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Abstract. We use satellite observations of carbon monoxide (CO) to estimate CO emissions from European
integrated iron and steel plants, the continent’s highest-emitting CO point sources. We perform analytical inver-
sions to estimate emissions from 21 individual plants using observations from the TROPOspheric Monitoring
Instrument (TROPOMI) for 2019. As prior emissions, we use values reported by the facilities to the European
Pollutant Release and Transfer Register (E-PRTR). These reported emissions vary in estimation methodology,
including both measurements and calculations. With the Weather Research and Forecasting (WRF) model, we
perform an ensemble of simulations with different transport settings to best replicate the observed emission
plumes for each day and site. Comparing the inversion-based emission estimates to the E-PRTR reports, nine
of the plants agree within uncertainties. For the remaining plants, we generally find lower emission rates than
reported. Our posterior emission estimates are well constrained by the satellite observations (90 % of the plants
have averaging kernel sensitivities above 0.7) except for a few low-emitting or coastal sites. We find agree-
ment between our inversion results and emissions we estimate using the cross-sectional flux (CSF) method for
the seven most strongly emitting plants, building further confidence in the inversion estimates. Finally, for four
plants with large year-to-year variability in reported emission rates or large differences between the reported
emission rate and our posterior estimate, we extend our analysis to 2020. We find no evidence in either the
observed carbon monoxide concentrations or our inversion results for strong changes in emission rates. This
demonstrates how satellites can be used to identify potential uncertainties in reported emissions.

1 Introduction

Integrated iron and steel plants are the highest-emitting point
sources of carbon monoxide (CO) in Europe. CO is of par-
ticular interest as it is both an important air pollutant and
relevant to the greenhouse gas (GHG) balance of the atmo-
sphere as an indirect GHG (Daniel and Solomon, 1998). It is
a precursor of ozone and reacts with the cleaning agent OH,
thereby increasing the atmospheric lifetime of methane (Ja-
cob, 1999; Wuebbles and Hayhoe, 2002). As a product of in-
complete combustion, the majority of CO in our atmosphere
is emitted by anthropogenic sources (like road transport and

industry) and fires (Zhong et al., 2017). As these combustion
processes also emit CO2, better knowledge of CO can sup-
port our understanding of CO2 emissions (Park et al., 2021;
Wu et al., 2022).

The importance of air pollution, both for health effects and
for better understanding of our atmosphere, is reflected in
regulations by the European Union requiring the reporting of
emissions of both GHGs and a large number of air pollutants,
including CO, at the facility level (EUR-Lex, 2006). As these
reports are an important factor in policymaking, there is a
need for verification of these reported emission rates using
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additional measurements like satellite data. In this study we
will use data from the TROPOspheric Monitoring Instrument
(TROPOMI) to estimate the emission rate of the 21 highest-
CO-emitting European iron and steel plants.

The iron and steel industry has been marked as an im-
portant target for de-carbonization, and there has been a
push towards near-zero-carbon-emission production of steel
(Skoczkowski et al., 2020; Shahabuddin et al., 2023). How-
ever, the largest part of planned capacity (increase) still re-
lies on carbon-intensive production and most of the near-zero
production projects are currently in testing stages (Higuera
and Van Woensel, 2021; Liu et al., 2022). Combined with
the continuously increasing global demand for steel, carbon
emissions from steel production have roughly doubled from
2000 to 2020 (Bashmakov et al., 2022). Together, the 21
plants considered emit as much CO as Italy, Europe’s fourth-
highest CO emitter (E-PRTR, 2023; Denier van der Gon, H.
and CoCO2 WP2 team, 2022).

The large amount of released carbon is a result of using
coal as a reductor in steel production (Zang et al., 2023). In-
tegrated iron and steel plants cover all processes from iron
dust to the production of cast steel. The iron dust contains
a lot of oxides, which have to be separated from the iron.
However, as the iron dust is too fine to be processed in the
blast furnaces, it is first agglomerated during sintering: using
hot air and coke, the particle size increases. Due to the low
combustion efficiency of fine particles under these conditions
(Mohammad et al., 2023), a lot of CO is produced, which is
vented into the air with other byproducts (Ho et al., 2013).
Subsequently, the combination of sinter and coke is fed into
the blast furnace where the oxygen splits from the iron and
combines with the carbon molecules of the coke. The liq-
uidized iron is then collected at the bottom of the furnace.
Although the reduction of the iron results in a lot of CO,
the gas is caught at the top of the furnace and used as fuel
(Rackley, 2017). The fraction of carbon in the liquid iron is
too high to make steel. Therefore, in a basic oxygen furnace
(BOF), oxygen is led through the iron, which binds with the
carbon to lower the carbon content to levels appropriate for
steel production. Like the blast furnace, the BOF produces
a lot of CO that is captured for use as fuel (Rackley, 2017).
Annual emission rates for the combination of all processes in
the plants can be reported via continuous stack monitoring,
extrapolation of discontinuous measurements, or calculations
using emission factors in combination with activity and pro-
duction numbers (E-PRTR, 2023).

Independently of directly measuring emission rates and/or
activity-based calculation, emission rates can also be deter-
mined based on the resulting CO enhancements in the at-
mosphere. Previous work on regional emission quantifica-
tion and analysis using satellite-based concentration mea-
surements has included the use of MOPITT, SCIAMACHY,
and TROPOMI (e.g., Gloudemans et al., 2006; Khlystova
et al., 2009; Worden et al., 2010; Girach and Nair, 2014;
van der Velde et al., 2021). Additionally, the resolution

of TROPOMI, down to 7× 5.5 km2 (across× along track),
has been shown to be sufficiently high to study individual
cities and CO point sources (Tian et al., 2022; Plant et al.,
2022; Leguijt et al., 2023; Goudar et al., 2023; Schneising
et al., 2024). The coverage of polar-orbiting satellites like
TROPOMI allows for consistent investigation of regions all
over the world rather than being confined to places with
good reporting infrastructure. Even in Europe, this contin-
uous data availability is important as there are some gaps in
the data gathered by the European reporting framework. As
an example, Slovakia has not reported emissions beyond the
year 2017 following a change in reporting format (E-PRTR,
2023). For locations with a continuous record of emissions,
we will demonstrate that the satellite data can be used as an
independent verification of the reported emissions.

We use CO observations by TROPOMI for 2019 to per-
form analytical inversions over the largest 21 European point
sources of CO to estimate their emission rates and evaluate
consistency with reported emissions. In addition, we perform
multi-year analyses for sites with large year-to-year differ-
ences in reported emission rates and compare our analytical
inversions with other satellite-based emission quantification
methods.

2 Data and methods

We use TROPOMI carbon monoxide (CO) data in site-
specific analytical inversions to estimate annual CO emis-
sions from the 21 largest iron and steel plants in Europe us-
ing their emissions as reported to the European Pollutant Re-
lease and Transfer Register (E-PRTR) as prior estimates. We
will first describe the TROPOMI data product in Sect. 2.1.
Section 2.2 covers the prior emission data, and Sect. 2.3 de-
scribes the Weather Research and Forecasting (WRF) for-
ward model. In Sect. 2.4 to 2.6, we describe the inversion
framework and uncertainty estimation. Finally, in Sect. 2.7,
we describe the cross-sectional flux (CSF) method and the
concept of wind rotation, which are supplemental methods
to analyze emission rates from satellite data.

2.1 TROPOMI carbon monoxide data product

The TROPOMI instrument is a spectrometer on the
ESA Sentinel-5 Precursor satellite which flies in a sun-
synchronous orbit with an equatorial overpass at 13:30 lo-
cal time (Veefkind et al., 2012). Its swath of 2600 km allows
for daily global coverage at a resolution down to 7× 5.5 km2

(across× along track) for CO. We use the CO operational
product version 2.2.0 (Landgraf et al., 2021), which em-
ploys the shortwave infrared CO retrieval (SICOR) algo-
rithm to determine the total column CO concentration based
on the absorption of reflected sunlight in the shortwave in-
frared band (SWIR, 2305–2385 nm) (Borsdorff et al., 2018).
The ground-based Total Carbon Column Observing Network
(TCCON; Wunch et al., 2011) also measures the total col-
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umn CO concentrations at specific sites by measuring the
spectrum of direct sunlight, allowing for validation of the
TROPOMI product. TROPOMI shows good agreement with
the unscaled TCCON product, with a mean difference per
station of 2.45± 3.38% (Sha et al., 2021).

We only use observations with sensitivity to concentra-
tions at the surface and therefore remove observations with a
TROPOMI data quality value (QA value) below 0.7 (Land-
graf et al., 2021). The remaining data either are cloud-free
or contain only low-altitude clouds. Due to the low surface
albedo of water, cloudless observations over waterbodies re-
sult in more uncertain estimates of the CO concentration. We
therefore remove cloudless pixels (pixels with a QA value
equal to 1) over water. For all iron and steel plants, we ana-
lyze TROPOMI data for 2019. In addition, we analyze 2020
data for four plants, ArcelorMittal Gent (Belgium), Arcelor-
Mittal Gijón (Spain), ArcelorMittal Ostrava (Czech Repub-
lic), and Provozovna Třinec (Czech Republic). Because of
the heavy computational burden of our analysis, we limit our
2020 analysis to these plants, which show interesting results
for 2019 that warrant further investigation.

2.2 Prior emissions: E-PRTR reporting framework and
TNO emission inventory

The European Pollutant Release and Transfer Register (E-
PRTR) is the official pollutant reporting framework of the
European Union (EU) (E-PRTR, 2023). Industries in EU
member states are required to annually report facility-level
emissions of air pollutants and greenhouse gases to air, wa-
ter, and soil (EUR-Lex, 2006). For steel production, the re-
porting requirement applies to all facilities with a capacity
exceeding 2.5 t of steel per hour (EUR-Lex, 2006). We use
the reported emission rates for 2019, except for U.S. Steel
Košice s.r.o. in Slovakia, for which we use the last reported
emission rate (2017) instead.

In addition to a reported emission rate, the E-PRTR
database contains information on the methods used to deter-
mine each specific emission rate as shown in Fig. 1. All mea-
sured and calculated emissions obtained conform to either
nationally or internationally approved methods. The label
“measured” applies to both continuous and short-term dis-
continuous measurements of the emission rate. “Calculated”
emission rates are determined through combined knowledge
of activity data (fuel use, steel output) and emission factors,
while “estimated” emission rates are determined using non-
standardized methods that are not based on publicly avail-
able references (ICF, 2020). While Donawitz GesmbH (Aus-
tria) mentions the use of stack monitors, which continuously
measure the emission rate of gases, and Salzgitter Flachstahl
(Germany) reports the use of bi-annual measurements, the
majority of the plants do not provide information on the spe-
cific method of measurement or calculation, which is in line
with findings by ICF (2020).

As input to our forward model, we represent anthro-
pogenic CO emissions surrounding the iron and steel plants
with the European TNO greenhouse gas and co-emitted
species (GHGco) inventory version 4 developed for the EU
Horizon CoCO2 project (Kuenen et al., 2022; Denier van der
Gon, H. and CoCO2 WP2 team, 2022). The GHGco inven-
tory focuses specifically on Europe and includes emissions
for different source sectors grouped following the Gridded
Nomenclature For Reporting (Kuenen et al., 2022). A res-
olution of 0.05°× 0.1° is achieved by combining (1) emis-
sion data reported by member states to the Centre on Emis-
sion Inventories and Projections of the European Monitoring
and Evaluation Programme (EMEP/CEIP), (2) spatial prox-
ies like population density and road networks, and (3) ad-
ditional datasets like emissions based on reported shipping
activity and remotely sensed agricultural fires. The inventory
is supplemented with point sources, like iron and steel plants,
power plants, and airports, at their exact location. As we use
the iron and steel plant emission rate from E-PRTR, we re-
move the corresponding point sources from the TNO GHGco
inventory to avoid double counting of emissions. Because of
the CO-intense processes taking place in the iron and steel
plants, the emission rates reported to E-PRTR comprise at
least 70 % of the total emissions in a 0.4°×0.4° box centered
on the plant.

2.3 Forward model: WRF chemical transport model

We use the Weather Research and Forecasting (WRF) chemi-
cal transport model version 4.1 (Powers et al., 2017) to simu-
late three-dimensional concentration fields around each iron
and steel plant for 2019. Table A1 shows a list of the plants
we use in the simulations and their locations. All simulations
use nested domains centered on the location of the plant with
an inner domain (147× 147 km2) simulated at 3 km resolu-
tion and an outer domain (441× 441 km2) at 9 km resolution.
Both ThyssenKrupp Schwelgern, and Hüttenwerke Duisburg
(Germany) as well as ArcelorMittal Ostrava and Provozovna
Třinec (Czech Republic) lie within the inner domain of the
other and are combined into one simulation centered midway
between the plants.

The E-PRTR emissions for the iron and steel plants are
supplemented with anthropogenic emissions from the TNO
GHGco inventory (Sect. 2.2). Both the E-PRTR and the
TNO emissions are put on a three-dimensional grid using
the sector-specific vertical profiles provided by Bieser et al.
(2011). The vertical profiles both account for the injection
height and include an effective plume rise parametrization.
The temporal profiles applied to the emissions per sector are
taken from Guevara et al. (2021). Background concentrations
are simulated using the 0.25°×0.25° resolution air pollutant
forecast product of the Copernicus Atmosphere Monitoring
Service (CAMS) as initial and 6-hourly boundary conditions
(Inness et al., 2015). In addition to the iron and steel plant,
we simulate each sector in the TNO GHGco inventory in the
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Figure 1. Facility-level carbon monoxide emissions as reported to E-PRTR from 2017 (top) to 2021 (bottom). The different methods used to
determine these emissions are indicated by the colors, measured (green), calculated (orange), and estimated (blue). The year 2019 (middle),
which is used for the analysis in this work is shown more opaquely. E-PRTR does not provide uncertainty estimates.

inner domain separately, as well as the CAMS-based back-
ground and enhancements in the inner domain originating
from emissions in the four quadrants (NE, SE, SW, NW) of
the outer domain.

We model carbon monoxide as an inert gas using the con-
tiguous United States (CONUS) physics suite provided in
WRF as our baseline setup. Over our small model domain,
chemical processes have a small impact on the (long-lived)
CO enhancements simulated, while the effect of chemistry
outside our domain is included in the CAMS boundary con-
ditions. As will be discussed in Sect. 2.4, it is important for
our simulated and observed plumes to have minimal spatial
mismatch. However, at the kilometer scale of TROPOMI ob-
servations, exact plumes can be difficult to model. A way to
minimize the mismatch is by simulating multiple plumes per
day using various model settings (Maasakkers et al., 2022a).
Therefore, we perform eight simulations for each location
using four different planetary boundary layer (PBL) schemes
and corresponding surface layer physics and two different
driving meteorological fields. The different planetary bound-
ary layer schemes (Mellor–Yamada–Janjić (MYJ) turbu-
lent kinetic energy (TKE), Yonsei University (YSU), eddy-
diffusivity mass flux quasi-normal scale elimination (EMF-
QNSE), and Mellor–Yamada–Nakanishi–Niino (MYNN) 2.5
level TKE scheme) allow for differences in the vertical dis-

tribution and dispersion speed. As driving meteorological
fields, we use the National Centers for Environmental Predic-
tion (NCEP, 2000) and the fifth-generation European Centre
for Medium-Range Weather Forecasts (ECMWF) reanalysis
products (ERA5) (Hersbach et al., 2020).

To be able to directly compare the simulation to the
TROPOMI observations, all simulation output is sampled
at the TROPOMI overpass matching footprints of the
TROPOMI pixels. The three-dimensional simulation output
is converted to a total column by applying the TROPOMI
averaging kernel (Landgraf et al., 2021).

2.4 Inversion framework

We use an analytical inversion to estimate posterior emis-
sions as described in Brasseur and Jacob (2017). An ad-
vantage of the inversion framework over mass balance ap-
proaches is that it more precisely resolves transport in the
emission estimation. This comes at the cost of a higher com-
putational load, but it improves the accuracy of the emis-
sion estimate and allows the inversion method to be applied
to low-coverage situations which would pose challenges to
mass balance methods. In addition, the inclusion of more
data allows for estimation of smaller emissions over longer
time periods.
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To estimate emission rates, we optimize the cost function
J (x), which is defined as the sum of two parts:

J (x)= (x− xA)T S−1
A (x− xA)

+ γ (y−Kx)T S−1
O (y−Kx) . (1)

The first part defines a penalty on a departure of the state
vector (x) from the prior inventory emission rates (xA),
weighted by the prior error covariance matrix (SA). The el-
ements of x correspond to annual emissions from the iron
and steel plant, the domain-wide emissions from individual
sectors in the TNO GHGco inventory, and emissions from
the four quadrants of the outer domain as well as the CAMS-
based background concentrations. The second term in Eq. (1)
defines a penalty on the difference between observed (y)
and simulated (Kx) concentrations, weighted by the obser-
vational error covariance matrix SO. Here K is the Jacobian
matrix of the simulation model with respect to changes in
emissions. The regularization parameter (γ ) is used to avoid
overfitting to the TROPOMI observations; its determination
is discussed in Sect. 2.5. The optimal posterior solution x̂

which minimizes the cost function is given by

x̂ = xA+G (y−KxA) . (2)

Here, G is the gain matrix defined as

G= γ ŜKT S−1
O , (3)

with Ŝ being the posterior error covariance matrix:

Ŝ=
(
γKT S−1

O K+S−1
A

)−1
. (4)

With Ŝ we can calculate the averaging kernel of our inver-
sion, which gives the sensitivity of the posterior estimate to
the true state:

A=
∂x̂

∂x
= I− ŜS−1

A , (5)

where I represents the identity matrix.
To construct SA, we assume a diagonal shape and an un-

certainty of 20 % for the TNO GHGco inventory, in accor-
dance with the 2σ range of 38 % given in Super et al. (2020).
We choose an uncertainty of 10 % for the CAMS background
following, for example, Maasakkers et al. (2022b) and Naus
et al. (2023) and a 50 % uncertainty applied to the four ele-
ments, adjusting for inflow from the outer domain reflecting
the high uncertainties associated with long-range transport.
As these state vector elements affect many observations, they
tend to be well constrained by the observations, and chang-
ing their prior uncertainty has limited effect on the outcome
of the optimization. To allow for enough flexibility in the in-
version, we use an uncertainty of 30 % for emissions from the
E-PRTR inventory. However, we test the effect of higher and
lower uncertainties in our uncertainty calculation (Sect. 2.6).

To construct the observational error covariance matrix SO,
we take the standard deviation of the difference between
the simulated concentrations sampled to the TROPOMI foot-
prints and the observations as in Maasakkers et al. (2022a).

As the term (y−Kx) is evaluated for each observation,
small mismatches in the exact location of the plume between
TROPOMI and the simulation will result in underestimated
emissions. This effect can be countered by aggregating the
observation to a coarser resolution, in which the simulation
and TROPOMI do agree on the position of the plume (Naus
et al., 2023). We therefore aggregate TROPOMI observations
on a 0.1° grid in our inverse analysis, treating each observa-
tion as an independent measurement.

Although aggregation reduces the effect of spatial mis-
matches between simulation and observation, it is not fully
eliminated. Following Maasakkers et al. (2022a), the effect
of spatial mismatches can be further mitigated by creating an
ensemble of spatially different simulated plumes (Sect. 2.3).
For each overpass of TROPOMI, the simulated plume that
best matches the observed data is selected for the inversion,
further lowering the model-driven spatial mismatch between
observation and simulation. We determine which simulation
matches the TROPOMI observation best by performing daily
inversions with all eight simulation outputs and selecting
the simulation with the lowest optimized observational cost
(second term in Eq. 1). The different plumes are simulated
with two different driving wind fields and four PBL schemes
(Sect. 2.3) and further expanded by also selecting the simu-
lated plumes an hour before and after the TROPOMI over-
pass as in Pandey et al. (2019). Figure 2 shows the eight
spatially different simulated plumes at the overpass time as
well as the TROPOMI plume observed on the same day.
The 16 simulated plumes corresponding to the hour before
and after the TROPOMI overpass are not shown. Figure 2i
shows the lowest optimized (posterior) observational cost,
and this configuration will therefore be used for the opti-
mization for this day. To further limit the contribution of spa-
tial concentration mismatches, we remove days which have
the 20 % highest optimized observational cost normalized by
the number of pixels. This removes days on which, after ag-
gregation, none of the simulated plumes spatially matched
the TROPOMI observed plume well. To ensure representa-
tive sampling and avoid structural removal of days without
clear observed plume signals, we use the optimized observa-
tional cost instead of the prior observational cost. The daily
inversions are only used for the selection of the best simula-
tion on each day. Afterwards, the best daily simulations are
combined into a single Jacobian and prior vector, and then
this is used in an inversion spanning the full year to deter-
mine an annual scaling factor for each emission element of
the state vector (x). The emission estimates for the iron and
steel plants can therefore be directly compared with the an-
nual emission rates reported to E-PRTR.

Figure 2 shows a strong southwest to northeast gradient in
all prior simulated concentration fields (Fig. 2b–e and j–m)
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Figure 2. (a) Concentration as measured by TROPOMI over ArcelorMittal Gent in Belgium (indicated by the x) on 25 February 2019.
Panels (b)–(e) and (j)–(m) show different prior simulations using NCEP and ERA5 meteorological data respectively. The variation between
the different NCEP and ERA5 simulations is caused by different planetary boundary layer schemes and surface layer physics (as indicated
in the titles). Panels (f)–(i) and (n)–(q) show the corresponding posterior concentrations. Out of these posterior simulations, panel (i) shows
the lowest observational cost, making it the best simulation for this particular day.

which is not observed in the TROPOMI data. Such strong
gradients are not often observed in the simulated data, but
days that do have them will negatively impact the accuracy
of the inversion result as the over- and underestimates in the
simulated concentrations will be compensated for by low-
ering or increasing respectively the emission rates over af-
fected areas. To reduce the impact of mismatches between
the simulated and observed background, we allow our inver-
sion to optimize the background at a daily rather than yearly
frequency to prevent biases from aliasing into the emission
estimate (Naus et al., 2023). We further split the background
into a mean background (which is uniform for all pixels per
day) and a deviation from the mean (which is any remaining
spatial pattern present in the CAMS-based simulated back-
ground). These two parts of the background are added indi-
vidually to the state vector, yielding two state vector elements
per overpass of TROPOMI and giving additional flexibility
to the inversion. Figure 2f–i and n–o show that this flexibil-
ity results in a reduced spatial gradient in the posterior sim-
ulations, better matching the TROPOMI observation. Being
derived from CAMS, both the mean daily background and
the deviation from the mean are given a 10 % uncertainty.
Like the state vector elements for transport from the outer do-
main, the background is well constrained by the large number
of TROPOMI observations, resulting in limited sensitivity to
the imposed prior uncertainty. Typical adjustments to both

the mean background concentration and its gradient range
from 0 %–3 %. However, the daily background gradient state
vector element is reduced by up to 30 % to better match ob-
servations.

2.5 Regularization parameter

Because of the large number of TROPOMI observations and
the assumption of a diagonal observational error covariance
matrix, there is a risk of overfitting to the observations. We
therefore apply regularization parameter γ to the observa-
tional part of the cost function (Eq. 1). To determine an ap-
propriate value for γ , we use the L-curve criterion as de-
scribed in Hansen (1999). As we are mostly interested in cor-
rectly quantifying emissions from the iron and steel plant, we
reduce the background contribution to the cost function by
scaling the background by the mean difference between sim-
ulation and observation over the full year before determining
γ . The resulting L curve can be found in Appendix B, from
which we conclude that γ = 0.1 is appropriate.

2.6 Uncertainty analysis

To evaluate the uncertainty in our posterior emission esti-
mates, we perform an ensemble, varying the relevant param-
eters in our inversion framework. We report the full spread of
this ensemble of inversions for each plant as uncertainty. The
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Figure 3. The uncertainty related to each parameter for all plants.
The x axis shows the relative deviation from the base posterior es-
timates. The boxplots show the collection of all investigated plants,
with the x axis showing the resulting emission rates normalized by
their base posterior estimate. Each boxplot consists of the estimates
for each plant for the entire spread in the variable as classified in
Appendix C.

range over which each parameter was varied can be found
in Appendix C. Figure 3 shows the resulting spread in emis-
sion rates related to each varied parameter. Not optimizing
the background daily and different aggregation resolutions
results in large spreads, exceeding those resulting from the
use of different wind products and choices in data filtering.
As an alternative to using the observational cost function for
selecting the best-matching simulation (Sect. 2.4), we se-
lect the simulation based on the highest posterior scaling.
We include this (potentially biased high) approach within
the uncertainty ensemble to obtain a conservative uncertainty
range. Although the choice of the regularization parameter
has a small effect on the emission estimate for most plants,
it affects a few individual sites more heavily than any of
the other variables because they have relatively few obser-
vations, and the lower γ values then keep the estimates close
to the prior. The posterior estimate is relatively insensitive to
variation in the prior, showing that the emission estimates are
strongly determined by the TROPOMI observations.

2.7 Additional quantification methods

We compare and supplement our inversion approach with
two additional methods: the cross-sectional flux (CSF)
method and an approach based on oversampling and wind
rotation. Both methods solely rely on the CO concentrations
measured by TROPOMI and a wind field without incorporat-
ing any prior knowledge on emission rates or using simula-
tions of atmospheric concentrations.

The CSF method (Varon et al., 2018) is a “mass balance”
emission quantification method that calculates the particle
flux at different distances from a source. First, CO enhance-
ments are integrated over cross-sections perpendicular to the
plume. Multiplied by an effective wind speed, the full inte-
gral over each cross-section gives an emission rate estimate.
By repeating this procedure at different distances from the
source, an average emission rate corresponding to the ob-
served plume is calculated. The simplicity of the method al-
lows for fast application to different locations at the cost of
larger uncertainty and a higher minimum emission threshold
compared to methods that rely on large atmospheric trans-
port models. We perform the CSF method as in Leguijt et al.
(2023) using the effective wind calibration and 10 m altitude
winds from ERA5 (Hersbach et al., 2020). The effective wind
speed is a parametrization of the actual wind speed, which
aims to account for the effects of turbulence, variation in the
vertical wind profile, and plume rise. As uncertainty we re-
port the full range of the same ensemble members as used in
Leguijt et al. (2023).

To investigate whether year-to-year variation in inversion-
based emission rate estimates is consistent with trends in ob-
served CO concentrations, we also perform a method based
on an oversampled wind rotation as in Clarisse et al. (2019).
Because of variation in the wind direction, plumes on differ-
ent days will point in different directions, and oversampling
measured concentrations without taking wind-information
into account will result in a diffuse enhancement. Valin et al.
(2013) and Pommier et al. (2013) showed that the spatially
averaged concentrations retain a plume-like shape if the en-
hancements are rotated around the source location such that
the wind points in the same direction. Using the approach
as developed in Maasakkers et al. (2022b), we oversample
wind-rotated concentration fields and use these as an indica-
tion of emission trends rather than a determination of abso-
lute emission rates.

3 Results and discussion

We first discuss the performance of our inversion in Sect. 3.1,
followed by a comparison of the satellite-based emission es-
timates with reported emission rates in Sect. 3.2. To explain
any differences between the two, we have extended our anal-
ysis to 2020 for some of the investigated plants, for which the
results are shown in Sect. 3.4. Section 3.3 explores consis-
tency with the model-independent cross-sectional flux (CSF)
method.

3.1 Inversion performance

In Fig. 4a we show the difference between the prior sim-
ulation and observations for 2019 over ArcelorMittal Gent
(Belgium), gridded at 0.05°. Throughout the domain, exclud-
ing five pixels at the center, the concentrations measured by
TROPOMI exceed the simulated concentrations. Figure 4c
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shows the corresponding difference plot for the posterior
simulation after optimization of the state vector. This figure
shows a reduced bias (1.89 to 0.01 ppb) and absolute bias
(2.00 to 0.95 ppb) and a higher correlation (0.80 to 0.83)
between simulation and observation, as expected from the
optimization. In addition, no spatial patterns are visible in
the resulting difference map. The difference between prior
and observation can largely be explained by differences in
the simulated background. Figure 4b shows the difference
between simulation and observation where only the back-
ground has been optimized. Although the largest part of the
domain shows better agreement with the observations than
the prior simulation (mean bias: −0.11; mean absolute bias:
0.97; correlation: 0.83), the simulated concentrations above
the iron and steel plant, indicated with the black square, show
significant differences. This shows that the inversion frame-
work is sensitive to emissions from the iron and steel plant
specifically. The corresponding values for the other plants are
shown in Appendix D.

To test whether there is a temporal sampling bias in our
method, we investigate the distribution of TROPOMI obser-
vations throughout the year per plant. The number of obser-
vations shows limited variation over the four quarters of the
year, ranging from 19.2 % of the annual number of valid ob-
servations (fourth quarter, ArcelorMittal Bremen) to 29.6 %
(third quarter, Scunthorpe IS Works).

3.2 TROPOMI emission estimates

Figure 5 shows the TROPOMI-based posterior emission es-
timates compared to the prior emission rates from E-PRTR.
Of 21 posterior emission estimates, 10 agree with E-PRTR
within their uncertainty range. The TROPOMI estimates
show a correlation of 0.86 with the E-PRTR dataset and are
on average 17% lower, as reflected in Appendix E.

The hashed bars show the diagonal elements of the aver-
aging kernel of our inversion as given in Eq. (5), which re-
flect the ability to constrain the iron and steel plant emission
estimates based on the satellite observations (Jacob et al.,
2016). These elements range between 0 and 1, with 1 in-
dicating that the posterior is fully determined by the obser-
vations and values close to 0 resulting in posterior estimates
that are mostly determined by the prior. Most of the plants,
67% (90%), have inversion averaging kernel values above
0.8 (0.7). This is a result of the large number of TROPOMI
observations, with each plant having TROPOMI measure-
ments covering at least part of the simulated plume on 150
to 250 d. ISD Dunaferr (Hungary) forms an exception to the
high inversion averaging kernel values, with a diagonal ele-
ment equal to 0.18. This is also the plant with the lowest prior
and posterior emission estimate, resulting in a low sensitiv-
ity of the observations to the (small) emissions. With 33%
of the plants having inversion averaging kernel values below
0.8, we are limited to annual emission rate estimates. The
6-monthly emission estimates for these plants would result

in averaging kernel values as low as 0.45 and, consequently,
emission estimates that are strongly driven by the prior value.

The inversion-based emission estimates for the German
plants (ArcelorMittal Bremen, ArcelorMittal Eisenhütten-
stadt, AG der Dillinger, Salzgitter Flachstahl, ThyssenKrupp
Schwelgern and Hüttenwerke Duisburg) agree within error
bars with the emission rates determined by Schneising et al.
(2024) using TROPOMI data in a mass balance approach.
However, for these six plants, our emission estimates lie at
the lower edge of their uncertainty estimates. ArcelorMit-
tal Gent, ArcelorMittal Gijón, Dunkerque, ArcelorMittal Os-
trava, and Ilva Taranto show considerably lower posterior
emission estimates even though their reported emissions are
based on measurements (as indicated by the green color).
The same applies to U.S. Steel Košice s.r.o. (Slovakia), al-
though the emission rate was reported for the year 2017.
This indicates that our estimates may be conservative as a
perfect estimate requires a sufficient spatial match between
the modeled and observed plume. Additionally, for Arcelor-
Mittal Gent, ArcelorMittal Gijón, and Ilva Taranto, reported
emissions drop by 42 %, 40 %, and 24 % respectively for
2020 compared to 2019 (Fig. 1). We investigate whether the
disagreement between our posterior estimates and E-PRTR
is persistent in 2020 in Sect. 3.4. Port Talbot S Works and
Hüttenwerke Duisburg show large uncertainty ranges. The
low values for Talbot originate from the γ = 1 and yearly-
background optimization ensemble members. As Port Talbot
is coastal, a lower number of observations and discrepancies
between land and water pixels might create difficulties for the
inversion framework. A regularization parameter equal to 1
has a risk of overfitting the observational data and, specifi-
cally for Talbot, results in a close-to-zero emission rate es-
timate. Similarly, not allowing for daily optimization of the
background could result in differences between land and wa-
ter pixels being wrongly interpreted as the effect of the plant.
However, the other coastal plants (ArcelorMittal Dunkerque,
ArcelorMittal FOS, ArcelorMittal Gijón, Ilva Taranto, and
Tata IJmuiden) do not show larger uncertainties compared to
inland locations.

The high posterior estimates in the uncertainty range for
Hüttenwerke Duisburg come from the ensemble members
with γ = 1 and prior uncertainty equal to 50%. Both would
allow the inversion to wrongly attribute emissions from the
neighboring ThyssenKrupp Schwelgern plant (±10 km dif-
ference) to Hüttenwerke Duisburg. However, the correspond-
ing ensemble members for ThyssenKrupp Schwelgern are
only 15%–20% lower than the base inversion, meaning the
summed emission for the two plants is considerably higher
than the base inversion in these ensemble members. The fact
that the posterior estimate for Hüttenwerke Duisburg specifi-
cally is very uncertain shows that the inversion has only lim-
ited ability to distinguish between two spatially close point
sources.
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Figure 4. The difference between the prior and posterior simulation and TROPOMI observations over ArcelorMittal Gent (Belgium) for
2019 aggregated at 0.05°. The black squares, with dimensions of 0.15°× 0.15°, are centered on the location of the plant. Panel (a) shows the
prior difference, where TROPOMI observations are higher than the simulated concentrations throughout most of the region. Panel (b) shows
the impact of optimizing the background, showing a smaller difference, except around the iron and steel plant. In the posterior difference
shown in panel (c), there is no clear pattern visible in the difference between the simulation and TROPOMI.

Figure 5. Comparison between our posterior emission estimates (purple) and the emissions reported to E-PRTR for 2019. The colors
represent the method used to report the emissions to the E-PRTR framework; these are the same as in Fig. 1 except for U.S. Steel Košice
s.r.o., where the gray bar reflects the difference in year between the TROPOMI estimate and the reported emissions. The error bars for the
TROPOMI-based estimates show the full spread of the inversion ensemble. The diagonal elements of the averaging kernel of our inversion
for each steel plant are shown as hashed bars; these elements are a measure of the extent to which the final emission estimates are constrained
by the satellite observations. The value of the inversion averaging kernel corresponds to the fraction of the bar that is shaded.
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3.3 Consistency with cross-sectional flux method

In addition to making use of inversions, TROPOMI CO data
can be used to determine emission rates using simpler mass
balance methods like the cross-sectional flux (CSF) method.
Leguijt et al. (2023) found a 100 Gg yr−1 lower limit for the
CSF method to be trustworthy when applied to TROPOMI
data. Seven of the studied plants – ArcelorMittal Dunkerque,
ArcelorMittal Gent, ArcelorMittal Dubrowie, Port Talbot S
Works, ThyssenKrupp Schwelgern, Hüttenwerke Duisburg,
and U.S. Steel Košice s.r.o. – have reported emission rates
above 100 Gg yr−1 and therefore merit the application of the
CSF method. The other plants have emission rates lower than
what Leguijt et al. (2023) report as the lower limit for the
CSF method to be reliable.

Figure 6 shows a comparison between the two methods
for the applicable plants. The annual CSF estimates show the
mean of the estimates on individual orbits, where the num-
ber of suitable orbits ranges from 120 (Port Talbot S Works)
to 220 (ArcelorMittal Gent). All estimates agree within un-
certainty. The CSF estimates of four out of seven plants
are higher than the inversion estimates, which could sup-
port the notion that the inversion estimates are conserva-
tive. ThyssenKrupp Schwelgern and Hüttenwerke Duisburg
lie only 10 km from one another, meaning the enhancements
resulting from emissions at these locations can overlap. The
CSF method assumes singular point-like sources and is there-
fore not fully applicable to this situation. This can explain
the disagreement between both methods at ThyssenKrupp
Schwelgern. Although the reported emission rates for Port
Talbot S Works and U.S. Steel Košice s.r.o. are above the
100 Gg yr−1 emission threshold for the CSF method, the
inversion-based estimates of 58 and 55 Gg yr−1 fall consid-
erably below this value. When applying the CSF method
to these locations, we find estimates of 59 and 34 Gg yr−1,
which lie well below the 100 Gg yr−1 threshold. Therefore,
while we have limited confidence in the CSF-retrieved emis-
sion rates, they do support that the emission rates could be
lower than reported.

3.4 The 2020 analysis

As discussed in Sect. 3.2, we extend our analysis to 2020
for four of the plants that show considerable differences be-
tween the prior and posterior for 2019: ArcelorMittal Gent,
ArcelorMittal Gijón, ArcelorMittal Ostrava, and Provozovna
Třinec. The latter two show little variation in reported emis-
sions from 2019 to 2020 (Fig. 7). On the other hand, both
ArcelorMittal Gent and ArcelorMittal Gijón show a sharp
drop in reported emissions (42 % and 40 % respectively)
from 2019 to 2020, with the 2019 ArcelorMittal Gent re-
ported emission exceeding the mean of the surrounding
4 years by 61 %. Figure 7 also shows the inversion results
for these four plants for 2019 and 2020. ArcelorMittal Os-
trava shows little difference between the 2019 and 2020 pos-

terior estimates, as expected from the limited variation in re-
ported emission rates. The inversion-based emission rate es-
timate for Provozovna Třinec increases from 60 (48–91) to
87 (77–102) Gg yr−1, despite having no variation in reported
emissions. Both ArcelorMittal Gent and ArcelorMittal Gi-
jón, which have a very different prior for the 2019 simula-
tions than for the 2020 simulations, show much less varia-
tion in the posterior estimate than in the reported emissions.
The prior emission estimates for 2020 actually agree bet-
ter with the posterior 2019 estimates for both plants. The
18 % reduction in the posterior estimate for ArcelorMittal
Gent also lies within the uncertainty range of our estimate,
showing no clear indication of a reduction in emission from
2019 to 2020, contrary to what is suggested by the large dif-
ference in reported emissions for those years. ArcelorMittal
Gijón shows a 22 % increase in the posterior emission rate
as opposed to a decline, although this increase lies within
the uncertainty range of the 2019 estimate. Correlations be-
tween simulation and observation are similar between 2020
and 2019 – an average posterior (prior) correlation of 0.79
(0.74) in 2020 compared to 0.77 (0.75) in 2019 – indicating
comparable inversion performances.

To verify the lack of variation observed in our posterior
estimates, we perform annual wind rotations (Sect. 2.7). Fig-
ure 8 shows the results for the four plants for 2019 and 2020.
We estimate the enhancements related to the plant as the dif-
ference between 0.1°× 0.2° (width× length) boxes down-
wind and upwind of the plant. To quantify uncertainties in
year-to-year comparisons, we vary the dimensions of up- and
downwind boxes simultaneously by up to 30 % and report
the full spread. Due to its coastal location, the wind rota-
tions over ArcelorMittal Gijón do not converge in a clear
plume and cannot be used to estimate a variation in enhance-
ment. Over ArcelorMittal Gent, we find an enhancement of
2.1 (2.0–2.3) ppb for 2019 and 2.0 (1.9–2.1) ppb for 2020.
This 5 % (4 %–11 %) decrease in enhancement is more in line
with the 20% (3%–37%) reduction in our posteriors than
with the 42 % reduction in reported emissions. For Arcelor-
Mittal Ostrava, we find a decrease in enhancement of 22%
(10 %–27 %). This decrease may partly be attributed to mis-
alignment of the plume and wind direction, which is more
prominent in 2020. Over Provozovna Třinec, we see a 15%
(0 %–19 %) increase in enhancements, which agrees well
with the reported lack of variation between 2019 and 2020.
For both ArcelorMittal Ostrava and Provozovna Třinec, the
percentage changes in wind-rotated enhancements are con-
sistent within error bars with the year-to-year variations in
our posterior estimates.

4 Conclusions

We performed analytical inversions with 2019 TROPOMI
satellite data to determine annual carbon monoxide emis-
sion rates for 21 European integrated iron and steel plants.
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Figure 6. Comparison of inversion-based TROPOMI emission estimates with estimates from the mass balance cross-sectional flux (CSF)
method. Emissions reported to E-PRTR are also shown, using the same colors as in Fig. 5 to represent the reporting method. As the lower
limit for the TROPOMI-based CSF method was estimated at 100 Gg yr−1, only the plants with prior or posterior estimates above this value
are compared.

Figure 7. Extended inversion analysis for four plants using 2020 TROPOMI data. Each plant shows four bars, including the reported emission
as well as the inversion emission estimate for the years 2019 and 2020. As in Fig. 5, the colors of the reported emissions represent how they
were derived and the hashed bars show the diagonal averaging kernel values of our inversion.
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Figure 8. TROPOMI wind-rotated averaged concentrations over ArcelorMittal Gent, ArcelorMittal Gijón, ArcelorMittal Ostrava, and Provo-
zovna Třinec for 2019 and 2020 oversampled to 0.01°. The mean CO concentration across the scene has been subtracted from each image
to be able to compare the different years. The first panel shows the boxes used to calculate the upwind (white) and downwind (black)
concentrations.

These plants are the highest-emitting CO point sources in Eu-
rope. We compared our top-down emission rate estimates to
bottom-up emission rates reported to E-PRTR at the facility
level. In doing this, we not only evaluated limitations of the
satellite-based approach, but also identified outliers pointing
at uncertainties in the reported data. The E-PRTR emission
rates are used as prior estimates in our inversions. Per site,
the inversion uses one of eight simulations with different me-
teorology for each day to reach optimal spatial agreement be-
tween observation and simulation. We allow further freedom
in the inversion by optimizing the CAMS-based background
on a daily basis, rather than performing an annual scaling.

We find that the posterior estimates for plants with re-
ported emission rates above 50 Gg yr−1 (the majority of the
plants) can be constrained with the satellite observations (in-
version averaging kernel values above 0.7 for 90% of the
plants). Our emission estimates show a high correlation of
0.86 to the emission rates reported to E-PRTR, with 10 out
of 21 plants agreeing within estimated uncertainties. For the
remaining 12 plants, we find lower posterior emission rates
than reported to E-PRTR, suggesting our method gives con-
servative emission estimates. For one of our six coastal sites,
and for a location with a nearby (within 10 km) point source,
we find large differences in posterior estimates for different

inversion setups, highlighting that results for these plants and
other plants in similar situations should be treated with care.

For the seven plants reporting emission rates above
100 Gg yr−1, we perform an additional emission quantifica-
tion using the CSF method which does not rely on prior
emission information. We find that the CSF-based emission
estimates agree with the inversion-based estimates for iso-
lated plants. For two plants in the United Kingdom and Slo-
vakia, the CSF estimates fall below the 100 Gg reported as
the lower limit for this method to produce reliable results.
However, these low estimates do provide additional confi-
dence in our inversion-based estimates that are also signifi-
cantly lower than the reported emissions.

We expand our analysis to 2020 for four plants that show
large 2019 discrepancies. The inversion estimates for 2019
and 2020 agree with each other, showing the robustness of
the method. For ArcelorMittal Gent (Belgium) and Arcelor-
Mittal Gijón (Spain), the reported emission rates for 2020
are 40 % lower than those reported for 2019, while they agree
with the 2019 and 2020 inversion estimates, raising questions
about the reported emissions for 2019. Comparison of wind-
rotated oversampled TROPOMI data for 2019 and 2020 for
ArcelorMittal Gent also shows no indication of a large dif-
ference in the emission rate between the years. This exam-
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ple shows how these satellite analyses can be used to iden-
tify uncertainties in reported emissions. In general, the good
agreement between our results and reported emissions in-
dicates that our framework can be used as a measurement-
based approach to estimate CO emissions from large steel
plants where site-specific measurements are limited or not
available.

Appendix A: Iron and steel plant locations

Table A1. Location of the investigated iron and steel plants.

Name Country Latitude, longitude Name Country Latitude, longitude

Donawitz GesmbH Austria 47.380, 15.066 ArcelorMittal Dunkerque France 51.016, 2.336
ArcelorMittal Gent Belgium 51.582, 3.819 ArcelorMittal FOS France 43.466, 4.937
ArcelorMittal Ostrava Czech Republic 49.796, 18.306 Port Talbot S Works United Kingdom 51.556, −3.765
Provozovna Třinec Czech Republic 49.688, 18.647 Scunthorpe IS Works United Kingdom 53.581, −0.62
AG der Dillinger Germany 49.357, 6.754 ISD Dunaferr Hungary 46.943, 18.941
ArcelorMittal Bremen Germany 53.125, 8.687 Ilva Taranto Italy 40.517, 17.2
ArcelorMittal Eisenhüttenstadt Germany 52.166, 14.618 Tata IJmuiden Netherlands 52.477, 4.592
Hüttenwerke Duisburg Germany 51.368, 6.712 ArcelorMittal Dubrowie Poland 50.080, 20.092
Salzgitter Flachstahl Germany 52.155, 10.403 ArcelorMittal Galat,i Romania 45.438, 27.972
ThyssenKrupp Schwelgern Germany 51.507, 6.735 U.S. Steel Košice s.r.o. Slovakia 48.618, 21.198
ArcelorMittal Gijón Spain 43.556, −5.911

Figure A1. Location of the investigated iron and steel plants. The coordinates are given in Table A1.
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Appendix B: Regularization factor determination

Figure B1. Determination of the regularization parameter using the L-curve criterion from Hansen (1999) as discussed in Sect. 2.4. Different
values of the regularization parameter are indicated in the graph with the y axis showing the cost related to deviation from the prior and the
x axis showing the observational cost. Both costs have been normalized by the number of state vector elements and the number of observations
respectively. For low gamma values, emission estimates do not deviate from the prior, which results in large differences between simulation
and observation. For values of gamma that are too high, the inversion overfits the observations, resulting in a strong increase in the prior cost.
Based on the bend in the L curve, we chose a value of 0.1 for the regularization parameter.

Appendix C: Uncertainty in our inversion estimates

To estimate the uncertainty and sensitivity of our inversion-
based emission estimates, we perform an ensemble of inver-
sions varying different parameters. Table C1 contains the full
list of ensemble members, which we describe in detail here:

1. For the regularization parameter γ in Appendix B, 0.1
has been established as a suitable value. In the ensemble
we include inversions with γ = 0.01 and γ = 1.

2. We optimize a daily background optimization in the
base inversion; in the ensemble we include inversions
that only optimize a single scaling of the background.

3. The ensemble includes inversions that use only NCEP
or ERA5 data. We also add ensemble members that only
use the simulations sampled at the TROPOMI overpass
time, instead of using the hour before and after overpass.

4. Whereas the base inversion uses the optimized obser-
vational cost to select the daily simulation, the ensem-
ble includes inversions which use the maximal posterior
scaling for simulation selection.

5. As members in the ensemble, we include inversions that
use different pixel and orbit filtering than the base in-
version. On the pixel level, we include inversions with
a minimum TROPOMI data quality value (QA value)
of 1.0 compared to 0.7 in the base inversion. This strict
filtering removes up to 87 % of data compared to the
base inversion. Due to the low number of observations,
we use a regularization value of 0.5 (as opposed to 0.1)
for this specific ensemble member, which was deter-
mined in the same way as described in Appendix B.
In addition to filtering based on the QA value, we in-
clude inversions with a lower maximum allowed scat-
tering layer height. The base inversion uses a value of
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5 km, which corresponds to a QA value of 0.7. We lower
this value to 0.5 km, which corresponds to a QA value
of 1.0. This inversion differs from inversion using the
QA value= 1.0 filtering as the QA value imposes addi-
tional bounds on the aerosol optical thickness. By not
further constraining the optical thickness, about 50 %
of TROPOMI observations with QA values of 0.7 and
higher are retained.

6. Orbit filtering in the base inversion is done by removing
the top 20 % of overpasses with the highest optimized
observational error per pixel. In the ensemble, we in-
clude both cases where we remove 40 % of overpasses
and cases in which we retain all overpasses.

7. Within the ensemble, the resolution to which we aggre-
gate the simulations and TROPOMI observations is in-
creased from 0.1 to 0.15°. We also include inversions in
which no aggregation is applied.

8. Within our ensemble, we change the prior by up to
30 %.

9. We also vary the prior uncertainty from the 30 % uncer-
tainty used in the base inversion. Our ensemble mem-
bers include uncertainties of 10 %, 20 %, 40 %, and
50 %.

Table C1. Full range over which variables were varied in the uncertainty ensemble.

Variable Default value Range

Regularization

(1) γ 0.1 0.01–1.0

Background

(2) Optimization interval daily yearly

Meteorological

(3) Wind product NCEP+ERA5, overpass time ±1 h NCEP overpass
ERA5 overpass
NCEP+ERA5 overpass
NCEP, overpass ±1 h
ERA5, overpass ±1 h

Simulation selection

(4) Metric of selection minimal observation cost maximum posterior scaling

Filtering

(5) Minimum QA value 0.7 0.7–1.0
Maximum scattering layer height 5 km 0.5–5.0 km

(6) Removing worst-matching overpasses 20 % 0 %–40 %

Aggregation

(7) Resolution 0.1° no aggregation–0.15°

Prior estimate

(8) Scaling 1.0 0.7–1.3

Prior uncertainty

(9) Prior uncertainty 30 % 10 %–50 %
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Appendix D: Inversion performance

Table D1. Comparison between TROPOMI observations and the model for the different locations using the prior estimates (left), only
correcting the background (middle), and using the posterior estimates (right). The subcolumns show the mean absolute error, the mean error,
and the correlation between simulation and TROPOMI observation. The values in parentheses represent the correlations within 0.25° of
the plants to focus on the effect of scaling the plants’ emission rates. All errors are shown in parts per billion. ArcelorMittal Ostrava and
Provozovna Třinec share the same simulation, as do Hüttenwerke Duisburg and ThyssenKrupp Schwelgern.

Name Prior model Background-corrected model Posterior model

Abs. Mean Abs. Mean Abs. Mean
error error R2 error error R2 error error R2

Donawitz GesmbH 2.42 2.25 0.78 (0.86) 1.36 −0.05 0.78 (0.89) 1.36 −0.05 0.78 (0.89)
ArcelorMittal Gent 2.00 1.89 0.80 (0.81) 0.97 −0.11 0.83 (0.82) 0.95 0.01 0.83 (0.85)
ArcelorMittal Ostrava 2.57 2.47 0.72 (0.74) 1.08 −0.08 0.71 (0.75) 1.07 −0.02 0.71 (0.77)
Provozovna Třinec 2.57 2.47 0.72 (0.77) 1.08 −0.03 0.71 (0.86) 1.07 −0.02 0.71 (0.86)
AG der Dillinger 1.67 1.55 0.73 (0.79) 0.97 0.01 0.75 (0.80) 0.97 0.01 0.75 (0.80)
ArcelorMittal Bremen 2.35 2.31 0.76 (0.82) 0.92 0.00 0.79 (0.82) 0.92 0.00 0.79 (0.82)
ArcelorMittal Eisenhüttenstadt 2.10 2.03 0.78 (0.74) 0.95 0.01 0.81 (0.75) 0.95 0.01 0.81 (0.76)
Hüttenwerke Duisburg 1.56 1.31 0.79 (0.66) 1.01 0.02 0.80 (0.80) 1.00 0.00 0.80 (0.82)
Salzgitter Flachstahl 1.66 1.51 0.76 (0.75) 0.97 0.01 0.78 (0.77) 0.97 0.00 0.78 (0.78)
ThyssenKrupp Schwelgern 1.56 1.31 0.79 (0.66) 1.01 −0.09 0.80 (0.80) 1.00 0.00 0.80 (0.81)
ArcelorMittal Gijón 2.16 1.87 0.71 (0.65) 1.44 −0.15 0.77 (0.72) 1.42 −0.01 0.76 (0.74)
ArcelorMittal Dunkerque 1.62 1.09 0.74 (0.63) 1.33 0.04 0.74 (0.71) 1.32 0.03 0.74 (0.72)
ArcelorMittal FOS 2.51 1.93 0.73 (0.68) 1.64 −0.07 0.78 (0.80) 1.63 0.01 0.78 (0.81)
Port Talbot S Works 1.98 1.83 0.79 (0.65) 1.00 −0.10 0.82 (0.76) 1.00 0.00 0.82 (0.78)
Scunthorpe IS Works 2.16 2.11 0.78 (0.78) 0.97 −0.03 0.80 (0.78) 0.97 0.01 0.80 (0.79)
ISD Dunaferr 3.51 3.49 0.77 (0.82) 0.91 0.01 0.84 (0.82) 0.91 0.00 0.84 (0.82)
Ilva Taranto 2.86 2.28 0.59 (0.57) 1.37 −0.19 0.71 (0.64) 1.33 −0.01 0.71 (0.68)
Tata IJmuiden 1.99 1.84 0.79 (0.86) 1.20 0.01 0.78 (0.86) 1.20 0.01 0.78 (0.86)
ArcelorMittal Dubrowie 2.82 2.77 0.75 (0.75) 1.06 −0.07 0.79 (0.76) 1.05 −0.02 0.79 (0.77)
ArcelorMittal Galat,i 3.27 3.26 0.69 (0.62) 0.97 −0.09 0.71 (0.65) 0.96 0.01 0.71 (0.68)
U.S. Steel Košice s.r.o. 3.45 3.41 0.77 (0.73) 1.22 −0.20 0.82 (0.78) 1.20 0.01 0.81 (0.77)

Appendix E: Posterior estimates

Figure E1 shows the same data as Fig. 5 in a scatterplot with
the same color scheme. The lines show linear regressions be-
tween posterior and reported emissions for the different re-
porting methods (measured, calculated, and estimated) and
for the entire set of plants. The full comparison shows a high
correlation of 0.86 and a slope of 0.83. The slope smaller than
1 reflects the fact that the TROPOMI-based emission esti-
mates are lower than those reported by the facilities for most
plants. Of the different subsets, the reported emissions based
on estimation show the biggest deviation from 1 in their slope
although the correlation is high due to the very small number
of data points.
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Figure E1. Different representation of the data shown in Fig. 5, including the correlation between the datasets. The gray line uses the full
set of investigated plants, whereas the colored lines correspond to subsets using different E-PRTR reporting techniques.

Code and data availability. TROPOMI data
(https://doi.org/10.5270/S5P-bj3nry0, Copernicus Sentinel-5P,
2021) are publicly available at https://dataspace.copernicus.
eu/explore-data/data-collections/sentinel-data/sentinel-5p
(last access: 2 April 2024). ERA5 wind data are avail-
able via https://doi.org/10.24381/cds.adbb2d47 (Hers-
bach et al., 2022). The WRF-Chem code is available at
https://github.com/wrf-model/WRF/releases (Powers et al.,
2023); in this work, version 4.1.5 was used. Open-fire emissions
from GFAS are available at https://ads.atmosphere.copernicus.
eu/datasets/cams-global-fire-emissions-gfas?tab=overview
(Kaiser et al., 2022). Emissions reported to E-PRTR
are publicly available at https://sdi.eea.europa.eu/data/
0e2e16ac-06e9-40b8-9aef-b3d228100564 (E-PRTR, 2023).
The TNO-GHGco-v4 inventory with point sources at exact loca-
tions (Kuenen et al., 2022; Denier van der Gon, H. and CoCO2
WP2 team, 2022) is available upon request to TNO (contact: Hugo
Denier van der Gon, hugo.deniervandergon@tno.nl).
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