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Abstract. On-road vehicle emissions play a crucial role in affecting fine-scale air quality and exposure equity in
traffic-dense urban areas. They vary largely on both spatial and temporal scales due to the complex distribution
patterns of vehicle types and traffic conditions. With the deployment of traffic cameras and big data approaches,
we established a bottom-up model that employed interpolation to obtain a spatially continuous on-road vehicle
emission mapping for the main urban area of Jinan, revealing fine-scale gradients and emission hotspots intu-
itively. The results show that the hourly average emissions of nitrogen oxides, carbon monoxide, hydrocarbons,
and fine particulate matters from on-road vehicles in urban Jinan were 345.2, 789.7, 69.5, and 5.4 kg, respectively.
The emission intensity varied largely with a factor of up to 3 within 1 km on the same road segment. The unique
patterns of road vehicle emissions within the urban area were further examined through time series clustering
and hotspot analysis. When spatial hotspots coincided with peak hours, emissions were significantly enhanced,
making them key targets for traffic pollution control. Based on the established emission model, we predicted that
the benefits of vehicle electrification in reducing vehicle emissions could reach 40 %–80 %. Overall, this work
provides new methods for developing a high-resolution vehicle emission inventory in urban areas and offers
detailed and accurate emission data and fine spatiotemporal variation patterns in urban Jinan, which are of great
importance for air pollution control, traffic management, policy-making, and public awareness enhancement.

1 Introduction

The rapid increase in the number of vehicles in recent years
has brought convenience to people’s travel and daily lives.
At the same time, it has also posed considerable challenges,
including traffic congestion, severe air pollution, and adverse
health impacts (Uherek et al., 2010; Guo et al., 2014; Zhang
et al., 2018; Shi et al., 2023). In urban areas with dense popu-
lations in particular, vehicle emission acts as a major cause of
air quality deterioration, which has attracted widespread pub-
lic attention (Ramacher et al., 2020; Qi et al., 2023). To eval-
uate the environmental impacts of this, researchers and stake-
holders have established on-road vehicle emission invento-
ries to estimate the amount of air pollutants emitted from

vehicle exhausts into the atmosphere (Zhang et al., 2018).
Considering vehicle population growth, stringent emission
standards, the phasing out of old vehicles, and vehicle elec-
trification, the spatiotemporal emission characteristics of ve-
hicles in the new period may have changed (Wen et al., 2023;
Zhu et al., 2023). Therefore, developing up-to-date dynamic
on-road vehicle emission inventories that align with current
urban traffic flow conditions is urgently needed and is quite
important for vehicle pollution control and urban air quality
improvement.

Emission factors, defined as the number (or mass) of pol-
lutants emitted per unit of activity, are one of the basic data
types used for the development of emission inventories. Sev-
eral methods for determining on-road vehicle emission fac-
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tors have been used in real-world conditions, such as street
canyon and road tunnel studies (Brimblecombe et al., 2015;
Zhang et al., 2015), remote sensing (Davison et al., 2020),
and onboard measurements (Jaikumar et al., 2017). Other
methods involve the estimation of air dispersion by tracking
a trace gas that can be added or emitted by traffic (Belal-
cazar et al., 2010) and the use of the eddy-covariance (EC)
technique to quantify emissions based on atmospheric tur-
bulence (Conte and Contini, 2019). Although previous mea-
surements have yielded convincing emission factors for local
vehicles, some limitations in the development of emission
inventories have not yet been adequately addressed. Road
traffic sources, belonging to mobile sources, are character-
ized by low emission heights, densely populated emission
areas, and obvious spatiotemporal heterogeneity (Liu et al.,
2018; Ding et al., 2023). The traffic flows, vehicle compo-
sitions, and vehicle speeds vary dramatically over short pe-
riods and distances, affecting the emission characteristics of
traffic sources (Chen et al., 2020; Jiang et al., 2021). As a
result, the accuracy of vehicle emission inventories largely
depends on the quality of the input data on traffic conditions
(Ding et al., 2021; Romero et al., 2020). Conventional vehi-
cle emission inventories are usually established by using a
top-down approach, based on statistical data, including vehi-
cle population, mileage, and fuel types (Cai and Xie, 2007;
Fameli and Assimakopoulos, 2015). These inventories are
generally temporally static and spatially rough, lacking high-
spatiotemporal-resolution data to characterize road vehicle
emission. In the past dozen years, several advanced technolo-
gies, such as GPS-equipped floating cars, open-access con-
gestion maps, and intelligent transportation systems (ITSs),
have been applied to develop high-resolution traffic emission
inventories (He et al., 2016; Zhang et al., 2018; Liu et al.,
2018; Maes et al., 2019; Ghaffarpasand et al., 2020). Ex-
ploiting taxi GPS data can infer the spatial and temporal
variation patterns of urban traffic emissions, with the heav-
iest traffic volumes and emission hotspots often discovered
in city centers (Luo et al., 2017; Liu et al., 2019). Open
congestion maps provide real-time traffic information, mak-
ing traffic volume inference timely. A more detailed vehi-
cle emission inventory in Beijing was developed based on
open congestion maps, indicating significant impacts on ve-
hicle emissions caused by traffic restrictions (Yang et al.,
2019). In addition, several studies have substantially im-
proved vehicle emission inventories by collecting detailed,
high-precision, and real-time monitoring data with ITSs. For
example, the spatial resolution of an hourly emission inven-
tory in Xiaoshan District in Hangzhou was increased by 1–3
orders of magnitude through an ITS (Jiang et al., 2021). In
the study of Jiang et al. (2021), emission hotspots exhibited
sharp small-scale variability and strengthened during peak
hours. By means of an ITS, the spatiotemporal dynamics of
vehicle emissions in Guangdong Province were also revealed
(Ding et al., 2023). It was found that gasoline passenger cars
were the main contributors to carbon monoxide (CO) and hy-

drocarbon (HC) emissions during peak hours, while diesel
trucks were the dominant source of emissions of nitrogen
oxides (NOx) and fine particulate matters (PM2.5) at night.
Despite the above improvements, previous inventory compi-
lation techniques for on-road vehicles have some limitations
due to incomplete traffic data, insufficient vehicle details, or
high costs of wide coverage. More comprehensive data need
to be obtained using cost-effective methods to achieve long-
term and wide-area coverage, particularly in less developed
cities.

Recently, traffic camera networks have been widely
adopted and are readily available, providing extensive cov-
erage in critical urban areas. They have the capability to con-
tinuously capture nearly all vehicles driving on roads (Liu
et al., 2024), thus providing an opportunity to develop an
ultra-fine-resolution vehicle emission inventory. To some ex-
tent, large-scale real-time traffic datasets are crucial for eluci-
dating the spatiotemporal variations in on-road vehicle emis-
sions (Wu et al., 2022). However, the main concern is that
processing and analyzing a large amount of data are chal-
lenging and time-consuming tasks (Lv et al., 2023). Com-
pared to traditional statistical methods, big data approaches
offer apparent advantages in handling, validating, analyzing,
mining, and visualizing large-scale, multi-source, and struc-
turally complex monitoring data. At present, big data have
been used for air pollution mapping with much higher spa-
tial precision than fixed-site monitoring (Apte et al., 2017).
In addition, Deng et al. (2020) used a big data approach to
establish a high-resolution and large-region vehicle emission
inventory in the Beijing–Tianjin–Hebei region, but the in-
ventory is only for trucks. With the application of big data
techniques, it becomes feasible to develop accurate, practi-
cal, and dynamically updatable urban traffic emission inven-
tories with high spatiotemporal resolution.

Note that even widely distributed traffic cameras are un-
likely to achieve spatially continuous observations. The spa-
tial gaps of meters to kilometers between fixed traffic cam-
eras determine the upper resolution limit of the bottom-
up on-road vehicle emission inventory. Therefore, alterna-
tive approaches are needed to complement the observation
data and fill the gaps. Interpolation, a useful data processing
method, can preserve the emission data at the original moni-
toring points while maximizing the reproduction of the spa-
tial gradient of emissions over short distances (10 m–1 km).
Jeong et al. (2019) innovatively applied spatial interpolation
models to achieve a more accurate estimation of methane
emission from a landfill. Similarly, exploiting spatial interpo-
lation to the estimation of vehicle emissions can compensate
for spatial gaps between traffic monitoring points, making
on-road vehicle emission mapping dynamic and continuous.
Due to the drastic change in air pollutant concentrations over
short distances in urban areas caused by the uneven spatial
distribution of traffic sources (Apte and Manchanda, 2024),
refined vehicle emissions through interpolation will of course
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provide an effective reference for the improvement and inter-
pretation of air pollution mapping.

As the capital of Shandong Province and an important
transportation hub in northern China, Jinan is confronting se-
vere air pollution. The number of vehicles in Jinan exceeded
3 million in 2020, and vehicular emissions are a significant
source of urban air pollutants. Jinan has basically achieved
full coverage of traffic camera monitoring, which allows us
to obtain traffic data for each road segment. In this study,
we combined traffic camera recordings with field surveys,
making the framework applicable to most cities. By using
a bottom-up approach to calculate emissions and pioneering
the application of spatial interpolation, we successfully es-
tablished a high-resolution (temporal resolution of 1 h and
spatial resolution of 50m× 50m) on-road vehicle emission
mapping. With the high-efficiency processing capabilities of
big data approaches and the accumulation of hourly data for
nearly 1 year, the seasonal variations, weekday and weekend
differences, diurnal changes, and spatial distribution patterns
of vehicle emissions for multiple pollutants were analyzed
and revealed. Through time series clustering and hotspot
analysis, the different diurnal variation patterns and hotspot
areas of vehicle emissions on urban roads were further identi-
fied. Additionally, considering the rapid development of new
energy vehicles (NEVs), future scenarios were designed to
predict the positive impact of vehicle electrification on on-
road traffic emissions. Finally, the validation of the devel-
oped on-road vehicle emission inventory was conducted by
comparing with other inventories.

2 Methodology and data

2.1 Road network and real-time traffic monitoring

Jinan is located in the middle of the Beijing–Tianjin–Hebei
region and the Yangtze River Delta region, serving as an im-
portant urban transportation hub in northern China. As of
2023, it had a population of over 9.43 million, with a GDP of
CNY 1276 billion. The total length of the road network was
around 18 356 km within a geographical area of 10 244 km2.
There were 3.39 million private vehicles (motorcycles ex-
cluded) in Jinan, with an average annual growth rate of 7 %
since 2019. However, the construction of roads and rail tran-
sit has lagged behind. Limited traffic space was incompati-
ble with the rapidly increasing number of vehicles, leading
to frequent traffic congestion, especially in urban areas. In
addition, driving restrictions for trucks in peak hours were
implemented in the main urban area by the local government.
In this study, the main urban area of Jinan (within the inner-
ring expressway) was selected to collect real-time traffic data
from monitoring points and further calculate the on-road ve-
hicle emissions (see Fig. 1). There were a total of 1189 traf-
fic monitoring points in the main urban area, which used fast
cameras to capture all vehicles passing by, identify the vehi-
cle categories, and record the traffic flows. Four categories of

vehicles were recognized automatically, including light-duty
vehicles (LDVs), heavy-duty vehicles (HDVs), new energy
light-duty vehicles (NELDVs), and new energy heavy-duty
vehicles (NEHDVs). All the roads in the main urban area
were classed as highways, expressways, arterial roads, or mi-
nor arterial roads and were divided into numerous segments
by traffic monitoring points. The gaps between two moni-
toring points ranged from 10 m to 3 km. The hourly data of
vehicle flows and categories were obtained with image pro-
cessing, object detection, and image recognition algorithms.

2.2 Data collection and processing based on big data
approaches

Big data methods were employed in this study to calculate
the high-resolution emissions of air pollutants. The accuracy
largely depended on the quality of input data of traffic and
meteorological conditions (Romero et al., 2020). To obtain
real-time traffic information, the hourly flow data for the four
categories of vehicles measured at each monitoring point
were collected from 1 April 2023–29 February 2024. The
fractions of specific vehicle types were determined based on
our previous surveys conducted on typical roads within urban
areas of Jinan in April 2022 (Wang et al., 2025), and the clas-
sification method is introduced in Sect. 2.3. The hourly me-
teorological data during the study period at the surface level
were adopted from ERA5 (https://cds.climate.copernicus.eu,
last access: 29 March 2024) with a horizontal resolution of
0.25° (Hersbach, et al., 2023). They were integrated with the
traffic dataset with higher resolution by a “snapping” pro-
cedure on the basis of the nearest geographical coordinates.
Meteorological data were used for environmental corrections
of emission factors. In this process, we determined the local
temperature and humidity ranges rather than the exact values
and assigned specific correction coefficients accordingly.

With the hourly traffic and meteorological data, the on-
road vehicle emissions of primary pollutants, including NOx ,
CO, HC, and PM2.5, were calculated and visualized. Figure 2
shows the framework of data processing for vehicle emission
calculation and mapping. Specifically, the original datasets
of traffic monitoring with approximately 106 million records
were collected and integrated with meteorological data for
subsequent data storage and management. Then, the data un-
derwent extensive pre-processing, including cleaning, inte-
gration, transformation, and reduction. After that, the origi-
nal data were consolidated into a structured dataset compris-
ing 5.5 million sets of records. Each record set included mul-
tiple parameters of traffic flows for different vehicle types,
emission correction factors (depending on meteorological
conditions and vehicle speed), road information, and times-
tamps. The record sets were further used to calculate vehic-
ular emissions and analyze their spatiotemporal distribution
characteristics, ultimately aiding in understanding the status
of urban vehicle emissions and formulating corresponding
control strategies.

https://doi.org/10.5194/acp-25-5537-2025 Atmos. Chem. Phys., 25, 5537–5555, 2025

https://cds.climate.copernicus.eu


5540 Y. Wang et al.: High-resolution mapping of on-road vehicle emissions

Figure 1. Road network and the real-time traffic monitoring points in the main urban area of Jinan. (a) Map shows Jinan (the blue area)
located in Shandong Province, China, with the main urban area within the red borders. (b) Real-time traffic monitoring achieved full coverage
over the main urban area of Jinan.

Figure 2. Model framework for high-resolution mapping of on-road vehicle emissions based on big data approaches.

2.3 Vehicle emission calculations and
hyperfine-resolution mapping

The hourly emissions of air pollutants, including NOx , CO,
HC, and PM2.5, at each road segment were calculated based
on traffic flows, vehicle speeds, vehicle categories, road seg-
ment length, and emission factors (see Eq. 1) (Zhang et al.,
2016; Yang et al., 2019; Jiang et al., 2021). Considering

emission variations caused by local conditions, localized cor-
rection coefficients were adopted in this study for adjustment
in emission factors (see Eq. 2):

Eh,l,j =
∑

t
EFc,j × T Fc,h,l ×Ll , (1)

where Eh,j,l is the total emissions of pollutant j on road link
l at hour h, in units of grams per hour (gh−1). EFc,j is the
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localized emission factor of pollutant j for vehicle category
c, in units of grams per kilometer (gkm−1). TFc,h,j is the
traffic flow of vehicle category c on road link l at hour h, in
units of vehicles per hour (vehiclesh−1). Ll is the length of
road link l, in units of kilometers (km).

EFc,j = BEFc,j ×ϕ× γ × λ× θ (2)

Here, BEFc,j is the comprehensive baseline emission fac-
tor of pollutant j for vehicle category c, in units of grams
per kilometer (gkm−1), and ϕ, γ , λ, and θ are the dimen-
sionless environmental correction coefficient, traffic condi-
tion correction coefficient, deterioration correction coeffi-
cient, and vehicle usage condition correction coefficient (e.g.,
the load of diesel vehicles), respectively. All comprehensive
baseline emission factors and correction coefficients were
adopted from the Technical Guide for the Compilation of At-
mospheric Pollutants Emission Inventory from Road Motor
Vehicles (Trial) (MEE, 2014).

To achieve accurate emission calculations, the traffic flows
for fuel light- and heavy-duty vehicles were allocated to
eight specific types of vehicles, including light-duty pas-
senger vehicles (LDPVs), middle-duty passenger vehicles
(MDPVs), heavy-duty passenger vehicles (HDPVs), light-
duty trucks (LDTs), middle-duty trucks (MDTs), heavy-duty
trucks (HDTs), public buses, and taxis. This classification
followed the national standard (GA802-2019) (see Table S1
in the Supplement). The distribution coefficients for the eight
types of vehicles were based on the hourly vehicle propor-
tions from field surveys on different roads in urban Jinan, as
reported in our previous study (see Table S2 in the Supple-
ment) (Wang et al., 2025). In addition, environmental cor-
rection was conducted mainly based on temperature and hu-
midity, which varied largely from season to season, as de-
tailed in Tables S3–S6 in the Supplement. Regarding the traf-
fic condition correction, coefficients were determined based
on the average vehicle speed intervals (see Tables S7–S8 in
the Supplement). Different types of road segments, as well
as the same type of road segments during peak and off-peak
hours, were assigned with differential vehicle speed intervals
based on real-time road conditions from Gaode Maps (see
Table S9 in the Supplement). Note that new energy vehicles
were deemed zero emission in this study, and the evaporative
emissions of HC were excluded due to the complex sensitiv-
ities to fuel properties and environmental conditions (Jiang
et al., 2021).

To present spatially continuous vehicle emission maps,
spatial interpolation of hourly average emission intensities
was conducted to fill in the gaps between discrete monitoring
points. Compared to directly filling in the entire road segment
with a single value, spatial interpolation allowed for the de-
termination of pollutant emission rates at any point along the
road, thereby generating emission maps that were more rep-
resentative of real-world conditions. Nearest neighbor inter-
polation was uniformly selected for all four air pollutants due
to its maximal preservation of the original emission data at

the monitoring points. For a given point with unknown data,
nearest neighbor interpolation does not create a new value
but instead replicates the value of the known point located
at the shortest distance (Olivier and Hanqiang, 2012). The
proposed method demonstrated high performance in terms
of achieving zero error at the monitoring points compared
to the other interpolation methods. However, the continuity
in the nearest neighbor interpolation results is limited, lead-
ing to noticeable step effects. Therefore, Gaussian smoothing
was further applied to achieve smooth data by convolving a
Gaussian kernel. The Gaussian kernel is a two-dimensional
Gaussian function matrix, whose shape is determined by the
standard deviation σ (see Eq. 3) (Song et al., 2022).

G(x,y)=
1

2πσ 2 exp
(
−
1x2
+1y2

2σ 2

)
(3)

Here, G(x,y) is the weight of point (x,y); 1x and 1y are
the distances from the center point in the x and y direc-
tions, respectively; and σ is the standard deviation and de-
termines the degree of smoothing. Through the convolution
operation, the value of each central point was updated using
the weighted average of the surrounding data points with the
weights provided by the Gaussian kernel. This process effec-
tively reduced the noise in the emission map while preserving
important features. Finally, our interpolation model not only
improved the resolution of on-road vehicle emission map-
ping, but also smoothed the irregular variations caused by
outliers, making the map more readable and interpretable. In
addition, data pivoting was used to display aggregated values
in the two-dimensional grids. By summarizing and analyzing
the data under different situations, such as time periods, me-
teorological conditions, air pollutants, and future scenarios,
the distribution patterns, variation trends, and relationships
could be revealed.

2.4 Temporal and spatial clustering analyses on
variation patterns

Spatiotemporal clustering analyses can reveal the variation
patterns of vehicle emissions at different spatial and tempo-
ral scales, which is crucial for understanding the hotspot dis-
tribution and the dynamic change. In this study, time series
clustering was used to identify the diurnal variation patterns
of vehicle emissions over different types of roads (Tavakoli
et al., 2020; Camastra et al., 2022; Barreto et al., 2023). The
emissions of NOx , CO, HC, and PM2.5 were selected as the
feature columns with 1 h as the time step. Considering the
long duration of the study (nearly a year) and the large num-
ber of monitoring points (1189), we simplified the data struc-
ture through averaging to avoid the effect of dimensionality.
At first, the entire dataset was grouped by point and hour.
Then, we calculated the hourly average values for each point
and discarded incomplete time series. Finally, 1158 multi-
dimensional time series were obtained, comprising feature
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columns and a time column with a length of 24 h. These mul-
tidimensional arrays were further normalized and utilized as
inputs representing the original data, with the Euclidean dis-
tance employed as the metric to measure the distances be-
tween data points. A commonly used clustering algorithm,
namely K means (MacQueen, 1967), was applied to group
the time series into different clusters based on the distance
metric results, with each cluster representing a set of data
points exhibiting similar diurnal variation pattern. Specifi-
cally, the multidimensional data were clustered into K clus-
ters. Initially,K centroids were selected randomly. Each data
point was assigned to the nearest centroid based on the Eu-
clidean distance. Then, the centroids were iteratively updated
by calculating the mean of all data points assigned to each
cluster (Boleti et al., 2020). The squared error (ε) between
the centroid µk and the data point xi was calculated as shown
in Eq. (4):

ε =
∑n

i=1

∑K

k=1
‖xi −µk‖

2 , (4)

where xi is a data point, µk is the centroid of cluster k, and
‖xi −µk‖

2 is the Euclidean distance between xi and µk . By
minimizing ε, the K means algorithm can find the optimal
centroid positions such that the distance from each data point
to its corresponding cluster centroid is minimized as much
as possible. This process will repeat until the centroids no
longer change significantly, indicating convergence. The sil-
houette coefficient (SC) was used to assess the performance
of the clustering and determine the optimal clustering pa-
rameters (Rousseeuw, 1987). The number of clusters with
the largest SC was considered the most representative (Choi
et al., 2024). In addition, under the determined number of
clusters, the optimal choices for parameters, such as the ran-
dom seed number, were identified through grid search.

Hotspot analysis calculates Getis–Ord G∗i statistics to
identify statistically significant clusters of high values
(hotspots) and low values (cold spots), thereby revealing spa-
tial patterns of data aggregation. TheG∗i statistic returned for
each feature in the dataset is a z score (see Eq. 5) (Ord and
Getis, 1995).

G∗i =

∑n
j=1wi,jxj −X

∑n
j=1wi,j

S

√[
n
∑n
j=1w

2
i,j−

(∑n
j=1wi,j

)2
]

n−1

, X =

∑n
j=1xj

n
,

S =

√∑n
j=1x

2
j

n
− (X)2

(5)

For statistically significant positive z scores, a larger z score
indicates more intense clustering of hotspots. Conversely, for
statistically significant negative z scores, a smaller z score
indicates more intense clustering of cold spots. If the z score
is close to zero, it indicates no significant spatial clustering.
The optimized hotspot analysis (Esri, n.d.) was chosen to au-
tomatically aggregate incident data, identify an appropriate

scale of analysis, and correct for both multiple testing and
spatial dependence, finally reducing false positives and im-
proving the accuracy of statistical significance.

2.5 Scenario design for new energy vehicle replacement

Based on high-resolution mapping of vehicle emissions, the
benefits of replacing internal combustion engine vehicles
(ICEVs) with new energy vehicles for emission reductions
can be directly assessed. NEVs are mainly classified into
battery electric vehicles (BEVs), plug-in hybrid electric ve-
hicles (PHEVs), and fuel cell vehicles (FCVs) (Xie et al.,
2024). Except for PHEVs, which emit pollutants in hybrid
mode, all other NEVs produce no pollutants during driving.
PHEVs only account for a relatively small proportion within
NEVs (less than 20 %), and they primarily operate in electric
mode during short-distance driving. Since the traffic moni-
toring system cannot distinguish between specific types of
NEVs, all NEVs are considered zero emission in this study
for simplification and uniformity. The scenario design refer-
enced the literature review in an existing study on the envi-
ronmental benefits of NEVs (Peng et al., 2021), and some
adjustments were made to fit the situation in the main urban
area of Jinan. Here, four scenarios of NEV penetration were
set up (see Table 1), mainly oriented to passenger vehicles
(PVs), trucks, buses, and taxis. Note that there is only lim-
ited research on the future NEV penetration in MDTs and
HDTs, mainly due to the challenges in meeting the demands
of relatively long driving ranges and addressing the problems
of high costs for large-capacity rechargeable batteries and
charging infrastructure (Liang et al., 2019; Secinaro et al.,
2022). The government is encouraging the promotion of new
energy MDTs and HDTs (China State Council, 2024), with
the possibility of achieving zero-emission freight fleets in the
future. However, at present most of the new energy trucks in
cities are LDTs or sanitation vehicles. With consideration of
the above situation, we made a bold assumption here, pre-
dicting that MDTs and HDTs will achieve a 50 % penetration
in the EHP scenario. The LP, IP, HP, and EHP scenarios de-
scribed the EV penetration ranges for PVs and LDTs (10 %–
80 %), MDTs and HDTs (2 %–15 %), and buses and taxis
(80 %–100 %), as well as the FCV penetration for MDTs and
HDTs (2 %–35 %). It is noteworthy that NEV penetration in
Jinan had already reached the LP level and was transition-
ing towards IP. NEV penetration for public transit (buses and
taxis) in particular had exceeded 80 % with the active promo-
tion of new energy policies. Nevertheless, in other cities with
limited electricity supply and fewer charging devices, NEV
penetration could be lower than in the LP scenario.
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Table 1. New energy vehicle penetration scenarios.

Scenarios EVs–PVs and LDTs EVs–MDTs and HDTs FCVs–MDTs and HDTs EVs–buses and taxis

Low penetration (LP) 10 % 2 % 2 % 80 %
Intermediate penetration (IP) 50 % 5 % 10 % 90 %
High penetration (HP) 80 % 9 % 18 % 100 %
Enhanced high penetration (EHP) 80 % 15 % 35 % 100 %

3 Results and discussion

3.1 Distribution of traffic flows in the main urban area

Traffic flow is a key factor affecting on-road vehicular emis-
sions, so it is crucial to comprehensively understand the vari-
ations in traffic flow (Deng et al., 2020). By using nearest
neighbor interpolation, we generated high-resolution map-
ping to visualize traffic flows in the main urban area of Jinan
(see Fig. 3a). The traffic flows at a fine scale (50m×50m) ex-
hibited obvious spatiotemporal heterogeneities. Temporally,
there were apparent diurnal variations (peak and off-peak
hours) and weekly variations (weekdays and weekends) (see
Fig. S1 in the Supplement). Specifically, the daytime traf-
fic volumes were much higher than those at nighttime, ac-
counting for approximately 81.2 % of the total. Traffic flows
remained very low from 00:00 to 05:00 local time (here-
after, all times are in local time) and then started to increase
at 06:00. They exhibited a bimodal pattern with two peaks
appearing in the morning (07:00–09:00) and late afternoon
(17:00–19:00), with a midday valley occurring at 12:00. Dur-
ing peak hours on weekdays in particular, the average traffic
flow was 2188 vehiclesh−1, which was 62.4 % higher than
the 24 h average. By comparison, the diurnal variation curve
on weekends was smoother, with the morning peak delaying
to 09:00–10:00, and the midday valley was less noticeable. In
addition, weekday traffic volumes were slightly higher than
those on weekends, with average traffic flows of 1367 and
1308 vehiclesh−1, respectively. Although commuting vehi-
cles decreased on weekends, vehicles for leisure trips and
other reasons increased, resulting in temporal dispersion. The
decrease in traffic volume was mainly concentrated during
the morning and late afternoon peaks. On average, the traffic
flow in peak hours on weekends reached only about 90.4 %
of that on weekdays.

Spatially, high-value traffic zones, defined as road seg-
ments or clusters with a traffic flow more than triple the
average level (> 4000vehiclesh−1), spread in the main ur-
ban area of Jinan. As shown by the red segments in Fig. 3a,
linear high-value zones can be observed along expressways
and arterial roads. Urban expressways and arterial roads
carried nearly 94 % of the total traffic flows on the road
network, serving as the major conduits for commuter traf-
fic. Expressways in particular had very high traffic flows
(2940 vehiclesh−1 on average) due to the fact that they pos-
sess multiple lanes or due to the combination of elevated

and ground-level lanes. Arterial roads had moderate traffic
flows, with an average value of 1093 vehiclesh−1. In con-
trast, residential areas and local streets showed quite low traf-
fic flows (< 500vehiclesh−1), highlighting the disparity in
traffic distribution. Additionally, the traffic flows in the cen-
tral business districts were substantially higher than those
at the margins of urban areas, increasing the likelihood of
high-value traffic zones. Furthermore, traffic flows increased
sharply at intersections due to the temporary halts caused by
traffic lights. It is noteworthy that when temporal peaks co-
incided with spatial high-value zones, the traffic flows of the
high-value zones were further intensified, which is referred
to as the “overlap effect of spatiotemporal peaks”. During
peak traffic hours, the spatial distribution of high-value zones
generally remained unchanged, but its extent expanded, and
traffic flows increased (see Fig. S2 in the Supplement).

In terms of vehicle composition, as shown in Fig. S3 in the
Supplement, due to the absolute dominance of LDPVs (ap-
proximately 90 %), they largely determined the spatial and
temporal distribution of traffic flows. It is worth mention-
ing that the proportion of NEVs in the on-road vehicles ap-
proached 18 %. There was no significant difference in the
fractions of various types of vehicles between weekdays and
weekends, indicating relatively stable vehicle composition
over the week. Except for MDTs and HDTs, all other types
of vehicles primarily operated during daytime, showing a bi-
modal diurnal variation pattern. Regarding MDTs and HDTs,
due to the stringent transportation management policy in Ji-
nan (i.e., banning MDTs and HDTs from entering the main
urban area during peak hours and from entering the area
within the Second Ring Road during off-peak hours), their
temporal variations and spatial distributions were different
from those of other types of vehicles. There were few MDTs
and HDTs other than certain municipal vehicles on the road
within the urban area during peak hours. Many MDTs and
HDTs drove on the roads outside the Second Ring Road dur-
ing off-peak hours, with increased traffic flows at night. In
addition, the high-value zone distribution of heavy-duty ve-
hicle flows was significantly different from that of total traf-
fic flows (as shown in Fig. 3b). As mentioned above, the total
traffic flows, dominated by LDPVs, reached their maxima on
expressways. In contrast, HDVs mainly operated on arterial
roads, with high-value zones appearing on densely populated
arterial roads in the city center.
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Figure 3. High-resolution mapping of hourly average traffic flows for (a) all on-road vehicles and (b) HDVs in the main urban area of Jinan.

3.2 Variation characteristics of on-road vehicle
emissions

The emissions of different air pollutants from on-road ve-
hicles in the main urban area of Jinan were calculated. The
hourly average emissions of NOx , CO, HC, and PM2.5 were
345.2, 789.7, 69.5, and 5.4 kg, respectively. There were large
variations in the contributions of different types of vehicles
to each air pollutant (see Fig. S4 in the Supplement). Specif-
ically, CO and HC were primarily contributed by LDPVs,
accounting for over 60 %, which is consistent with previous
studies in China (Liu et al., 2018; Sun et al., 2021; Yang et al.,
2019). In addition, LDTs also contributed large portions to
CO (20 %) and HC (15 %). Since both LDPVs and LDTs
mainly used gasoline fuel, it can be inferred that CO and
HC were mainly emitted from gasoline vehicles. In contrast,
HDVs (e.g., HDTs, HDPVs, and buses) mainly used diesel
fuel, and their contributions to NOx and PM2.5 emissions
were much greater than to CO and HC emissions. For NOx ,
nearly all types of vehicles (except taxis) contributed signif-
icantly to its emissions. Buses and HDTs in particular were
the largest contributors (approximately 60 %) to NOx emis-
sions, even though they only made up less than 2 % of the
traffic volume. Surprisingly, LDPVs have become the largest
contributor (38 %) to PM2.5 emissions, although their con-
tribution was less significant in the past. On the one hand,
as emission standards have become more restrictive, the dif-
ferences in emission factors among LDPVs, HDPVs, HDTs,
and buses have diminished (Huang et al., 2017; Sun et al.,
2021). On the other hand, the volume of LDPVs is much
higher than that of other vehicle types. Note that the con-
tributions to air pollutant emissions from different types of
vehicles varied among different cities in China (e.g., Beijing,
Nanjing, Chongqing, and Foshan) (Wu et al., 2022; Zhang
et al., 2018; Ding et al., 2021; Liu et al., 2018), mainly due
to the differences in vehicle composition. For example, buses

are the primary travel mode for citizens in the main urban
area of Jinan. They have long routes, a necessity to main-
tain low to moderate speeds with frequent stop-and-go move-
ments, and relatively high emission factors, resulting in high
contributions to the emissions of NOx and PM2.5. Similarly,
in the urban area of Beijing, buses contributed 30 % of NOx
emissions (Yang et al., 2019). Additionally, due to strict truck
traffic restrictions in the urban area, the contribution of HDTs
in this study was smaller than in other studies involving in-
tercity highways (Yang et al., 2019; Zhu et al., 2023).

Vehicle emissions in urban Jinan exhibited large tempo-
ral variations, mainly caused by changes in traffic flow and
vehicle composition. There were similar diurnal patterns in
the emissions of CO, HC, and PM2.5, presenting two distinct
peaks in peak hours, while NOx showed a broad peak dur-
ing daytime with a small decrease in midnoon (see Fig. 4).
On the one hand, the vehicle emissions of CO, HC, and
PM2.5 were dominated by LDPVs. During the peak hours
in the morning and late afternoon with the highest traffic
flows, the hourly emission intensities of CO, HC, and PM2.5
also reached their peaks, with averages of 1649.4, 165.0, and
10.8 gkm−1, respectively. These values were 2.5–2.9 times
larger than their 24 h average levels. On the other hand,
NOx emissions were dominated by HDVs for passenger and
freight transport. Among them, buses and HDPVs operated
in close alignment with regular schedules and daily life, pri-
marily concentrated during daytime. In contrast, HDTs com-
monly flooded into the urban area during off-peak hours and
midnight periods due to urban traffic restrictions, causing el-
evation in NOx emissions from HDTs during off-peak peri-
ods. As a result, NOx emissions were distributed throughout
daytime, with less pronounced peaks during peak hours (see
Fig. 4a). The hourly average emission intensity of NOx dur-
ing peak hours was only 66.4 % higher than the 24 h average.
Generally, the unique traffic behaviors of HDVs led to dis-
parate temporal patterns for air pollutant emissions.
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Figure 4. Average hourly emission intensities from different types of vehicles at traffic monitoring points for (a) NOx , (b) CO, (c) HC, and
(d) PM2.5.

In addition, nearly 1 year of emission data enabled us to
investigate the seasonal variations in vehicle emissions on ur-
ban roads. The monthly variation trends were generally sim-
ilar for CO, HC, and PM2.5 but a little different for NOx , pri-
marily determined by traffic flows and meteorological condi-
tions. As shown in Fig. 5, traffic activities were intensified in
summer (especially in July) when compared with other sea-
sons, leading to overall higher NOx emissions in summer. On
the one hand, people preferred using cars rather than walking
or cycling during the hot summer. On the other hand, sum-
mer was the peak tourist season, and many out-of-town vehi-
cles contributed to the increased traffic volume in Jinan. No-
table reductions in traffic flows and pollutant emissions were
observed during Chinese official holidays, especially during
National Day and Spring Festival holidays (30 September–6
October and 9–17 February). This is because human travel
and commercial activities decreased, causing a sharp drop
in gasoline vehicles (mainly private cars) and diesel vehicles
(mainly trucks) in particular at the beginning of the holiday,
followed by a gradual return to normal levels. Furthermore,
the seasonal differences in vehicle emissions among differ-
ent pollutants were quite pronounced due to meteorological
conditions. NOx emissions were higher in summer than in
other seasons, partly owing to the high temperature during
the hot season. In contrast, HC and PM2.5 emissions peaked
in winter, which is to a large degree associated with the low
temperature during the cold season. High temperatures in
summer affected engine combustion efficiency, leading to in-
creased NOx emissions. HC and PM2.5 emissions, however,

were more sensitive to low-temperature conditions and in-
creased during cold starts due to incomplete fuel combus-
tion. Note that the diurnal variation patterns of vehicle emis-
sions across different seasons were similar, with high emis-
sions occurring during daytime. Emissions in the morning
(06:00–11:00) and afternoon (12:00–17:00) accounted for
41.0 % and 33.2 % on average, respectively, while those in
the early morning (00:00–05:00) and evening (18:00–23:00)
accounted for only 4.9 % and 20.9 %, respectively. Overall,
the above seasonal and diurnal variation characteristics of air
pollutant emissions from on-road vehicles provide a scien-
tific basis for accurate air quality modeling and refined urban
air pollution control.

Spatially, the distribution characteristics of air pollutant
emissions from on-road vehicles were strongly associated
with traffic flow distributions (see Fig. 6). This variation pat-
tern differs to some degree from previous results, which gen-
erally show a decrease from the urban center to the periph-
ery in a radiating structure (Zhang et al., 2018; Yang et al.,
2019). Firstly, HDVs dominated NOx and PM2.5 emissions,
and their spatial distributions exhibited similar characteris-
tics to the distribution of heavy-duty vehicle flows, with high-
emission zones (hourly emission intensity> 850gkm−1)
primarily appearing on arterial roads in the city center. LDVs
dominated CO and HC emissions, thus considerably influ-
encing their spatial distributions, with linear high-emission
zones observable along urban expressways. Therefore, influ-
enced by the dominant types of vehicles, the spatial distri-
butions of vehicle emissions in urban Jinan varied for differ-
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Figure 5. Daily average of (a) traffic flows for different types of vehicles and emission intensities of (b) NOx , (c) CO, (d) HC, and (e)
PM2.5 during different time periods of the day. The dashed red lines represent the division by seasons, while the blue bars represent official
holidays.

ent air pollutants, which is consistent with a previous study
by Sun et al. (2021). Secondly, grids with high emissions
were predominantly located at urban expressways or the in-
tersections of arterial roads. In contrast, grids with low emis-
sions were generally situated on residential streets and ur-
ban peripheries with relatively low traffic volumes. The av-
erage traffic flows on urban expressways, highways, arterial
roads, secondary roads, and local streets followed a descend-
ing order, with the emission intensities following the same
decreasing trend. For instance, the calculated hourly average
NOx emission intensities on urban expressways, highways,
arterial roads, secondary roads, and local streets were 485.1,
303.4, 240.8, 84.2, and 74.6 gkm−1, respectively. Among the
four types of roads, arterial roads had the longest length with
the largest traffic volume, accounting for 48.4 % of the to-
tal, while the corresponding emissions contributed 54.9 %
of the total emissions. Urban expressways carried 45.6 %
of the total traffic volume, but their emissions amounted to
only 38.7 %. The primary reason for this discrepancy is the
difference in vehicle compositions across different types of
roads; i.e., the volume of HDVs on arterial roads was up to

35.6 % higher than that on urban expressways. As a result,
although vehicle compositions were independent of the dis-
tribution of traffic flows, they largely affected the emission
distribution characteristics, particularly over fine-scale areas.
In addition, Fig. 6 shows that high emissions frequently ap-
peared in intersections, with emission intensities radiating
from the intersection to the surrounding roads. This feature
has rarely been presented in other high-resolution vehicle
emission mappings (Jiang et al., 2021; Wu et al., 2022), but
in this study, interpolation makes the differences between in-
tersections and road segments more pronounced (see Fig. S5
in the Supplement). The emissions within 1 km of an inter-
section varied significantly, by a factor of 1.4–3.

Figure 7 uses NOx as an example to show the spatial dis-
tributions of vehicle emissions during different time periods
in the main urban area of Jinan, aiming to explore the emis-
sion patterns under the joint influence of temporal and spa-
tial characteristics. Firstly, the vehicle emissions during day-
time were significantly higher than those at nighttime, with
daytime emissions contributing more than 74 % of the to-
tal NOx emissions. During the early morning, there were
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Figure 6. High-resolution mapping of hourly average vehicle emission intensities of major pollutants, including (a) NOx , (b) CO, (c) HC,
and (d) PM2.5, in the main urban area of Jinan.

virtually no high values distributed across urban Jinan (as
shown in Fig. 7c). Secondly, the emissions during the short
peak hours accounted for approximately 37 % of the day-
time emissions on weekdays, with high-emission zones ac-
counting for 14.7 %. Note that the overlap effect of spa-
tiotemporal peaks observed in traffic flow mapping could
also be seen in the mapping of vehicle emissions. For ex-
ample, the spatial distribution of vehicle emissions during
peak hours (see Fig. 7a) remained generally unchanged when
compared to off-peak hours (see Fig. 7b). However, the high-
emission zones (red lines in Fig. 7a and b) expanded signif-
icantly on the original basis, with the hourly average emis-
sion intensity increasing by 1150 gkm−1. In contrast, roads
with initially low emissions (blue lines in Fig. 7a and b,
hourly emission intensity< 100gkm−1) only showed an in-
crease of 63.4 gkm−1 in hourly emission intensity during the
peak hours, with most still remaining at low levels. Thirdly,
the spatial distributions of vehicle emissions on weekdays
and weekends were generally consistent, with slightly higher
emission levels on weekdays than on weekends (292.3 vs.
247.9 gkm−1 in the hourly average emission intensity) (see

Fig. 7f). All in all, the above spatial variation patterns of NOx
emissions from on-road vehicles were closely related to reg-
ular commuting and the lifestyle of residents, and the same
applied to the other three pollutants (see Figs. S6–S8 in the
Supplement).

3.3 Temporal and spatial cluster characteristics of
vehicle emissions

To further understand the spatiotemporal variation behaviors
and the main influencing factors of vehicle emissions, tem-
poral and spatial clustering analyses were conducted with
the hourly vehicle emission data for four pollutants. Based
on the results from time series clustering, the optimal num-
ber of clusters (K) was determined as 2, with the highest
silhouette coefficient and two distinct diurnal variation pat-
terns. As shown in Fig. 8a and c, CO and HC emissions in
Cluster 1 were concentrated during peak traffic hours in the
morning and late afternoon, with emission intensities drop-
ping sharply after the peaks. Additionally, NOx and PM2.5
emissions in Cluster 1 also showed two distinct peaks dur-
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Figure 7. High-resolution mapping of on-road vehicle NOx emissions during (a) peak hours, (b) off-peak hours, (c) early morning, (d)
weekdays, and (e) weekends and (f) average emission intensities of NOx during each time period.

ing peak hours. In contrast, the diurnal emission plots for
four air pollutants in Cluster 2 were relatively smooth, with
no distinct peaks, and the differences were only evident be-
tween daytime and nighttime (see Fig. 8b and d). The fluc-
tuation degrees of diurnal emissions for each pollutant in the
two clusters were calculated by using the coefficient of varia-
tion (CV), and it was found that the average CV of Cluster 1
was 82.5 %, much higher than that of Cluster 2 (55.5 % on
average). Furthermore, the emission levels of the two clus-
ters were similar, with NOx and CO emissions in Cluster 2
slightly higher than those in Cluster 1 (by 26.5 % and 12.7 %,
respectively). Figure 8e visually shows the spatial distribu-
tions of the two clusters, showing the areas affected by differ-
ent emissions patterns. It was evident that most traffic mon-
itoring points on urban expressways and highways belonged
to Cluster 2. These roads were mainly used for long-distance
travel and fast passage and did not experience large-scale
traffic congestion during peak hours. In addition, vehicles
on elevated roads maintained high speeds and uniform traf-
fic flows, with few stops due to traffic lights or congestion,
resulting in evenly distributed emissions throughout the day.
Some residential roads with low traffic volumes were also
classified as Cluster 2. Instead, Cluster 1 was mainly dis-
tributed on arterial roads, intersections, and near commer-
cial areas within the city, where vehicles were dense during

peak hours, leading to sharp increases in emissions due to the
overlap effect of spatiotemporal peaks. As a result, the di-
urnal variation in vehicle emissions was not uniform across
roads with different characteristics, indicating spatial insta-
bility. This has not received much attention in previous stud-
ies, which typically considered the entire region as a whole
and revealed only bimodal patterns (Jiang et al., 2021; Ding
et al., 2023).

The findings on the diurnal variation patterns of vehicle
emissions and the corresponding spatial distribution charac-
teristics provide scientific recommendations for emission re-
duction measures and resident travel. For example, control-
ling the traffic volume during peak hours is required on ar-
terial roads to reduce traffic congestion and high emissions
of air pollutants. On expressways, ensuring unblocked traf-
fic and improving transit efficiency are particularly impor-
tant. Regarding resident travel, it is recommended to avoid
major arterial roads and other easily congested areas during
peak hours by traveling earlier or later. Residents can also
use public transportation, ride bicycles, or walk as alterna-
tive modes of travel. In addition, choosing expressways with
high traffic efficiency is advisable. While driving on express-
ways, maintaining a steady speed and avoiding frequent lane
changes and sudden acceleration or braking can improve fuel
efficiency and reduce pollutant emissions.
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Figure 8. Hourly average emission intensities of NOx and CO for (a) Cluster 1 and (b) Cluster 2, hourly average emission intensities of HC
and PM2.5 for (c) Cluster 1 and (d) Cluster 2, and (e) the distributions of traffic monitoring points belonging to different clusters in the main
urban area of Jinan.

Spatial clustering characteristics of vehicle emissions were
obtained through hotspot analysis by calculating the Getis–
Ord G∗i statistics. The locations and potential causes of clus-
tering for high- or low-value features were identified at a
fine scale (see Fig. 9). The emission hotspots for different
pollutants were likely driven by different factors, including
high traffic volumes, concentrated HDVs, and road intersec-
tions (see Fig. S9 in the Supplement). Specifically, NOx and
PM2.5 emission hotspots were dominated by HDVs, clus-
tered along densely trafficked arterial roads in the city cen-
ter, while cold spots mostly appeared in residential areas (see
Fig. 9a and d). There was a huge difference in the emissions
between hotspots and cold spots. For example, the hourly
average NOx emission intensity on Heping Road (hotspot
area) was 2557.9 g km−1, which was 172 times higher than
that on Xingfusi Road (cold spot area, 14.9 gkm−1 on aver-
age). In addition, CO and HC emissions usually peaked on
urban expressways with high traffic volumes, forming lin-
ear hotspot areas (see Fig. 9b and c). Their highest emission
was found on the South Second Ring Elevated Road, which
had the highest traffic volume (see Fig. 3a). Furthermore, the
emission hotspots remained spatially stable, showing similar
levels from day to day. However, due to the overlap effect
of spatiotemporal peaks, the emission intensities at hotspot
areas varied over time during the day, with peaks typically
appearing around 08:00 in the morning and 18:00 in the late
afternoon on weekdays.

Overall, both the temporal and the spatial clustering anal-
yses suggest that only a small number of vehicles and roads
contributed very high emissions, while the majority exhib-
ited relatively low emissions. The phenomenon that high-
emission vehicles and roads made notable contributions to
the total emissions is consistent with the finding reported by

Böhm et al. (2022). Therefore, effective policies for vehicle
emission reduction should primarily focus on key time peri-
ods, key areas, and key types of vehicles. For instance, dif-
ferentiated traffic restriction measures can be implemented
based on the dual-peak emission characteristics in the morn-
ing and late afternoon. Introducing new energy public trans-
portation in identified high-emission time periods and areas
will reduce the use of private vehicles. Utilizing real-time
traffic data to intelligently adjust signal timing can help adapt
to peak and off-peak traffic periods, thereby minimizing con-
gestion and pollutant emissions (Yang et al., 2020). Imple-
menting a low-emission-zone policy to restrict high-emission
vehicles from entering the city center is also recommended.

3.4 Impacts of new energy vehicle replacement

Due to policy support, environmental benefits, technologi-
cal advancements, and cost reductions, the number of new
energy vehicles in China has been growing rapidly in re-
cent years (Zhang et al., 2023). According to statistics (MPS,
2024), 7.43 million NEVs were newly registered in 2023, ac-
counting for 30.2 % of the total number of newly registered
vehicles. NEVs can reduce the emissions of air pollutants
from vehicles and subsequently improve urban air quality.
Therefore, it is necessary to assess the specific emission re-
duction benefits brought by vehicle electrification with as-
sumptions of suitable future penetration of NEVs. In this
paper, the current emission levels in the main urban area
of Jinan were used as the base case. Since the LP scenario
was very close to the current situation of the city, it was not
presented in detail in this study. Three scenarios, including
IP, HP, and EHP, reflect discrepant electrification penetration
for different types of vehicles. Specifically, the IP and HP
scenarios comprehensively increase the penetration of NEVs
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Figure 9. Spatial distributions of hotspots and cold spots of on-road vehicle emissions for (a) NOx , (b) CO, (c) HC, and (d) PM2.5.

across various vehicles. In particular, large fractions of LDVs
will be replaced with NEVs as they contribute significantly to
on-road vehicle emissions. For the HDVs, which have high
emission factors, the electrification of buses has been suc-
cessful, whereas the transformation of trucks has faced chal-
lenges and has proceeded slowly. In addition, we designed
the EHP scenario, which further increases NEV penetration
of MDTs and HDTs to achieve more appreciable emission
reduction benefits (Böhm et al., 2022; Tian et al., 2022).

Figure 10 shows the on-road emission intensities for NOx ,
CO, HC, and PM2.5 in the main urban area of Jinan under
different future scenarios and the reductions compared with
current emissions. Specifically, under the IP scenario, vehicle
emissions decreased by large amounts, i.e., 42.7 % for NOx ,
39.1 % for CO, 40.3 % for HC, and 50.1 % for PM2.5, when
compared with the present emission intensities, and most
of the emission hotspots disappeared. For the HP scenario,
which involved a further increase in NEV penetration, this
led to significant additional reductions in emissions, particu-
larly on urban expressways and arterial roads; i.e., NOx de-
creased by 23.4 %, CO by 34.0 %, HC by 34.8 %, and PM2.5

by 27.0 % relative to the IP scenario. At that time, emission
hotspots on all roads were virtually eliminated, indicating
the positive impact of comprehensive vehicle electrification
on road vehicle emissions, especially in the city center. Sur-
prisingly, in the EHP scenario, where we increased the NEV
penetration of MDTs and HDTs to 50 %, emissions were
further reduced by an average of only about 2.5 %. Among
them, NOx emissions, which were most affected by MDTs
and HDTs, showed the highest reduction of 5.9 %. As men-
tioned above, within the traffic restrictions in the main urban
area, the proportion of MDTs and HDTs in urban areas was
very small (only 2 %), and their emissions only contributed
a small fraction to the total vehicle emissions. Consequently,
the reduction in on-road vehicle emissions was not signifi-
cant under the EHP scenario.

Note that when evaluating the impact of NEV penetration
on on-road vehicle emissions, our calculations and analy-
ses were based merely on exhaust emissions, focusing on
the differences in exhaust emissions between ICEVs and
NEVs. However, a substantial portion of PM emissions were
contributed by non-exhaust sources (e.g., road dust, brake
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Figure 10. On-road vehicle emission mappings for (a) NOx , (b) CO, (c) HC, and (d) PM2.5 simulated under different new energy penetration
scenarios and emission reductions for (e) NOx , (f) CO, (g) HC, and (h) PM2.5 under each scenario relative to the base case during the study
period. The bars indicate the emission reduction amounts, and the dots indicate the percentage reduction.

wear, and tire wear) (Zhang et al., 2020). Additionally, NEVs
are typically heavier than conventional vehicles, which may
lead to higher non-exhaust emissions (Timmers and Achten,
2016; Liu et al., 2021). Therefore, if the contribution of non-
exhaust emissions was also taken into account, the estimated
benefits of increased NEV penetration on reducing PM2.5
emissions would be lower than suggested by our current anal-
ysis.

3.5 Comparison with other vehicle emission inventories

To verify the reliability of the high-resolution emission in-
ventories of on-road vehicles in the main urban area of Ji-
nan obtained in this study, comparisons with other limited
emission inventories from previous studies were conducted.
Firstly, Feng et al. (2023) established a high-resolution vehi-
cle emission inventory for NO2 and CO in Jinan for the year
of 2021 by using a top-down approach with a resolution of
1km×1km. Their results showed similar spatial distribution
patterns to our study; i.e., the high-emission zones were con-

centrated in the city center or near high-grade roads, with no-
tably higher pollutant emissions in Lixia District compared
to other areas. Nevertheless, due to the lack of dynamic traf-
fic data, their inventory failed to present the fine-scale gradi-
ents of on-road vehicle emissions. Second, from the Multi-
resolution Emission Inventory for China (MEICv1.4) with a
low resolution of 0.25°×0.25° for 2020 (Zheng et al., 2014),
there were only two grids in the main urban area of Jinan (see
Fig. S10 in the Supplement). When compared with the re-
aggregated total emissions from gasoline and diesel vehicles
in MEICv1.4, the monthly average air pollutant emissions
of on-road vehicles obtained in our study were significantly
lower, with ratios of 58.1 % for NOx , 28.5 % for CO, 12.3 %
for HC, and 51.2 % for PM2.5. The main reason for the appar-
ently low HC was that the evaporative emissions of HC were
excluded in this study. In addition, the continuous implemen-
tation of emission reduction measures, including elimination
of high-emission vehicles, improvement in fuel quality and
emission standards, and promotion of NEVs over the past 3
years, also contributed to the lower emissions in our study.
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4 Summary and conclusions

This study developed a high-resolution on-road vehicle emis-
sion inventory for the main urban area of Jinan by using a
bottom-up approach based on a large amount of real-world
traffic data collected in real-time from more than 1000 traffic
monitoring points. Fine-scale traffic flows and vehicle com-
positions over approximately 1 year were gathered with ex-
tensive traffic cameras and field surveys to calculate the emis-
sion intensities from different types of vehicles. Multiple big
data methods were utilized to demonstrate the temporal and
spatial variation patterns of vehicle emissions with the mas-
sive traffic dataset. Specifically, nearest neighbor interpola-
tion and Gaussian smoothing were used to fill in spatial data
gaps to obtain spatially continuous vehicle emission maps in
an ultra-high resolution of 50 m. Through time series cluster-
ing and hotspot analysis, the spatiotemporal clustering char-
acteristics of vehicle emissions were analyzed, and travel rec-
ommendations for residents were provided. The benefits of
vehicle emission reduction with increased NEV adoption in
the future were predicted at three potential scenarios with
different NEV penetration levels.

Results show that the daily average on-road vehicle emis-
sions in the main urban area of Jinan were 8.28, 18.95, 1.67,
and 0.13 t for NOx , CO, HC, and PM2.5, respectively. Among
the different types of vehicles, the contributions of HDTs to
pollutant emissions were relatively small (2 %–23 %) due to
strict traffic restrictions in the main urban area. The contri-
bution of buses was slightly large (1 %–34 %), demonstrat-
ing the importance of further promoting the electrification of
public transportation in Jinan. The variation in vehicle emis-
sions was strongly affected by traffic activities, primarily oc-
curring during daytime, with the highest emission intensities
during peak hours (2.5–2.9 times as high as the hourly av-
erage levels). The emissions of air pollutants of CO, HC,
and PM2.5 exhibited distinct bimodal diurnal patterns, pri-
marily contributed by LDPVs with contributions of 38 %–
74 %. In contrast, 66 % of NOx emissions were caused by
HDVs, which were distributed throughout the day with less
pronounced peaks during peak hours. The emission hotspots
of CO and HC were linearly distributed along urban express-
ways with high traffic volumes, whereas those of NOx and
PM2.5 were mainly concentrated on arterial roads in the city
center where there were more HDVs. The overlap effect of
spatiotemporal peaks was in particular observed in on-road
vehicle emissions in urban Jinan. When the temporal peaks
coincided with the spatial hotspots, the emissions were fur-
ther intensified. During peak hours, the high-emission zones
expanded significantly, with the hourly average NOx emis-
sion intensity increasing by 1150 gkm−1, while the low-
emission zones only showed an increase of 63.4 gkm−1. In
addition, on-road vehicle emissions exhibited notable sea-
sonal differences, with higher NOx emissions in summer but
higher HC and PM2.5 emissions in winter. Furthermore, the
simulations of NEV penetration scenarios indicate that the

electrification of vehicles has large impacts on vehicle emis-
sions and their spatial patterns. There were reductions of
40 %–80 % in emissions, and most hotspots disappeared in
the future. These results not only demonstrate the potential
of fleet electrification in emission reduction, but also provide
a scientific basis for formulating more precise emission re-
duction strategies.

More importantly, the framework of high-resolution ve-
hicle emissions developed in this study applies to almost
any other city. Once traffic monitoring and road network
data with full coverage are provided, it can support decision-
makers in implementing emission reductions, improving cit-
izen welfare, and designing strategies for more sustainable
cities. As more traffic data become available in the future,
research can be extended to include the surrounding subur-
ban and rural areas. Additionally, the potential of big data
techniques in establishing emission inventories can be fur-
ther explored to establish a dynamic big data platform that
integrates multiple sources, such as traffic cameras, low-cost
sensors, GPS data, and open-source congestion maps. Ma-
chine learning (ML) can further enhance the framework by
dynamically optimizing emission factors based on traffic pat-
terns, vehicle types, and meteorological conditions, thereby
achieving real-time traffic data processing and dynamic up-
dates to vehicle emission inventories.
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https://doi.org/10.17632/24t54p6rj2.1 (Wang and Wang, 2024).

Supplement. The supplement includes 10 figures (Fig. S1–S10)
and 3 tables (Tables S1–S3) related to the paper. The supplement re-
lated to this article is available online at https://doi.org/10.5194/acp-
25-5537-2025-supplement.

Author contributions. XW designed the research, secured fund-
ing, and edited the paper. HW, BZ, and PL prepared the traffic
dataset. YW processed and analyzed data, plotted the figures, and
drafted the paper. SS, LX, QZ, and QW contributed to scientific dis-
cussions. All authors contributed to the discussion of the results and
the refinement of the paper.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Atmos. Chem. Phys., 25, 5537–5555, 2025 https://doi.org/10.5194/acp-25-5537-2025

https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.17632/24t54p6rj2.1
https://doi.org/10.5194/acp-25-5537-2025-supplement
https://doi.org/10.5194/acp-25-5537-2025-supplement


Y. Wang et al.: High-resolution mapping of on-road vehicle emissions 5553

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Special issue statement. This article is part of the special is-
sue “Air quality research at street level – Part II (ACP/GMD inter-
journal SI)”. It is not associated with a conference.

Acknowledgements. The authors would like to express gratitude
to ERA5 for providing meteorological data. The contents of this pa-
per are solely the responsibility of the authors and do not necessarily
represent official views of the sponsors or companies.

Financial support. This research has been supported by
the National Natural Science Foundation of China (grant
nos. 42361144721 and 42377094).

Review statement. This paper was edited by Qiang Zhang and
reviewed by Leonardo Hoinaski and one anonymous referee.

References

Apte, J. S. and Manchanda, C.: High-resolution ur-
ban air pollution mapping, Science, 385, 380–385,
https://doi.org/10.1126/science.adq3678, 2024.

Apte, J. S., Messier, K. P., Gani, S., Brauer, M., Kirchstet-
ter, T. W., Lunden, M. M., Marshall, J. D., Portier, C. J.,
Vermeulen, R. C. H., and Hamburg, S. P.: High-resolution
air pollution mapping with Google Street View cars: Ex-
ploiting big data, Environ. Sci. Technol., 51, 6999–7008,
https://doi.org/10.1021/acs.est.7b00891, 2017.

Barreto, E., Holden, P. B., Edwards, N. R., and Rangel, T. F.:
PALEO-PGEM-Series: A spatial time series of the global climate
over the last 5 million years (Plio-Pleistocene), Global Ecol. Bio-
geogr., 32, 1034–1045, https://doi.org/10.1111/geb.13683, 2023.

Belalcazar, L. C., Clappier, A., Blond, N., Flassak, T., and Eich-
horn, J.: An evaluation of the estimation of road traffic emis-
sion factors from tracer studies, Atmos. Environ., 44, 3814–3822,
https://doi.org/10.1016/j.atmosenv.2010.06.038, 2010.

Böhm, M., Nanni, M., and Pappalardo, L.: Gross polluters
and vehicle emissions reduction, Nat. Sustain., 5, 699–707,
https://doi.org/10.1038/s41893-022-00903-x, 2022.

Boleti, E., Hueglin, C., Grange, S. K., Prévôt, A. S. H., and
Takahama, S.: Temporal and spatial analysis of ozone con-
centrations in Europe based on timescale decomposition and a
multi-clustering approach, Atmos. Chem. Phys., 20, 9051–9066,
https://doi.org/10.5194/acp-20-9051-2020, 2020.

Brimblecombe, P., Townsend, T., Lau, C. F., Rakowska, A.,
Chan, T. L., Moènik, G., and Ning, Z.: Through-tunnel estimates
of vehicle fleet emission factors, Atmos. Environ., 123, 180–189,
https://doi.org/10.1016/j.atmosenv.2015.10.086, 2015.

Cai, H. and Xie, S.: Estimation of vehicular emission inventories
in China from 1980 to 2005, Atmos. Environ., 41, 8963–8979,
https://doi.org/10.1016/j.atmosenv.2007.08.019, 2007.

Camastra, F., Capone, V., Ciaramella, A., Riccio, A., and Sta-
iano, A.: Prediction of environmental missing data time series
by support vector machine regression and correlation dimension
estimation, Environ. Model. Softw. Environ. Data News, 150,
105343, https://doi.org/10.1016/j.envsoft.2022.105343, 2022.

Chen, J., Li, W., Zhang, H., Jiang, W., Li, W., Sui, Y.,
Song, X., and Shibasaki, R.: Mining urban sustainable
performance: GPS data-based spatio-temporal analysis on
on-road braking emission, J. Clean. Prod., 270, 122489,
https://doi.org/10.1016/j.jclepro.2020.122489, 2020.

China State Council: Notice of the State Council on Issuing the
“2024–2025 energy conservation and carbon reduction action
plan” (in Chinese), https://www.gov.cn/zhengce/content/202405/
content_6954322.htm, last access: 3 June 2024.

Choi, W., Ho, C.-H., and Lee, Y.: Temporal pattern classifica-
tion of PM2.5 chemical compositions in Seoul, Korea using
K-means clustering analysis, Sci. Total Environ., 927, 172157,
https://doi.org/10.1016/j.scitotenv.2024.172157, 2024.

Conte, M. and Contini, D.: Size-resolved particle emission
factors of vehicular traffic derived from urban eddy co-
variance measurements, Environ. Pollut., 251, 830–838,
https://doi.org/10.1016/j.envpol.2019.05.029, 2019.

Davison, J., Bernard, Y., Borken-Kleefeld, J., Farren, N. J.,
Hausberger, S., Sjödin, Å., Tate, J. E., Vaughan, A. R., and
Carslaw, D. C.: Distance-based emission factors from vehicle
emission remote sensing measurements, Sci. Total Environ., 739,
139688, https://doi.org/10.1016/j.scitotenv.2020.139688, 2020.

Deng, F., Lv, Z., Qi, L., Wang, X., Shi, M., and Liu, H.: A big
data approach to improving the vehicle emission inventory in
China, Nat. Commun., 11, 2801, https://doi.org/10.1038/s41467-
020-16579-w, 2020.

Ding, H., Cai, M., Lin, X., Chen, T., Li, L., and Liu, Y.: RTVEMVS:
Real-time modeling and visualization system for vehicle emis-
sions on an urban road network, J. Clean. Prod., 309, 127166,
https://doi.org/10.1016/j.jclepro.2021.127166, 2021.

Ding, H., Zhao, Y., Miao, S., Chen, T., and Liu, Y.:
Temporal-spatial dynamic characteristics of vehicle emissions
on intercity roads in Guangdong Province based on vehi-
cle identity detection data, J. Environ. Sci., 130, 126–138,
https://doi.org/10.1016/j.jes.2022.06.034, 2023.

Esri: Optimized Hot Spot Analysis (Spatial Statistics),
https://pro.arcgis.com/en/pro-app/3.0/tool-reference/
spatial-statistics/optimized-hot-spot-analysis.htm, last access:
29 May 2024.

Fameli, K. M. and Assimakopoulos, V. D.: Development of a road
transport emission inventory for Greece and the Greater Athens
Area: Effects of important parameters, Sci. Total Environ., 505,
770–786, https://doi.org/10.1016/j.scitotenv.2014.10.015, 2015.

Feng, H., Ning, E., Yu, L., Wang, X., and Vladimir, Z.: The spa-
tial and temporal disaggregation models of high-accuracy ve-
hicle emission inventory, Environ. Int., 181, 108287–108287,
https://doi.org/10.1016/j.envint.2023.108287, 2023.

Ghaffarpasand, O., Talaie, M. R., Ahmadikia, H., Khozani, A. T.,
and Shalamzari, M. D.: A high-resolution spatial and temporal
on-road vehicle emission inventory in an Iranian metropolitan
area, Isfahan, based on detailed hourly traffic data, Atmos. Pollut.

https://doi.org/10.5194/acp-25-5537-2025 Atmos. Chem. Phys., 25, 5537–5555, 2025

https://doi.org/10.1126/science.adq3678
https://doi.org/10.1021/acs.est.7b00891
https://doi.org/10.1111/geb.13683
https://doi.org/10.1016/j.atmosenv.2010.06.038
https://doi.org/10.1038/s41893-022-00903-x
https://doi.org/10.5194/acp-20-9051-2020
https://doi.org/10.1016/j.atmosenv.2015.10.086
https://doi.org/10.1016/j.atmosenv.2007.08.019
https://doi.org/10.1016/j.envsoft.2022.105343
https://doi.org/10.1016/j.jclepro.2020.122489
https://www.gov.cn/zhengce/content/202405/content_6954322.htm
https://www.gov.cn/zhengce/content/202405/content_6954322.htm
https://doi.org/10.1016/j.scitotenv.2024.172157
https://doi.org/10.1016/j.envpol.2019.05.029
https://doi.org/10.1016/j.scitotenv.2020.139688
https://doi.org/10.1038/s41467-020-16579-w
https://doi.org/10.1038/s41467-020-16579-w
https://doi.org/10.1016/j.jclepro.2021.127166
https://doi.org/10.1016/j.jes.2022.06.034
https://pro.arcgis.com/en/pro-app/3.0/tool-reference/spatial-statistics/optimized-hot-spot-analysis.htm
https://pro.arcgis.com/en/pro-app/3.0/tool-reference/spatial-statistics/optimized-hot-spot-analysis.htm
https://doi.org/10.1016/j.scitotenv.2014.10.015
https://doi.org/10.1016/j.envint.2023.108287


5554 Y. Wang et al.: High-resolution mapping of on-road vehicle emissions

Res., 11, 1598–1609, https://doi.org/10.1016/j.apr.2020.06.006,
2020.

Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J.,
Du, Z., Wu, Z., Shao, M., Zeng, L., Molina, M. J.,
and Zhang, R.: Elucidating severe urban haze formation
in China, P. Natl. Acad. Sci. USA, 111, 17373–17378,
https://doi.org/10.1073/pnas.1419604111, 2014.

He, J., Wu, L., Mao, H., Liu, H., Jing, B., Yu, Y., Ren, P., Feng, C.,
and Liu, X.: Development of a vehicle emission inventory with
high temporal–spatial resolution based on NRT traffic data and
its impact on air pollution in Beijing – Part 2: Impact of vehicle
emission on urban air quality, Atmos. Chem. Phys., 16, 3171–
3184, https://doi.org/10.5194/acp-16-3171-2016, 2016.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.:
ERA5 hourly data on single levels from 1940 to present, Coper-
nicus Climate Change Service (C3S) Climate Data Store (CDS)
[data set], https://doi.org/10.24381/cds.adbb2d47, 2023.

Huang, C., Tao, S., Lou, S., Hu, Q., Wang, H., Wang, Q.,
Li, L., Wang, H., Liu, J., Quan, Y., and Zhou, L.:
Evaluation of emission factors for light-duty gasoline ve-
hicles based on chassis dynamometer and tunnel stud-
ies in Shanghai, China, Atmos. Environ., 169, 193–203,
https://doi.org/10.1016/j.atmosenv.2017.09.020, 2017.

Jaikumar, R., Shiva Nagendra, S. M., and Sivanandan, R.: Modal
analysis of real-time, real world vehicular exhaust emissions un-
der heterogeneous traffic conditions, Transport Res. D-Tr. E., 54,
397–409, https://doi.org/10.1016/j.trd.2017.06.015, 2017.

Jeong, S., Park, J., Kim, Y. M., Park, M. H., and Kim, J. Y.:
Innovation of flux chamber network design for sur-
face methane emission from landfills using spatial in-
terpolation models, Sci. Total Environ., 688, 18–25,
https://doi.org/10.1016/j.scitotenv.2019.06.142, 2019.

Jiang, L., Xia, Y., Wang, L., Chen, X., Ye, J., Hou, T., Wang, L.,
Zhang, Y., Li, M., Li, Z., Song, Z., Jiang, Y., Liu, W., Li, P.,
Rosenfeld, D., Seinfeld, J. H., and Yu, S.: Hyperfine-resolution
mapping of on-road vehicle emissions with comprehensive traf-
fic monitoring and an intelligent transportation system, Atmos.
Chem. Phys., 21, 16985–17002, https://doi.org/10.5194/acp-21-
16985-2021, 2021.

Liang, X., Zhang, S., Wu, Y., Xing, J., He, X., Zhang, K. M.,
Wang, S., and Hao, J.: Air quality and health benefits
from fleet electrification in China, Nat. Sustain., 2, 962–971,
https://doi.org/10.1038/s41893-019-0398-8, 2019.

Liu, J., Han, K., Chen, X., and Ong, G. P.: Spatial–temporal in-
ference of urban traffic emissions based on taxi trajectories and
multi-source urban data, Transport Res. C-Emer., 106, 145–165,
https://doi.org/10.1016/j.trc.2019.07.005, 2019.

Liu, Y., Chen, H., Gao, J., Li, Y., Dave, K., Chen, J., Fed-
erici, M., and Perricone, G.: Comparative analysis of non-
exhaust airborne particles from electric and internal com-
bustion engine vehicles, J. Hazard. Mater., 420, 126626,
https://doi.org/10.1016/j.jhazmat.2021.126626, 2021.

Liu, Y., Zhang, Y., Yu, P., Ye, T., Zhang, Y., Xu, R., Li, S., and
Guo, Y.: Applying traffic camera and deep learning-based im-
age analysis to predict PM2.5 concentrations, Sci. Total Environ.,
912, 169233, https://doi.org/10.1016/j.scitotenv.2023.169233,
2024.

Liu, Y., Ma, J., Li, L., Lin, X., Xu, W., and Ding, H.:
A high temporal-spatial vehicle emission inventory
based on detailed hourly traffic data in a medium-
sized city of China, Environ. Pollut., 236, 324–333,
https://doi.org/10.1016/j.envpol.2018.01.068, 2018.

Luo, X., Dong, L., Dou, Y., Zhang, N., Ren, J., Li, Y.,
Sun, L., and Yao, S.: Analysis on spatial–temporal features
of taxis’ emissions from big data informed travel patterns:
A case of Shanghai, China, J. Clean. Prod., 142, 926–935,
https://doi.org/10.1016/j.jclepro.2016.05.161, 2017.

Lv, Z., Zhang, Y., Ji, Z., Deng, F., Shi, M., Li, Q., He, M., Xiao, L.,
Huang, Y., Liu, H., and He, K.: A real-time NO emission in-
ventory from heavy-duty vehicles based on on-board diagnostics
big data with acceptable quality in China, J. Clean. Prod., 422,
138592, https://doi.org/10.1016/j.jclepro.2023.138592, 2023.

MacQueen, J.: Some methods for classification and analysis
of multivariate observations, in: Proceedings of the Fifth
Berkeley Symposium on Mathematical Statistics and Proba-
bility, Volume 1: Statistics, 281–297, University of Califor-
nia Press, Berkeley, California, http://projecteuclid.org/euclid.
bsmsp/1200512992 (last access: 25 May 2024), 1967.

Maes, A. D. S., Hoinaski, L., Meirelles, T. B., and Carlson, R. C.: A
methodology for high resolution vehicular emissions inventories
in metropolitan areas: Evaluating the effect of automotive tech-
nologies improvement, Transport Res. D-Tr.-E., 77, 303–319,
https://doi.org/10.1016/j.trd.2019.10.007, 2019.

MEE (Ministry of Ecology and Environment of the People’s
Republic of China): Technical guidelines for compiling at-
mospheric pollutant emission inventory of road motor vehi-
cles (Trial) (in Chinese), https://www.mee.gov.cn/gkml/hbb/bgg/
201501/W020150107594587831090.pdf (last access: 17 May
2024), 2014.

MPS (Ministry of Public Security of the People’s Repub-
lic of China): China had 435 million motor vehicles, 523
million drivers, and over 20 million new energy vehi-
cles (in Chinese), https://www.gov.cn/lianbo/bumen/202401/
content_6925362.htm, last access: 8 June 2024.

Olivier, R. and Hanqiang, C.: Nearest neighbor value
interpolation, Int. J. Adv. Comput. Sci. Appl., 3,
https://doi.org/10.14569/IJACSA.2012.030405, 2012.

Ord, J. K. and Getis, A.: Local spatial autocorrelation statistics: Dis-
tributional issues and an application, Geogr. Anal., 27, 286–306,
https://doi.org/10.1111/j.1538-4632.1995.tb00912.x, 1995.

Peng, L., Liu, F., Zhou, M., Li, M., Zhang, Q., and Mauzer-
all, D. L.: Alternative-energy-vehicles deployment delivers cli-
mate, air quality, and health co-benefits when coupled with de-
carbonizing power generation in China, One Earth, 4, 1127–
1140, https://doi.org/10.1016/j.oneear.2021.07.007, 2021.

Qi, Z., Zheng, Y., Feng, Y., Chen, C., Lei, Y., Xue, W., Xu, Y.,
Liu, Z., Ni, X., Zhang, Q., Yan, G., and Wang, J.: Co-drivers
of air pollutant and CO2 emissions from on-road transportation
in China 2010–2020, Environ. Sci. Technol., 57, 20992–21004,
https://doi.org/10.1021/acs.est.3c08035, 2023.

Ramacher, M. O. P., Matthias, V., Aulinger, A., Quante, M.,
Bieser, J., and Karl, M.: Contributions of traffic and
shipping emissions to city-scale NOx and PM2.5 ex-
posure in Hamburg, Atmos. Environ., 237, 117674,
https://doi.org/10.1016/j.atmosenv.2020.117674, 2020.

Atmos. Chem. Phys., 25, 5537–5555, 2025 https://doi.org/10.5194/acp-25-5537-2025

https://doi.org/10.1016/j.apr.2020.06.006
https://doi.org/10.1073/pnas.1419604111
https://doi.org/10.5194/acp-16-3171-2016
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1016/j.atmosenv.2017.09.020
https://doi.org/10.1016/j.trd.2017.06.015
https://doi.org/10.1016/j.scitotenv.2019.06.142
https://doi.org/10.5194/acp-21-16985-2021
https://doi.org/10.5194/acp-21-16985-2021
https://doi.org/10.1038/s41893-019-0398-8
https://doi.org/10.1016/j.trc.2019.07.005
https://doi.org/10.1016/j.jhazmat.2021.126626
https://doi.org/10.1016/j.scitotenv.2023.169233
https://doi.org/10.1016/j.envpol.2018.01.068
https://doi.org/10.1016/j.jclepro.2016.05.161
https://doi.org/10.1016/j.jclepro.2023.138592
http://projecteuclid.org/euclid.bsmsp/1200512992
http://projecteuclid.org/euclid.bsmsp/1200512992
https://doi.org/10.1016/j.trd.2019.10.007
https://www.mee.gov.cn/gkml/hbb/bgg/201501/W020150107594587831090.pdf
https://www.mee.gov.cn/gkml/hbb/bgg/201501/W020150107594587831090.pdf
https://www.gov.cn/lianbo/bumen/202401/content_6925362.htm
https://www.gov.cn/lianbo/bumen/202401/content_6925362.htm
https://doi.org/10.14569/IJACSA.2012.030405
https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
https://doi.org/10.1016/j.oneear.2021.07.007
https://doi.org/10.1021/acs.est.3c08035
https://doi.org/10.1016/j.atmosenv.2020.117674


Y. Wang et al.: High-resolution mapping of on-road vehicle emissions 5555

Romero, Y., Chicchon, N., Duarte, F., Noel, J., Ratti, C., and
Nyhan, M.: Quantifying and spatial disaggregation of air pol-
lution emissions from ground transportation in a develop-
ing country context: Case study for the Lima Metropoli-
tan Area in Peru, Sci. Total Environ., 698, 134313–134313,
https://doi.org/10.1016/j.scitotenv.2019.134313, 2020.

Rousseeuw, P. J.: Silhouettes: A graphical aid to the interpretation
and validation of cluster analysis, J. Comput. Appl. Math., 20,
53–65, https://doi.org/10.1016/0377-0427(87)90125-7, 1987.

Secinaro, S., Calandra, D., Lanzalonga, F., and Ferraris, A.: Elec-
tric vehicles’ consumer behaviours: Mapping the field and
providing a research agenda, J. Bus. Res., 150, 399–416,
https://doi.org/10.1016/j.jbusres.2022.06.011, 2022.

Shi, X., Lei, Y., Xue, W., Liu, X., Li, S., Xu, Y., Lv, C.,
Wang, S., Wang, J., and Yan, G.: Drivers in carbon diox-
ide, air pollutants emissions and health benefits of China’s
clean vehicle fleet 2019–2035, J. Clean. Prod., 391, 136167,
https://doi.org/10.1016/j.jclepro.2023.136167, 2023.

Song, H., Zhang, J., Zuo, J., Liang, X., Han, W., and
Ge, J.: Subsidence detection for urban roads using mo-
bile laser scanner data, Remote Sens.-Basel, 14, 2240,
https://doi.org/10.3390/rs14092240, 2022.

Sun, S., Sun, L., Liu, G., Zou, C., Wang, Y., Wu, L., and Mao, H.:
Developing a vehicle emission inventory with high temporal-
spatial resolution in Tianjin, China, Sci. Total Environ., 776,
145873, https://doi.org/10.1016/j.scitotenv.2021.145873, 2021.

Tavakoli, N., Siami-Namini, S., Adl Khanghah, M., Mirza
Soltani, F., and Siami Namin, A.: An autoencoder-based deep
learning approach for clustering time series data, SN Appl. Sci.,
2, 937, https://doi.org/10.1007/s42452-020-2584-8, 2020.

Tian, X., Huang, G., Song, Z., An, C., and Chen, Z.: Im-
pact from the evolution of private vehicle fleet compo-
sition on traffic related emissions in the small-medium
automotive city, Sci. Total Environ., 840, 156657,
https://doi.org/10.1016/j.scitotenv.2022.156657, 2022.

Timmers, V. R. J. H. and Achten, P. A. J.: Non-exhaust PM
emissions from electric vehicles, Atmos. Environ., 134, 10–17,
https://doi.org/10.1016/j.atmosenv.2016.03.017, 2016.

Uherek, E., Halenka, T., Borken-Kleefeld, J., Balkanski, Y.,
Berntsen, T., Borrego, C., Gauss, M., Hoor, P., Juda-Rezler, K.,
and Lelieveld, J.: Transport impacts on atmosphere and
climate: Land transport, Atmos. Environ., 44, 4772–4816,
https://doi.org/10.1016/j.atmosenv.2010.01.002, 2010.

Wang, X. and Wang, Y.: Data of High-resolution map-
ping of on-road vehicle emissions with real-time traffic
datasets based on big data, Mendeley Data, V1 [data set],
https://doi.org/10.17632/24t54p6rj2.1, 2024.

Wang, Y., Wang, X., Zhang, B., Zhao, L., Liu, Y., Si, S., and
Xue, L.: Traffic conditions on typical roads in urban Jinan and
the differentiated impacts on air quality, J. Shangdong Univ.
Eng. Sci., 55, 138–148, https://doi.org/10.6040/j.issn.1672-
3961.0.2023.184, 2025.

Wen, Y., Liu, M., Zhang, S., Wu, X., Wu, Y., and Hao, J.: Updating
on-road vehicle emissions for China: Spatial patterns, temporal
trends, and mitigation drivers, Environ. Sci. Technol., 57, 14299–
14309, https://doi.org/10.1021/acs.est.3c04909, 2023.

Wu, X., Yang, D., Wu, R., Gu, J., Wen, Y., Zhang, S., Wu, R.,
Wang, R., Xu, H., Zhang, K. M., Wu, Y., and Hao, J.: High-
resolution mapping of regional traffic emissions using land-use
machine learning models, Atmos. Chem. Phys., 22, 1939–1950,
https://doi.org/10.5194/acp-22-1939-2022, 2022.

Xie, D., Gou, Z., and Gui, X.: How electric vehicles benefit urban
air quality improvement: A study in Wuhan, Sci. Total Environ.,
906, 167584, https://doi.org/10.1016/j.scitotenv.2023.167584,
2024.

Yang, D., Zhang, S., Niu, T., Wang, Y., Xu, H., Zhang, K. M.,
and Wu, Y.: High-resolution mapping of vehicle emis-
sions of atmospheric pollutants based on large-scale, real-
world traffic datasets, Atmos. Chem. Phys., 19, 8831–8843,
https://doi.org/10.5194/acp-19-8831-2019, 2019.

Yang, Z., Peng, J., Wu, L., Ma, C., Zou, C., Wei, N., Zhang, Y.,
Liu, Y., Andre, M., Li, D., and Mao, H.: Speed-guided intelligent
transportation system helps achieve low-carbon and green traffic:
Evidence from real-world measurements, J. Clean. Prod., 268,
122230, https://doi.org/10.1016/j.jclepro.2020.122230, 2020.

Zhang, J., Peng, J., Song, C., Ma, C., Men, Z., Wu, J.,
Wu, L., Wang, T., Zhang, X., Tao, S., Gao, S., Hopke, P. K.,
and Mao, H.: Vehicular non-exhaust particulate emissions
in Chinese megacities: Source profiles, real-world emis-
sion factors, and inventories, Environ. Pollut., 266, 115268,
https://doi.org/10.1016/j.envpol.2020.115268, 2020.

Zhang, S., Wu, Y., Huang, R., Wang, J., Yan, H., Zheng, Y.,
and Hao, J.: High-resolution simulation of link-level vehicle
emissions and concentrations for air pollutants in a traffic-
populated eastern Asian city, Atmos. Chem. Phys., 16, 9965–
9981, https://doi.org/10.5194/acp-16-9965-2016, 2016.

Zhang, S., Niu, T., Wu, Y., Zhang, K. M., Wallington, T. J., Xie, Q.,
Wu, X., and Xu, H.: Fine-grained vehicle emission management
using intelligent transportation system data, Environ. Pollut.,
241, 1027–1037, https://doi.org/10.1016/j.envpol.2018.06.016,
2018.

Zhang, S., Xiong, Y., Liang, X., Wang, F., Liang, S., and Wu, Y.:
Spatial and cross-sectoral transfer of air pollutant emissions from
the fleet electrification in China by 2030, Environ. Sci. Tech-
nol., 57, 21249–21259, https://doi.org/10.1021/acs.est.3c04496,
2023.

Zhang, Y., Wang, X., Li, G., Yang, W., Huang, Z., Zhang, Z.,
Huang, X., Deng, W., Liu, T., Huang, Z., and Zhang, Z.: Emis-
sion factors of fine particles, carbonaceous aerosols and traces
gases from road vehicles: Recent tests in an urban tunnel in
the Pearl River Delta, China, Atmos. Environ., 122, 876–884,
https://doi.org/10.1016/j.atmosenv.2015.08.024, 2015.

Zheng, B., Huo, H., Zhang, Q., Yao, Z. L., Wang, X. T., Yang, X. F.,
Liu, H., and He, K. B.: High-resolution mapping of vehicle emis-
sions in China in 2008, Atmos. Chem. Phys., 14, 9787–9805,
https://doi.org/10.5194/acp-14-9787-2014, 2014.

Zhu, C., Qu, X., Qiu, M., Zhu, C., Wang, C., Wang, B.,
Sun, L., Yang, N., Yan, G., Xu, C., and Li, L.: High
spatiotemporal resolution vehicular emission inventory in
Beijing–Tianjin–Hebei and its surrounding areas (BTHSA)
during 2000–2020, China, Sci. Total Environ., 873, 162389,
https://doi.org/10.1016/j.scitotenv.2023.162389, 2023.

https://doi.org/10.5194/acp-25-5537-2025 Atmos. Chem. Phys., 25, 5537–5555, 2025

https://doi.org/10.1016/j.scitotenv.2019.134313
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1016/j.jbusres.2022.06.011
https://doi.org/10.1016/j.jclepro.2023.136167
https://doi.org/10.3390/rs14092240
https://doi.org/10.1016/j.scitotenv.2021.145873
https://doi.org/10.1007/s42452-020-2584-8
https://doi.org/10.1016/j.scitotenv.2022.156657
https://doi.org/10.1016/j.atmosenv.2016.03.017
https://doi.org/10.1016/j.atmosenv.2010.01.002
https://doi.org/10.17632/24t54p6rj2.1
https://doi.org/10.6040/j.issn.1672-3961.0.2023.184
https://doi.org/10.6040/j.issn.1672-3961.0.2023.184
https://doi.org/10.1021/acs.est.3c04909
https://doi.org/10.5194/acp-22-1939-2022
https://doi.org/10.1016/j.scitotenv.2023.167584
https://doi.org/10.5194/acp-19-8831-2019
https://doi.org/10.1016/j.jclepro.2020.122230
https://doi.org/10.1016/j.envpol.2020.115268
https://doi.org/10.5194/acp-16-9965-2016
https://doi.org/10.1016/j.envpol.2018.06.016
https://doi.org/10.1021/acs.est.3c04496
https://doi.org/10.1016/j.atmosenv.2015.08.024
https://doi.org/10.5194/acp-14-9787-2014
https://doi.org/10.1016/j.scitotenv.2023.162389

	Abstract
	Introduction
	Methodology and data
	Road network and real-time traffic monitoring
	Data collection and processing based on big data approaches
	Vehicle emission calculations and hyperfine-resolution mapping
	Temporal and spatial clustering analyses on variation patterns
	Scenario design for new energy vehicle replacement

	Results and discussion
	Distribution of traffic flows in the main urban area
	Variation characteristics of on-road vehicle emissions
	Temporal and spatial cluster characteristics of vehicle emissions
	Impacts of new energy vehicle replacement
	Comparison with other vehicle emission inventories

	Summary and conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Special issue statement
	Acknowledgements
	Financial support
	Review statement
	References

