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Abstract. The mesoscale self-organization of trade-cumulus cloud fields is a major cloud—climate uncertainty.
Cold pools, i.e., pockets of cold, dense air resulting from rain evaporation, are a key mechanism in shaping these
dynamics and are controlled by the large-scale forcing. We study the microphysical sensitivity of cloud-field self-
organization through cold pools by varying the cloud droplet number concentration (N) from 20 to 1000 cm ™3
in large-eddy simulations on large 154 km x 154 km domains. We find that cold pools exhibit two distinct regimes
of mesoscale self-organization. Under very low N, conditions, cold pools transition from a stage in which they
are small and randomly distributed to forming large, long-lived structures that perpetuate due to the collisions
of cold pools at their fronts. Under high-N, conditions, cold pools display strongly intermittent behavior and
interact with clouds through small, short-lived structures. Thus, although N, influences the number of cold pools
and, in turn, mesoscale organization, cloud depth, and cloud albedo, we find its effect on cloud cover to be
minimal. Comparing the microphysical sensitivity of cold-pool-mediated mesoscale dynamics to the external,
large-scale forcing shows that N is as important as horizontal wind and large-scale subsidence for trade-cumulus
albedo. Our results highlight that cold pools mediate the adjustments of trade-cumulus cloud fields to changes in
N¢.. Such mesoscale adjustments need to be considered if we are to better constrain the effective aerosol forcing

and cloud feedback in the trade-wind regime.

1 Introduction

Clouds play a crucial role in the climate system by modu-
lating the Earth’s energy budget through their interactions
with radiation. Their net effect is to cool the planet by reflect-
ing incoming solar radiation back into space (Stephens et al.,
2012). Clouds are one of the most important sources of un-
certainty in climate projections. Firstly, the cloud feedback is
the most uncertain feedback to the anthropogenic forcing of
the climate system, which is mainly due to the uncertain re-
sponse of shallow clouds to climate change (Schneider et al.,
2017; Nuijens and Siebesma, 2019; IPCC AR6, 2023). Sec-
ondly, the complex interactions between clouds and aerosols
lead to the process uncertainty that makes the effective ra-
diative forcing due to aerosol-cloud interactions the most

uncertain forcing in the climate system (IPCC AR6, 2023;
Bellouin et al., 2020).

Aerosol perturbations change the concentration of cloud
condensation nuclei and, in turn, cloud droplet number con-
centration (N;) values. Assuming a fixed cloud liquid wa-
ter path, increased N, results in a larger number of smaller
cloud droplets, leading to a larger surface area to interact
with radiation, and in turn increased cloud optical depth and
cloud albedo, known as the Twomey effect (Twomey, 1977).
In addition to this quasi-immediate effect that can be consid-
ered to occur on the spatiotemporal scales of individual cloud
parcels, changes in N, can also propagate to larger scales. On
the single-cloud scale, increased N, reduces the efficiency
of collision—coalescence processes through smaller radii, de-
creasing the rain-formation efficiency, thereby delaying pre-
cipitation formation, known as the Albrecht or lifetime ef-
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fect (Albrecht, 1989). This delay in precipitation formation
allows clouds to live longer; get deeper; and, in the end, pre-
cipitate more intensely. Such effects can lead to an internal
reorganization on the cloud-field scale, or mesoscale, which
ranges from tens to hundreds of kilometers and evolves on
timescales of hours to days. These effects can be considered
a form of self-organization because they are not prescribed
by a large-scale forcing. In addition to delayed precipitation
formation, increased N has also been described to affect en-
trainment rates with effects on meso-timescales (Glassmeier
et al., 2021).

For trade-cumulus cloud fields, large-eddy simulations
(LESs) were first employed on small domains (6.4km x
6.4km to 12.8km x 12.8km) to investigate the response of
shallow cumuli to aerosol perturbations (Xue et al., 2008;
Zuidema et al., 2008). A decade later, LESs on larger do-
mains (Seifert et al., 2015; Yamaguchi et al., 2019b) showed
that the compensating internal adjusting processes, as pro-
posed by Stevens and Feingold (2009), occur on the scales
of 50km x 50km cumulus cloud fields, which is far beyond
the scale of an individual cloud. While not their focus, these
studies give a clear indication of cold-pool activity. Cold
pools are pockets of cold, dense air resulting from down-
drafts associated with rain evaporation. When these down-
drafts reach the surface, cold pools spread outward in a
circular pattern. Studies across various regimes — stratocu-
mulus, shallow, and deep convection — indicate that cold-
pool boundaries feature strong, moist updrafts, which trig-
ger cloud formation along their edges, forming cloud rings
that are often visible in satellite imagery (Xue et al., 2008;
Savic-Jovcic and Stevens, 2008; Zuidema et al., 2012, 2017;
Boing et al., 2012; Jeevanjee and Romps, 2013; Schlemmer
and Hohenegger, 2014; Langhans and Romps, 2015; Torri
et al., 2015; Drager and van den Heever, 2017; Haerter and
Schlemmer, 2018; Helfer and Nuijens, 2021; Lochbihler et
al., 2021; Vogel et al., 2021; Touzé-Peiffer et al., 2022).
When cold pools form in close proximity, their boundaries
can collide (Torri and Kuang, 2019), which intensifies the
next convective event. Such cold-pool interactions through
collisions implement self-organization, as has been concep-
tually modeled for both open-cell stratocumulus (Glassmeier
and Feingold, 2017) and deep convective regimes (Haerter et
al., 2019; Nissen and Haerter, 2021).

Shallow cumuli in the trades are frequently precipitating
(Nuijens et al., 2009; Snodgrass et al., 2009; Radtke et al.,
2022), leading to the frequent presence of cold pools in the
trade-wind regime (Zuidema et al., 2012; Vogel et al., 2021;
Touzé-Peiffer et al., 2022). The size and frequency of oc-
currence of cold pools covary with the mesoscale organi-
zation of trade-cumulus clouds (Vogel et al., 2021). Even
under large-scale conditions that are invariant in time and
space, LES studies show that trade-cumulus cold pools self-
organize and, in turn, pattern trade-cumulus fields into arc-
shaped structures (Seifert and Heus, 2013; Vogel et al.,
2016). By generating strong, moist updrafts at their fronts,
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cold pools affect and interact with clouds (Zuidema et al.,
2012; Li et al., 2014; Vogel et al., 2021; Alinaghi et al.,
2025). Using large-domain LESs of the trade-wind regime,
Alinaghi et al. (2025) recently showed that the cold-pool-
cloud interaction expresses itself in the form of structures
resembling shallow squall lines. Thus, cold pools are cou-
pled to clouds through shallow circulations at the mesoscales
that were frequently observed in the trades (George et al.,
2023) and affect cloudiness (Vogel et al., 2022; Janssens et
al., 2023; Alinaghi et al., 2025).

The mesoscale dynamics of trade cumulus are typically
discussed in the context of cloud feedback. The trade-
cumulus feedback has long been a large source of uncertainty
in climate projections (Cesana and Del Genio, 2021; Myers
et al., 2021). Trade-cumulus fields pattern into structures at
the mesoscales that influence the cloud radiative effect (Bony
et al., 2020; Alinaghi et al., 2024a; Denby, 2023). Therefore,
it is crucial to explore processes through which these clouds
organize and how these processes respond to the variations in
large-scale cloud-controlling factors (CCFs). By employing
a large ensemble of LESs, the Cloud Botany ensemble (Jans-
son et al., 2023a), Alinaghi et al. (2025) illustrated that cold
pools in the trades are strongly controlled by the variations
in the large-scale external CCFs. They particularly quantified
the relative importance of CCFs with respect to each other.
Additionally, diurnality in insolation, which acts as a time-
varying CCF, was shown to strongly control the temporal
evolution of cold pools throughout the entire Cloud Botany
ensemble (Alinaghi et al., 2025).

Given the direct impact of N on precipitation formation,
it is expected that trade-cumulus cold pools respond to vari-
ations in N (Fig. 1, link 1) and, thus, to feedback to cloud
fields at the mesoscales (Fig. 1, link 2). Despite the previ-
ously investigated sensitivity of shallow cold pools to micro-
physics schemes (Li et al., 2015), the response of shallow
cold pools to N has not been directly explored and quan-
tified. Furthermore, it is unknown how such N, variations
change the interplay between cold pools and clouds in the
trade-wind regime. This study explores this response by per-
forming large-domain LESs in which we only vary cloud
droplet number concentrations (N.) from 20 to 1000 cm~3.
The newly added dimension of variability in N; here also
enables us to systematically investigate the relative impor-
tance of N, compared to the other CCFs (Fig. 1, link 3) for
cold pools and the radiative effect of clouds in the trade-wind
regime (Fig. 1, link 4). Hence, our work serves as a step to-
wards understanding the significance of the aerosol forcing
in comparison to the trade-cumulus feedback and exploring
the corresponding role of mesoscale dynamics.

This paper is structured as follows. Based on simulations
discussed in Sect. 2, we first investigate how trade-cumulus
cold pools respond to N variability (Fig. 1, link 1; Sect. 3.1
and 3.2) and how this response shapes the mesoscale organi-
zation of clouds (Fig. 1, link 2; Sect. 3.2). Second, we explore
how the diurnal cycle in insolation, as a time-varying CCF
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Figure 1. Conceptual picture of the study. The diagram summarizes how (link 1) cloud fields respond to changes in N¢ and how (link 2)
cold pools feed back to clouds (self-organization). The diagram also shows that the trade-cumulus system is forced by (link 3) the large-scale
cloud-controlling factors (CCFs) whose relative importance for (link 4) the cloud radiative effect will be quantified compared to Nc.

(Fig. 1, link 3), controls the evolution and response of cold
pools to N¢ (Sect. 3.3). Next, we investigate the implications
of our results for the cloud-field adjustments to N (Fig. 1,
links 1 and 2; Sect. 3.4). Finally, we compare the effect of
N, on cloud-field properties and radiative effects to that of
large-scale external CCFs (Fig. 1, links 3 and 4; Sect. 3.5).
Conclusions are presented in Sect. 4.

2 Data and methods

We perform LESs with the Dutch Atmospheric Large-Eddy
Simulation (DALES) model over domains of 153.6km x
153.6km, featuring a horizontal resolution of 100m and a
vertical resolution of about 20 m. All simulations are forced
by the same large-scale CCFs. These follow the central ref-
erence simulation of the Cloud Botany ensemble (Jansson et
al., 2023a), which corresponds to the mean large-scale con-
ditions of the winter trades as derived from the ERAS reanal-
ysis data (Hersbach et al., 2020). The corresponding profiles,
which are also used for initialization are shown in Fig. 2.
Moreover, all simulations feature the same horizontal ten-
dencies of cooling and drying through advection as those
shown in the Cloud Botany paper (Jansson et al., 2023a,
their Fig. 3). Most of the simulations feature diurnality in
the solar incoming radiation, while all other CCFs are fixed
in time. Thus, the variability and evolution in the simulations
are driven by the interaction between the components of the
system, allowing the study of processes via which the system
self-organizes. For more details on the design of the Cloud
Botany simulations, including the selection of parameters for
the large-scale forcing, refer to Jansson et al. (2023a).
Simulations utilize the two-moment cloud microphysics
scheme of Seifert and Beheng (2001) with a constant
cloud droplet number concentration N.. We conduct six
72h simulations with varying N values in the set
{20, 50, 70, 100, 200, 1000} cm~3. The selected range of N,
variability, from 20 to 100, is similar to that used by Seifert
et al. (2015), which is based on observations of the trades
(Colén-Robles et al., 2006; Gerber et al., 2008; Hudson and
Noble, 2014). We also included N, values of 200 and 1000,
as recent observations from the EUREC*A field campaign
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(Bony et al., 2017; Stevens et al., 2021) report N, values as
high as 1000 cm ™3, primarily due to the presence of dust (see
Fig. 9 in Quinn et al., 2021, and Figs. 9 and 10 in Bony et al.,
2022). Note that, as N, is fixed in time and space and does
not evolve in our simulations, our study excludes microphys-
ical adjustments. To gauge this limitation, we compare our
results to cases from the literature with more complex micro-
physics.

Figure 3 visualizes that all of these simulations start
from a homogeneous non-cloudy state and develop into ran-
domly distributed cumulus clouds. Afterward, clouds self-
aggregate due to the presence of self-reinforcing shallow
mesoscale overturning circulations (Bretherton and Blossey,
2017; Narenpitak et al., 2021; Janssens et al., 2023). As
clouds aggregate, they deepen and eventually start to precipi-
tate, leading to the presence of mesoscale arc-like structures,
indicating the presence of cold pools in the field.

Alinaghi et al. (2025) showed that the evolution of cold
pools across the entire Cloud Botany ensemble is strongly
controlled by the diurnality of insolation, mirroring obser-
vations of the trades (Vial et al., 2021; Vogel et al., 2021).
To investigate how the evolution of cold pools is affected
by variations in N, independently of the diurnal cycle, we
switch off the diurnality in insolation. To this end, we rerun
simulations with N, values of 20, 70, and 1000 cm™3, while
keeping the solar zenith angle time-invariant, ensuring that
the total incoming solar radiation over the entire 24 h period
is equal to that of the simulations with the diurnal cycle (Ali-
naghi et al., 2025, their Sect. 3.2).

To diagnose cold pools, we use the 2D outputs of the
mixed-layer height (hpyix), as hpix has been shown to be a
reliable indicator of trade-cumulus cold pools in both mod-
els (Rochetin et al., 2021) and observations (Touzé-Peiffer et
al., 2022). We identify cold pools following Alinaghi et al.
(2025): for each cloud field, we find the mode and the upper
boundary (99th percentile) of an assumed symmetric prob-
ability density function (PDF) of & that would have been
observed in the absence of cold pools. The lower boundary of
hmix is calculated by first determining the difference between
the upper boundary and the mode and then subtracting this
difference from the mode. Cold pools are identified where
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Figure 2. Large-scale and initial conditions of the simulation for potential temperature (6;), total moisture (g¢), horizontal wind (), and
updraft (w) following the assumptions of the Cloud Botany ensemble (Jansson et al., 2023a) with parameter values of sea-surface (po-
tential) temperature 9,9 = 299 K, near-surface wind speed ug = —10.6 ms~!, moisture scale height 4 = 1810 m, temperature lapse rate
I =5Kkm™!, large-scale vertical velocity variability wi = 0.0393 cm s~1, and horizontal wind shear uz =0.0022 (m s~hHmL.

hmix 18 smaller than the lower boundary of hpx (see Fig. 3 in
Alinaghi et al., 2025). In essence, this method identifies cold
pools where hpix is relatively shallower compared to other
parts of the field. Alinaghi et al. (2025) showed that the re-
sponse of cold pools to CCFs is not sensitive to the details of
the cold-pool diagnosis performed with this method.

Using the identified cold-pool mask and a clustering
method, we define cold-pool objects as 2D contiguous struc-
tures within the simulation domain at each model time step.
We then quantify the number of cold pools (n¢p) within the
domain. Additionally, we compute the domain-mean cold-
pool size as follows: s¢p = 2731 VAj/nep, where A; denotes
the area of each cold-pool object i within the domain.

3 Results and discussion

3.1 Cloud droplet number concentration affects the
spatial and temporal properties of trade-cumulus

cold pools

In this section, we investigate how the spatial and tempo-
ral properties of cold pools are influenced by N. (Fig. 1,
link 1 and 2). As cold pools result from rain evaporation
(Fig. 1, link 2), we first examine how clouds and rain re-
spond to N, in simulations without a diurnal cycle, which
feature N, values of 20, 70, and 1000 cm™3. According to
theory (Albrecht, 1989) and previous LES studies (Seifert et
al., 2015; Yamaguchi et al., 2019b), increased N, reduces the
efficiency of auto-conversion, delaying rain formation and al-
lowing clouds to deepen and persist longer. Consistent with
this, increased N, leads to the accumulation of liquid water
(L; Fig. 4a), eventually resulting in the production of more
intense rain (R; Fig. 4b). Furthermore, the amplitude of fluc-
tuations in £ and R increases with increasing N, while their
frequency decreases (Fig. 4a and b).

We quantitatively compare our results to those of Ya-
maguchi et al. (2019b) and Seifert et al. (2015) (Fig. 4e

Atmos. Chem. Phys., 25, 6121-6139, 2025

and f). The results of Yamaguchi et al. (2019b) were ob-
tained on domains that were 10 times smaller but using a
microphysics scheme with prescribed aerosol and prognostic
cloud droplet number concentrations. The latter converges to
a certain value after approximately 20h (Yamaguchi et al.,
20190, their Fig. 5e). Therefore, we compare our fixed-N;
results to averages of the last 20 h of their simulations. The
systematic difference between the values of cloud-field prop-
erties is expected due to differences in the large-scale CCFs;
notably, their geostrophic wind speed value is 60 % smaller
than that of our simulations (Yamaguchi et al., 2019b, their
Table 1). Similarly, we present the results from Seifert et al.
(2015), who featured a domain size similar to that of Yam-
aguchi et al. (2019b) but fixed N as in our simulations. We
selected their simulations with interactive radiation and pre-
scribed large-scale advective cooling to match our setup as
closely as possible. It is worth noting that the cloud fields
in Seifert et al. (2015) have larger cloud water and rainwa-
ter paths (Fig. 4e and f), which we mainly attribute to their
larger meridional geostrophic wind value.

Consistent with Yamaguchi et al. (2019b) and Seifert et
al. (2015), increased N, leads to an increased domain-mean
liquid water path, £ (Fig. 4e). As shown by the error bars,
the temporal variance in £ increases in response to increased
N¢ in our simulations. In addition, Fig. 4f illustrates that the
domain-mean rainwater path, R, decreases with increasing
N in all studies. Similar to £, the temporal variations in R
increase with increasing N, in our simulations. This is in con-
trast to the small-domain LESs of Yamaguchi et al. (2019b,
50km x 50km) and Dagan et al. (2018, 12km x 12km—
50km x 50km), where increased N, was found to reduce the
amplitude of fluctuations in the time series of R. The tem-
poral variance in the liquid water and rainwater path in sim-
ulations of Seifert et al. (2015) does not show a systematic
response to N.. Thus, the response of the temporal variations
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Figure 3. Cloud-field albedo examples. The panels show how cloud fields develop in our LESs featuring the diurnal cycle of insolation with
N¢ of 20 (first row), 50 (second row), 70 (third row), 100 (fourth row), 200 (fifth row), and 1000 cm™3 (sixth row), at hours 15 (first column),
30 (second column), 40 (third column), and 50 (fourth column) after the start of simulations.
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Figure 4. Time series of clouds, rain, and spatial properties of cold pools in simulations without a diurnal cycle. Panels (a)-(d) show time
series of L, R, ncp, and s¢p for simulations without the diurnal cycle of solar incoming radiation, where solid lines shown for cold-pool
number and size provide a guide to the eye obtained through Gaussian filtering of the original data points. Note that there is significant

precipitation in the Ne =20 em ™3

case before cold pools with diameters larger than the 5km threshold appear. Panels (e)—(h) show the

response of £, R, ncp, and scp to N¢. The results from Yamaguchi et al. (2019b) averaged over the last 20 h of their simulations are shown
in orange. The results from Seifert et al. (2015) for their near-equilibrium state are shown in blue. Dashed lines are added as a visual guide

where the mean values show a trend.

in cloud-field properties to N, appears markedly different in
our large domains.

The temporal variations in cold-pool characteristics follow
those of the rainwater path, R (Fig. 4b—d). Notably, in the
simulation with N, = 20 cm™3, once cold pools form around
hour 30, they grow until around hour 36 and persist until the
end of the simulation. In contrast, cold pools in the simula-
tion with N, = 1000 cm™3 form, develop, reach a maximum,
decay, and completely vanish. Therefore, increased N, en-
hances the intermittency in the evolution of cold pools. Aver-
aged over the last day, increased N leads to a smaller num-
ber of cold pools, n¢p (Fig. 4g), while the domain-mean size
of cold pools, s¢p, shows a muted response to N, variations
(Fig. 4h).

3.2 Cold-pool evolution shows two distinct mesoscale
behaviors for low and high cloud droplet number
concentrations

To understand the difference in cold-pool dynamics for dif-
ferent cloud droplet number concentrations, Fig. 5 contrasts
the extreme N, cases. Consistent with observations (Zuidema
et al., 2012; Vogel et al., 2021), both have in common that

Atmos. Chem. Phys., 25, 6121-6139, 2025

cold pools alter the spatial pattern of moisture in the sub-
cloud layer. Cold pools are characterized by relatively dry air
inside but relatively moist air at their fronts. Cold pools fur-
ther modify the spatial pattern of horizontal velocity in the
sub-cloud layer, thereby altering the spatial pattern of con-
vergence and, in turn, vertical velocity. Cold pools feature
large values of downward vertical velocity inside but strong
updrafts at their fronts. Therefore, cold-pool fronts actively
contribute to moist convergence and cloud formation. In con-
trast, the downward motions inside cold pools can potentially
suppress convection and lead to cloud-free regions.

Despite the similar evolution of individual cold pools in-
dependent of N, there are notable differences in the collec-
tive, i.e., self-organization, behavior. In the low-N, simula-
tion (i.e., Ne =20cm™3), cold pools tend to form in close
proximity. As their fronts converge, they trigger the forma-
tion of new cold pools at their collision points. This trigger-
ing mechanism occurs due to (i) the collision of anomalously
moist cold-pool fronts, which mechanically forces the moist
air upward due to mass conservation, and (ii) the high effi-
ciency of rain formation, where a small amount of cloud wa-
ter quickly turns into rainwater, leading to the formation of a
new cold pool at the collision point. Consequently, the small,

https://doi.org/10.5194/acp-25-6121-2025
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Figure 5. Effects of cold pools on the organization of the (sub-)cloud layer properties for the simulations without a diurnal cycle and with
N¢ =20 and N; = 1000 cm 3. For each condition, columns 1-4 indicate the 2D top views of cloud albedo, total moisture anomalies (qt’ ) at
the 200 m level, the horizontal wind speed anomalies (U’) at the first level of the model, and the vertical velocity (w) at 200 m height. The
dashed green contour line marks the cold-pool boundaries quantified from the mixed-layer height fields. In the U’ fields, red indicates that
cold pools accelerate the wind, whereas blue indicates that they decelerate it.

space-filling cold pools at hours 30-36 collide and transition
into a stage where they become organized into a large front,
sustained by the interaction (collision) of its cold pools at its
fronts (see Fig. 5, N, =20 cm™3, hour 48). This is consis-
tent with the time series of cold-pool number (n¢p) and size
(scp) shown in Fig. 4c¢ and d, which show that the metrics of
cold pools stabilize after around hour 38: s, remains around
15 £ 5km, while n¢p remains around 6 £4. This behavior
of cold pools resembles the mathematical toy model of col-
liding, circular cold pools presented by Nissen and Haerter
(2021, their Fig. 5), which demonstrates (i) similar transi-
tions from randomly distributed cold pools to a band-like
structure and (ii) that cold-pool collision is the key mecha-
nism for the self-organization of the system. Notably, their
model was motivated by cold pools in the regime of deep
convection.

In contrast, cold pools do not interact as readily in the
high-N, simulation (i.e., N. = 1000 cm_3). This is can be
attributed to two factors. First, the efficiency of rain forma-
tion and, consequently, cold-pool formation, is significantly
lower in high-N, than in low- N, simulations. Second, cold
pools form at greater distances from each other. We specu-
late that this distance is determined by the horizontal length
scale of the self-reinforcing shallow circulations that lead
to moisture aggregating in the absence of rain (Bretherton
and Blossey, 2017; Narenpitak et al., 2021; Janssens et al.,
2023; George et al., 2023). As Janssens et al. (2023) showed,
the aggregation of non-precipitating cumuli occurs atop such
anomalous mesoscale moist regions, whose size expands in
tandem with the growth of anomalous mesoscale dry re-
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gions. The scale growth of dry regions in the descending
branch of circulations effectively separates moist regions —
and consequently, their associated aggregated clouds — pre-
venting interactions between their subsequent cold pools,
which form at greater distances from each other. Consis-
tently, Fig. 5 (N, = 1000cm™3, hour 38) suggests that the
downward branches of these circulations are so large that
they effectively separate two cloud clusters and cause their
cold pools to form at a distance from each other, thus pre-
venting their interactions.

The intermediate case of N. = 70cm > exhibits a cold-
pool evolution similar to that of the high-N, case with N, =
1000cm—3: (i) cold pools in the N. =70 cm ™3 case also
form far apart, resulting in very infrequent cold-pool inter-
actions, and (ii) its cold-pool evolution displays strong inter-
mittency, as shown by Fig. 4c and d. The self-organization
dynamics of this case were recently discussed by Alinaghi et
al. (2025), in which cold pools are characterized in analogy
to squall lines in deep mesoscale convective systems (Ro-
tunno et al., 1988; Weisman and Rotunno, 2004; Stensrud
et al., 2005). In this regime, cold pools reinforce and sustain
their parent clouds due to the convergence of moist air at their
fronts. Once cold pools mature, their moist updrafts at their
fronts become so strong that they impinge on the inversion,
leading to the formation of stratiform anvils with stratiform
precipitation. This weakens the cold-pool-induced updraft,
ultimately causing parent clouds to detach from their cold-
pool children (Alinaghi et al., 2025, their Figs. 7, 8, and 11).
This self-organizing behavior of cold pools and clouds in
simulations where they cannot interact is also evident in the
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cold-pool time series (Fig. 4c and d), which exhibit an inter-
mittent behavior with large amplitudes and low frequencies
for both N =70 and 1000 cm ™.

An interesting observation is that rain and cold pools tend
to develop more rapidly once the initial event has occurred.
For instance, the time series shown in Fig. 4b—d demonstrate
that it takes approximately 36 h for the N = 1000 cm™> sim-
ulation to produce rain and cold pools. However, subsequent
cold-pool events occur within about 8 h, indicating a faster
formation of rain and cold pools. In this simulation, the next
convective event takes place precisely where the fronts of the
previous cold-pool event had accumulated moisture, thereby
expediting the development of subsequent convection. We
hypothesize that cold pools in the high- N simulation act as a
“moisture memory” similar to deep convection (Colin et al.,
2019), facilitating aggregation over shorter timescales com-
pared to when cold pools are absent. This suggests that the
moisture variance induced by cold pools decreases the in-
duced delay in rain formation associated with increased N.

As the final point in this section, we investigate how the
two N-induced regimes of cold-pool self-organization dy-
namics relate to the mesoscale organization of trade-cumulus
cloud fields (Fig. 1, link 2). To address this, we quantify
several metrics based on the geometry of clouds that effec-
tively capture the variability in the mesoscale organization
of cloud fields in the trades (Janssens et al., 2021). These
include the domain-averaged size of cloud objects, the mean
fraction of open-sky areas, the domain-mean depth of clouds,
and the degree of organization (Iore). The details of these
metrics and their calculations are explained by Janssens et
al. (2021). In addition to geometry-based cloud metrics, we
further compute more organization metrics that are based on
the spatial distribution of cloud liquid water and total mois-
ture fields. First, we quantify the spatial standard deviation
of the liquid water path o L. Second, following Radtke et
al. (2023), we consider the metric A Q, which quantifies the
moisture aggregation at the mesoscales. This metric is calcu-
lated as the difference between the 5th and 95th percentiles
of the mesoscale total moisture anomaly fields, derived by
coarse-graining the total moisture anomaly fields as outlined
by Janssens et al. (2023, see their Fig. 3).

Interestingly, the geometry-based organization metrics
quantifying the mean size of cloud objects and the open-sky
areas, which were shown to explain most of the variability
within the mesoscale organization of trade cumuli (Janssens
etal., 2021), do not capture the two distinct behaviors of cold
pools in low-and high- N, regimes discussed in the context of
Fig. 5 (Fig. Al). However, Fig. 6a and b show that the spa-
tial variance in the cloud liquid water path o £ is strongly
affected by N.. First, increased N, translates into a strong in-
termittent behavior in o £ evolution (Fig. 6a). Second, Fig. 6b
indicates that, when averaged over 2448 and 48—72 h inter-
vals, increased N, leads to greater spatial heterogeneity in
the liquid water content: shallow cumuli become more ag-
gregated in response to increased N, as visually evident in

Atmos. Chem. Phys., 25, 6121-6139, 2025

P. Alinaghi et al.: Cold-pool-mediated mesoscale adjustments of trade-cumulus fields

the snapshots of cloud fields shown in Figs. 3 and 5. The
o L—N¢, relationship suggests that a reduced number of cold
pools, in response to increased N, enhances cloud aggrega-
tion. This echoes the findings of Radtke et al. (2023), who
also showed that rain (auto-conversion) is less efficient in
more aggregated fields of trade cumuli (Radtke et al., 2023,
their Fig. 2).

With the delay in precipitation formation due to increased
N, moisture is expected to continue aggregating through
shallow circulations driven by latent heating from condensa-
tion in the non-precipitating cumulus layer (Bretherton and
Blossey, 2017; Janssens et al., 2023). Figure 6¢ shows that
this is exactly what happens in simulations with high N¢. In
simulations with N. of 70 and 1000 cm 3, the moisture ag-
gregation metric A Q keeps growing until cold pools start to
form, after which A Q stabilizes and shows an intermittent
behavior. In contrast, in the lowest case of N., the moisture
does not aggregate at the mesoscales until hour 30, where
cold pools start to form, after which the moisture aggrega-
tion metric AQ starts developing and keeps increasing un-
til the end of the simulation. This implies that this metric of
moisture aggregation at the mesoscales is intriguingly able to
encapsulate the contrasts between these distinct behaviors of
cold pools at low- and high- N, levels. Averaged over hours
24-48, A Q associated with the low-N, cases is 50 % smaller
than of that of the high-N, cases (Fig. 6d). However, as the
simulations progress into hours 48—72, cold pools in low- N,
simulations develop into large squall lines, increasing their
moisture aggregation and reducing the sensitivity of AQ to
N, (Fig. 6d).

In summary, the evolution of cold pools and trade-cumulus
fields is significantly influenced by N, exhibiting two dis-
tinct behaviors at low and high N, (Fig. 1, links 1 and 2).
In simulations with N, = 20 cm™3, cold pools form in close
proximity, leading to interactions and collisions that trigger
the formation of clouds and, due to high rain efficiency, new
cold pools at the collision points. This results in persistent
long-lived structures resembling squall lines. Conversely, in
simulations with higher N, values (70 and 1000 cm™?), cold
pools form at greater distances, preventing interactions and
resulting in intermittent behavior. Cold pools in such cases
are short-lived structures resembling squall lines, hypotheti-
cally facilitating convection by providing moisture anomalies
at their fronts, thereby decreasing N-induced delays in sub-
sequent cold-pool formation. This N.-driven contrast in cold-
pool dynamics affects moisture and cloud water variance,
with higher N, leading to more aggregated trade-cumulus
cloud fields.

3.3 Diurnal cycle synchronizes the phases of cold-pool
evolution across simulations with perturbed N¢

We have shown that the temporal evolution of cold pools
(and the trade-cumulus system in general) is controlled by N,
(Fig. 1, links 1 and 2). Observations have shown that the evo-
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Figure 6. Dependence of mesoscale organization of cloud fields on N¢. Panels (a) and (c) show the time series of the spatial standard
deviation of the liquid water path o L and the difference between the Sth and 95th percentiles of the mesoscale total moisture anomaly fields
A Q for the simulations without the diurnal cycle of insolation. Panels (b) and (d) show their responses to N¢ for hours 24-48 in purple and
hours 48—72 in green. Dashed lines are added as a visual guide where the mean values have a trend.

lution of trade-cumulus fields, their mesoscale organization,
precipitation, and cold pools in the trades feature diurnality
(Nuijens et al., 2009; Vogel et al., 2021; Vial et al., 2021,
Radtke et al., 2022). This raises the following question: “To
what extent does the diurnal cycle of insolation, as a time-
varying external forcing, control or affect the influence of N
on the evolution of cold pools (Fig. 1, link 3)?”.

To answer this question, we plot the time series of the
domain-mean rainwater path (R), the cold-pool number
(n¢p), and the cold-pool size (s¢p) in our simulations with the
diurnal cycle, featuring N, values of 20, 50, 70, 100, 200,
and 1000cm™3. As expected, Fig. 7a—c show that, across
all simulations, the evolution of rain and cold pools follows
the diurnal cycle of radiation, peaking around sunrise and
reaching a minimum around sunset. This pattern is due to the
absence of solar radiation combined with longwave radia-
tive cooling during the night. This strong nighttime radiative
cooling destabilizes the atmosphere, stimulating convection
and leading to the formation of deeper clouds that precipi-
tate more intensely. In contrast, during the daytime, radiative
heating from solar radiation stabilizes the atmosphere, sup-
pressing convection and causing a notable decrease in rain
and in the number and size of cold pools in almost all simu-
lations. Thus, the diurnal cycle serves as an external forcing
(Fig. 1, link 3) that synchronizes the periodicity and ampli-
tude of cold-pool variability that were discussed in the con-
text of Fig. 4 across simulations with different N.. The sim-
ulated diurnal cycle in precipitation and cold pools is con-
sistent with observations of the trades (Nuijens et al., 2009;
Vogel et al., 2021; Vial et al., 2021; Radtke et al., 2022).

Although all simulations show evolution synchronized
with the diurnal cycle, the cold pools in the simulation with
the lowest N, continue to persist even during the daytime,
when convection suppression due to reduced net radiative
cooling is at its peak. This behavior is notable as it indicates
that the mesoscale self-organization of cold pools through
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collisions, as discussed in Sect. 3.2, outweighs the externally
imposed suppressive effect of the diurnal cycle during the
day. Consequently, cold pools in the No =20cm™> simula-
tion remain active throughout the day. However, the duration
of cold pools’ persistence during the day decreases with in-
creasing N.. Specifically, during daytime hours around 34—
46, increased N, leads to an earlier disappearance of cold
pools and a more delayed formation of the next generation
of cold pools, as shown in Fig. 7c. To summarize, we find
that the diurnal cycle externally synchronizes the mesoscale
self-organization dynamics of cold pools, which is in turn
modulated by the details of microphysics and rain formation.

The synchronization of cold-pool events by the diurnal
cycle enables us to compare the responses of the rainwater
path (R) and cold pools to N, during the same time win-
dow across all simulations. In all simulations, except for
N¢ =20cm™3, rain and, subsequently, cold pools begin to
form after hour 24 (Fig. 7a—c), with the evolution of cold
pools following the diurnal cycle of net radiative cooling. We
refer to the day starting at hour 22 as the “transient” phase
and the subsequent day beginning at hour 46 as the “near-
equilibrium” phase. We selected these hours based on the de-
velopment of the total water (cloud and water vapor) path in
our simulations, which consistently increases until hour 48
across all simulations, after which it stabilizes and becomes
time-invariant (Fig. A2).

All simulations consistently show a higher daily mean
rainwater path (R) during the near-equilibrium phase com-
pared to the transient phase (Fig. 7d). This is because, in
the near-equilibrium phase, our simulations are more devel-
oped and feature deeper boundary layers with larger total wa-
ter that can develop more rain. Consistent with our results
based on the last 24 h of simulations without the diurnal cy-
cle (Fig. 4f-h), Fig. 7d and e illustrate that, during the both
transient and near-equilibrium phases, the rainwater path (R)
and the cold-pool number (7p) decrease with increasing Ne.
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Figure 7. Effects of the diurnal cycle of insolation on the evolution and N response of rain and cold pools. Panels (a)—(c) show time series
of the rainwater path (R), cold-pool number (7¢p), and cold-pool size (scp) for simulations with the diurnal cycle of solar incoming radiation.
Nighttime is shown by the gray color. Solid lines shown for cold-pool number and size provide a guide to the eye obtained through Gaussian
filtering of the original data points. Note that there is significant precipitation in the N. =20 cm—3 case before cold pools with diameters
larger than the 5 km threshold appear. Panels (d), (e), and (f) show the response of R, ncp, and scp to N during the transient (purple) and
near-equilibrium (green) phases, which are marked in the time series plots (a), (b), and (c), respectively. Dashed lines are added as a visual
guide where there is a trend.

Also, the cold-pool size (scp) does not show a notable change marily through the cloud albedo response, or the Twomey

in response to N, (Fig. 7). effect (Fig. 8c and d). During both the transient and near-

equilibrium phases, the cloud fraction (f.) decreases very

3.4 The Twomey effect primarily controls the slightly with increasing N, although this response is much

dependence of the cloud radiative effect on Ne smaller than the temporal variance in f. within each simula-

tion (Fig. 8a). Additionally, the liquid water path (£) shows a

In this section, we investigate the sensitivity of the relative small increase with increased N, (Fig. 8b). However, similar

cloud radiative effect (Xie and Liu, 2013), rCRE = fc 'Ac’ to the non-precipitating phase, the Twomey effect continues

to Ne (Flg-. 1, link 4), where fc apd A are the respective to strongly control the response of tCRE to N, during both
cloud fraction and albedo. Assuming the plane-parallel ap- the transient and near-equilibrium phases (Fig. 8¢ and d).

proximation (Lacis and Hansen, 1974), cloud albedo is given The response of the liquid water path in the near-

: : : ~ 1/3 p5/6

by Ac = 377> With a cloud optical thickness 7 &~ Nc!/* L%/ equilibrium phase is consistent with the results of Yamaguchi

following Zhang et al. (2005). Therefore, we explore the re- ¢t 41, (2019b) and Seifert et al. (2015). This small positive

sponse of the cloud fraction (f¢), domain-mean liquid water sensitivity of the liquid water path in our simulations does

path (£), mean Cl‘?Ud' albedo (Ac) over the cloudy columns not significantly affect the impact of N, on rCRE compared
where the cloud liquid water path is larger than zero, and to the Twomey effect. The cloud fraction ( f.) decreases with

the relative cloud radiative effect (rCRE) to N.. These sen- increasing N, in the simulations of Yamaguchi et al. (2019b).
sitivities are explored during different phases of the simula- Similarly, our simulations and those of Seifert et al. (2015)
tions with the diurnal cycle: non-precipitating (hours 5-15), both show a decrease in f, in response to increased Ne. How-
transient (hours 22-46), and near-equilibrium (hours 46-72) ever, this decrease seems to be smaller compared with the
phases. For comparison, we also include results from Seifert f response in the simulations of Yamaguchi et al. (2019b).
et al. (2015) and Yamaguchi et al. (2019b), where the lat- It would be interesting to revisit this difference with a cloud
ter features more comprehensive microphysics than our study microphysics scheme that does not fix the cloud droplet num-
with its fixed cloud droplet number concentration. ber, as in the current study, but rather allows for full micro-
During the non-precipitating (or weakly precipitating) physical adjustments.
phase, the response of the cloud fraction ( f.) and liquid water It is worth noting that, although variations in N. mod-
path (£) to N is negligible (Fig. 8a and b). Thus, the rela- ulate the number of cold pools and, in turn, mesoscale

tive cloud radiative effect (fCRE) is influenced by N, pri-
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Figure 8. Sensitivity of the relative cloud radiative effect to cloud droplet number. Panels (a)—(d) show the response of the cloud fraction
(fc), domain-mean liquid water path (£), cloud albedo (A¢), and relative cloud radiative effect (fCRE) to N, during the non-precipitating
(dark gray), transient (purple), and near-equilibrium (green) phases. The results from Yamaguchi et al. (2019b) averaged over the last 20 h
of their simulations are shown in orange. The results from Seifert et al. (2015) for their near-equilibrium state are shown in blue. Note that
Yamaguchi et al. (2019b) and Seifert et al. (2015) do not report on the cloud albedo and rCRE in their studies. Dashed lines are added as a

visual guide where there is a trend.

self-organization of trade-cumulus fields, the cloud fraction
(fc) is very weakly affected. Our results here resonate with
Janssens et al. (2025), who hypothesized that circulations
associated with self-organization symmetrically distribute
cloudiness at the mesoscales such that the increased cloudi-
ness at their ascending branch is compensated for by the de-
creased cloudiness at their descending branch. This implies
that, although decreased N, increases the number of cold
pools, the increased cloudiness at their fronts, where con-
vection is triggered, appears to be buffered by the decreased
cloudiness at their interiors, where convection is suppressed.
Future studies are encouraged to explicitly investigate this.

3.5 N; induces comparable variations in cloud radiative
effect to the large-scale cloud-controlling factors

In this section, we quantify the relative importance of
N. (Fig. 1, link 1) compared with the large-scale cloud-
controlling factors (CCFs; Fig. 1, link 3) with respect to driv-
ing changes in cloud-field properties and radiative effects
(Fig. 1, links 2 and 4). Using the data from the Cloud Botany
dataset (Jansson et al., 2023a) as well as our new simulations
of this study, we employ a multivariate regression model:

—~ . —~ CCF,; — CCF;
i Xx CCF; with CCF; == —,
Bi x i W1 i +(CCF,)

QO
2
I

where the vector C represents the mean of the metric C €
{A., rCRE}, averaged over the last 2 d (hours 12-60) for each
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member of the Cloud Botany ensemble. Each regressor C?fF,-
is a vector containing the associated CCF; values for the sim-
ulation members of the Cloud Botany ensemble. The regres-
sors (CCFs) include sea-surface (potential) temperature (6;),
near-surface wind speed (ug), moisture scale height (hg,),
temperature lapse rate (I'), large-scale vertical velocity vari-
ability (w1), and horizontal wind shear (). In addition, we
consider N, as a seventh regressor. For the regressor N, we
use the simulations with the diurnal cycle over hours 12-60
to be consistent with the simulations of the Cloud Botany en-
semble. All regressors are standardized by subtracting their
mean CCF and dividing by their standard deviation o(CCF)
across the ensemble, which allows the comparison of CCFs
and N, with an equal weighting. In our regression analysis,
we only include simulations that develop clouds and run for
at least 48 h. This leaves us with 80 simulations out of the ini-
tial 103 in the Cloud Botany ensemble. Including the simula-
tions with the diurnal cycle from this study (six in total) and
noting that the simulation with N, = 70 cm™3 is already part
of the ensemble as the central reference simulation, our re-
gression analysis features 85 data points in total. This means
that the target value C and regressors CCF; of the regression
model are vectors of size 85 x 1.

Figure 9 shows the results of the multivariate regression
for cloud albedo (A.) and relative cloud radiative effect
(rCRE). Note that the response of A, and rCRE to the CCFs
of the Cloud Botany ensemble has already been addressed
and discussed by Janssens (2023a) and Janssens et al. (2025),
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Figure 9. Cloud-field response to large-scale cloud-controlling factors and cloud droplet number concentration. The standardized g coeffi-
cients of the multiple regression analysis for (a) cloud albedo (A¢) and (b) relative cloud radiative effect (rCRE), all averaged over the last
2d of the LESs of the Cloud Botany ensemble. The error bars show the 95 % confidence interval for each regressor. The p values of the

F test of all models are smaller than 1022,

and we refer the reader to these publications for further de-
tails. Figure 9a illustrates that the effect of N on A, known
as the Twomey effect, is comparable to that of large-scale
subsidence as quantified by wj. Additionally, the effect of
N, on trade-cumulus brightening is about 75 % of the ef-
fect of horizontal wind speed, 150 % of the effect of stabil-
ity, and 300 % of the effects of free-tropospheric humidity
and vertical wind shear. Eventually, the response of rCRE to
N, is statistically significant at the 95 % level and accounts
for about 66 %, 28 %, and 25 % of the response of rCRE to
free-tropospheric humidity, wind speed, and large-scale sub-
sidence, respectively (Fig. 9b). Note that the sensitivity of
rCRE to N; is smaller than that of cloud albedo to N, in our
regression analysis, which is due to the very weak impact of
N, on f, (Fig. 8a). Similar regression results for other cloud-
field and cold-pool properties are presented in Fig. A3.

4 Conclusions and outlook

Cold pools, resulting from rain evaporation, affect the
mesoscale organization of trade-cumulus fields (Zuidema et
al., 2012; Seifert and Heus, 2013; Vogel et al., 2016, 2021;
Alinaghi et al., 2025). We have used an ensemble of large-
domain LESs to investigate the sensitivity of mesoscale orga-
nization to the cloud droplet number concentration (N.) and
the role of cold pools therein, as conceptualized in Fig. 1.
Investigating the sensitivity of mesoscale cold-pool dy-
namics to microphysics (Fig. 1, link 1), we find that cold
pools show two distinct behaviors at low and high N.. In
low- N, cases, there are many cold pools within the simula-
tion domain, which form in close proximity (Fig. 4c, d, g and
h and Fig. 5). This allows them to interact with each other
through collisions. Efficient rain formation then leads to the
swift triggering of new cold pools at collision points. Con-
sequently, cold pools organize into a large, long-lived front
with a resemblance to a squall line that perpetuates through
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the collisions of cold pools at its leading edge. In contrast,
high- N, cases feature sparsely distributed cold pools, with
this sparse distribution preventing their interaction. In this
regime, cold pools exhibit an intermittent behavior, manifest-
ing as small, short-lived fronts resembling squall lines that
form, develop, decay, and vanish (Fig. 4c, d, g, and h and
Fig. 5).

For the effect of N, on the interaction between clouds and
cold pools (Fig. 1, link 2), our analysis shows that increased
N, suppresses the formation of cold pools (Fig. 4g and h
and Fig. 5), while enhancing the self-aggregation of cloud
fields (Fig. 6). In other words, by delaying precipitation for-
mation, increased N, allows non-precipitating cumulus fields
to aggregate moisture (Fig. 6¢ and d) through self-reinforcing
mesoscale overturning circulations (Bretherton and Blossey,
2017; Narenpitak et al., 2021; Janssens et al., 2023). We
quantified this effect, which clearly influences the mesoscale
organization of cloud fields, particularly by increasing the
spatial variance in the cloud liquid water path (Fig. 6a and b).
Interestingly, despite the suppression of cold pools and the
boost in aggregation due to increased N, (Fig. 6a—d), the
overall daily mean responses of the cloud fraction and lig-
uid water path are notably small (Fig. 4e and Fig. 8a and b).
This echoes the recent findings of Janssens et al. (2025), who
reported that shallow mesoscale circulations appear to sym-
metrically modulate cloudiness within trade-cumulus fields
such that the increased cloudiness at their ascending branch
is compensated for by the decreased cloudiness at their de-
scending branch. This suggests that, although mesoscale or-
ganization is affected by the variations in cold pools due to
increasing N, the increased cloudiness at the edges of cold
pools appears to be buffered by the decreased cloudiness at
their interiors.

For the effect of the diurnal cycle as an external forcing
on the microphysical sensitivity (Fig. 1, link 3), we find that
the diurnal cycle synchronizes the self-organization dynam-
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ics of cold pools on the mesoscale across simulations with
varying N, (Fig. 7). Thus, cold-pool activity is controlled by
both the external forcing and the self-organization dynam-
ics. The contribution of self-organization dynamics increases
with decreasing N. as showcased by the fact that cold-pool
activity survives the daytime suppression for the lowest N,
case (Fig. 7b and c).

To compare the importance of microphysical and large-
scale controls on the cold-pool dynamics (Fig. 1, links 1 and
3) occurring on the intermediate mesoscale, we have made
use of the Cloud Botany ensemble (Jansson et al., 2023a).
We demonstrate that the Twomey effect is as significant as
the primary cloud-controlling factors for the brightening of
trade-cumulus fields (Fig. 9a). Despite the very small re-
sponse of the cloud fraction to N. (Fig. 8a), the response
of the relative cloud radiative effect to N (Fig. 1, link 4) is
about 25 % as significant as the response of rCRE to horizon-
tal wind speed and large-scale subsidence (Fig. 9b).

We have obtained these results using a prescribed cloud
droplet number as a proxy for microphysical influences. This
assumption excludes microphysical adjustments. Despite a
broad agreement between our results and those of Yamaguchi
et al. (2019b) that are based on a more detailed microphysics
scheme with prognostic N¢, Li et al. (2015) showed that cold
pools are sensitive to choices of microphysics schemes. We,
therefore, encourage future research, such as the Cold Pool
Model Intercomparison Project (CP-MIP; Kazil et al., 2025),
to focus on the sensitivity of mesoscale cold-pool dynamics
to such microphysical choices if we truly want to understand
rain evaporation, cold pools, and their relevance for trade-
cumulus fields.
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Irrespective of its idealizations, this study clearly high-
lights that aerosol-cloud interactions are affected by pro-
cesses happening at multiple spatial and temporal scales,
ranging from the microscale via the mesoscale to the large
scales. For shallow cloud fields in the trades, we demonstrate
that variations in the microscale can manifest themselves at
the mesoscale to a degree that is comparable to the influence
of large-scale controls. We consider these findings a valuable
step towards understanding the mesoscales as a prerequisite
for constraining trade-cumulus—climate feedbacks as well as
trade-cumulus-mediated aerosol forcings.
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Appendix A: Supplementary figures

500

a 475
@ i)
£ 400 £ 450 N
e Nd \
\
<300 425 S
==
200 400
0 12 24 36 43 60 72 10! 102 10°
101 (c) Nc = 20 [/cm?] (d)
= Nc = 70 [/em?3] = 0.6
s — Ne = 1000 [/cm?] X
505 So4 +
12 24 36 48 60 72 10! 102 10°
2000
(e) 1600{(f) ¢ hours 24-48
— 1500 — ¢ hours 48-72
£ E 1400 +
N 1000 N
1200
0 12 24 36 43 60 72 10! 102 10°
0.60{ (g) 091(H)
0.8
> >
5055 S
07
0.50 0.6
0 12 24 36 43 60 72 10t 102 10
Time [hours] Nc [/cm3]

Figure A1. Dependence of several mesoscale cloud organization metrics on Nc. Panels (a), (c), (e), and (g) show the time series of the
domain-mean size of cloud objects (L), the mean fraction of the open-sky areas (L,), the domain-mean of cloud-top height (z¢), and the
degree of organization (Iorg) for the simulations without the diurnal cycle of insolation. Panels (b), (d), (f), and (h) show their mean responses
to N for hours 2448 in purple and 4872 in green. The dashed line is shown as a visual guide where there is a trend.
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Figure A2. Total water path time series for several values of N.. The figure shows the development of the domain-mean total water path,
which is the sum of both the cloud water and water vapor paths. The transient and near-equilibrium phases are marked by purple and green,
respectively.
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Figure A3. Cloud-field response to large-scale cloud-controlling factors and cloud droplet number perturbations. The standardized $ coeffi-
cients of the multiple regression analysis for the (a) rainwater path (R), (b) cold-pool fraction ( f' cp), (¢) cold-pool number (72¢p), (d) cold-pool

size (Scp) (e) liquid water path (L), and (f) cloud fraction (Tc), all averaged over the last 2d of the LESs of the Cloud Botany ensemble.
The error bars show the 95 % confidence interval for each regressor. The larger the distance of the confidence interval from zero, the more
significant the corresponding regressor. The p values of the F test of all models are smaller than 1015

Code and data availability. The Cloud Botany dataset is
publicly accessible through the EUREC*A intake catalog
(https://howto.eurec4a.eu/botany_dales.html, Jansson et al.,
2023b). The simulation outputs of Yamaguchi et al. (2019b)
are publicly available from the NOAA dataset platform
(https://csl.noaa.gov/groups/csl9/datasets/data/cloud_phys/

2019- Yamaguchi-Feingold-Kazil/, Yamaguchi et al., 2019).
The data were analyzed using the following Python libraries:
NumPy  (https://github.com/numpy/numpy, NumPy, 2025),
Xarray (https://github.com/pydata/xarray, Xarray, 2025), pan-
das  (https:/github.com/pandas-dev/pandas, Pandas, 2025),
SciPy (https://github.com/scipy/scipy, SciPy, 2025), statsmodel
(https://github.com/statsmodels/statsmodels, Statsmodels, 2025),
Matplotlib (https://github.com/matplotlib/matplotlib, Matplotlib,
2025), and seaborn  (https://github.com/mwaskom/seaborn,
Seaborn, 2025). The basic profiles and time series associ-
ated with cloud-field properties, cloud organization metrics,
and cold-pool properties as well as a movie of simulations
are publicly available in Alinaghi et al. (2024b) and from
https://doi.org/10.5281/zenodo.13868738. The coarse-graining
of the total water path anomaly fields was done using the code
(SMOCs.ipynb) from Janssens (2023b), which is publicly available
(https://doi.org/10.5281/zenodo.8089287).
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