

Supplement of

Insights into the real part of natural sea spray aerosol refractive index in the Pacific Ocean

Chengyi Fan et al.

Correspondence to: Chunsheng Zhao (zcs@pku.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

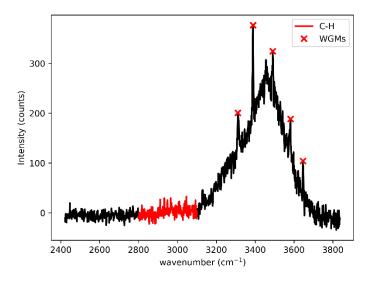


Figure S1. The Raman spectrum of the particles generated by the nebulizer at RH = 70%. The red part represents the typical peak position of the C-H peak, and the red cross marks indicate the particle's significant Whispering Gallery Modes (WGMs).

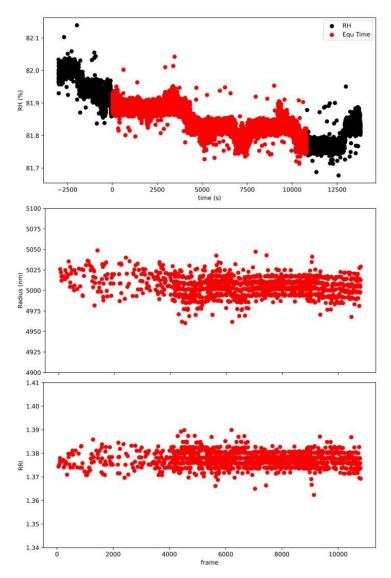


Figure S2. An example of the relative humidity (top) when an artificial sea salt particle is in equilibrium at RH = 81.8%, with the fitted radius (middle) and RRI (bottom). The mean values are 5005.4 nm and 1.3773, with a standard deviation of 10.7 nm and 0.0029, respectively.

Home Help Model I Model II Model III Model IV p° Calculator

Model IV: H* - NH4* - Na* - SO42- - NO3- - CI- - H2O

- Description and abstract
- . This is the principal E-AIM input page for Model IV. Alternative types of calculation can be selected from the list below
- 1. Simple (this page) 6. Parametric, varying: (a) temperature
- Comprehensive
 Compreh
- (b) relative humidity or total water (c) lapse rate

- 5. Köhler curves

Simple Calculation

Here, the model determines the state of a system containing water, and two or more ions, at equilibrium with an atmosphere of known temperature and relative humidity. Solids are allowed to form, at the choice of the user, but partitioning of trace gases into the vapour phase is not enabled.

- . Inputs: ambient relative humidity (expressed as a fraction), temperature, and the moles of each ion present.
- Outputs: the amounts of liquid water, dissolved ions, and solids present at equilibrium. The partial pressures or partial
 pressure products of any NH3, HNO3, HCI, or H2SO4 that would be in equilibrium with the condensed phase are also
 reported.

 Options: control of the formation of solids, and equilibration of the system to the water vapour pressure above ice. Specify the problem in the input fields below.

Ambient Conditions

Temperature (180 - 330 K): 293.15 Relative Humidity (0.1 - 1.0): 0.60809

(See inputs for details of restrictions on the temperature range, related to the chemical composition of the system.) If the temperature is less than 273.15 K, and you wish the system to be equilibrated to the water vapour pressure over ice, then check the box here. (Any relative humidity that has been entered above will be ignored.)

Ionic Composition in Moles

Other Chemical Components

The amounts of organic compounds present can be entered here. First, click the button to select compounds from the library or create new ones for this session. Manage Compounds

Solid Phases

Check the boxes below to prevent the formation of selected solids, according to the <u>restrictions</u> that apply for this model. This enables the properties of metastable, supersaturated, aqueous aerosols to be investigated. The default for each calculation is that all solids can form.

No boxes should be checked for any systems containing both NH4 + and CI- ions.

Omit	tho	following	enlide

C Ice	H2SO4 - H2O	H2SO4 - 2H2O		
H2SO4 · 3H2O	H2SO4 - 4H2O	H2SO4 - 6.5H2O		
HNO3 · H2O	HNO3 - 2H2O	HNO3 · 3H2O		
HCI · 3H2O	(NH4)2SO4	(NH4)3H(SO4)2		
NH4HSO4	NH4NO3	2NH4NO3 - (NH4)2SO4		
3NH4NO3 - (NH4)2SO4				

To submit your calculation, click here: Run

E-AIM Model Results

Problem no. 1. iFail = 0

*********	********				
	IS PEASE **				
		-			
Species	Holes	Grams			ac. Act. Coeff.
	0.16569E-05	0.1670E-05	0.1920E-04	0.2127E-06	0.9371E+00
	0, 20000E+01	0.3608E+02	0.2317E+02	0.2567E+00	
	0.22763E-04	0.22108-02	0.2637E-03	0.2922E-05	
S04 (aq)		0.96068+02	0,11598+02	0.1283E+00	0.1520E-01
(pg)HO	0.45594E-11	0.7754E-10	0.5282E-10	0.5852E-12	0.1150E+02
H20 (aq)	0.47910E+01	0.8631E+02	0.5551E+02	0.6149E+00	0.9889E+00
NH3(ag)	0.24420E-04	0,4159E-03	0,2829E-03	0.3134E-05	0,1626E+01
(3) The main to -ln(aH2	0) / ((MW/1000) molality of all	fficient of t • SUM), when	he aqueous phi e aH20 is the	are is 0.79 water activi	44. (It is equal ty, SUM is
solution. and Kreide and the S- system is	alue of the para and/or other li- mweis (dtaos. G dIN web page de assumed to be m - 1.0000E+00 mo	uid phase, a bea Phys. 7, scribing the ade up of the	t the specifie 1961-1971, 20 model cutputr, following sol	d temperatur 107) for a de The (dry)	e. See Petters finition.
There is	no second liq	uid phase.			

Figure S3. A computational example of the E-AIM IV model, a thermodynamic model used to predict aerosol solution properties like chemical composition, water content, and density under different environmental conditions.

Station	Latitude (°N)	Longitude (°E)	Salinity (‰)
M30	28.5	155.0	35.1618
M35	33.0	155.0	34.6105
stn41	36.7	155.0	34.4737
stn43	39.5	155.0	34.2808
KE2	36.6	152.5	34.1683
Kuroshio	26.0	125.8	33.9200
South China Sea	18.0	116.0	33.9478

Table S1. Geographic coordinates, and salinity data for 7 stations investigated.

Table S2. Input parameters for the E-AIM IV model, results, and the RRI calculated using the molar refraction method

Temperature (K)	RH (%)	$X_{(NH_4)_2SO_4}$	ρ	M _e ^a	R _e ^b	n
293.15	60.81	0.173	1.340	37.72	7.05	1.415
293.15	65.82	0.151	1.319	35.26	6.64	1.411
293.15	69.12	0.138	1.305	33.72	6.37	1.408
293.15	72.02	0.126	1.291	32.39	6.15	1.405
293.15	76.81	0.107	1.266	30.23	5.78	1.400
293.15	79.62	0.096	1.249	28.97	5.57	1.396
293.15	82.23	0.086	1.232	27.77	5.37	1.392
293.15	87.03	0.065	1.194	25.49	4.98	1.383

a $M_e = x_1M_1 + x_2M_2$, where M_e is the relative molecular mass of the mixture. The relative molecular mass of ammonium sulfate and water are 132.14 g/mol and 18.02 g/mol, respectively.

b $R_e = x_1 R_1 + x_2 R_2$, where R_e is the molar refraction of the mixture. The molar refraction of a pure substance is calculated by the following formula: $R = \frac{n^2 - 1}{n^2 + 2} \frac{M}{\rho}$ and the molar refractions of ammonium sulfate and water are 23.06 and 3.71, respectively.