10.1016/j.atmosenv.2022.119421
https://doi.org/10.1016/j.apr.2020.02.011
https://doi.org/10.5194/acp-9-5131-2009
https://doi.org/10.1073/pnas.1907956116
https://doi.org/10.1016/j.jqsrt.2014.03.006
https://doi.org/10.1021/es4050852
https://doi.org/10.1016/j.envint.2019.105297


6178 A. Abulimiti et al.: Source and trends of black carbon after China’s mitigation plan

sources, and variation trends, Atmos. Environ., 232, 117581,
https://doi.org/10.1016/j.atmosenv.2020.117581, 2020.

Zheng, H., Kong, S., Zhai, S., Sun, X., Cheng, Y., Yao, L., Song,
C., Zheng, Z., Shi, Z., and Harrison, R. M.: An intercompari-
son of weather normalization of PM2.5 concentration using tra-
ditional statistical methods, machine learning, and chemistry
transport models, npj Climate and Atmospheric Science, 6, 214,
https://doi.org/10.1038/s41612-023-00536-7, 2023.

Zhou, B., Wang, Q., Zhou, Q., Zhang, Z., Wang, G., Fang,
N., Li, M., and Cao, J.: Seasonal Characteristics of
Black Carbon Aerosol and its Potential Source Regions
in Baoji, China, Aerosol Air Qual. Res., 18, 397–406,
https://doi.org/10.4209/aaqr.2017.02.0070, 2018.

Zhou, Y., Ma, X., Tian, R., and Wang, K.: Seasonal transi-
tion of Black carbon aerosols over Qinghai-Tibet Plateau:
Simulations with WRF-Chem, Atmos. Environ., 308, 119866,
https://doi.org/10.1016/j.atmosenv.2023.119866, 2023.

Zhu, C., Kanaya, Y., Takigawa, M., Ikeda, K., Tanimoto,
H., Taketani, F., Miyakawa, T., Kobayashi, H., and Pisso,
I.: FLEXPART v10.1 simulation of source contributions to
Arctic black carbon, Atmos. Chem. Phys., 20, 1641–1656,
https://doi.org/10.5194/acp-20-1641-2020, 2020.

Zhuang, B. L., Wang, T. J., Liu, J., Li, S., Xie, M., Yang, X. Q., Fu,
C. B., Sun, J. N., Yin, C. Q., Liao, J. B., Zhu, J. L., and Zhang, Y.:
Continuous measurement of black carbon aerosol in urban Nan-
jing of Yangtze River Delta, China, Atmos. Environ., 89, 415–
424, https://doi.org/10.1016/j.atmosenv.2014.02.052, 2014.

Zong, Z., Wang, X., Tian, C., Chen, Y., Qu, L., Ji, L., Zhi,
G., Li, J., and Zhang, G.: Source apportionment of PM2.5
at a regional background site in North China using PMF
linked with radiocarbon analysis: insight into the contribution
of biomass burning, Atmos. Chem. Phys., 16, 11249–11265,
https://doi.org/10.5194/acp-16-11249-2016, 2016.

Zotter, P., Herich, H., Gysel, M., El-Haddad, I., Zhang, Y., Močnik,
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