

Supplement of

Underappreciated contributions of biogenic volatile organic compounds from urban green spaces to ozone pollution

Haofan Wang et al.

Correspondence to: Yiming Liu (liuym88@mail.sysu.edu.cn) and Qi Fan (eesfq@mail.sysu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

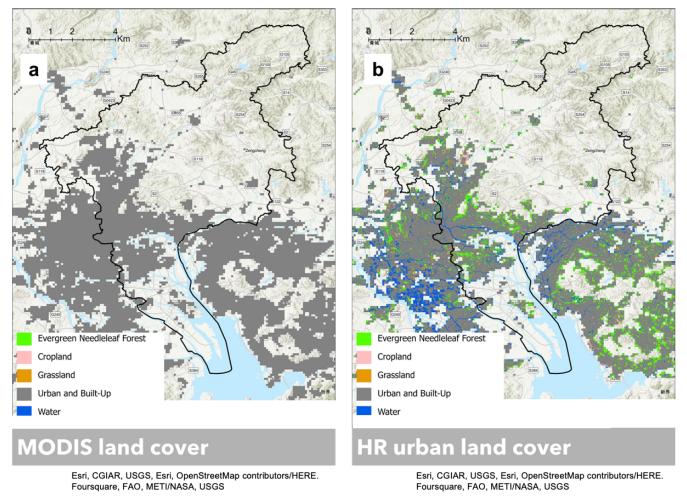


Figure S1 The processed land cover dataset. (a) is the MODIS land cover without UGS and (b) has characterized the UGS base on MODIS land cover.

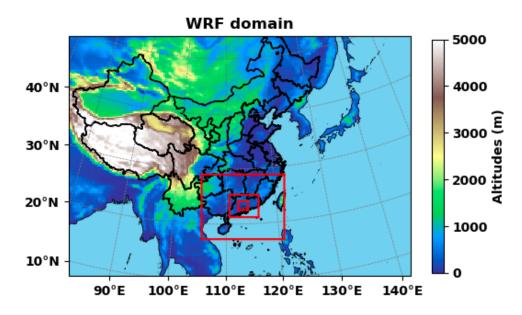


Figure S2 WRF domain nested map with topography.

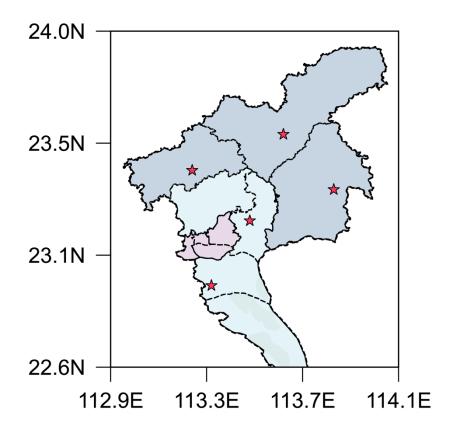


Figure S3 The meteorological station map and various areas.

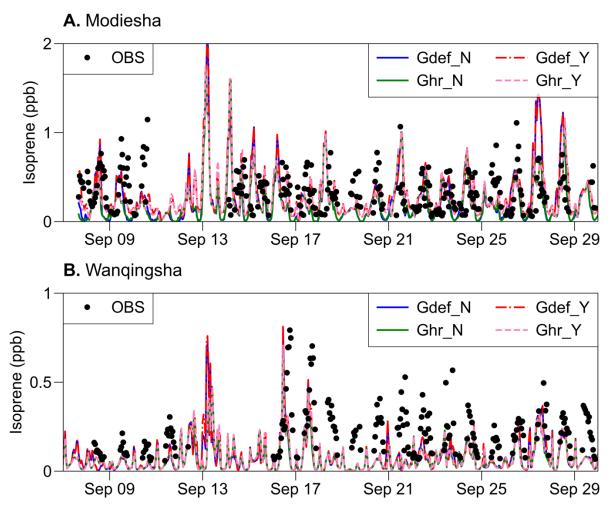


Figure S4 The hourly variations of observed and simulated ISOP concentrations for different cases at Modiesha (a) and Wanqingsha (b) sites during September 2017.

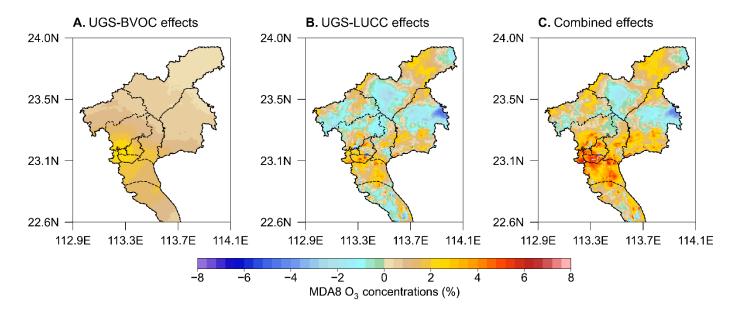


Figure S5 The map of UGS-BVOC effects (a), LUCC effects (b), and combined effects (c) in MDA8 O₃. Each map shows the difference in average MDA8 O₃ concentrations for each experimental case (Gdef_Y, Ghr_N, and Ghr_Y) relative to the Gdef_N case over the analysis periods (1 September 2017 to 30 September 2017).

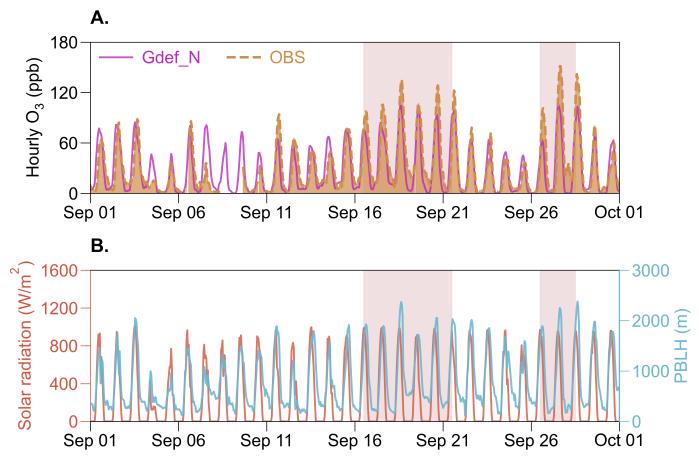


Figure S6 The comparison between the average hourly O3 values from simulation and observation (A). And the relative grid average values of solar radiation and PBLH (B).

Table S1 the physical parameterization	s employed within the WRF.
--	----------------------------

Model attribution	Configuration
Microphysics	Purdue Lin (Chen and Sun, 2002)
PBL physics scheme	MYJ (Janjić, 1994)
Shortwave radiation	Goddard (Chou et al., 2001)
Longwave radiation	Rapid Radiative Transfer Model (RRTM) (Mlawer et al., 1997)
Land surface model	Noah land surface model (LSM) (Ek et al., 2003)
Urban scheme	Single-layer urban canopy model (UCM) (Kusaka and Kimura, 2004)

Table S2 The metrics of meteorological parameters.

	Default land use cover datasets			High-resolution land use cover datasets				
	NME	NMB	MB	R	NME	NMB	MB	R
Temperature (K)	3.15%	2.89%	0.76	0.82	3.15%	2.88%	0.75	0.83
Relative humid (%)	13.01%	-12.88%	-10.36	0.74	13.01%	-12.76%	-10.31	0.77
Wind speed (m/s)	21.43%	9.30%	0.21	0.63	20.39%	9.22%	0.19	0.65

R

$$\frac{\sum_{i=1}^{n} (M_{i} - \bar{M}_{i}) (o_{i} - \bar{O}_{i})}{\sqrt{\sum_{i=1}^{n} (M_{i} - \bar{M}_{i})^{2}} \sqrt{\sum_{i=1}^{n} (O_{i} - \bar{O}_{i})^{2}}}$$
NMB

$$\frac{\sum_{i=1}^{n} (M_{i} - O_{i})}{\sum_{i=1}^{n} O_{i}}$$
NME

$$\frac{\sum_{i=1}^{n} |M_{i} - O_{i}|}{\sum_{i=1}^{n} O_{i}}$$
MB

$$\frac{\sum_{i=1}^{n} (M_{i} - O_{i})}{\sum_{i=1}^{n} O_{i}}$$

nWhere M_i and O_i are the simulated and observed data, respectively. \bar{M}_i and \bar{O} are the average of the simulated and observed data, respectively. n is the number of samples.

Table S4 The estimate of the UGS-BVOC emission in Guangzhou city based on high-resolution land use cover (units: Gg)

Species	Abbreviations	Urban (Gg)	Suburban (Gg)	Rural (Gg)	Total (Gg)
Acetic acid	AACD	0.88	2.43	1.18	4.49
Acetaldehyde	ALD2	3.48	11.57	5.86	20.91
Formaldehyde	FORM	0.94	3.90	2.18	7.02
Methanol	MEOH	12.54	41.36	20.46	74.36
Formic acid	FACD	2.81	7.83	3.80	14.44
Ethane	ETHA	2.14	8.40	4.65	15.19
Ethanol	ETOH	3.64	12.13	6.13	21.90
Acetone	ACET	6.22	21.47	11.66	39.35
Propane	PRPA	2.08	8.19	4.55	14.82
Ethene	ETH	3.95	15.60	8.67	28.22
Isoprene	ISOP	47.57	117.00	48.10	212.67
Monoterpenes	TERP	24.11	74.48	37.59	136.18
Alpha pinene	APIN	11.30	29.97	13.18	54.45
Methane	ECH4	0.04	0.14	0.08	0.26
Sesquiterpenes	SESQ	4.31	11.88	5.95	22.14
Total	Total	126.01	366.35	174.04	666.40