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Abstract. Canadian wildfires transport large concentrations of particulate matter into the US, leading to var-
ious effects on the surface temperature, the radiation balance, and visibility and exacerbating pollution-related
respiratory conditions. Using a combination of surface, satellite, and numerical models, this study quantifies the
increase in surface fine particulate matter (PM2.5) in the continental US due to long-range transported smoke
from Canadian wildfires during a wildfire episode from 9–25 August 2018. As a widely used indicator of surface
pollution levels, satellite-retrieved aerosol optical depth (AOD) can provide crucial information on columnar
pollution mass. However, the daily spatial coverage of satellite AOD is restricted due to cloud cover. In or-
der to quantify the daily changes in surface pollution, we fill in the AOD gaps by utilizing simulated 10 km
spatial resolution AOD from a chemistry transport model (CTM). Meteorological variables influencing smoke
transport were also integrated alongside the gap-filled AOD product to estimate surface PM2.5 using geograph-
ically weighted regression (GWR) and random forest (RF) models. The model with better performance was
subsequently applied to quantify PM2.5 changes due to Canadian wildfires. To isolate the impact of Canadian
wildfires, we calculate the surface PM2.5 ratio with and without Canadian fire sources by conducting two CTM
simulations: one with Canadian wildfire emissions enabled and another with these emissions turned off. Our
results show that Canadian wildfires caused a significant increase in surface PM2.5, contributing up to 28 µgm−3

(a 69 % increase) across different US Environmental Protection Agency (EPA) regions during the August 2018
wildfire event.

1 Introduction

Airborne fine particulate matter (PM2.5), with aerodynamic
diameters less than 2.5 µm, is a well-documented contributor
to increased mortality from diseases such as ischemic heart
disease, chronic obstructive pulmonary disease, cardiovascu-
lar disease, respiratory disease, lung cancer, chronic kidney
disease, hypertension, and dementia (Chen and Hoek, 2020;
Bu et al., 2021; Bowe et al., 2019). In 2017, PM2.5 exposure
was linked to 4.58×106 deaths globally, with ambient PM2.5
accounting for 64.2 % of these deaths (Bu et al., 2021). PM2.5
originates from diverse sources, including combustion pro-

cesses, power plants, dust, sea salt, and secondary chemical
reactions. In the US, wildfires are a significant and growing
source of PM2.5 pollution (O’Dell et al., 2019). For regions
affected the most by wildfires, like the state of Washington
(WA), an increase in daily PM2.5 of 97.1 µgm−3 during the
summer of 2020 was found, which was related to 92 more
mortality cases (Liu et al., 2021). Moreover, the toxicity of
PM originating from wildfire smoke has been found to be 3–4
times greater than equivalent doses of ambient PM (Wegesser
et al., 2009). Health impacts vary with chemical composi-
tion, which depends on biomass combustion stages and tem-
perature (Kim et al., 2018; Aguilera et al., 2021). Beyond
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its health impacts, wildfire-related PM2.5 imposes consid-
erable economic burdens. From simulation results, wildfire-
related economic costs have been projected to increase from
USD 7× 1012–43× 1012 per year in 2090 (Neumann et al.,
2021).

Given the growing role of wildfires as a major PM2.5
source, accurately assessing pollution levels requires under-
standing the transport dynamics and chemical transforma-
tions of wildfire smoke, which are influenced by factors such
as fire intensity, injection height, atmospheric dynamics, and
terrain interactions. Higher fire radiative power (FRP) re-
sults in longer distances of the smoke transport due to higher
plume injection heights (Solomos et al., 2015). A global
analysis of over 23 000 wildfires found that significant in-
jection heights going into the free troposphere are primarily
observed in the boreal forests of North America and Siberia
during the Northern Hemisphere summer (Val Martin et al.,
2018). Smoke remnants from Canadian stand-replacing for-
est fires have been observed at altitudes exceeding 13 km
(Damoah et al., 2006). Once injected, smoke plumes can de-
scend to the surface through a combination of subsidence,
interception, and diurnal entrainment within the planetary
boundary layer (PBL), as observed in the eastern US for the
July 2002 Canadian forest fire event (Colarco et al., 2004).
Atmospheric circulation plays a key role in shaping smoke
transport. Upper-level winds facilitate long-range horizon-
tal transport, while surface high-pressure systems enhance
ground-level pollution through subsidence inversions (Miller
et al., 2011). Cyclonic circulation can form a multilayer PBL,
characterized by temperature inversions and stable stratifica-
tion, which trap pollutants in convergent zones (Jiang et al.,
2021b). Interactions with mountain terrain further modulate
smoke dispersion: under stable synoptic conditions, valleys
become more stagnant, while unstable conditions promote
vertical mixing (Beaver et al., 2010; Lang et al., 2015). Dur-
ing transport, smoke particles undergo physical and chem-
ical transformations that influence their sizes, such as hy-
groscopic growth (Carrico et al., 2005; Gomez et al., 2018),
secondary organic aerosol (SOA) formation (Ahern et al.,
2019), condensation of semi-volatile species (Reid et al.,
2005; Zhou et al., 2017; Akagi et al., 2012), and coagulation
process (Aloyan et al., 1997; Sun et al., 2019).

Estimating surface PM2.5 concentrations presents signif-
icant challenges due to spatial and temporal variability and
limited ground station coverage. Traditional approaches,
such as spatial interpolation (e.g., inverse distance weight-
ing, ordinary Kriging) rely primarily on ground-based PM2.5
measurements, while linear regression methods combine
satellite-derived aerosol optical depth (AOD) with surface
PM2.5 measurements (Hoff and Christopher, 2009). More ad-
vanced methods, like multi-linear regression, typically incor-
porate surface PM2.5 data, satellite AOD, and meteorolog-
ical datasets from models (Gupta and Christopher, 2009b).
Geographically weighted regression (GWR) and machine
learning methods use data sources similar to multi-linear re-

gression but offer better spatial resolution and adaptability
to local variations (Xue et al., 2021; Ma et al., 2014; Bai
et al., 2016; Song et al., 2014; Hu et al., 2017; Gupta and
Christopher, 2009a; Zamani Joharestani et al., 2019). Linear
mixed-effect models add temporal variability by including
both fixed and random effects (Ma et al., 2016; Lee et al.,
2011). Chemistry transport models (CTMs) leverage detailed
atmospheric chemistry and physics simulations using emis-
sion inventories, meteorological fields, and chemical species
distributions (Geng et al., 2015; Xue et al., 2019). Tradi-
tional methods like spatial interpolation and linear regression
struggle to integrate multiple mechanisms and spatiotempo-
ral variables, a limitation newer techniques address (Zhang
et al., 2018). Due to the growth of computing power, ma-
chine learning (or artificial intelligence) has become a major
focus for estimating the spatiotemporal dynamic distribution
of surface PM2.5 concentrations (Zhang et al., 2018; Sayeed
et al., 2022).

Satellite-retrieved AOD serves as a valuable indicator of
columnar pollution, providing critical information for esti-
mating surface PM2.5 concentrations, though it is not a direct
measurement of surface pollution (Wang and Christopher,
2003; Geng et al., 2015). Its key advantages include over
2 decades of data availability from polar-orbiting sensors and
the extensive spatial coverage of satellite observations, mak-
ing it a powerful tool for long-term air quality analysis. How-
ever, cloud cover frequently obstructs AOD retrievals, limit-
ing their utility for daily surface PM2.5 estimation (Goldberg
et al., 2019). To overcome this limitation, gap-filling meth-
ods are used to generate spatially and temporally continu-
ous AOD datasets. These methods include fusing retrievals
from multiple satellite sensors (Ma et al., 2014); applying
multiple imputation techniques using auxiliary data such as
cloud fraction, elevation, and humidity (Xiao et al., 2017);
and using statistical approaches like Kriging to interpolate
AOD based on seasonal and regional AOD : PM2.5 ratios de-
rived from ground-based measurements (Lv et al., 2017). Ad-
ditionally, incorporating chemistry transport model (CTM)
simulations into the gap-filling process has been shown to
significantly improve the accuracy and reliability of imputed
AOD values (Xiao et al., 2021). The AOD–PM2.5 relation-
ship is influenced by aerosol composition, vertical distribu-
tion, and meteorological factors. The boundary layer height
(BLH) serves as a key indicator by representing the mix-
ing height of aerosols and their influence on surface pollu-
tion levels (Gupta and Christopher, 2009b). Surface pressure
also plays a role, with high-pressure systems linked to sur-
face pollution increases due to subsidence inversions (Miller
et al., 2011). Additionally, relative humidity (RH) affects this
relationship, as AOD is sensitive to particle size and hygro-
scopic growth (Li et al., 2014), while PM2.5 reflects dry mass.
Incorporating these meteorological parameters helps mod-
els better capture the dynamic processes shaping the AOD–
PM2.5 relationship.
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This study is designed to assess the pollution change due
to fine particulate matter in the US transported by smoke
from Canadian wildfires and to also examine the physical
processes during transport that affects surface pollution along
the path. First, by turning on and off the fire emissions in the
CTM in Canada, we conduct two WRF-Chem (Weather Re-
search and Forecasting model coupled with Chemistry) sim-
ulations to investigate the processes that influence the trans-
port of remote smoke aerosols in the atmosphere. According
to the analysis of different processes, we then selected vari-
ables associated with smoke’s vertical distribution, which de-
termined the relationships between AOD and surface pollu-
tion concentrations. Finally, by filling in the satellite AOD
gaps due to cloud covers using CTM simulations, we esti-
mate the surface pollution increase due to the remote fires
using the filled AOD along with surface PM2.5 measurements
and other meteorological variables.

2 Data and study area

2.1 Study area

We estimated daily mean surface PM2.5 at 0.1° spatial reso-
lution over the continental US (CONUS) from 9–25 August
2018. The study area (inner domain) focuses on the US (25–
50° N, 64–125° W), while the outer domain of the same WRF
simulation extends to Canada (25–67° N, 70–140° W) to ac-
count for Canadian fire emissions and their contributions to
US pollution from remote fire sources. Therefore, we chose
August 2018 as our study period to analyze the impact of
wildfires on surface air pollution in the US based on the total
fire radiative power calculation based on our previous work
(Xue et al., 2021).

2.2 Ground-level PM2.5 observations

We obtained the daily surface PM2.5 concentration prod-
uct that uses Federal Reference Methods (FRMs) and
Federal Equivalent Methods (FEMs) (code 88101) from
the US Environmental Protection Agency (EPA) for
CONUS within the study period (https://www.epa.gov/
outdoor-air-quality-data/, last access: 24 May 2025). The
measured frequency of each site is different (with a mea-
surement interval of every 1, 3, or 6 d). A total of 950 EPA
sites are available with approximately 71.1 % sampling for
daily data within the study period. Note that we discarded
all PM2.5 values lower than the established detection limit of
2 µgm−3 (EPA, 2018).

2.3 Satellite data

AOD values retrieved from satellite observations, which are a
columnar value of aerosol extinction, are correlated with sur-
face pollution under certain conditions (Wang and Christo-
pher, 2003; Hoff and Christopher, 2009). The relation be-

tween AOD and surface PM2.5 can be expressed as the fol-
lowing equation (Koelemeijer et al., 2006):

AOD= PM2.5Hf (RH)
3〈Qext,dry〉

4ρreff
. (1)

As seen in the above equation, several factors bridge AOD
and PM2.5, including the aerosol layer height H , particle ef-
fective radius reff, aerosol mass density ρ, extinction effi-
ciency under dry conditions Qext,dry, and ratio of ambient
and dry extinction coefficients f (RH). Thus satellite AOD
retrievals are often used as a vital indicator for estimating
surface pollution (Hu et al., 2014; Xie et al., 2015). We
use the 550 nm AOD from the multi-angle implementation
of atmospheric correction (MAIAC; MCD19A2 Version 6
product) with 1 km spatial resolution (https://lpdaac.usgs.
gov/products/mcd19a2v006/, last access: 24 May 2025). The
product retrieves AOD from the Terra and Aqua MODIS
(Moderate Resolution Imaging Spectroradiometer) satellites,
and we take the mean value of all available retrievals. Con-
sidering that thick smoke is likely misclassified as clouds,
we accept AOD with or without adjacent clouds (Xue
et al., 2021; Goldberg et al., 2019). Through validation with
AErosol RObotic NETwork (AERONET) AOD, the accu-
racy of the MAIAC AOD product is approximately 66 %
within the expected error (±0.05± 0.1 AOD) (Lyapustin
et al., 2018). The 1 km resolution AOD is gridded to 10 km
by averaging all valid AOD values in 0.1° boxes. It is worth
noting that MAIAC AOD was originally retrieved at 470 nm
and then the 550 nm AOD is computed using spectral prop-
erties (Lyapustin et al., 2018; Liu et al., 2019). It has also
been reported that the uncertainties and biases increase with
increasing AOD (Martins et al., 2017; Qin et al., 2021).

2.4 Meteorological data

The AOD–PM2.5 relationship depends on various factors, in-
cluding meteorological parameters (Xue et al., 2021). The
boundary layer height (BLH), 2 m temperature (T2M), 10 m
wind speed (U10M), surface relative humidity (RH), and sur-
face pressure (SP) were obtained from the European Cen-
tre of Medium-Range Weather Forecasts (ECMWF) reanaly-
sis (https://www.ecmwf.int/en/forecasts, last access: 24 May
2025). To match the AOD data with an average value of two
different times (10:30 and 13:30 local time, LT), we down-
loaded all meteorological variables at 12:00 LT. The spatial
resolution of all meteorological data is 0.25°, and we use the
inverse distance method to interpolate all the variables to 0.1°
spatial resolution.

3 WRF-Chem model and experimental design

The Weather Research and Forecasting model coupled with
Chemistry (WRF-Chem v4.2.2) is applied in this study to ex-
amine the various processes that affect the transport of smoke
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aerosol and estimate the pollution change in the US due to
Canadian fires. This section briefly describes the WRF-Chem
model, the model configuration, and model physics and then
introduces the design of the numerical experiments.

3.1 WRF-Chem model

WRF is a state-of-the-art mesoscale numerical weather pre-
diction system that offers a flexible and computationally effi-
cient platform for operational forecasting (Skamarock et al.,
2019). WRF-Chem is an atmospheric chemistry model that
fully integrates with the meteorological framework of WRF
(Powers et al., 2017), enabling the simulation of various
chemical and physical processes related to aerosol transport,
including dispersion, aerosol–cloud interactions, and other
key mechanisms (Powers et al., 2017).

3.2 Model configuration

There are several gas-phase chemistry and aerosol treatments
available in WRF-Chem v4.2.2. In the current study, the
Model of Ozone and Related chemical Tracers version 4
(MOZART v4) gas-phase mechanism (Emmons et al., 2010;
Knote et al., 2014) is used in combination with the Model for
Simulating Aerosol Interactions and Chemistry (MOSAIC)
four-bin aerosol scheme (Zaveri et al., 2008). Four size bins
(0.039–0.156, 0.156–0.625, 0.625–2.500, and 2.5–10.0 µm
dry diameters) are used in the MOSAIC aerosol module
for the representation of the aerosol size distribution. The
PBL scheme used in our simulation is the Mellor–Yamada–
Janjić (MYJ) turbulent kinetic energy (TKE) scheme (Janjić,
1990, 1994), and the land surface model scheme is the Noah
land surface model scheme (Chen and Dudhia, 2001). The
cumulus scheme is the Grell 3D cumulus scheme (Grell and
Dévényi, 2002), which performs better than other schemes
(Hasan and Islam, 2018). The cloud microphysics scheme
is the Morrison two-moment microphysics scheme (Morri-
son et al., 2005; Morrison and Pinto, 2005). Model radia-
tion treatment utilizes the Rapid Radiative Transfer Model
for GCMs (general circulation models) (RRTMG) shortwave
and longwave radiation schemes (Iacono et al., 2008), includ-
ing the aerosol radiation feedback.

Meteorological initial and lateral boundary conditions for
WRF-Chem simulation were obtained from the National
Centers for Environmental Prediction (NCEP) Global Data
Assimilation System (GDAS) Final (FNL) analysis at 0.25°
spatial resolution and 3 h temporal resolution. The initial and
lateral conditions of chemical species are obtained from the
Whole Atmosphere Community Climate Model (WACCM)
at 0.9°×1.25° resolution with 88 levels. Key species associ-
ated with wildfires are included: carbon monoxide (CO), car-
bon dioxide (CO2), black carbon (BC), nitrous oxide (N2O),
nitrogen oxides (NOx), and so on (Mills et al., 2016). In addi-
tion, the Fire Inventory from NCAR (National Center for At-
mospheric Research) version 2.4 (FINNv2.4) is used as fire

emission input for the simulation. The model simulation was
conducted over two nested domains: an outer domain cov-
ering the Canadian region (25–67° N and 70–140° W) and
an inner domain focused on the CONUS region (25–50° N
and 64–125° W). The simulation spanned 9–25 August 2018,
with a spatial resolution of 10 km for the inner domain and 71
vertical layers from the surface to the top of the atmosphere
(TOA). More details of the model configurations are shown
in Table 1.

4 Methods

This section mainly describes the methods we used to esti-
mate pollution changes in the continental US due to long-
range transported smoke. We first describe the method we
used for filling the AOD gaps of the MAIAC satellite AOD
product and then describe two different methods for estimat-
ing surface PM2.5. Finally, we discuss how we assess the sur-
face pollution change due to Canadian wildfires.

4.1 Filling the AOD gaps

To reiterate, one of the goals of the study is to estimate daily
surface PM2.5 at 0.1° spatial resolution. AOD alone can-
not provide necessary spatial coverage due to gaps in cloud
cover. Therefore, we explored two commonly used meth-
ods for filling the AOD gaps. One commonly used method
for daily AOD gap-filling problems is Kriging interpolation
(Kianian et al., 2021; Singh et al., 2017). At the same time,
the performance of Kriging interpolation degrades with in-
creasing distances from the training points, which implies a
limitation of the method in large areas of missing data (Kia-
nian et al., 2021). Therefore, in the second method, we com-
bine the Kriging method with outcomes from our CTM sim-
ulations to improve the AOD gap interpolation.

4.1.1 Kriging interpolation

The ordinary Kriging (OK) method computes the estimation
of an unsampled point based on the weighted average of sur-
rounding pixels (Zandi et al., 2011). Several authors have
fully described the theoretical basis of this method (Cressie,
1988; Emery, 2005), and it has proven to successfully fill in
the AOD gaps for air pollution studies (Ma et al., 2014). The
estimated AOD value at an unsampled location (×0) can be
expressed as

Z′(x0)=
n∑
i=1

λiZ(xi), (2)

where i = 1, 2, 3, . . . , n represent for the surrounding pixels
and λi is the Kriging weight. A major factor that expresses
the spatial dependence between neighboring points is the var-
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Table 1. Parameterizations used in WRF-Chem model simulations. Noah-MP: Noah-Multiparameterization, MEGAN: Model of Emissions
of Gases and Aerosols from Nature.

Option type Selected option

Horizontal grid resolution 10 km (550× 300)
Number of vertical layers 71 (39 layers below 2 km)
Microphysics scheme Morrison two-moment scheme (Morrison et al., 2005; Morrison and Pinto, 2005)
Short- and longwave radiation RRTMG (Iacono et al., 2008)
Land surface Noah-MP (Chen and Dudhia, 2001)
Boundary layer scheme MYJ TKE scheme (Janjić, 1990, 1994)
Cumulus physics Grell 3D (Grell and Dévényi, 2002)
Aerosol feedback Yes
chem_opt parameter MOZART–MOSAIC (Emmons et al., 2010; Knote et al., 2014)
Meteorological data input NCEP
Biogenic emissions MEGAN
Anthropogenic emissions EDGAR 2010

iogram (Arslan, 2012), which is defined as

γh =
1

2n

n∑
i=1
[Z(xi)−Z(xi +h)]2, (3)

where Z(xi) is the AOD value at point i and Z(xi +h)
is the AOD value of other points that have a discrete dis-
tance h from point i. Previous studies have applied the OK
method with an exponential variogram (or semi-variogram)
of interpolating missing AOD values (Lv et al., 2016; Hu
et al., 2019). Therefore, in this study, we use the OK method
with an exponential variogram to obtain first-stage gap-filling
daily AOD over our study area.

4.1.2 CTM interpolation

We applied the Kriging method for interpolation in areas
with sufficient AOD information while using CTM interpo-
lation where valid AOD retrievals were unavailable to mini-
mize uncertainties associated with small-scale “missingness”
of AOD. These uncertainties arise because CTM relies on
fire inventories derived from satellite fire detection products,
which may fail to capture small-scale fires due to the spatial
resolution of satellite observations and fractional fire cov-
erage within a pixel (Fu et al., 2020). Such undetected fire
sources can lead to inaccuracies in CTM outputs. To better
represent the AOD distribution in regions with small-scale
missingness, we prioritize the Kriging method over CTM in-
terpolation. Therefore, our gap-filling method accepts Krig-
ing interpolation in regions with a small missing portion
(< 20 %). At the same time, we feed the interpolation with
CTM outputs for regions with a more significant missing por-
tion. The details of the process are shown in Fig. 1.

To estimate the AOD value for a location without valid
MAIAC AOD data, we first select a 9 pixel× 9 pixel box
(spatial resolution of 0.1°) centered on the target pixel.
Within this box, we identify pixels that satisfy two condi-
tions: (a) having valid MAIAC AOD data and (b) having

a small AODwrf difference (< 0.1) compared to the target
pixel. If fewer than 50 pixels meet these criteria, the box ra-
dius is expanded and the filtering process is repeated. Once
at least 50 pixels are identified, we calculate the ratio of valid
MAIAC AOD pixels to the total number of pixels in the box,
where total pixels refer to all pixels in the selected box, re-
gardless of filtering. If the ratio exceeds 80 %, the AOD for
the target pixel is estimated using the ordinary Kriging (OK)
method, based on the filtered pixels. However, if the ratio is
80 % or lower, the AOD is calculated using a geographically
weighted regression method that considers the neighboring
ratio between MAIAC AOD and AODwrf:

AOD(x0)= AODwrf(x0) ·R, (4)

where R is the weighted ratio which can be expressed as

R =

n∑
i=1

(α ·w), (5)

α =
AODMAIAC(xi)

AODwrf(xi)
, (6)

w =
1− distance(xi ,x0)

bandwidth∑n
i=1

(
1− distance(xi ,x0)

bandwidth

) , (7)

where distance(xi,x0) means the distance between location
xi and x0 and the bandwidth is selected based on the max-
imum distances between point xi with valid MAIAC AOD
data and target pixel x0 within the preselected box. Accord-
ing to the above equations, we can obtain the AOD prediction
for the unsampled location x0.

4.2 Estimating surface PM2.5 using the gap-filled AOD

Having the gap-filled AOD data, we can now estimate the
surface PM2.5 with more extensive spatial coverage. In this
study, we tested two methods (GWR and RF, random forest)
for predicting surface PM2.5 using the gap-filled AOD with
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Figure 1. Flowchart of the AOD gap-filling process. r refers to the radius of the selected box used in the process.

other meteorological variables. Due to characteristics of the
regional wildfires, we chose both methods to consider spatial
variations in pollution distribution. After comparing the fit-
ting and validation results of the two methods, we apply the
method with the better performance to estimate daily surface
PM2.5.

Before we perform the prediction, different datasets need
to be resampled to the exact grid resolution. Grids with 0.1°
spatial resolution are constructed over the study region. For
AOD data with 1 km resolution, we average all valid AOD
values that fall into the same grid. Moreover, for other me-
teorological variables with a 0.25° resolution, we apply the
inverse distance method to scale up all the variables into the
predefined grids. PM2.5 measurements in the same grid are
averaged to one value to obtain a 0.1° resolution. In order to
derive the relation between PM2.5 and AOD, we select data
where AOD and surface PM2.5 are both available (AOD> 0
AND PM2.5 > 2.0 µgm−3) to train the models.

4.2.1 GWR method

To derive the surface PM2.5 using filled AOD with other
meteorological variables, we used a GWR model that we
fully describe in our prior work (Xue et al., 2021). The
GWR model has advantages over other methods because
it estimates spatially varying relationships. The disadvan-
tage of GWR model, on the other hand, is that the coeffi-
cients change daily according to different spatial characteris-
tics of surface pollution, indicating increased computational
expenses. To account for varying degrees of freedom cen-
tered on different locations, adaptive bandwidth, selected by
the Akaike information criterion (AIC), is used for the GWR
model. The model can be described as

PM2.5,i,t =β0,i,t +β1,i,tAODi,t +β2,i,tBLHi,t
+β3,i,tT2Mi,t +β4,i,tU10Mi,t

+β5,i,tRHi,t +β6,i,tSPi,t + εi, t, (8)

where i represents different locations, t represents differ-
ent days, and β stands for the weight coefficients for dif-

ferent variables. The value of β depends on the geographical
weighting of surrounding observations within the bandwidth.
The weighting of each observation point decreases according
to an exponential curve as the distances from the target point
increase.

To test the GWR model, we must preserve only a small
portion of the data, leaving most data to train the model
since GWR requires an adequate number of samples, and the
distribution of ground observations is uneven across the na-
tion. Leave-one-out cross-validation (LOOCV) can be a rel-
atively accurate way to test the model, but it comes at a high
computational cost (Xue et al., 2021). Additionally, k-fold
cross-validation with large fold numbers shows similar re-
sults (Xue et al., 2021). Therefore, we performed 100-fold
cross-validation to evaluate the model performances. The in-
puts for the model are split into 100 subsets, and each time,
we use one subset as testing samples, while the other 99 sub-
sets are used as fitting samples, after repeating this process
100 times until we test the whole dataset. Finally, we evalu-
ate the model performance by comparing the correlation co-
efficient (R) and root mean squared error (RMSE) of model
fitting and cross-validation.

4.2.2 Random forest method

Random forest is a non-parametric model that conducts es-
timations of prediction values by constructing a large num-
ber of decision trees. RF randomly divides nodes into sub-
nodes for each tree, and the average estimation of different
trees makes up the final results (Jiang et al., 2021a; Breiman,
1996). Of various machine learning methods, RF usually out-
performs other machine learning methods due to its sim-
plicity, diverse applications, and tackling of complex cross-
sensitivities, among various features (Gupta et al., 2021;
Jiang et al., 2021a; Zimmerman et al., 2018). The two vi-
tal parameters that affect the model performance are the tree
number in the forest and feature numbers. We use 100 trees
and 6 features in this study.
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For our study period, a total of 11 942 samples are col-
lected for training the model. The number of variables is the
same as the inputs for the GWR model in order to maintain
consistency (AOD, BLH, T2M, U10M, RH, SP, latitude, lon-
gitude, and day number). We also performed the same cross-
validation as the GWR model to test the model performance
so that the prediction accuracy can be compared between the
two models. The model that performs better is selected to
estimate the surface PM2.5 for locations where no PM2.5 ob-
servations are available based on (a) the results of the cross-
validation and (b) the differences in results (RMSE and cor-
relation coefficients R) between model fitting and validation.
Note that a lower RMSE and higher R indicate high predic-
tion accuracy, and a slight difference in model fitting and val-
idation means the model is not overfitting.

4.3 Assessing the pollution increase caused by
Canadian fires

The model that performs better from the previous step is used
for estimating the gaps in surface PM2.5. To further assess
the surface pollution change due to long-range transported
smoke from Canadian wildfires, we conduct a control run of
WRF-Chem with all fire emissions within Canada turned off,
while emissions in the US are kept the same. The simulated
surface PM2.5 of the control run (hereafter PM2.5,control) and
Canadian fire run (experiment run, PM2.5,experiment) is then
converted to surface PM2.5 based on the relation derived from
previous steps:

PM2.5,control = PM2.5 ·
PM2.5,WRF,control

PM2.5,WRF,experiment
, (9)

where PM2.5 is the estimated PM2.5 concentration using
the model that performed better (GWR or RF). The differ-
ences between PM2.5,control and PM2.5 are then calculated to
quantify the pollution change due to long-range transported
smoke.

5 Results

5.1 Smoke plumes from Canadian wildfires transport to
the US

Figure 2 shows the AOD change due to Canadian wild-
fires from 17–20 August 2018. The changes in AOD dis-
tribution with and without Canadian fires vary according to
wind directions and fire sources. The AOD change during
the study period varies between 0 and 2.2 based on the two
WRF-Chem simulations. The change is most prominent in
North Dakota and Minnesota on 17 August, and the Cana-
dian smoke continued to move southward to Iowa on 18 Au-
gust. In the meantime, a large amount of Canadian smoke in-
creased (high AOD increase) in northwestern US (including
Washington and Montana). On 19 August, Canadian smoke
over the northwestern US was transported eastward and more

smoke was brought to the central US. On 20 August, Cana-
dian smoke moved further to southern regions, due to a storm
system, while the AOD values decreased, due to precipita-
tion.

Canadian wildfire smoke has been consistently identified
as a contributor to AOD increases across the US during wild-
fire seasons. For example, during a 2015 Canadian wildfire
event, AOD increases exceeding 1 were observed along the
eastern US coast (Yang et al., 2022). In a 2016 event, aerosol
height data revealed that Canadian smoke contributed 40 %–
60 % of the total column AOD in New York (Wu et al.,
2018). Observed AOD increases for high-altitude aerosols
from Canadian fires ranged from 0.18 to 0.45 at 532 nm in
New York during this period. These findings align with the
AOD increases simulated in our study and underscore the
significant role of long-range transported Canadian smoke in
contributing to regional pollution during wildfire episodes.

5.2 Associations of smoke transport with synoptic-scale
pressure patterns

Prior studies show that the transport of smoke aerosols is
usually affected by synoptic pressure patterns. High surface
pressure often indicates the accumulation of surface pollu-
tion, while successive low pressure can also increase surface
pollution (Chen et al., 2008). In order to investigate the re-
lationship between synoptic pressure patterns and the smoke
transport process, we compared the horizontal and vertical
distribution of Canadian smoke in the US.

According to the surface pressure map on 17 August 2018
(as shown in Fig. 3a), there was a high-pressure system lo-
cated in Ontario, and its influence extended into parts of
North Dakota. This high-pressure system was moving east-
ward, and as it moved east, the descending air associated
with the high-pressure system inhibited vertical convection,
leading to the entrapment of smoke in the lower atmosphere.
Consequently, the smoke experienced dry deposition at lower
altitudes, which explains the low AOD concentration over
northeastern Minnesota in Fig. 2a. Smoke at higher altitudes
tended to be redirected around the high-pressure system. Si-
multaneously, there was a low-pressure system situated in
the northern Wisconsin region, causing the smoke to move
in a northeasterly direction towards this low-pressure area.
On 18 August, as shown in Fig. 3b, the high-pressure sys-
tem shifted to Quebec, and its peripheral influence extended
to the Madison region. The presence of this high-pressure
system resulted in the formation of a narrow corridor of low
AOD distribution within the path of smoke transport, as il-
lustrated in Fig. 2b. On the same day, a low-pressure sys-
tem was forming over South Dakota and Nebraska. The as-
cending air and the robust winds along the trough axis es-
tablished more conducive circumstances for the transporta-
tion of Canadian smoke. This phenomenon is clearly illus-
trated in Fig. 2c, where the smoke expanded further to the
south, strongly influenced by the presence of the evolving
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Figure 2. AOD change due to Canadian wildfires from 17–20 August 2018: (a) 17 August 2018, (b) 18 August 2018, (c) 19 August 2018,
and (d) 20 August 2018. The AOD change is calculated using the difference of two WRF-Chem simulations.

Figure 3. Surface weather maps from 17–20 August 2018 (https://www.wpc.ncep.noaa.gov/archives/web_pages/sfc/sfc_archive.php, last
access: 24 May 2025): (a) 17 August 2018, (b) 18 August 2018, (c) 19 August 2018, and (d) 20 August 2018.

low-pressure system. By 20 August, this system had tran-
sitioned eastward, enveloping the states of Iowa and Mis-
souri, as in Fig. 3d. Intense rainfall and thunderstorms ma-
terialized as the low-pressure system rotated over the area.
This precipitation served as a scavenging mechanism, effec-

tively eliminating the smoke through a wet-deposition pro-
cess. Some portions of the smoke, however, carried by the
powerful winds, could potentially impact air quality in the
southern regions.
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Figure 4. Surface PM2.5 measurements from EPA stations over CONUS from 17–20 August 2018: (a) 17 August 2018, (b) 18 August 2018,
(c) 19 August 2018, and (d) 20 August 2018.

Figure 4 shows the surface PM2.5 distribution from EPA
stations during the 4 d, while Fig. 5 presents the surface
PM2.5 dry mass contributed solely by Canadian wildfires,
as derived from the difference between the Canadian fire
case and the control case in WRF-Chem simulations. Com-
paring these figures helps distinguish the contributions of
local sources and long-range transported Canadian wildfire
smoke to surface pollution in the US. If regions of high
PM2.5 in Fig. 4 correspond to low values in Fig. 5, it sug-
gests that pollution in those areas is predominantly caused
by local sources. Conversely, if high values in Fig. 4 align
with elevated values in Fig. 5, it indicates that Canadian
wildfire smoke is a significant contributor. On 17 August,
elevated surface PM2.5 levels (> 10 µgm−3) were observed
in northern US states. However, in the difference map, ar-
eas such as Montana, North Dakota, and South Dakota ex-
hibit low values close to zero, indicating that surface pol-
lution in the northwestern US primarily originated from lo-
cal fires. On 18 August, a high-pressure system positioned
over Minnesota resulted in higher surface PM2.5 concentra-
tions in that region. However, the difference map shows low
values over the same area, indicating that the elevated pollu-
tion levels were primarily due to local sources. High-pressure
systems typically feature calm winds and stable atmospheric
conditions, which trap pollutants near the surface and hinder
the transport of Canadian wildfire smoke into the region. By
19 August (Fig. 4c), surface PM2.5 levels increased across
central US states, with high AOD concentrations noted over
Utah and Illinois, likely influenced by high-pressure sys-
tems. In contrast, elevated PM2.5 levels in Iowa and Mis-
souri appear to align with the transport of Canadian wildfire
smoke. A low-pressure system extending southward facili-

tated the movement of smoke, reaching as far south as Mis-
souri, thereby expanding the range of smoke transport com-
pared to the preceding days. The impact of the low-pressure
system became more pronounced on 20 August (Fig. 4d). In
the center of the cyclone, particularly in Iowa and Missouri,
wet-deposition processes dominated. The robust winds asso-
ciated with the low-pressure system carried Canadian smoke,
which was subsequently removed by precipitation, leading
to no significant increase in surface pollution in these ar-
eas. However, along the outer boundaries of the cyclone,
from Colorado through Kansas and Oklahoma to northern
Texas, surface pollution levels noticeably increased. This in-
crease can be attributed to Canadian smoke transported by
the strong winds of the low-pressure system, resulting in
heightened PM2.5 concentrations in these regions.

With low-pressure systems in the central US, both model
outputs and surface observations show longer southward
transport paths of Canadian smoke in the US. Take 20 Au-
gust as an example; airflows of the extratropical cyclone in
Iowa substantially determine the transport direction of the
Canadian smoke. To investigate smoke’s horizontal and ver-
tical transport, we take the pollution distribution map of
three atmospheric layers (773, 850, and 900 hPa) to com-
pare the moving directions of smoke (Fig. 6). In upper layers
(773 hPa), Canadian smoke intrudes into the US from two
directions: the northwestern US and northeastern US. These
two smoke plumes meet in the central US at a higher level
and then split in two directions while transporting down-
ward (as shown in the black circles in the 900 hPa map). The
downward transport directions can be explained using a con-
ceptual model of the extratropical cyclone (Fig. 6d). Cana-
dian smoke follows the downward airflow: part of the smoke
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Figure 5. Surface PM2.5 dry mass difference from WRF-Chem simulations over CONUS from 17–20 August 2018: (a) 17 August 2018,
(b) 18 August 2018, (c) 19 August 2018, and (d) 20 August 2018. The PM2.5 difference is calculated using the two WRF-Chem simulations.

moves southwesterly away from the cyclone, while the rest
of the pollution moves toward the cyclone and goes through
wet-deposition processes.

Overall, the horizontal distribution and transport of Cana-
dian smoke are closely related to pressure systems. Surface
high pressure usually facilitates the subsidence of elevated
Canadian smoke pollution (with surface PM2.5 increase). In
contrast, a low-pressure system tends to have the opposite
effect (lifting), corresponding to longer transport distances.

5.3 Daily coverage of satellite AOD and simulated AOD
from WRF-Chem

During the wildfire period selected in this study (17 d), we
calculate the daily MAIAC AOD coverage using the number
of pixels with valid AOD values divided by the total num-
ber of pixels. The AOD coverage after combining Aqua and
Terra data ranges from 46 % to 68 % (shown in Fig. 7). An-
alyzing daily AOD coverage is essential, as satellite-derived
AOD serves as a columnar indicator of pollution with ex-
tensive spatial coverage and high-resolution data, making it
a valuable predictor for estimating surface PM2.5 concentra-
tions alongside other variables. However, it often has miss-
ing values over fire-intense regions, which can significantly
impact the accuracy of predicted surface PM values. Using
model-simulated AOD in conjunction with satellite AOD can
help mitigate this issue and improve predictions.

In order to show the spatial distribution of AOD coverage,
we also calculate the coverage ratio of AOD of each pixel
over the 17 d (shown in Fig. 8). The average AOD coverage
for the whole study area is around 60 %. For the northeast-
ern US, 40 %–70 % of the days are covered by clouds, while

more than 80 % of the days have valid AOD values in the
western US.

The model-simulated 550 nm AOD has a distribution very
similar to the satellite AOD. Comparing MAIAC AOD with
corresponding simulated AOD pixels, the correlation coeffi-
cients range from 0.3 to 0.63 and the RMSE is within the
range of 0.2–0.4 (shown in Table S2 in the Supplement).
Time series of the coverage and statistics are shown in Fig. 7.
There is no clear correlation between MAIAC AOD cover-
age and the correlation of two AOD products, as the miss-
ing AOD areas for each day are randomly distributed and
affected by satellite swath coverage and cloud contamina-
tions. Overall, simulated AOD is lower than satellite AOD
potentially due to the underestimation of fire emissions,
especially for small-scale fires (Wiedinmyer et al., 2011).
FINNv2.4 identified fire sources based on the combinations
of the thermal-anomaly product of MODIS and VIIRS (Vis-
ible Infrared Imaging Radiometer Suite) (Wiedinmyer et al.,
2011; Li et al., 2021). Adding high-spatial-resolution fire de-
tection information from VIIRS increases the total burned
area by 280 % compared to the previous FINN version that
used MODIS detection only (Li et al., 2021). However, thick
smoke and cloud cover primarily affect the detection of fires
(Fu et al., 2020; Schroeder et al., 2014), causing AOD under-
estimation in regions with missing fire detection.

The comparison between WRF-simulated AOD and
satellite-retrieved AOD shows a high spatial correlation, indi-
cating a similar smoke pathway between the model and satel-
lite observations. We also compare the ground AERONET
AOD with the model-simulated values. The correlation co-
efficient during the 17 d between the two AOD products is
0.54, and the RMSE is around 0.06. Similar to the compari-
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Figure 6. PM2.5 dry mass distribution on 20 August 2018 at different levels: (a) 773, (b) 850, and (c) 900 hPa. (d) Conceptual model of
airflow patterns in a typical extratropical cyclone based on Cotton et al. (2011).

Figure 7. Time series of MAIAC AOD coverage (blue line), with
the correlation coefficient (green line) and RMSE (orange line) of
two AOD products (WRF-CHEM AOD and MAIAC AOD).

son with satellite AOD, model-simulated AOD values show
underestimations compared to AERONET AOD.

5.4 AOD gap filling

Our gap-filled AOD increased the mean coverage from 60 %
to 92 %, and missing values of the gap-filled AOD were
mainly distributed at the edges of our study area due to
limited satellite retrieval for deriving accurate AODfilled–
AODMAIAC relationships.

To illustrate the importance and differences in feeding
the interpolation with CTM outputs, we choose 13 Au-
gust to display the differences when fires are detected

Figure 8. AOD coverage during the 17 d period.

near cloud edges. Figure 9 shows the AOD distribution
of the CTM-filled AOD, Kriging-filled AOD, and MA-
IAC AOD. The south-central US region (including Texas,
Oklahoma, and Nebraska) has large missing AOD areas
due to clouds. The Kriging-filled AOD for this region
is evenly distributed with values around 0.3. However,
the CTM-filled AOD shows more variations and a clear
smoke transport path along the wind direction. The pri-
mary reason for this difference is some small-scale fires de-
tected near the cloud edges in Oklahoma. According to the
fire emission document (https://www.acom.ucar.edu/Data/
fire/data/finn2/README_FINNv2.5_Feb2022.pdf, last ac-
cess: 24 May 2025), both 375 m resolution VIIRS fire detec-
tion and 1 km resolution MODIS thermal anomalies are used
for estimating fire emissions. This enhancement in fire detec-
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tion provides a more accurate estimation of surface pollution
in the presence of clouds. Compared with the surface PM2.5
distribution of this same day, we find the same distribution
pattern as our CTM-filled AOD: high PM2.5 (> 20 µgm−3)
distributed in central Texas all the way to eastern Oklahoma.
Therefore, CTM-filled AOD provides closer patterns as ob-
served in the surface pollution distribution of regions with
large cloud covers. Our results indicate the inadequacy of
Kriging methods in such cases.

5.5 Daily PM2.5 estimation

Figure 10 shows the results of GWR model fitting and cross-
validation. The colors represent the probability function that
determines the possibility that the ground-level measure-
ments and the estimations from the GWR model are equal to
each other. A lighter color means a higher concentration of
samples. The R and RMSE of GWR model fitting are 0.85
and 6.2 µgm−3, respectively, and the R and RMSE of the
100-fold cross-validation are 0.8 and 7.2 µgm−3. The dif-
ference between model fitting and cross-validation is rela-
tively small, which means that the model is not overfitting
and the prediction accuracy is stable. The slope of the cross-
validation best-fit line (solid black line) is 0.72, indicating
that the model slightly underestimates the surface PM2.5,
and the biases increase with increasing AOD. The reason for
this underestimation is sample biases: (1) a limited number
of stations in the western US and (2) EPA stations in the
western US are mainly concentrated in the two populated
regions, showing extremely uneven distribution. Only 3 %
of surface PM2.5 observations exceeded the unhealthy limit
(PM2.5 > 35.5µgm−3) during the 17 d, and among these sta-
tions, 62 % of the observations came from stations located
in Washington and California. Furthermore, as shown in
Fig. 11, the correlation between WRF-Chem-simulated sur-
face PM2.5 and EPA ground observations is relatively weak
(R ≈ 0.4), which underscores the limitations of standalone
chemical transport models and further justifies the applica-
tion of data-driven methods such as GWR.

Figure 12 shows the results for RF fitting and cross-
validation. The RF model fits well with the training sam-
ples with an R of 0.84 and RMSE of 6.56 µgm−3, while
the cross-validation results degrade significantly (R = 0.76,
RMSE= 7.69 µgm−3). The slope of the validation best-fit
line is 0.523, which is of lower than that of the GWR method.
The difference between model fitting and cross-validation in-
dicates that the model is slightly overfitting and has limited
prediction accuracy for this case. One possible reason for this
could be the limited number of training samples with average
daily available measurements of around 700 during the study
period (Jiao et al., 2021). A spatiotemporal RF model can be
utilized to enhance RF model performance (Wei et al., 2019).
Compared with RF, the GWR model showed slightly higher
prediction accuracy and more stability.

Though the difference in cross-validation results for RF
and GWR is slight, the daily pollution variation estimated
from the two methods shows completely different trends.
Figure 13 shows the mean PM2.5 variation over the three
highly polluted areas (EPA Region 8, 9, and 10) during the
17 d period calculated from GWR, RF, and EPA ground sta-
tions. For Region 8, EPA stations measured two pollution
peaks during the study period: one peak on 19 August and
another smaller peak on 24 August. Mean PM2.5 from the RF
method also captured the two peaks on the same day, while
the regional mean values were slightly lower than the mea-
surements. However, GWR has a different peak on 11 Au-
gust but no noticeable increase for the remaining days. For
EPA Region 9, both RF and EPA stations show a decreas-
ing trend for the first few days and then slowly increase with
time, while GWR has two clear peaks, which are not shown
for the other two methods. For the most polluted region, Re-
gion 10, the highest peaks from 19 to 22 August are shown
in the EPA and RF methods, but GWR shows low values for
the same period. The differences between the GWR and RF
methods come from the distribution of sample points. In Re-
gion 10, most EPA stations are located in Washington, mean-
ing pollution increases there strongly influence the regional
mean PM2.5 when using RF. Conversely, GWR sometimes
captures variations in other areas, even when station coverage
is sparse. RF is more sensitive to the spatial distribution of
ground stations, with its regional mean values closely align-
ing with EPA station trends. In contrast, GWR is more effec-
tive at detecting PM2.5 variations in areas with limited station
coverage. An even distribution of samples could significantly
improve estimation accuracy for both methods. Given the ob-
served pollution trends across these highly affected regions,
GWR was selected to estimate surface PM2.5 in this study.

Our GWR daily mean estimation of surface PM2.5 during
the 17 d wildfire event for each EPA region ranges from 3.1 to
60.2 µgm−3 (shown in Table 2). The mean surface pollution
is highest in Region 10, while it is lowest in Region 1, which
is comparable with the previous study (Xue et al., 2021).

5.6 Pollution change due to long-range transported
smoke from Canada

Using coefficients derived from simulated PM2.5 in control
and experiment scenarios, we estimated the PM2.5 increase
attributed to Canadian wildfires. Table 3 presents the daily
mean PM2.5 increase across different EPA regions. The re-
gional mean PM2.5 increase reached up to 28 µgm−3, with
Canadian wildfire smoke contributing as much as 87.8 % of
total PM2.5. Region 10 experienced the highest impact, while
Region 1 was the least affected. Notably, on some days, the
contribution of Canadian wildfire smoke to total PM2.5 in
the northeastern US (Region 1, 2, and 3) exceeded that in
the northwestern US (Region 8 and 10). The contribution of
wildfire smoke to total PM2.5 closely followed wildfire ac-
tivity patterns; however, due to transport distances, it often
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Figure 9. AOD distribution from (a) MAIAC, (b) the Kriging method, and (c) CTM-filled AOD on 13 August 2018.

Figure 10. Fitting and 100-fold cross-validation results for the GWR method (units: µgm−3).

took time for smoke to travel from Region 10 to Region 1.
As a result, during some wildfire episodes, PM2.5 changes in
eastern CONUS lagged behind those in western CONUS by
a day.

Due to the Clean Air Act (CAA), the overall trend of sur-
face PM2.5 in the recent years has been one of gradual de-
crease (Fig. S1 in the Supplement). The decreasing trend is
evident in August mean PM2.5 calculated from EPA surface
observations from EPA Region 1 to Region 7, but variations
in PM2.5 in Region 8–10 are more affected by the occur-
rence of wildfires. For years with low wildfire occurrences
(FRP< 10000 MJ), August surface PM2.5 shows a steady
pattern in Region 8 and Region 10 without any apparent ris-
ing or dropping. PM2.5 in Region 9 shows a descending pat-
tern in August in years without large fires, while it can reach

up to 3 times more of the baseline in wildfire years. For Re-
gion 1–7, August mean PM2.5 concentrations decrease about
5 %–10 % each year in different regions. Compared with Ta-
ble S1 in the Supplement, the 17 d investigation highlights
how long-range transported smoke from Canada temporar-
ily offsets the descending trend in surface PM2.5 during the
study period. For Region 8–10, wildfires (including contribu-
tions from both local and remote fires) increase the August
mean surface PM2.5 by 0 %–98 %. While this study focuses
on a short-term event, it demonstrates the significant seasonal
impact of Canadian smoke on air quality, emphasizing the
need for multi-year investigations to assess long-term trends
in Canadian smoke contributions.

In conclusion, due to the concurrent local and remote wild-
fires, the long-range transport smoke contributed to about

https://doi.org/10.5194/acp-25-5497-2025 Atmos. Chem. Phys., 25, 5497–5517, 2025



5510 Z. Xue et al.: An investigation of the impact of Canadian wildfires

Table 2. Mean PM2.5 concentrations (µgm−3) over different EPA regions (1–10) estimated using the GWR method.

Date Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 Region 9 Region 10

10 August 6.9 7.5 7.4 7.5 9.1 10.6 8.5 15.4 27.0 28.4
11 August 10.5 11.7 13.3 9.7 10.3 9.1 9.8 15.9 12.4 22.1
12 August 5.1 5.8 6.9 6.8 12.8 8.9 11.0 15.0 13.0 26.9
13 August 6.2 5.9 5.8 7.1 12.7 10.6 15.3 32.4 14.7 46.4
14 August 6.3 5.9 6.5 6.6 12.8 10.7 14.8 16.6 13.3 60.2
15 August 5.9 5.7 5.9 7.0 11.4 11.1 16.6 14.0 20.0 44.3
16 August 3.1 6.4 8.8 10.1 11.2 11.3 16.1 14.3 15.0 40.6
17 August 5.5 6.9 8.9 12.8 12.7 10.2 15.3 19.4 13.4 34.9
18 August 11.3 11.6 9.6 13.2 9.1 11.5 16.6 22.5 15.5 29.9
19 August 14.5 12.2 10.9 13.2 13.4 11.3 15.4 19.0 15.4 20.5
20 August 7.1 8.3 8.3 7.5 11.9 10.2 9.4 20.6 26.4 30.9
21 August 6.9 8.7 9.8 9.3 14.1 12.2 13.0 17.2 19.6 24.9
22 August 5.1 6.4 8.3 9.0 16.2 12.4 15.1 16.1 16.9 18.0
23 August 5.3 5.5 8.2 10.3 15.9 13.9 14.9 16.5 13.5 14.6
24 August 6.0 6.0 7.0 10.9 15.5 14.8 13.5 18.5 14.1 25.8
25 August 5.3 6.6 8.1 12.1 15.1 13.5 13.9 17.5 13.9 32.9
26 August 7.8 13.0 13.4 14.5 13.9 13.5 12.4 15.6 12.6 35.4

Table 3. Percentage increase in PM2.5 concentrations (%) due to Canadian wildfires over different EPA regions (1–10) estimated using the
GWR method.

Date Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 Region 9 Region 10

10 August 34.3 39.1 39.1 43.9 59.9 64.3 63.7 48.6 26.2 18.1
11 August 8.5 15.8 16.7 19.4 0 26.1 17.1 32.2 33.5 36.8
12 August 0 0.1 0.5 6.7 21.0 28.8 26.1 8.6 13.6 4.2
13 August 1.7 6.0 8.5 7.7 17.6 4.1 0 0 0 8.9
14 August 1.0 0.7 0 0 5.0 1.7 3.0 3.5 1.7 1.2
15 August 4.9 −0.6 −6.9 −2.5 −2.1 0.1 1.4 12.4 16.1 24.3
16 August 48.8 40.6 41.9 51.6 67.2 62.9 67.2 74.1 67.0 69.0
17 August 65.0 68.4 74.3 77.7 81.5 71.6 77.6 64.3 53.9 54.8
18 August 62.8 60.9 61.0 66.6 69.7 67.3 68.7 51.9 50.3 54.3
19 August 57.1 59.6 62.9 64.0 66.7 66.3 66.9 63.9 58.9 67.5
20 August 13.0 23.0 24.1 24.1 18.9 33.3 17.2 18.1 35.0 23.5
21 August 23.6 19.9 26.3 26.7 26.3 14.8 25.5 22.1 11.2 16.9
22 August 52.6 60.2 64.3 69.1 59.1 73.5 69.2 46.0 63.9 22.3
23 August 62.0 63.6 75.6 80.1 87.4 85.6 86.6 87.8 85.2 86.3
24 August 66.4 69.5 71.9 79.1 69.6 76.1 67.8 75.1 73.7 85.0
25 August 55.4 56.2 54.6 53.9 56.4 62.5 53.3 62.3 68.5 65.5
26 August 52.3 51.6 59.5 67.3 49.2 67.6 59.6 51.5 66.1 52.3

half of the surface pollution increase in EPA Region 8, 9, and
10. For other EPA regions, Canadian smoke compensated the
CAA, causing surface pollution to rise.

5.7 Uncertainties and limitations

The main uncertainties and limitations of this study come
from the CTM model and various inputs of the model, and
the surface pollution estimation model also leads to some un-
certainties.

1. Since satellite fire detection is affected by various fac-
tors, including cloud cover, fire sizes, and the back-

ground environment, emission inputs for the WRF-
Chem simulations derived from the fire detection prod-
ucts introduce uncertainties into our simulations and
create regional biases in the simulated AOD values.

2. In addition to the fire detection biases, assumptions
made in computing fire emissions also cause the follow-
ing uncertainties that affect the simulations: (a) fire sizes
and duration, (b) amount and distribution of biomass
fuels, and (c) fraction of different emissions from the
biomass fuel (Soares et al., 2015). These factors may
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Figure 11. Comparison between WRF-Chem-simulated PM2.5 and
EPA ground-based PM2.5 measurements (units: µgm−3).

influence the mass concentration and distribution of
smoke aerosols.

3. Uncertainties in the injection height of smoke plumes in
WRF-Chem can impact simulation accuracy. Biases in
injection height influence horizontal transport speed, di-
rection, and pollution residence time, potentially intro-
ducing errors in the AOD gap-filling process. Moreover,
uncertainties in the vertical distribution of aerosols can
affect the AOD–PM2.5 relationship, with variations in
plume height between monitors leading to inaccuracies
in estimated surface PM2.5 concentrations.

4. The unevenly distributed EPA stations primarily affect
the performance of the two PM2.5 estimation models,
causing completely different daily variation trends of re-
gional mean PM2.5. Therefore, the model performance
may be improved if we use more EPA stations (we use
FRM monitors only in this study).

5. Since we need the relationships between satellite AOD
and CTM AOD to calculate the filled AOD values, the
filling values cannot be derived if the area of missing
satellite AOD is larger than the radius thresholds we set
for deriving the relationships. For days with large areas
of missing satellite AOD in the boundary region of our
study region, we sometimes have missing AOD values
at the boundary. This can be improved by increasing the
radius thresholds or the study region to leave space for
the boundaries.

6 Conclusions

This study first analyzed the influence of different physical
processes on the transport of long-range transported smoke
aerosols by comparing two WRF-Chem simulations with and
without Canadian wildfires. Then we utilized the simulated

AOD from CTM and Kriging interpolation with a geograph-
ically weighted method to fill in the daily AOD retrieval gaps
caused by cloud cover. Then we estimated the surface PM2.5
concentration using the GWR and RF methods and tested the
two predictions using cross-validation and trend analysis to
choose the better-performing method. Finally, by turning off
the Canadian wildfire emissions in the CTM simulations, we
calculated the surface PM2.5 concentrations from the CTM
AOD outputs using the coefficients derived from previous es-
timations. The differences in PM2.5 of the two estimations in-
dicated the change brought by long-range transported smoke
from Canadian wildfires. The main findings of our study are
the following:

1. Synoptic-scale pressure systems are the dominant
drivers of horizontal pollution transport pathways. In
the meantime, the pressure systems can also affect the
vertical distribution due to ascending or descending
smoke. Under most circumstances, the subsidence flow
of high-pressure systems facilitates the drifting process
of elevated smoke layers and thus increases surface pol-
lution. In contrast, the cyclonic storm system leads to a
longer transport path (further south of CONUS in this
study) and directs the elevated smoke to the ground
in different directions. Therefore, the co-occurrence of
low-pressure systems and smoke aerosols corresponds
to larger pollution areas.

Certain weather patterns can facilitate the dispersion of
smoke; hence, during severe wildfire events, it becomes
crucial to closely monitor the meteorological conditions
and alert the public about the potential risks of dete-
riorating air quality, even if the fires are hundreds of
miles away. Furthermore, when conducting prescribed
fire burning, it is essential to take into account the pos-
sibility of smoke being transported to densely popu-
lated areas. In other words, proper consideration of the
weather conditions and potential wind patterns is crucial
to minimizing the impact on nearby populations.

2. Daily AOD coverage combining the Aqua and Terra
MODIS satellites range from 46 % to 68 % during our
study period, and our filled AOD values using CTM
AOD outputs are able to fill in the missing gaps.

3. Daily PM2.5 estimations using the filled AOD product
with other meteorological data using the GWR method
(R = 0.8) perform better than the RF model (R = 0.76),
and the RF model captures the daily variations in differ-
ent EPA regions calculated from EPA stations.

4. The regional mean increase in surface PM2.5 concentra-
tions that came from Canadian wildfire smoke ranges
up to 28 µgm−3 (a 69 % increase), and EPA Region 10
is most affected by Canadian fires, while Region 1 is
the least affected. The PM2.5 change pattern in eastern
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Figure 12. Fitting and 100-fold cross-validation results for the RF method (units: µgm−3).

Figure 13. Mean PM2.5 concentration variations over the top three polluted areas: (a) EPA Region 8, (b) EPA Region 9, and (c) EPA
Region 10. (d) EPA region map.

Atmos. Chem. Phys., 25, 5497–5517, 2025 https://doi.org/10.5194/acp-25-5497-2025



Z. Xue et al.: An investigation of the impact of Canadian wildfires 5513

CONUS often lags behind that in western CONUS by a
day.

Our study found that the presence of synoptic-scale pres-
sure systems leads to a higher proportion of the CONUS re-
gion being affected by long-range transported smoke from
Canada. Typical airflow patterns that are associated with ex-
tratropical cyclones are particularly effective at transporting
elevated layers of smoke to the surface and fanning the as-
sociated particulate pollution over large areas. Such trans-
port pathways associated with extratropical cyclones need to
be considered when forecasting the effects of smoke pollu-
tion from Canadian wildfires on vulnerable populations in
the CONUS region. Our study highlights the significant con-
tribution of wildfires to particulate pollution during the study
period, aligning with prior research that suggests wildfires
are becoming an increasingly important source of particu-
late pollution as industrial pollution declines due to stringent
regulations (Xue et al., 2021). However, further multi-year
investigations are needed to robustly confirm this trend on a
broader temporal scale.

Code availability. The WRF-Chem model version 4.2.2 is
available at https://github.com/wrf-model/WRF/tree/release-v4.2.
2/.github (Skamarock et al., 2019). Newer versions of WRF-Chem
are available at https://github.com/wrf-model/WRF (Skamarock
et al., 2019). The fire inventory from NCAR is available at https://
www2.acom.ucar.edu/modeling/finn-fire-inventory-ncar (Wiedin-
myer et al., 2011).

Data availability. Ground-level PM2.5 observations were
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(https://www.epa.gov/outdoor-air-quality-data/, US Environ-
mental Protection Agency, 2025). Satellite AOD data from
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