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Abstract. Atmospheric organic aerosol (OA) mass concentrations can be affected by water uptake through its
impact on the gas–particle partitioning of semi-volatile compounds. Current chemical transport models (CTMs)
neglect this process. We have implemented the Binary Activity Thermodynamics model coupled to a volatility
basis set partitioning scheme in the GEOS-Chem CTM, providing an efficient reduced-complexity OA model
that predicts relative-humidity-dependent mixing and partitioning thermodynamics, while limiting the impact
on computational efficiency. We provide a quantitative assessment of this water-sensitive OA treatment, focus-
ing on a subdomain over North America. The updated OA scheme predicts a spatiotemporal mean enhance-
ment in surface-level OA mass concentration of 145% for January 2019 and 76% for July 2019 compared to
GEOS-Chem’s most advanced OA scheme. The temporal mean surface-level OA organic mass concentration
can increase by up to ∼ 590% for January 2019 and ∼ 280% for July 2019, with the greatest enhancements
occurring over the ocean. The updated OA scheme also quantifies the OA-associated water content. The sim-
ulations show how different OA precursors and related OA surrogates contribute and respond to water uptake,
including that due to changes in temperature and relative humidity over the diurnal cycle in selected winter and
summer months. These results are independent of future CTM improvements involving updates to chemical re-
action schemes and emission inventories. Our water-sensitive OA scheme allows for a better representation of
the seasonal and regional variations in OA mass concentration in CTMs.

1 Introduction

Organic aerosol (OA) can be produced in the atmosphere
by means of volatile organic functionalization reactions and
subsequent gas–particle partitioning. OA can also be directly
emitted as primary particulate matter from biogenic and an-
thropogenic sources. OA accounts for a large mass fraction
of ambient fine particulate matter (PM2.5) (Murphy et al.,
2006; Zhang et al., 2007; Jimenez et al., 2009). Attwood
et al. (2014) showed that OA often surpasses the contribu-
tion of other common PM2.5 components such as sulfate,
nitrate, and ammonium species. Burnett et al. (2018) cal-

culated 9 million deaths per year worldwide attributable to
fine particulate matter due to cardiovascular and respira-
tory diseases. Health Canada (2021) estimates that around
15 000 premature deaths per year in Canada are associated
with exposure to air pollution, in particular, PM2.5 (defini-
tions of the acronyms used in this paper can be found in
Table 1), and that the total economic cost due to health im-
pacts is CAD 120 billion annually. In addition to the health
impacts, atmospheric aerosol particles, including OA, can af-
fect climate. This happens through their interactions with ra-
diation (i.e., direct aerosol–radiation interactions) and when
they serve as cloud condensation nuclei (CCN) (i.e., in-
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direct aerosol–cloud–radiation interactions). However, the
large spatiotemporal variability in atmospheric aerosols, in
terms of size ranges, number concentrations, chemical com-
position, and their microphysical influence on cloud prop-
erties, represents one of the largest uncertainties in human-
influenced forcing on the climate system (Forster et al., 2021;
Watson-Parris and Smith, 2022). Climate forcing is sensitive
to the physicochemical properties of OA, such as its hygro-
scopicity, which is defined as the ability of OA to take up wa-
ter vapor from the environment at a given relative humidity
(RH). Rastak et al. (2017) studied Earth’s radiative budget’s
sensitivity to OA hygroscopicity and aerosol–climate interac-
tions using climate model simulations. Large-scale 3D atmo-
spheric models usually assign a single constant hygroscop-
icity parameter (κOA

org ) to represent the water affinity of OA.
They showed that the choice of κOA

org can have a substantial
impact on the estimated average top-of-the-atmosphere ra-
diative fluxes. Since the chemical composition of OA dynam-
ically evolves in the atmosphere over timescales that range
from minutes to days (Jimenez et al., 2009), its hygroscopic-
ity also changes considerably in space and time, as reported
in laboratory and field OA data (Lathem et al., 2013). Repre-
senting the hygroscopicity of OA using a constant parameter
can lead to large uncertainties in estimations of the climate
impacts of OA.

Water vapor is one of the most important species in the
air, as it is an abundant greenhouse gas and due to its impact
on PM2.5. Particle-phase water content impacts the aerosol
chemistry (Volkamer et al., 2007; Surratt et al., 2007; Ervens
et al., 2011; Lim et al., 2013; DeCarlo et al., 2018), viscosity
(Shiraiwa et al., 2011; Lilek and Zuend, 2022), composition,
and mass concentration (Zuend et al., 2010; Serrano Damha
et al., 2024). Depending on the OA chemical composition
and associated hygroscopicity, OA may range from nearly
water-free to a highly dilute aqueous phase in the tropo-
sphere. The mixture of organic compounds in the OA is ex-
pected to typically remain in a non-crystalline state, ranging
from liquid to semi-solid or glassy depending on temperature
and composition. The physical state is due to the abundance
of ambient water vapor that gets absorbed by the particle or
due to the depression of the mixture glass transition temper-
ature (Marcolli et al., 2004). However, the direct and indirect
effects of water on the overall OA properties are neglected
by most air quality, weather, and climate models due to com-
putational complexity considerations.

Traditionally, modeling OA and other associated air qual-
ity metrics on a regional-to-global scale in the atmosphere
is done with a chemical transport model (CTM) such as
GEOS-Chem (Bey et al., 2001; Park et al., 2004; Wang et al.,
2004; Trivitayanurak et al., 2008; Yu and Luo, 2009; East-
ham et al., 2014; Keller et al., 2014; Eastham et al., 2018; Lin
et al., 2021; Miller et al., 2024). While not the only source
of error in CTMs, the simplification of OA physicochemi-
cal processes can lead to large errors in the estimation of OA

mass concentration and composition. In the GEOS-Chem 3D
model, OA is implemented as an ideally mixed condensed
(liquid) phase composed of organic matter only (Chung and
Seinfeld, 2002; Pye et al., 2010; Pai et al., 2020), to date
without accounting for water uptake. The gas–particle parti-
tioning of SVOCs is the main pathway of OA formation and
evolution when an airshed is not influenced by substantial
local primary organic aerosol (POA) emissions. The parti-
tioning of organic mass between the gas and particle phases
is predicted by the GEOS-Chem CTM based on the effective
saturation mass concentration (C∗j ) in the gas phase, also re-
ferred to as effective volatility, of organic compounds (Pye
et al., 2010). This is called a one-dimensional volatility basis
set (1D VBS) approach (Donahue et al., 2006).

Hydrophilic organic compounds are made of polar func-
tional groups and have stronger molecular interactions with
water (i.e., water solubility) than hydrophobic organic com-
pounds. These compounds, typically containing electroneg-
ative atoms such as oxygen, coexist with water in a single
water-rich particle phase. Hydrophobic organic compounds,
in contrast, either form a separate organic-rich particle phase
or partition into the gas phase in the presence of water. The
affinity of organic species to water (i.e., their water-seeking
properties) thus impacts their mixing behavior in the parti-
cle phase. OA water uptake alters the gas–particle partition-
ing of organic compounds and thus the equilibrium OA mass
concentration (e.g., Griffin et al., 2003; Pankow and Chang,
2008; Chang and Pankow, 2010; Gorkowski et al., 2019;
Serrano Damha et al., 2024). Detailed aerosol thermody-
namic models capable of predicting particle-phase nonideal
mixing, such as the Aerosol Inorganic–Organic Mixtures
Functional groups Activity Coefficients (AIOMFAC) ther-
modynamic model (Zuend et al., 2008, 2011), are currently
not used in large-scale chemistry models like GEOS-Chem.
This class of thermodynamic models requires molecule-level
chemical structure information, such as the functional groups
of organic species present in an aerosol, a type of input
that is usually not available. In addition, these models focus
on capturing the chemical complexity and associated multi-
component interaction effects, which lead to relatively com-
plex model equations. As a result, they may not meet the
computational efficiency requirements of the current gener-
ation of CTMs. With the intention of addressing these CTM
implementation challenges, an efficient reduced-complexity
OA thermodynamic model called Binary Activity Thermo-
dynamics (BAT) was developed by Gorkowski et al. (2019)
to treat nonideal mixing of organic compounds and water.
Serrano Damha et al. (2024) have previously compared a
BAT-based VBS (BAT-VBS) framework with two simpler
single-hygroscopicity-parameter (Petters and Kreidenweis,
2007) VBS approaches that estimate OA water uptake, such
as the ones tested in the Community Multiscale Air Qual-
ity Modeling System (CMAQ) (Pye et al., 2017) and used
in ISORROPIA-lite (Kakavas et al., 2022). Serrano Damha
et al. (2024) have shown that the BAT-VBS model consis-
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tently accounts for the variations in C∗j of organic com-
pounds with RH (aside from temperature), a key feature af-
fecting the predicted OA mass concentration due to a water
uptake feedback, which other VBS approaches lack.

In this work, we update the complex secondary OA
with semi-volatile primary-OA scheme of the GEOS-Chem
model, hereafter referred to as the “dry OA”, “default OA”,
or “standard OA” scheme. Our aim is to improve the GEOS-
Chem model predictions of the mass concentration of OA in
the atmosphere using the ability of a relatively simple yet
thermodynamically consistent model to represent particle-
phase non-ideality, liquid–liquid equilibrium effects, and
the water-sensitive gas–particle partitioning of organic com-
pounds. We implement the BAT-VBS model into GEOS-
Chem to capture the feedback effect between OA water up-
take and the subsequent re-equilibration of organic mass
due to the altered partitioning of semi-volatile organic com-
pounds (SVOCs). For gas–particle partitioning predictions,
we couple the BAT model with the existing 1D VBS ap-
proach of GEOS-Chem. We do not alter the inorganic aerosol
treatment of GEOS-Chem, which is solved by the ISOR-
ROPIA model (Fountoukis and Nenes, 2007). By design,
GEOS-Chem treats OA and inorganic aerosol as if they were
completely phase separated (or externally mixed) by treating
their mixing and gas–particle partitioning thermodynamics
independently.

2 Methodology

2.1 Organic aerosol scheme in GEOS-Chem

Atmospheric organic aerosol (OA) was simulated using
the GEOS-Chem chemical transport model (CTM) (Bey
et al., 2001; Pye et al., 2010; Marais et al., 2016) based
on version 14.2.3 (https://github.com/geoschem, last access:
5 March 2025) released on 1 December 2023 (Yantosca et al.,
2023). A nested simulation setup was employed, in which the
boundary conditions were created using global simulations
with a horizontal resolution of 4° latitude by 5° longitude.
In our nested simulations, a chemical operator duration of
10 min and a transport operator of 5 min were used. OA mass
concentration data were saved every 3 h. The horizontal res-
olution of our nested simulations over a North American do-
main (140–40° W; 10–70° N) was configured at 0.5° latitude
by 0.625° longitude, with 72 vertical levels from 1005.65 hPa
(lowest atmospheric level) up to 0.015 hPa (highest atmo-
spheric level) using the Modern-Era Retrospective analysis
for Research and Applications, Version 2 (MERRA-2), me-
teorological data distributed with GEOS-Chem. Typically,
about eight atmospheric vertical layers constitute the bound-
ary layer (the first kilometer from the surface). A buffer zone
of three grid cells along each boundary of the North Ameri-
can domain was used. A period of 1 month was used to spin
up GEOS-Chem prior to a targeted simulation time frame.

The full gas-phase chemistry mechanism with the com-
plex secondary-OA scheme considering semi-volatile pri-
mary OA was modified as further described in this sec-
tion and used in all the simulations. The OA species in this
work are grouped together into five compound classes cor-
responding to five main hydrocarbon precursors: terpenes
(TSOA), isoprene (ISOA), light aromatics and intermediate-
volatility organic compounds (ASOA), primary semi-volatile
organic compounds (POA), and oxidized SVOCs (OPOA)
(Pye et al., 2010). The main organic precursor oxidation
pathways considered are photooxidation, ozonolysis, and ni-
trate radical oxidation. As described in Pye et al. (2010),
the gas–particle partitioning is parameterized with either a
unique one-dimensional volatility basis set (1D VBS) with
four effective saturation mass concentration (C∗j ) bins in the
case of TSOA and ASOA or an Odum 2-product fit with two
C∗j bins in the case of POA and OPOA. The reference tem-
perature (T ) for theC∗j of TSOA and ASOA species is 298K.
The reference T for the C∗j of POA and OPOA species is
300K. Isoprene-derived OA is modeled using an aqueous-
phase irreversible reactive uptake scheme by Marais et al.
(2016) that replaced the standard 1D VBS approach used in
older versions of GEOS-Chem. The probability of each iso-
prene gas-phase precursor adding mass to the OA is deter-
mined using uptake coefficients that are calculated based on
aerosol-phase reaction rates and solubilities (Marais et al.,
2016).

The default (dry) OA scheme of GEOS-Chem does not
consider the impact of the mass concentration of isoprene-
derived species on the partitioning of organic compounds
simulated by the 1D VBS approach. In our updated (water-
sensitive) OA scheme, the presence of ISOA in the OA
absorption medium is accounted for by assigning a C∗j

of 0µgm−3 to isoprene-derived species predicted by the
aqueous-phase irreversible reactive uptake scheme. Their ef-
fective volatility is so low that these compounds remain in the
particle phase. This modification to the default OA scheme
allows us to reconcile the 1D VBS and Odum 2-product ap-
proaches of TSOA, ASOA, POA, and OPOA with the ir-
reversible reactive uptake mechanism of ISOA. The higher
the mass concentration of pre-existing OA, the higher the
aerosol mass fraction (AMF) of organic species (Supplement
Eq. S3), even in the absence of OA water. As explained in
Sect. 3.2, this addition, however, is not the main source of
the predicted enhancement of OA organic mass concentra-
tion when applying our updated, water-sensitive OA treat-
ment.

The approximate molar masses (Mj ) and oxygen-to-
carbon ratios (O : Cj ) of organic compounds needed for our
updated BAT-VBS scheme in the GEOS-Chem model were
estimated using the molecular corridor approach of Shiraiwa
et al. (2014). The molecular corridors allow us to relate pure-
component saturation mass concentrations of organics (C◦j )
to O : Cj . The slopes of the 2D space of Mj vs. log10C

◦

j are
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Table 1. Abbreviations and variables.

Abbreviation or Definition Units∗

Variable

OA Organic aerosol, referring to the organic-rich particle phase only –
LLPS Liquid–liquid phase separation –
VOC Volatile organic compound –
IVOC Intermediate-volatility organic compound –
SVOC Semi-volatile organic compound –
LVOC Low-volatility organic compound –
ELVOC Extremely low-volatility organic compound –
PM2.5 Fine particulate matter with a diameter equal to or smaller than 2.5µm –
AMF Aerosol mass fraction of organic species –
CTM Three-dimensional chemical transport model –
1D VBS One-dimensional volatility basis set framework –
BAT-VBS Binary Activity Thermodynamics model coupled to a 1D VBS approach –
MERRA-2 Modern-Era Retrospective analysis for Research and Applications, Version 2, meteorological data –
O : Cj Elemental oxygen-to-carbon ratio of organic species j –
H : Cj Elemental hydrogen-to-carbon ratio of organic species j –
N : Cj Elemental nitrogen-to-carbon ratio of organic species j –
C∗
j

Effective saturation mass concentration of organic species j µgm−3

C◦
j

Pure-component saturation mass concentration of organic species j µgm−3

C
gas
j

Gas-phase mass concentration of organic species j µgm−3

COA
j

OA-phase mass concentration of species j µgm−3

C
gas+OA
j

Total mass concentration of organic species j µgm−3

COA
org Cumulative OA-phase mass concentration of organic species µgm−3

COA
w OA-phase mass concentration of water µgm−3

COA
org+w Total OA-phase mass concentration µgm−3

Mj Molar mass of species j gmol−1

γj Mole-fraction-based binary activity coefficient of species j –
κOA

org Hygroscopicity parameter of the OA –
ξj Aerosol mass fraction of organic species j –
forg Organic mass fraction of an OA compound class –
fSV org Cumulative organic mass fraction of semi-volatile organic species –
f1org Organic mass change fraction of an OA compound class –
fβ Mass fraction of organic species in the organic-rich (β) liquid phase when LLPS happens –

∗ The equations and models presented in this work typically use the stated units, which are scaled versions of the preferred units from the International System of Units.

indicative of the typical increase in molar mass associated
with a decrease in volatility. The molar mass vs. volatility
slopes limiting the 2D space set the range of O : Cj val-
ues expected based on 909 oxidation products considered
by Shiraiwa et al. (2014). Among the different compound
classes considered, n-alkanes have the lowest polarity, with
an O : Cj of 0, while sugar alcohols are the most polar com-
pounds, with an O : Cj of 1. This oxygen content range is
used in our work to estimate the O : C of OA species in
GEOS-Chem, even though organic compounds with higher
O : C ratios can be found in aerosol samples. In order to make
a direct comparison between the BAT-VBS model and the de-
fault VBS approach of GEOS-Chem in terms of OA organic
mass concentration predictions, we opted to use the same
VBS as described in Pye et al. (2010). To use the informa-
tion given by molecular corridors, C◦j values are assumed to

be equal to the (dry-state) effective saturation mass concen-
trations (C◦j ≈ C

∗

j ); the latter are provided by the default OA
scheme of the GEOS-Chem model. The default GEOS-Chem
model assigns an Mj of 150.0gmol−1 to every TSOA and
ASOA species, which seems unrealistic, especially for oxy-
genated low-volatility organic compounds (LVOCs) and ex-
tremely low-volatility organic compounds (ELVOCs). Like-
wise, an Mj of 12.0gmol−1 is (incorrectly) assigned to ev-
ery POA and OPOA species. Those Mj values are irrele-
vant for solving the equilibrium OA organic mass concen-
tration in the default OA scheme. However, the default val-
ues of Mj needed to be corrected for use by the BAT-VBS
model in GEOS-Chem since they are required in the cal-
culation of C∗j (Eq. 2). The first step to determine the Mj

values of organic compounds (volatility bins) within each of
the five precursor types is based on approximating the Mj
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Figure 1. Molecular corridors describing the relationship between
molar masses, effective saturation mass concentrations at 298K,
and elemental oxygen-to-carbon ratios of OA organic species
(adapted from Fig. 4 of Shiraiwa et al., 2014). The O : Cj ratios of
TSOA, ASOA, and ISOA species were estimated using the molar
mass vs. volatility space depicted by the red envelope. The least po-
lar organic compounds (O : Cj = 0) reside in the upper limit of the
envelope. The most polar organic compounds (O : Cj = 1) reside in
the lower limit of the envelope.

vs. log10C
◦

j slope of each OA precursor. This can be done
by estimating the limiting Mj values (i.e., Mj of the most
volatile organic compound and Mj of the least volatile or-
ganic compound) of each type of OA precursor. The Mj val-
ues of the remaining species can then be calculated using the
linear equation corresponding to the OA precursor type. For
example, in the case of the TSOA compound class, an equa-
tion for the linear relationship between Mj and log10C

◦

j can
be obtained based on the properties of TSOA0 and TSOA3
(Table 2). Since the log10C

◦

j values are provided by the 1D
VBS of the GEOS-Chem model, we can then calculate the
corresponding Mj values of TSOA1 and TSOA2 using the
linear equation of the TSOA compound class. The O : Cj ra-
tios of TSOA0, TSOA1, TSOA2, and TSOA3 can then be
approximated using the molecular corridor relationship for
every pair of log10C

◦

j and Mj values, assuming that O : Cj
increases from 0 to 1 between the limits of the red envelope
at a fixed log10C

◦

j in Fig. 1. In the particular case of POA
and OPOA, the molecular corridor is instead used to estimate
Mj values from every pair of log10C

◦

j and O : Cj values,
given that the GEOS-Chem model provides the global mean
organic-mass-to-organic-carbon ratios of POA and OPOA
(1.4 and 2.1 for POA and OPOA, respectively), which can
be related to O : Cj as follows (Simon and Bhave, 2012):

O : Cj =
(

12
15

)(
OM : OCj

)
−

14
15
, (1)

where OM : OCj is the organic-mass-to-organic-carbon ratio
of species j .

The BAT model assigns one representative functional
group to each organic component to represent its water affin-
ity. Of all the options available in terms of functional groups,
it was established by Serrano Damha et al. (2024) that using
the BAT model with the ketone effective functional group
assigned to all organic compounds in binned VBS-type ap-
proaches produces consistent hydrophilic or hydrophobic be-
havior in reasonable agreement with the more robust Aerosol
Inorganic–Organic Mixtures Functional groups Activity Co-
efficients (AIOMFAC) thermodynamic model (Zuend et al.,
2008, 2011). As such, we decided to set ketone as the ef-
fective average functionality that characterizes each organic
component (regardless of whether a specific component ac-
tually contains ketone functionalities or not).

A schematic of all the OA species considered in GEOS-
Chem is shown in Fig. S1 of the Supplement. The properties
of these species are summarized in Table 2.

2.2 Binary Activity Thermodynamics model

We updated the complex secondary-OA scheme of the
GEOS-Chem model by coupling the standard 1D VBS de-
scribed in Sect. 2.1 with an efficient, water-sensitive OA ther-
modynamic equilibrium model. The Binary Activity Ther-
modynamics (BAT) model used in this work was developed
by Gorkowski et al. (2019). It is a reduced-complexity ac-
tivity coefficient model that accounts for the nonideal mix-
ing behavior of water and organic compounds in aqueous
organic solutions as a function of relative humidity (RH).
The BAT model estimates OA water uptake and the (binary)
mixture activity coefficients for water and each individual
organic compound. In addition, this thermodynamic model
can predict the occurrence and extent of liquid–liquid phase
separation (LLPS) within aqueous organic mixtures (not ac-
counting for inorganic electrolyte effects in this OA-only
case), which can happen when low-polarity organic com-
pounds are present in the OA under high-RH conditions.
The BAT model and its implementation of LLPS predictions
are described in detail elsewhere (Gorkowski et al., 2019;
Zuend, 2022b; Serrano Damha et al., 2024). By coupling the
BAT model with the 1D VBS of GEOS-Chem (BAT-VBS),
we are able to estimate the gas–particle partitioning of or-
ganic compounds while accounting for non-ideality in the
OA, which, as discussed in Serrano Damha et al. (2024), is
shown to be important. The main advantage of implement-
ing the BAT-VBS model over more detailed thermodynamic
models like the Aerosol Inorganic–Organic Mixtures Func-
tional groups Activity Coefficients (AIOMFAC) thermody-
namic model (Zuend et al., 2008, 2011) is that it can es-
timate particle-phase non-ideality using only limited infor-
mation about the OA composition, i.e., information that can
be obtained or estimated from the CTM in a straightforward
manner, while AIOMFAC would require molecular structure
data, which are usually unavailable.
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Table 2. Molecular properties of organic compounds used as inputs to run the BAT-VBS model in GEOS-Chem.

Speciesa Precursor C∗
j
[µgm−3

]
b,c Mj [gmol−1] O : Cj

TSOA0 Terpenes 0.1 270.0 0.49
TSOA1 Terpenes 1.0 236.7 0.55
TSOA2 Terpenes 10.0 203.3 0.61
TSOA3 Terpenes 100.0 170.0 0.69
SOAGX Isoprene 0.0d 170.0 0.84
SOAIE Isoprene 0.0d 150.0 0.87
LVOCOA Isoprene 0.0d 130.0 0.90
ASOAN Light aromatics and IVOCs 0.0 220.0 0.70
ASOA1 Light aromatics and IVOCs 1.0 190.0 0.76
ASOA2 Light aromatics and IVOCs 10.0 160.0 0.82
ASOA3 Light aromatics and IVOCs 100.0 130.0 0.90
POA1 Primary SVOCs 1646.0 283.3 0.19
POA2 Primary SVOCs 20.0 232.3 0.19
OPOA1 Oxidized SVOCs 16.5 203.6 0.75
OPOA2 Oxidized SVOCs 0.2 171.9 0.75

a All organic compounds are assumed to have the ketone functionality in terms of the characteristic group type
adjustment of BAT when running the BAT-VBS model in GEOS-Chem. b C∗

j
values are calculated at a reference T

of 298 K for the TSOA and ASOA species. C∗
j

values are calculated at a reference T of 300 K for the POA and
OPOA species. c The enthalpy of vaporization normalized by the ideal gas constant used in GEOS-Chem is 5000 K.
d Isoprene-derived species are assigned a C∗

j
of 0 µg m−3 in order to reconcile the 1D VBS and Odum 2-product

approaches of TSOA, ASOA, POA, and OPOA with the irreversible reactive uptake mechanism of ISOA.

The typical inputs in each GEOS-Chem grid cell needed
to run the coupled BAT-VBS model are (1) the elemen-
tal oxygen-to-carbon ratios O : Cj , (2) molar masses Mj ,
(3) effective saturation mass concentrations C∗j (or, alterna-
tively, pure-component saturation mass concentrations C◦j ),
and (4) the characteristic functional group type of each OA
species or the OA overall. The BAT model estimates C∗j
based on a T -corrected C◦j and RH. The RH per grid cell
is also needed as input, which BAT uses to determine the in-
dividual water content each organic component contributes
to the OA. Another key advantage of the BAT model is that,
in addition to being a thermodynamically sound method, it
is computationally efficient (Serrano Damha et al., 2024),
which allows us to directly apply it within CTM simula-
tions. The BAT code was translated into and optimized in
modern Fortran (https://github.com/CamiloSerranoDamha/
BAT-VBS) based on the original MATLAB implementation
that was used for development by Gorkowski et al. (2019).

In the case of OA consisting of one liquid phase, C∗j ,
known as the gas–particle partitioning coefficient of each or-
ganic component j , is given by (Zuend and Seinfeld, 2012;
Gorkowski et al., 2019)

C∗j = C
◦

j γj
1
Mj

COA
org+w∑
k

COA
k

Mk

, (2)

where γj the mole-fraction-based activity coefficient of or-
ganic component j . COA

org+w is the total OA mass concen-
tration (Eq. 3), while COA

k and Mk are the individual OA
mass concentrations and molar masses of OA components,

including that of water (i.e., index k covers organic com-

pounds and water). The factor
COA

org+w∑
k

COA
k
Mk

represents the mass-

concentration-weighted harmonic mean molar mass of the
OA. COA

org+w represents the summation over all components
involved (Zuend et al., 2010):

COA
org+w =

∑
k

COA
k = C

OA
org +C

OA
w , (3)

where COA
org and COA

w are the cumulative organic and water
mass concentrations in the OA phase, respectively (not ac-
counting for the contribution of water due to inorganic salts).

Our implementation of the BAT-VBS model in GEOS-
Chem involved two main steps. First, the molecular prop-
erties of the organic surrogate species required by the BAT-
VBS model had to be estimated, as described in Sect. 2.1.
Second, the equations of GEOS-Chem’s default OA parti-
tioning scheme (complex secondary-OA scheme with semi-
volatile primary OA) were replaced by the BAT-VBS model.
More details regarding this second step can be found in the
Supplement, Sect. S2. The implementation of the BAT-VBS
model increases the number of independent variables since
the C∗j values are no longer constant for a given T . They
are also a function of OA water content (or, indirectly, RH).
Water uptake alters the particle-phase mole fractions and
mole-fraction-based activity coefficients of organic species
j , in addition to altering the mass-concentration-weighted
harmonic mean molar mass of the OA (Serrano Damha
et al., 2024). As a result, the procedure described through
Eqs. (S1)–(S3) needs to be modified, as convergence cannot
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be achieved only by iterating over COA
org since C∗j cannot be

considered constant. Instead, the BAT-VBS model solves a
system of coupled algebraic equations numerically by iterat-
ing over the AMF of organic compounds (ξj ) (Gorkowski
et al., 2019). This means that updated values for COA

org+w
(Eq. 3) and C∗j (Eq. 2) are calculated during each VBS solver
iteration step until ξj converges, slightly increasing the com-
putational cost of a nonideal VBS in comparison to the de-
fault (dry) VBS approach of GEOS-Chem.

The quantified absolute differences in terms of OA organic
mass concentration predictions between the dry (default of
GEOS-Chem) and water-sensitive (updated) OA schemes
under dry conditions (RH= 0%) are small, as demonstrated
in Sect. S3. The absolute and relative differences in OA or-
ganic mass concentrations are attributed to the different par-
titioning solvers and tolerances used by the two OA partition-
ing schemes. To more accurately estimate the enhancement
of OA organic mass concentration induced by the water-
sensitive OA partitioning scheme at a given RH, we opted
to use the predictions of the water-sensitive OA scheme un-
der dry conditions (RH= 0%) as the reference in our calcu-
lations instead of the default complex secondary-OA scheme
of GEOS-Chem. In other words, the OA organic mass con-
centration enhancement results shown in this work are ob-
tained from the outputs of two simulations that use the water-
sensitive OA scheme (i.e., the BAT-VBS model). The up-
dated version of GEOS-Chem that includes the BAT-VBS
model is run twice. These two simulations are listed in Ta-
ble 3. In the first run, the BAT-VBS model reads the actual
RH values provided by the MERRA-2 meteorological data as
input. In the second run, the BAT-VBS model assumes RH to
be equal to 0%. This latter simulation is used as the refer-
ence (i.e., baseline) in our relative and absolute difference
calculations. Since it is a “dry” scheme, it is meant to repli-
cate GEOS-Chem’s default complex secondary-OA scheme
that accounts for semi-volatile primary OA. We decided not
to use GEOS-Chem’s default (unmodified) OA scheme di-
rectly, as there is a minor difference with the water-sensitive
OA scheme at RH= 0% (Sect. S3). A more accurate estima-
tion of the RH-induced OA organic mass concentration en-
hancement is obtained by comparing the outputs of the same
OA scheme (i.e., BAT-VBS at RH> 0% against BAT-VBS
at RH = 0%).

3 Results and discussion

3.1 Organic mass concentration

The monthly mean OA organic mass concentration predicted
at the surface by the water-sensitive OA scheme (BAT-VBS
model) is shown in Fig. 2 for January and July 2019. In
Fig. 2, we decided to focus on a region that is centered on
the southeastern United States due to the area’s prominent
emissions of natural and anthropogenic organic compounds.
Figure S4 illustrates the results from the same simulations

but showing the entire North American domain (10–70° N,
140–40° W). The surface represents the lowest atmospheric
level in GEOS-Chem, which is about 58 m above ground. For
January 2019, the highest monthly mean OA organic mass
concentrations are typically found over land, mainly due to
TSOA, POA, and OPOA species. For July 2019, the same
compound classes are responsible for the hotspot of monthly
mean OA organic mass concentrations near the Great Lakes.
Moreover, there is an additional contribution from ISOA
species to the predicted monthly mean OA organic mass
concentrations over land during summer. The absolute and
relative differences in mean surface OA organic mass con-
centrations are calculated using the predictions of the water-
sensitive OA scheme at dry conditions (RH= 0%) as the ref-
erence, which is equivalent to the default (dry) OA scheme
of GEOS-Chem (Sect. S3). Therefore, positive values of rel-
ative and absolute differences throughout the map indicate
that the updated water-sensitive scheme (BAT-VBS model)
always predicts a higher monthly mean OA organic mass
concentration than the dry OA scheme, except at dry con-
ditions (RH= 0%), at which point the two schemes agree.
In January 2019, the absolute difference in monthly mean
OA organic mass concentration in the subdomain over North
America (Fig. 2b) is mainly due to the RH-sensitive parti-
tioning of the semi-volatile organic surrogate species TSOA2
(C∗j = 10µgm−3), TSOA3 (C∗j = 100µgm−3), and POA2
(C∗j = 20µgm−3), as expressed by their high organic mass
change fraction (f1org) in Figs. S7 and S10. In July 2019, the
absolute difference in monthly mean OA organic mass con-
centration in the subdomain over North America (Fig. 2e) is
also mainly explained by changes in the partitioning of the
semi-volatile organic species TSOA2, TSOA3, and POA2,
as indicated by their high f1org values in Fig. S7. The non-
volatile and intermediate-volatility organic compounds do
not contribute much to the absolute (and relative) difference
in monthly mean OA organic mass concentration predicted
between the water-sensitive and dry OA schemes. The water-
sensitive partitioning OA scheme predicts a spatiotemporal
mean (i.e., averaged over the North American subdomain and
month) enhancement in surface organic mass concentrations
in the OA (i.e., without considering the OA-associated wa-
ter) of 145% for January 2019 and 76% for July 2019. The
monthly mean surface OA organic mass concentrations can
increase by up to∼ 590% for January 2019 and∼ 280% for
July 2019.

We performed a series of shorter simulations to evaluate
the sensitivity of our results to reasonable boundary values
for the molecular properties of organic species. Figure S12
in Sect. S6 discusses the impact of increasing and decreasing
O : C by 30% on the predicted mean OA organic mass con-
centration enhancement. When normalizing on a per unit per-
cent change in O : C, we found a sensitivity range of 0.36%
to 1.14% in organic mass concentration enhancement per
1% change in O : C of the organic compounds.
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Table 3. GEOS-Chem simulations performed.

Simulation OA scheme RH Purpose
number conditions

1 BAT-VBS model RH= 0% Reference (baseline) simulation that predicts OA mass concentrations
assuming dry conditions (forced to run at RH= 0%). Used as a substitute
for GEOS-Chem’s standard complex OA scheme with semi-volatile
primary OA.

2 BAT-VBS model RH≥ 0% Simulation that predicts water-sensitive OA mass concentrations using
MERRA-2 RH fields as inputs. Used to show the enhancement of OA
organic mass concentration and water uptake predicted by the BAT-VBS
model in comparison to the baseline simulation.

Figure 2. January 2019 (a–c) and July 2019 (d–f) monthly mean surface OA organic mass concentration predicted by the introduced water-
sensitive OA scheme (BAT-VBS model) at given RH in a region that is centered on the southeastern United States (a, d). Panels (b) and (e)
show the absolute difference in monthly mean surface OA organic mass concentrations. Panels (c) and (f) show the relative difference in
monthly mean surface OA organic mass concentrations. The surface level is the lowest atmospheric level of the GEOS-Chem model. The
absolute and relative differences are calculated using the water-sensitive OA scheme (BAT-VBS model) at dry conditions as the reference
(COA

org,BAT−VBS (RH)−COA
org,BAT−VBS (RH= 0 %)).

The fractional contributions of organic PM mass concen-
tration stemming from biogenic and anthropogenic sources
predicted by the water-sensitive OA scheme are illustrated in
Fig. S5. Biogenic emissions such as isoprene and terpenes
are modeled using a species-specific emission rate (net in-
canopy emission rate at 303 K) that is adjusted according to
emission activity factors such as changes in leaf age, air tem-
perature, leaf area index, and light (Guenther et al., 2006;
Sakulyanontvittaya et al., 2008; Pye et al., 2010). These fac-
tors tend to have higher values in the summer months than
in the winter months. The monthly mean surface OA or-
ganic mass concentration for July 2019 is dominated by OA
species from both anthropogenic and biogenic precursors,
while it is mainly composed of OA species from anthro-
pogenic sources in January 2019 due to the limited rate of
biogenic emissions during the winter months. The monthly

mean OA organic mass concentration in the North American
model domain is greater in July 2019 than in January 2019.
The World Health Organization (WHO) recommends an an-
nual mean concentration of particulate matter mass for par-
ticles with aerodynamic diameters of less than or equal to
2.5µm (PM2.5) not exceeding 5µgm−3 (World Health Or-
ganization, 2021). The January 2019 field of monthly mean
organic mass concentration, which is a main component of
PM2.5, does not exceed that reference air quality target. In
July 2019, however, the monthly mean organic mass con-
centration surpassed that threshold around the Great Lakes,
likely due to TSOA, POA, and OPOA emissions and associ-
ated impacts from wildfires in western Canada that occurred
during that month (Fig. S6a, d, e). Figure S6 shows the indi-
vidual contribution of each OA compound class to the mean
surface OA organic mass concentration, expressed as their
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organic mass fraction (forg). POA and OPOA tend to be the
main source of anthropogenic OA organic mass concentra-
tion in January 2019 over land, while OPOA is the lead-
ing anthropogenic OA component in July 2019. OA from
TSOA and ISOA constitute the main source of biogenic OA
in July 2019 over the continent, while TSOA is the leading
biogenic OA component in January 2019.

3.2 Water mass concentration

Figure 3 shows the monthly mean water mass concentration
in the OA at the surface level for January 2019 and July 2019
(panels a, d). Because, to date, the internal mixing of organic
species and electrolytes in a single phase is not considered
in GEOS-Chem, the water uptake shown is entirely due to
the presence of organic species in the aqueous OA. However,
note that GEOS-Chem also includes independent predictions
of PM mass concentrations of an inorganic aerosol phase and
its water content. Three conditions are needed for substantial
OA water uptake to occur: (1) the OA must be sufficiently
polar (hygroscopic) to attract water (Fig. 3b, e), (2) the RH
must be high enough for sufficient water to be available for
equilibrium partitioning into the OA (Fig. 3c, f), and (3) there
must be enough organic material, in terms of the absolute
amount, that absorbs some water (Fig. 2a, d). For example, in
January 2019, the organic mass concentration of OA is high-
est in the southeastern United States. That region also corre-
sponds to the highest values of water uptake due to the pres-
ence of intermediate-polarity compounds (mean O : Corg of
0.5–0.7) and high-RH conditions. In July 2019, the hotspot of
monthly mean OA water mass concentration near the Great
Lakes corresponds to the high OA organic mass concentra-
tion predicted in that region. Once again, the combination
of high OA organic mass concentrations of intermediate-
polarity compounds (mean O : Corg of 0.5–0.7) and high-RH
conditions explains the predicted high monthly mean OA
water mass concentrations near the Great Lakes. The high
monthly mean OA water mass concentrations predicted over
the northwestern Atlantic Ocean are mainly due to the ex-
tremely high average RH in that region for July 2019 in ad-
dition to the presence of a high mean OA organic mass con-
centration and polarity. The extremely high average RH con-
ditions are the key factor explaining the substantial OA water
uptake over the northwestern Atlantic Ocean. In the 99 %–
100 % RH range, water uptake scales exponentially with RH.
At those high RH levels, the OA is a dilute aqueous solution
mainly composed of water. Since clouds are not resolved in
the GEOS-Chem simulation, we decided to set the maximum
possible value of RH to 99.5 %, even though the meteorolog-
ical fields used in GEOS-Chem occasionally suggest higher
values.

For January and July 2019, the regions of high monthly
mean OA water mass concentrations also correspond to the
regions of the highest absolute and relative differences in
monthly mean OA organic mass concentrations when com-

paring the water-sensitive OA scheme with the dry OA
scheme (Fig. 2b, e). The reason is that accounting for the
mass added by water uptake in the OA promotes the par-
titioning of organic species from the gas phase to the par-
ticle phase, i.e., decreases the AMF of organic compounds
(Eq. S3), by two feedback effects. First, the increase in
pre-existing OA absorption medium mass concentration pro-
motes the condensation of semi-volatile organic compounds,
which in turn will attract more water depending on their hy-
groscopicity. Second, the decrease in the mass-weighted har-
monic mean molar mass and particle-phase non-ideality due
to the presence of water in the OA decreases the effective
volatility of organic species. Consequently, the partitioning
of semi-volatile organics into the particle phase is enhanced,
which triggers additional water uptake in the presence of hy-
groscopic organic compounds until a new equilibrium state
is established. As explained in Serrano Damha et al. (2024),
this feedback effect is particularly relevant for those semi-
volatile species that are sufficiently abundant, such that ad-
justments in their gas–particle partitioning affect the total
OA composition. The higher the mass concentration of semi-
volatile organic species, the more significant this feedback
effect becomes. The absolute (and relative) difference in
monthly mean organic mass concentration in the OA between
the water-sensitive and dry OA schemes (Fig. 2b, e) is mainly
due to the decrease in effective volatility of SVOCs with in-
creasing RH, an effect implicitly accounted for by the BAT-
VBS model. Capturing the variation inC∗j with water content
is a feature that both the default (dry) OA scheme of GEOS-
Chem and single-hygroscopicity-parameter approaches, in-
cluding the method used by ISORROPIA-lite to estimate “or-
ganic” water (Kakavas et al., 2022), are completely lacking.

3.3 OA liquid–liquid phase separation

When multiple organic components are present in the aque-
ous OA, spanning a range of affinities for water uptake (e.g.,
hydrophobic and hydrophilic organics), LLPS may occur as a
result of nonideal molecular mixing in the particle phase. The
most stable thermodynamic state of the gas–particle system
(i.e., the one that has the lowest total Gibbs energy) is then
the one associated with the formation of an additional liq-
uid phase, establishing a liquid–liquid equilibrium within the
OA. The manifestation of this equilibrium is based on the
polarity range of the condensed-phase organic compounds
involved and on RH and T (Zuend et al., 2010; Gorkowski
et al., 2019). When LLPS takes place, an organic-rich (β)
liquid phase usually contains the most hydrophobic organic
species, while a water-rich (α) liquid phase is composed of
organic species that have a higher water affinity. It is im-
portant to note that the GEOS-Chem CTM assumes by de-
sign that electrolytes and organic components are completely
phase separated under all conditions, which is a reasonable
assumption when the OA mixture has an average O : C lower
than approximately 0.5 (Zuend and Seinfeld, 2012). Here, the
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Figure 3. January 2019 (a–c) and July 2019 (d–f) monthly mean surface-OA-associated water mass concentration predicted by the introduced
water-sensitive OA scheme (BAT-VBS model) at given RH in a region that is centered on the southeastern United States (a, d). In panel (d),
the color bar was limited to a maximum value of 6 µgm−3, while the highest mean surface OA water mass concentrations reached ∼
73 µgm−3 over the ocean. Panels (b) and (e) show the monthly mean surface-mass-concentration-weighted average O : C of OA. Panels (c)
and (f) show the monthly mean surface RH. The surface level is the lowest atmospheric level of the GEOS-Chem model.

consideration of LLPS only concerns the electrolyte-free OA
phase. A method for a computationally efficient approximate
prediction of the organic-phase composition and RH range
of LLPS with the BAT model has been introduced in detail
elsewhere (Gorkowski et al., 2019; Zuend, 2022a). The ex-
pected frequency of OA-specific LLPS events at the surface
level for January 2019 and July 2019 is depicted in Fig. 4a
and c. In our simulations, each grid cell yields 248 OA or-
ganic mass concentration predictions per month. An LLPS
event is detected whenever the water-sensitive OA scheme
predicts organic mass to exist in both α and β phases within
the same grid cell.

The January 2019 case resulted in a higher frequency of
LLPS events than in July 2019, in particular around Min-
nesota, Wisconsin, Michigan, Ontario, and Quebec. At these
locations, the OA mixture has a low mass-concentration-
weighted average O : C (< 0.5) (Fig. 3b). This means that
the aqueous OA is predominantly made of low-polarity or-
ganic compounds that do not tend to mix with water and
some higher-polarity organics, in which case an aqueous α
phase forms at elevated RH. OA-specific LLPS occurs un-
der high-RH conditions (> 90%) only. LLPS happens south
of the Great Lakes in January 2019 even though the mean
RH can be less than 80% (Fig. 3c) because some CTM grid
cells and time steps have higher RH values during the month.
In July 2019, the frequency of OA-specific LLPS events is
lower than it is in January. The map for July 2019 displays
a seemingly similar correlation between RH, average O : C,
and the frequency of OA LLPS events: locations of higher
frequency of phase separation events like the Great Lakes
correspond to locations of high mean RH (> 90%) (Fig. 3f).

This is the case because regions of high mean RH are also as-
sociated with regions of moderately hygroscopic OA (mean
O : C< 0.7) (Fig. 3e) dominated by POA, OPOA, and TSOA
species (Fig. S6f, i, j). The POA species stays in an organic-
rich phase separate from a water-rich phase, while the more
polar TSOA and OPOA species reside in the water-rich phase
under high-RH conditions. The monthly mean mass fraction
of organic species in the organic-rich (β) liquid phase when
LLPS happened (fβ ) is shown in Fig. 4b and d. For both
months, fβ can be as high as 0.8, meaning that when LLPS
happens, most of the organic mass is in the liquid β phase,
but a non-negligible amount of organic mass still resides in
the liquid α phase.

3.4 OA diurnal cycle

The high variation in MERRA-2-prescribed RH and T fields,
in addition to the transport of OA mass concentration be-
tween CTM time steps and grid cells, can sometimes com-
plicate the assessment of the updated OA scheme’s predictive
capabilities. A map of the monthly mean RH field would not
necessarily correlate with maps of the monthly mean surface
OA organic mass concentration enhancement (with respect
to the dry OA scheme), water uptake, and LLPS. An alterna-
tive way to analyze the water-sensitive OA scheme behavior
is through diurnal cycles and vertical profiles of OA organic
mass concentrations that center on a specific geographic lo-
cation (i.e., CTM grid cell).

Figure 5c shows the monthly mean diurnal cycle of sur-
face OA organic mass concentration for Montreal, Que-
bec, predicted by the water-sensitive (updated) and the dry
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Figure 4. Predicted monthly mean surface-OA-specific LLPS events for January 2019 and July 2019 in a region that is centered on the
southeastern United States. Panels (a) and (c) show the frequency of OA LLPS events out of the 248 3-hourly CTM time steps in the month.
Panels (b) and (d) show the monthly mean surface mass fraction of OA species in the organic-rich (β) liquid phase with respect to the
total (liquid phases α and β) OA organic mass concentration when LLPS happens. Here, LLPS refers to the partitioning of organic species
between a less polar organic-rich (β) liquid phase and a more polar (organic) water-rich (α) liquid phase within the OA system. Note that a
separate electrolyte-rich aqueous phase exists (neither shown nor accounted for here). In this study, the water-rich (α) liquid phase of the OA
system is deprived of inorganic species.

OA schemes during July 2019. The dry OA scheme corre-
sponds to the introduced water-sensitive OA scheme (BAT-
VBS model) forced to run at RH= 0%. The solid line and
envelope represent the mean value and standard deviation, re-
spectively. The water-sensitive scheme predicts a higher dis-
persion of OA organic mass concentration data around the
mean value than the dry scheme due to its sensitivity to RH.

As expected, the mean RH increases from 17:00 to 08:00
local time (all subsequent times are in local time), at which
point the maximum value is reached. RH then decreases until
the cycle restarts in a similar fashion at 17:00. The mean diur-
nal cycle of atmospheric T follows almost the exact opposite
pattern, where T decreases from 17:00 to 05:00 and reaches
its lowest value at 05:00. T then increases until the cycle
restarts at 17:00. The effective volatility of organic com-
pounds typically decreases with decreasing T and increasing
RH. The mean absolute (Fig. 5d) and relative (Fig. 5e) differ-
ences in OA organic mass concentrations are calculated us-
ing the dry OA scheme as the reference. Positive values mean
that the water-sensitive OA scheme predicts a higher OA or-
ganic mass concentration than the dry OA scheme does. The
absolute and relative differences in OA organic mass concen-
trations closely follow the RH variation over the diurnal cy-
cle: when RH increases (or decreases) with time, so does the

difference between the two OA partitioning schemes. While
the dry OA scheme completely ignores the equilibrium up-
take of water by the particle phase, as demonstrated by the
invariability of its predicted OA organic mass concentration
to RH in Fig. 5c, the water-sensitive OA scheme captures the
impact of water uptake on OA at different moments during
the day (i.e., CTM time steps). The mean diurnal cycle pre-
dicted by the dry OA scheme over Montreal varies due to T
fluctuations and organic mass advection effects. In the case
of the dry OA scheme, the OA organic mass concentration
peaks at around 05:00, which corresponds to the moment
of the day when T reaches its lowest value. The Clausius–
Clapeyron equation predicts the (dry) C∗j of organic com-
pounds to decrease as T decreases, which increases the OA
organic mass concentration. Even though both OA schemes
are exposed to the same T conditions and OA advection ef-
fects, the uptake of water and related feedback on the effec-
tive volatility of organic compounds that are accounted for by
the water-sensitive scheme enhance the predicted OA organic
mass concentration over the dry OA scheme. In this particu-
lar mean diurnal cycle, the water-sensitive OA organic mass
concentration increases by more than 100 % between 02:00
and 08:00, with respect to the dry OA scheme when RH is
around its maximum value.
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Figure 5. Monthly mean time series of 3-hourly values of surface RH, T , and OA properties predicted by the introduced water-sensitive OA
scheme (BAT-VBS model) for Montreal, Canada, during July 2019. The surface level is the lowest atmospheric level of the GEOS-Chem
model. The panels show (a) the mean relative humidity, (b) the mean temperature, (c) the mean OA organic mass concentration predicted
by the water-sensitive OA scheme at a given RH and the water-sensitive OA scheme at dry conditions, (d) the mean absolute difference
in OA organic mass concentration, and (e) the mean relative difference in OA organic mass concentration. The spread of data around the
mean values is depicted with a standard deviation envelope. The absolute and relative differences are calculated using the water-sensitive OA
scheme (BAT-VBS model) at dry conditions as the reference (COA

org,BAT−VBS (RH)−COA
org,BAT−VBS (RH= 0 %)).

It is interesting to note that even when the mean RH is
greater than 0 %, the two OA partitioning schemes can some-
times match in terms of absolute organic mass concentration
predictions in the OA. Figure S13 shows the diurnal cycle
of OA organic mass concentration for 3–4 July 2019 over
Montreal, Quebec. For example, at 17:00, the two OA par-
titioning schemes predict almost the same OA organic mass
concentration. This can happen in three situations. First, this

can be the result of having primarily volatile (volatile or-
ganic compounds and IVOCs) and practically nonvolatile
(low-volatility organic compounds (LVOCs) and extremely
low-volatility organic compounds) organic species present in
the air mass but having a relative lack of SVOCs. In this situ-
ation, C∗j is either relatively high (volatile) or very low (non-
volatile), such that a decrease in effective volatility with in-
creasing RH becomes irrelevant (unlike for SVOC species).
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The LVOCs are likely already partitioned into the OA phase
regardless of the RH conditions. Second, this can happen
when the gas-phase reservoir is depleted of organic species
altogether, and there is no organic material left that can par-
tition into the particle phase (Serrano Damha et al., 2024).
Third, at dry (low-RH) conditions and/or in the presence of
low-polarity (low O : Cj ) organic compounds, OA water up-
take is modest, limiting the decrease in effective volatility
with RH.

3.5 OA vertical profile

Figure 6c shows the monthly mean vertical profile of
particle-phase organic mass concentration predicted by the
water-sensitive and the dry OA schemes over Montreal in
July 2019 from the surface level to an elevation of 2 km, cov-
ering the extent of the planetary boundary layer and the lower
free troposphere. The dry OA scheme corresponds to the
introduced water-sensitive OA scheme (BAT-VBS model)
forced to run at RH= 0%. The two OA partitioning schemes
are used to predict the equilibrium OA organic mass concen-
tration using the conditions available at each vertical level
(e.g., the total mass concentration of each organic surrogate
compound, RH, and T ). The water-sensitive scheme pre-
dicts a greater spread of OA organic mass concentration data
around the mean value than the dry scheme does due to its
sensitivity to water uptake (and RH). The equilibrium or-
ganic mass concentration in the OA tends to decrease as ele-
vation increases, primarily due to the lower mass concentra-
tion of OA surrogate compounds at higher elevations away
from their near-surface sources. The absolute (Fig. 6d) and
relative (Fig. 6e) differences in OA organic mass concen-
trations predicted by the two OA partitioning schemes are
calculated using the dry OA scheme as the reference, which
corresponds to the water-sensitive OA scheme at dry condi-
tions. Just as in the case of the mean diurnal cycle (Fig. 5),
the vertical profiles of absolute and relative differences in OA
organic mass concentrations display positive values since the
mean RH is greater than 0% in the atmospheric column.

Figure S13 shows the vertical profile of OA organic mass
concentration for 6 July 2019 at 17:00. In this particular
case, even though RH remains above 40 % at an elevation
of 2 km, the OA mass concentration predicted by the water-
sensitive scheme just slightly surpasses the OA mass con-
centration predicted by the dry scheme. At that vertical level,
the oxidized SVOC species OPOA2 dominates the organic
mass concentration of the OA (Figs. S15b and S16c) in this
case. The effective volatility of the OPOA2 species is so low
(C∗j = 0.2µgm−3) that this compounds remains in the parti-
cle phase. Consequently, the decrease in volatility with in-
creasing RH becomes irrelevant for the OPOA2 surrogate
species and, here, by extension, most of the OA. The water-
sensitive and dry OA schemes agree well in terms of OA or-
ganic mass concentration prediction at an elevation of 2 km,
with the water-sensitive scheme predicting marginally higher

OA organic mass concentrations due to the consideration of
ISOA species mass and their water uptake contribution to
the OA. Unlike the default OA scheme used in GEOS-Chem
that ignores the presence of ISOA species in the absorption
medium, ISOA species are assigned a C∗j of 0 µgm−3 in
our simulations. This modification to the default OA scheme
was done to account for the effect of added ISOA organic
mass and its associated water uptake into the OA absorption
medium on the partitioning behavior of organic compounds.

The average hygroscopicity of OA is often expressed in
large-scale atmospheric models by a single (and constant)
hygroscopicity parameter (κOA

org ), which is often set to a value
of ∼ 0.1 (e.g., Rastak et al., 2017; Wang et al., 2019). Be-
cause the water-sensitive OA scheme is able to predict wa-
ter uptake and equilibrium organic mass concentration in the
OA, an equivalent effective hygroscopicity parameter can be
calculated (Petters and Kreidenweis, 2007). Unlike the tra-
ditional simplification adopted by large-scale atmospheric
models, our simulations show some modest variations in
κOA

org with elevation, with κOA
org ranging between ∼ 0.08 and

0.13 (Fig. S15b). Given the sensitivity of climate models to
the value of κOA

org assigned to the OA mass fraction (Ras-
tak et al., 2017), capturing the variability in hygroscopicity
in space and time, as is possible with the BAT-VBS model,
could lead to a better representation of aerosol size changes
and related impacts on climate, such as aerosol–radiation
and cloud–radiation interactions. Due to its high mass frac-
tion (Fig. S16c) and polarity (Table 2), the oxidized SVOC
species OPOA2 dominates the overall hygroscopicity of the
OA within the entire 2 km layer.

3.6 Comparison between modeled and measured
PM2.5

There is a need for the improvement of several compo-
nents of OA modeling that affect the predicted OA organic
mass concentration, such as emission inventories, number
of volatility bins or organic surrogate species considered
per OA compound class, OA aging mechanisms, or organic
aerosol and inorganic aerosol mixing assumptions, making
the evaluation of our water-sensitive OA scheme against
measurements difficult. Nevertheless, as a validation point
for our implementation, we compared modeled and mea-
sured ambient fine particulate matter with a diameter equal
to or smaller than 2.5µm (PM2.5).

In GEOS-Chem, PM2.5 is a combination of mineral dust
aerosol, sea salt aerosol, inorganic aerosol, and OA. Figure 7
shows a comparison between modeled and measured daily
mean PM2.5 mass concentrations for July 2019 at selected
monitoring sites located in different states of the United
States: South Carolina (panels a and b), Missouri (panels c
and d), Louisiana (panels e and f), and Pennsylvania (pan-
els g and h). More information on the four air quality mon-
itors selected can be found in Sect. S9. The top panels (first
row) of Fig. 7 illustrate the cumulative OA organic mass

https://doi.org/10.5194/acp-25-5773-2025 Atmos. Chem. Phys., 25, 5773–5792, 2025



5786 C. Serrano Damha et al.: Implications of reduced-complexity aerosol thermodynamics

Figure 6. Monthly mean vertical profiles of surface RH, T , and OA properties predicted by the introduced water-sensitive OA scheme (BAT-
VBS model) over Montreal, Canada, during July 2019. The panels show (a) the mean relative humidity, (b) the mean temperature, (c) the
mean OA organic mass concentration predicted by the water-sensitive OA scheme at a given RH and the water-sensitive OA scheme at dry
conditions, (d) the mean absolute difference in OA organic mass concentration, and (e) the mean relative difference in OA organic mass con-
centration. The spread of data around the mean values is depicted with a standard deviation envelope. The absolute and relative differences are
calculated using the water-sensitive OA scheme (BAT-VBS model) at dry conditions as the reference (COA

org,BAT−VBS (RH)−COA
org,BAT−VBS

(RH= 0 %)).

fraction of semi-volatile organic species (TSOA2, TSOA3,
ASOA2, ASOA3, POA2, and OPOA1) fSV org as simulated
by our water-sensitive OA scheme (BAT-VBS model) and
the daily mean RH. For the different monitoring sites, semi-
volatile organic species represent 10%–60% of the daily
mean OA organic mass concentration. The bottom pan-
els (second row) display the modeled and measured daily
mean PM2.5 mass concentrations corresponding to the same
monitoring sites. We considered two GEOS-Chem simula-
tions that differ only in the OA scheme used: (1) GEOS-
Chem’s default complex secondary-OA scheme that ac-
counts for semi-volatile POA and (2) our water-sensitive OA
scheme based on the BAT-VBS model. The default complex
secondary-OA scheme that accounts for semi-volatile POA
refers to the unaltered OA scheme of GEOS-Chem, which
is inherently dry. As discussed in Sect. S3, GEOS-Chem’s
default (unmodified) complex secondary-OA scheme and the
OA scheme based on the baseline (RH= 0%) BAT-VBS sim-
ulation (simulation 1 in Table 3) agree very well in terms of
modeled OA mass concentration. Therefore, GEOS-Chem’s
default simulation is also representative of the baseline BAT-
VBS predictions.

Any discrepancy in the predicted PM2.5 between the
default and water-sensitive GEOS-Chem simulations, rep-
resented by the absolute difference (BAT-VBS− default
GEOS-Chem), is entirely attributed to the differently pre-
dicted OA organic mass concentrations. The PM2.5 time se-

ries predicted by the two OA schemes show similar trends,
with the water-sensitive treatment always predicting a greater
or equal OA organic mass concentration due to its sensitiv-
ity to RH. This is due to the fact that winds, temperature (T )
fields, and emission inventories are the same in both simula-
tions. Both OA schemes are generally consistent with the ob-
served trends of PM2.5. One of the main features of the BAT-
VBS model is its ability to capture the variation in the ef-
fective saturation mass concentration of organic compounds
with RH (or OA water content). C∗j decreases with increas-
ing water content, predicting more organic mass partitioning
from the gas phase to the particle phase than the default com-
plex secondary-OA scheme of GEOS-Chem. Due to their
ability to partition between the gas and particle phases, semi-
volatile organic compounds are the most affected by the vari-
ation in C∗j with RH (or OA water content). Measured PM2.5
data were retrieved from the US Environmental Protection
Agency’s Air Quality System repository (U.S. Environmen-
tal Protection Agency, 2025). The ambient air quality mon-
itors often expose the PM2.5 sample to low-RH and high-T
conditions in order to dry the aerosol sample. Heating the
PM2.5 sample often removes both some water and a consid-
erable portion of semi-volatile organic mass. Given that sam-
pling techniques tend to remove semi-volatile organic mass
from the OA, a fully adequate comparison between modeled
and observed OA (or PM2.5) is difficult. Discrepancies be-
tween modeled water-sensitive OA and observed OA do not
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mean that the BAT-VBS is not behaving correctly. In fact,
given the limitations of sampling techniques, the BAT-VBS
model could provide a more realistic picture of the actual at-
mospheric OA mass concentration; however, this is difficult
to validate.

3.7 Computational performance

Aside from the impact of the BAT-VBS scheme on OA mass
concentrations, the computational cost of the implemented
scheme is of practical importance. However, we note that this
work was not focused on optimizing computational perfor-
mance aspects. The water mass concentration due to organic
compounds increases the absorptive OA mass, while at the
same time lowering the effective volatility of organic com-
pounds. Both effects combined enhance the condensation
of organic material to the particle phase. In GEOS-Chem,
when accounting for nonideal gas–particle partitioning in-
cluding liquid–liquid phase separation effects in any grid
cell in which RH> 10 % while using GEOS-Chem’s default
complex OA scheme below that RH threshold, the overall
wall-clock time of the GEOS-Chem simulation increases by
about 50 % with our current implementation. Although the
impact of the water-sensitive partitioning scheme on the OA
mass concentration simulated by the BAT-VBS model is pri-
marily important for RH> 10% (see Sect. S10), the water
uptake feedback is noticeable for RH> 0%. We could im-
prove the efficiency of our modified GEOS-Chem simula-
tions by running the BAT-VBS model only under certain at-
mospheric conditions and reverting back to GEOS-Chem’s
standard complex secondary-OA scheme anywhere else. For
example, the BAT-VBS model could be used when RH is
above a threshold where the activity coefficients of organic
compounds start to deviate significantly from ideality. An-
other option is to use the BAT-VBS model only within cer-
tain atmospheric layers or levels of interest, such as the sur-
face, the planetary boundary layer, or the troposphere. While
the work presented in this article is mainly a proof of con-
cept, demonstrating the importance of using a water-sensitive
scheme for OA predictions in chemical transport models, fur-
ther work focusing on improving the implementation of the
BAT-VBS model in GEOS-Chem may result in a substan-
tially lower computational penalty. An improvement could
involve helping BAT’s nonideal VBS solver to converge to a
solution faster. The VBS solver, whose objective is to calcu-
late the equilibrium partitioning coefficients of organic com-
pounds ξj , accounts for the main computational cost of the
BAT-VBS model. Using a memory effect, for example, the
BAT-VBS model could reuse ξj values calculated in a pre-
vious GEOS-Chem time step as initial guesses for the VBS
solver. Future work should focus on evaluating various av-
enues for computational performance improvements.

4 Conclusions

To date, the most robust gas–particle partitioning frame-
work implemented as a standard option within GEOS-Chem
is the complex secondary OA with semi-volatile primary
OA scheme. This OA scheme assumes a thermodynamically
ideal, water-free organic particulate phase to alleviate the
computational cost of OA mass concentration predictions.
The gas–particle partitioning of the default OA scheme in
GEOS-Chem is parameterized based on (dry) C∗j bins, which
vary only as a function of T according to the Clausius–
Clapeyron equation. In this work, we analyzed the extent
to which nonideal behavior in the particle phase impacts the
gas–particle partitioning of organic compounds as a function
of water content (or, indirectly, RH). The BAT-VBS model,
an efficient, reduced-complexity thermodynamic OA model,
was implemented into GEOS-Chem to capture variations in
C∗j with RH (aside from T ) and thus their water-sensitive
gas–particle partitioning. We found that the water-sensitive
treatment provided by the BAT-VBS model will always pre-
dict an enhancement in the OA organic mass concentration
compared to the default OA scheme when RH> 0 %.

We simulated OA mass concentration for January and
July 2019 in a region that is centered on the southeast of
the United States. We found that the predicted monthly mean
surface OA organic mass concentration can increase by up
to ∼ 590% for January 2019 and ∼ 280% for July 2019,
with the highest enhancements occurring over the ocean,
when using the water-sensitive OA scheme instead of the dry
OA scheme. The reason is that at any RH> 0 %, a water-
sensitive BAT-VBS-predicted effective volatility of organic
compounds (Eq. 2) will always be lower than the corre-
sponding value at dry conditions (RH= 0 %) that is used
by the dry OA scheme (Serrano Damha et al., 2024). Thus,
a greater amount of the present semi-volatile organic mate-
rial is expected to partition into the particle phase under re-
alistic atmospheric conditions with the water-sensitive OA
scheme, enhancing the OA mass concentration. Coupled to
this, the predicted OA water uptake increases the absorp-
tion medium (Eq. 3), increasing the AMF of organic com-
pounds (ξj ; Eq. S3) and driving more organic mass from the
gas phase into the particle phase. As a result, the hotspots of
differences in mean surface OA organic mass concentration
predicted by the water-sensitive and dry schemes correspond
to the hotspots of predicted OA water uptake. LLPS events
in the OA between an organic-rich (β) liquid phase and a
water-rich (α) liquid phase were detected by the BAT-VBS
model during our nested simulations. These events, which
occur as a consequence of nonideal mixing behavior in the
particle phase, usually increase the overall OA mass con-
centration as the partitioning of hydrophobic organic species
from the gas phase into the organic-rich particle phase is
enhanced when an LLPS happens. In the same manner, hy-
drophilic organic species have a higher tendency to remain in
the water-rich liquid phase as opposed to partitioning into the

https://doi.org/10.5194/acp-25-5773-2025 Atmos. Chem. Phys., 25, 5773–5792, 2025



5788 C. Serrano Damha et al.: Implications of reduced-complexity aerosol thermodynamics

Figure 7. Comparison between modeled and measured daily mean PM2.5 mass concentrations for July 2019 at selected monitoring sites
located in different US states. The top panels (first row) show the daily mean RH and daily mean mass fraction of semi-volatile organic species
in the OA (sum of TSOA2, TSOA3, ASOA2, ASOA3, POA2, and OPOA1) predicted by the OA scheme based on the BAT-VBS model. The
bottom panels (second row) compare observed daily mean PM2.5 to modeled daily mean PM2.5. OA is modeled using both GEOS-Chem’s
default complex secondary-OA scheme that accounts for semi-volatile POA (orange curve, default GEOS-Chem) and our introduced OA
scheme based on the BAT-VBS model (gray curve, BAT-VBS). Also shown is the difference between the model predictions (lavender-blue
curve, difference). Measured PM2.5 data (black curve, observation) were retrieved from and processed by the U.S. Environmental Protection
Agency (2025).

gas phase when LLPS occurs. In general, for January 2019
and July 2019, LLPS events happened more frequently in
grid cells of high RH and low mean O : C in the OA. In other
words, OA-specific LLPS events tend to occur in the lower
atmosphere in locations where OA is only moderately po-
lar and the effective gas-phase concentration of water is rel-
atively high. The water-sensitive OA scheme implemented
into GEOS-Chem also allows the analysis of vertical profiles
and diurnal cycles of OA in the atmosphere. Discrepancies in
predicted OA organic mass concentration between the water-
sensitive and dry OA schemes are typically detected at CTM
time steps and/or grid cells corresponding to RH> 0 %. Ex-
ceptions may occur under such RH conditions as when OA is
mainly composed of low-polarity and/or nonvolatile organic
compounds. Under those circumstances, the water-sensitive
and dry OA schemes can agree in terms of OA mass concen-
tration predictions since the water uptake feedback remains
small.

The BAT-VBS model is flexible in terms of the inputs
it needs to run, which include the O : Cj ratio; Mj , C∗j , or
C◦j ; and RH. For physicochemical mixture properties not al-
ready available in (and tracked by) GEOS-Chem, estimation
methods were implemented to determine those properties in
an objective manner to run the BAT-VBS model in GEOS-
Chem. In addition, due to its computational efficiency be-
ing within the same order of magnitude as that of GEOS-
Chem’s default OA treatment, the BAT-VBS model is a vi-
able option for improving the physicochemical accuracy of
the OA scheme and may help close the gap between GEOS-

Chem predictions and field measurements. To our knowl-
edge, no other OA thermodynamic models with those main
advantages have been implemented into a major CTM. This
work addresses a need and a next step in applying bottom-
up process-level models to CTMs. Improving the ability of
large-scale atmospheric models to capture the variability in
OA properties is needed to more accurately assess the health
impacts of OA, improve air quality predictions, and reduce
the large uncertainties in aerosol radiative forcing of the cli-
mate system.

Code availability. The modern Fortran source code of the BAT-
VBS model (v1.0.0) is preserved in Serrano Damha (2023b)
(https://doi.org/10.5281/zenodo.8270272) and developed openly in
Serrano Damha (2023a) (https://github.com/CamiloSerranoDamha/
BAT-VBS) under a GNU GPL license v3.0.

Data availability. The GEOS-Chem output data used to
produce the figures of this paper are freely available in Ser-
rano Damha (2024) (https://doi.org/10.5281/zenodo.13352426).
The MERRA-2 data used in this work have been pro-
vided by the Global Modeling and Assimilation Office
(GMAO) (https://doi.org/10.5067/ME5QX6Q5IGGU, GMAO,
2015a; https://doi.org/10.5067/WWQSXQ8IVFW8, GMAO,
2015b; https://doi.org/10.5067/7MCPBJ41Y0K6, GMAO,
2015c; https://doi.org/10.5067/RKPHT8KC1Y1T, GMAO,
2015d; https://doi.org/10.5067/VJAFPLI1CSIV, GMAO,
2015e; https://doi.org/10.5067/VJAFPLI1CSIV, GMAO,
2015f; https://doi.org/10.5067/SUOQESM06LPK, GMAO,
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2015g; https://doi.org/10.5067/F9353J0FAHIH,GMAO,
2015h; https://doi.org/10.5067/JRUZ3SJ3ZJ72,GMAO, 2015i;
https://doi.org/10.5067/ZXTJ28TQR1TR, GMAO, 2015j) at the
NASA Goddard Space Flight Center.
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