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Abstract. This paper outlines a comprehensive trend assessment of surface ozone observations across the con-
terminous USA over 1990–2023. A change point detection algorithm is applied to evaluate seasonal trends at
various percentiles. We found that highly consistent and robust negative trends in extreme values have occurred
in spring, summer, and fall since the 2000s across the eastern USA. A less strong but similar picture is found in
the western USA, while increasing winter trends are commonly observed in the Southwestern and Midwestern
regions of the country. The impact of a potential climate penalty that might offset some of the improvement
in the ozone extremes is also investigated based on various heat wave metrics. By comparing ozone threshold
exceedances, we found that the exceedance probabilities during heat waves are higher than those under normal
conditions; moreover, the differences have decreased over time, as the effectiveness of emission controls has
led to a great reduction in ozone extremes under both heat wave and normal conditions. When the increasing
heat wave trends are accounted for, we find evidence that decreases in exceedances during heat waves have
likely halted at 20 %–40 % of sites, depending on heat wave definitions. By identifying monitoring sites with
(1) reliably decreasing ozone exceedances and (2) reliably increasing co-occurrences of ozone exceedances and
heat wave events, we can show that several sites in California have been impacted by the ozone climate penalty
(1995–2022). These findings are limited by the availability of long-term continuous ozone records, which are
sparsely distributed across the USA and typically less than 30 years in length.

1 Introduction

Surface ozone is an air pollutant that is detrimental to hu-
man health (Fleming et al., 2018) and crop production (Mills
et al., 2018); it is also an important greenhouse gas (Gaudel
et al., 2018). The United States (US) Clean Air Act of 1970
requires the US Environmental Protection Agency (EPA) to
set National Ambient Air Quality Standards (NAAQS) for
ozone. The standards have been reviewed and updated reg-
ularly to protect the public health and welfare. The current
primary standard established in 2015 and reviewed in 2020
is 70 ppbv for the fourth-highest daily maximum 8 h ozone
average (MDA8) value, averaged over 3 consecutive years
(US EPA, 2020b).

The EPA Air Quality System (AQS) monitoring network
provides extensive long-term surface observations of air pol-
lutants and meteorology (US EPA, 2024a). These data have
been constantly studied to quantify the impacts of air pol-
lution on air quality metrics, human health, and vegetation,
and the data are also relevant to climate assessments (Cooper
et al., 2014; Simon et al., 2015; Fleming et al., 2018; Jaffe
et al., 2018; US EPA, 2020a; Wells et al., 2021). This dataset
is also an important source for evaluating chemistry–climate
models and satellites (Rasmussen et al., 2012; Fiore et al.,
2014; Zoogman et al., 2014). Several studies have reported a
reduction in surface ozone across much of the USA since the
early 2000s in response to ozone precursor emission controls
(Cooper et al., 2012; Simon et al., 2015; Strode et al., 2015;
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Seltzer et al., 2020), in which the decreases in the eastern
USA are often clearly demonstrated (Chang et al., 2017; Lin
et al., 2017). Ozone across the western USA is more chal-
lenging to quantify on a regional scale due to the complex ter-
rain, relatively sparse monitors, and impacts from wildfires
and oil and gas emissions (Edwards et al., 2014; Lu et al.,
2016; McDuffie et al., 2016; Parks and Abatzoglou, 2020;
Francoeur et al., 2021; Buchholz et al., 2022; Langford et al.,
2023; Peischl et al., 2023; Putero et al., 2023; Byrne et al.,
2024; Marsavin et al., 2024; Sorooshian et al., 2024), but
overall decreasing trends can be detected across the South-
western USA (Chang et al., 2021) and at high-elevation rural
sites (Chang et al., 2023a).

In terms of statistical modeling, tropospheric ozone vari-
ability is inherently heterogeneous in space and time. Re-
gional trend detection of surface ozone is also complicated
by the irregular distribution of monitoring sites, different
lengths of site records, and varying spatial coverage over
time (see Fig. 1 for surface ozone data availability). In the
first phase of the Tropospheric Ozone Assessment Report
(TOAR), a regional trend assessment for the eastern USA
was conducted within the framework of the generalized ad-
ditive mixed models (GAMMs) and focused on the summer-
time period (April–September) over the span from 2000 to
2014 (Chang et al., 2017). In this study, we present an exten-
sive long-term seasonal trend assessment of surface ozone
observations over the period from 1990 to 2023 and aim to
tackle additional challenges, including (1) greater attention
to the trends in ozone extremes, such as the extreme per-
centiles and threshold exceedances, and (2) evaluation of po-
tential change points in long-term trends. Both challenges are
addressed at local (individual sites) and regional scales.

While anthropogenic emission controls lead to decreasing
average and extreme ozone levels, outstanding concerns re-
main, such as the contributions of heat waves and wildfires
to ozone production (Jing et al., 2017; Lin et al., 2017; Lang-
ford et al., 2023; WMO, 2023; Cooper et al., 2024). The
Intergovernmental Panel on Climate Change (IPCC) Sixth
Assessment Report concluded that it is virtually certain that
the frequency and intensity of hot extremes and the inten-
sity and duration of heat waves have increased since 1950
and will continue to increase as the planet warms (Arias
et al., 2021). Heat waves provide ideal conditions for the
photochemical production of ozone due to sunny skies, low
wind speeds, and a capped boundary layer height. Although
the co-occurrence of heat waves and ozone extremes has
been identified previously (Schnell and Prather, 2017), its co-
variability is difficult to explicitly quantify, particularly when
coupled with rapid emission reductions. The deterioration of
ozone air quality due to increasing temperatures caused by
climate change is known as the “climate penalty” (Wu et al.,
2008; Zanis et al., 2022). Projections of climate change over
the 21st century suggest that a clear ozone climate penalty
(annual average ozone increases of 1–3 ppbv) could emerge
in high-emission regions, such as northern India and east-

ern China, in association with large temperature increases
(3 °C above 1850–1900 temperatures) and on timescales of
more than 40 years (Zanis et al., 2022; WMO, 2022). A
final objective of our analysis is to determine if any long-
term ozone monitoring sites in the USA show evidence of a
climate penalty over the relatively short timescale of 1995–
2022. Recognizing that detection of a climate penalty could
require relatively large temperature increases, we focus on
heat wave conditions during the warmest months of the year
(May–September). We aim to quantify the heat wave impact
on ozone variability by comparing ozone exceedance trends
between heat wave and normal conditions, using rigorous
and widely adopted heat wave metrics (Perkins et al., 2012;
Perkins and Alexander, 2013).

The trend detection framework of seasonal ozone per-
centiles and exceedances is described in Sect. 2. We quantify
surface ozone trends at individual stations and the overall re-
gional trends across the western and eastern USA over the
period from 1990 to 2023 in Sect. 3. After the current status
of ozone trends and variability are better understood, we fur-
ther discuss the potential climate penalty for ozone extreme
events in Sect. 4, i.e., the heat wave impact on short-term
ozone variability and long-term exceedance trends. Conclu-
sions are presented in Sect. 5.

2 Data and methods

Because of differences in the sensitivity of ozone to precursor
emissions, different monitoring sites might respond dissimi-
larly, in terms of the latency and magnitude of trend changes
at different percentiles and seasons (Box and Tiao, 1975). As
the presence of a trend change is suspected but its juncture
is unknown, additional care needs to be taken. In this sec-
tion, we introduce the metrics for studying extreme ozone
events, discuss the rationale for change point detection, de-
scribe the statistical methods for detecting trends at individ-
ual sites, and provide further considerations for deriving rep-
resentative regional trends.

2.1 Ozone and heat wave metrics

Two types of extreme data are typically present in statistics:
block maxima and threshold exceedances. The block maxima
approach, which is not based on a particular standard, origi-
nally focuses on the maximum value at each time interval (a
block indicates a selected time unit, e.g., a time series of sea-
sonal ozone maximum values; Smith, 1989). As the concept
of extreme percentiles (e.g., 90th) is closely related to the
block maxima, to avoid confusion and to represent a wider
range of extreme events, we use the term block extremes here-
after. Threshold exceedances, also known as the “peak over
threshold”, make a binary classification of data into relevant
(events occur) and irrelevant (events do not occur) categories.

In this study, all of the ozone analyses are based on daily
maximum 8 h average (MDA8) values available from the US
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Figure 1. The upper panel shows the data availability of the EPA AQS surface ozone observations over 1990–2023; a total of 2540 sites are
shown. The lower panel shows MDA8 time series at the seasonal 90th percentile: observations from individual stations are shown in gray;
simple averages are shown in purple.

EPA AQS network (US EPA, 2024a). It should be noted that
TOAR uses the mole fraction of ozone in air (nmolmol−1)
to describe the mixing ratio of an ozone observation. In
contrast, in order to maintain consistency with the human
health research community, the units of parts per billion by
volume (ppbv) are used to report MDA8, as recommended
by the TOAR guidelines. The particular ozone metrics for

block extremes are the 10th and 90th percentiles of MDA8
in each season (in addition to the seasonal medians); for
threshold exceedances, the ozone metrics are the number of
days per summertime period in which the MDA8 value ex-
ceeds various thresholds, mainly limited to the period be-
tween May and September (as we aim to compare the ozone
exceedances between heat wave and normal conditions). In
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addition to a threshold of 70 ppbv for the US EPA NAAQS,
we also report the threshold exceedances based on 60 and
50 ppbv (commonly used to represent non-attainment oc-
currences for some air quality standards adopted globally;
WHO, 2006; European Commission, 2015; US Federal Reg-
ister, 2015) and on 35 ppbv (recommended by the World
Health Organization to assess ozone health impacts; WHO,
2013). Note that the statistical characteristics are different for
percentile data (continuous variable) and exceedance days
(count variable), so different statistical methods are required
(see Sect. 2.3).

To present the actual extreme ozone variability, the lower
panel of Fig. 1 shows the seasonal 90th percentile time
series from individual stations in the western and eastern
USA (based on the 100° W boundary). While ozone has
generally decreased over the period from 1990 to 2023 in
MAM (March–April–May), JJA (June–July–August), and
SON (September–October–November), we can see tumul-
tuous variability within regions and differences between re-
gions. For example, reductions in ozone extremes are obvi-
ous in the eastern USA, where exceedances of 70 ppbv were
commonly observed before the early 2000s but became in-
frequent after 2013. In contrast, in the western USA, strong
ozone extremes have been common in recent years, and
ozone exceedances can also be observed in DJF (December–
January–February), mainly in the snow-covered oil and gas
basin of northeastern Utah (Fig. S1 in the Supplement) (Ed-
wards et al., 2014). These features are expected to be the
key factors to determine the resulting trends and uncertainty.
Nevertheless, this is merely one aspect of the complexity,
and full demonstrations of heterogeneous ozone variability
for other percentiles (10th and 50th) are provided in Figs. A1
and A2. These demonstrations clearly indicate that summa-
rizing multiple aspects of ozone variability is essential for
delivering a comprehensive trend assessment.

The NOAA Physical Sciences Laboratory (PSL) and Cli-
mate Prediction Center’s global unified temperature dataset
(NOAA PSL, 2024) provides gridded daily temperatures at a
0.5°× 0.5° resolution. These gridded temperatures are inter-
polated to all the ozone monitor locations (interpolation de-
tails are provided in Sect. 2.4) and are used to determine heat
wave events at each location. The heat wave metrics used in
this study are adopted from well-established heat wave re-
search literature (Perkins and Alexander, 2013; Mazdiyasni
and AghaKouchak, 2015; Domeisen et al., 2023). Firstly,
given daily maximum (Tmax) and minimum (Tmin) temper-
atures, the following temperature thresholds are considered:

1. TX90pct. This threshold is the 90th percentile of a 15 d
moving window of Tmax (centered at each calendar
day); each calendar day has a different percentile value
(analogous to the seasonal climatology). This is the con-
stant temperature baseline at each grid cell or monitor-
ing location, against which heat wave events (i.e., tem-
perature exceedances) are defined.

2. TX95pct. TX95pct is the same as TX90pct but based on
the 95th percentile.

3. TX35deg. This is a fixed threshold at 35 °C for Tmax.

4. TN90pct. TN90pct is the same as TX90pct but based
on Tmin.

5. TN95pct. TN90pct is the same as TN90pct but based on
the 95th percentile.

6. TN20deg. This is a fixed threshold at 20 °C for Tmin.

For each temperature threshold described above, a heat
wave event is detected if at least 3 consecutive days of cor-
responding exceedances are found. Thus, a total of six heat
wave metrics are considered based on long-term temperature
data. A longer period of gridded temperature data (1990–
2022) is used to better determine the temperature percentiles.
While both Tmax and Tmin are important indicators to identify
potential heat waves (Perkins and Alexander, 2013), there is
a lack of previous studies addressing the sensitivity of MDA8
exceedance trends based on different heat wave definitions.
Although we would expect that a higher Tmax is typically bet-
ter correlated with ozone extremes (Porter et al., 2015; Wells
et al., 2021), a high temperature threshold might prevent us
from having sufficient sample sizes for valid statistical anal-
ysis. Therefore, (i) TX35deg represents a fixed threshold, but
this threshold is considerably too high for middle- and high-
latitude sites; (ii) TX95pct and TX90pct enable sufficient ob-
servations for studying heat waves, as these thresholds are
site-specific; and (iii) TX95pct provides a warmer condition
than TX90pct for ozone production and can be considered to
be a trade-off between TX35deg and TX90pct. In summary,
albeit with a much smaller number of sites that can quantify
the TX35deg condition, our results show a general similar-
ity between different metrics (see Sect. 4 for more in-depth
discussions).

In order to investigate the heat wave impact on instan-
taneous ozone variability, two (short-term) statistics during
heat waves are considered for each site: (1) ozone enhance-
ment (in units of parts per billion by volume, ppbv), which
is a simple MDA8 mean difference between heat wave and
normal conditions, based on deseasonalized anomalies; and
(2) ozone accumulation rate (in units of parts per billion by
volume per day, ppbvd−1), which is designed to quantify the
daily rate of ozone change (if any) throughout the durations
of the heat wave. The accumulation rate is our quantity of
interest, because it indicates if a longer heat wave produces
higher ozone concentrations. It should be noted that the ini-
tial ozone conditions are different for each heat wave event,
so it is necessary to adjust the ozone initial level between dif-
ferent events. This approach is also known as the random in-
tercept model (i.e., intercepts vary for each heat wave event,
but the slope or accumulation rate is invariant). Statistically,
let mij be the MDA8 value and hij be the corresponding
temporal index at the ith day from the j th heat wave event
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at a given site; the model can then be expressed as follows:
mij = (a+ uj )+ bhij + residuals, where a is the overall in-
tercept, uj is the adjustment of the initial condition for the
j th heat wave event, and b is the daily accumulation rate dur-
ing the heat wave. This model is similar to trend analysis but
aligned to heat wave periods over several days (invariant to
different time periods).

2.2 Change point detection applied to a large database
of ozone time series: practical considerations

Many change point detection methods have been developed
to evaluate optimized change point(s) and to model the non-
linear trends parametrically (see reviews by Reeves et al.,
2007, and Lund et al., 2023, and comparisons by Chen et al.,
2011, and Shi et al., 2022). While those methods are practi-
cal, a visual diagnosis of the time series plot is often required
to validate the reliability and to avoid false positives. There-
fore, an anticipated challenge for our study is that the dataset
contains so many monitoring stations that it becomes imprac-
tical to inspect the diagnostic plot for each individual time
series (Fig. 1). As it has become normal to deal with a large
number of time series data for scientific assessments (Chang
et al., 2021), we discuss the practical considerations relevant
to the change point analysis of atmospheric composition data
tailored to large surface ozone monitoring networks.

The scope of our change point analysis focuses on the
change in long-term trends (e.g., the presence of turnaround
or flattened trends). Addressing data shifts due to instrumen-
tation changes is beyond the scope of our analysis. While
instrumental issues might have an impact at individual sites,
they should not produce regional patterns. Practical consid-
erations for our surface ozone analysis include the following:

– As the trend change is our primary concern, all of
the necessary considerations relevant to trend detection
(e.g., autocorrelation and heteroscedasticity) shall be
accounted for (Chang et al., 2021; Lund et al., 2023).

– At least a few decades of observations are typically re-
quired to reliably determine long-term trends (presum-
ably over 20 or 30 years) (Weatherhead et al., 1998;
Chang et al., 2024). We aim to avoid assigning change
point(s) to short-term variability, as ozone is tempo-
rally variable and atmospheric circulations could induce
multiyear fluctuations (Cooper et al., 2020; Fiore et al.,
2022). Given that the longest record in this study is
34 years (1990–2023), to make sure that the change
point is evaluated only through long-term changes and
not induced by multiyear fluctuations or abrupt vari-
ability near the beginning or end of the time series, we
mainly consider one change point in our analysis and as-
sume the minimal segment of trends is at least 10 years,
which is a useful benchmark for ensuring a sufficient
data length for trend estimation before and after the
change point. However, the possibility of incorporating

two change points will be evaluated if the junctures oc-
cur separately at around 2000 and 2010.

– Change point detection algorithms are typically imple-
mented by fitting the proposed model to all possible
candidates, and then the best model (assessed by the
maximization of trend change or the minimization of
fitted errors) indicates the optimized change point. Ob-
viously, the longer the time series, the larger the candi-
date pool. Nevertheless, as the specific annual or sea-
sonal percentiles are our primary concern, we only need
to consider possible candidates at the annual or seasonal
scale (i.e., there is no need to identify the change point
at an exact month).

– It should be noted that the impact of emission changes
may not be immediately apparent for ozone (Box and
Tiao, 1975). The time it takes to detect the impact of
regulation measures depends heavily on the sensitivity
of ozone to precursor emissions, the magnitude of ozone
interannual variability, and the effectiveness of the inter-
vention (local emission changes) at the given location.
Therefore, a delay period can be expected, particularly
if the magnitude of a trend change is weak compared to
the interannual variability.

Based on the above discussions, to allow a benchmark pe-
riod for identifying a change in trend (i.e., at least 10 years
of a persistent pattern) and to avoid assigning change points
near the beginning or end of the time series, we fit the trend
model to each tentative change point candidate (mainly one
or possibly two between 2000 and 2013) and then select
the best-fitted result from the candidate pool. Each station,
season, and percentile can have different change points (see
the next section for technical details). We emphasize that,
for the purpose of regional change point detection, a strong
turnaround of trends at any individual stations should not be
overly generalized as representative of regional variations;
rather, the justification for regional changes should be made
based on consistent patterns obtained by a large cluster of
stations. To evaluate the evidence for a regional trend and to
evaluate the agreement between time series, the terminology
provided in the guidance note on consistent treatment of un-
certainties in the IPCC Fifth Assessment Report is adopted
(Mastrandrea et al., 2010); details are provided in Sect. 3.1.

2.3 Percentile trend and change point detections for
station time series

The general trend detection model consists of several compo-
nents, such as seasonality, trend, and residuals (also known
as time series decomposition). As our focus is placed on spe-
cific annual or seasonal percentiles or threshold exceedances,
and trend detection for the time series from all months of the
year is not directly considered, seasonal adjustments are not
required. Note that meteorological variables are important to
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attribute ozone variability at a daily or monthly scale (Chang
et al., 2024), but they are not essential covariates for seasonal
or annual metrics, so meteorological adjustments are also not
considered. Instead, the temperature influence on ozone is in-
vestigated through the heat wave analysis in Sect. 4. Depend-
ing on the application, the trend component can be simply
estimated by a linear form (i.e., a constant rate of change per
unit), approximated by a combination of multiple linear seg-
ments (connected by change point(s)), or described by a com-
plex nonlinear form (i.e., to reflect small-scale fluctuations).
Even though nonlinear techniques can reveal the unique fea-
tures for individual time series, their complexities make it
difficult to summarize the results with a few representative
trend values, especially as we need to deal with thousands of
monitoring stations. Therefore, complex nonlinear trends are
not adopted, and we use piecewise trends to represent the ma-
jor change in long-term trends (if any). Different statistical
methods used to detect trends for percentiles and exceedance
days are described as follows:

– Quantile regression (Koenker, 2005; Koenker et al.,
2017) is applied to derive trends in percentiles. Given
a time series of observations yt , where t is the annual or
seasonal index and tc is the index for the change point
candidate, the statistical model can be expressed as

yt =


β0+β1t +Nt ,

if a linear trend over
the whole period is
considered,

β0+β1t +β2
×max(t − tc,0)
+Nt

,
if a piecewise trend
is considered.

(1)

Here, β0 is the intercept, β1 is the trend since the be-
ginning of the record, and β2 is the adjustment after
the change point tc occurred (i.e., the magnitude of the
trend change). Residual term Nt represents the remain-
ing variability, which is often autocorrelated and possi-
bly heteroscedastic. If we rewrite the residual compo-
nent in Eq. (1) as Nt = yt −β0−β1t+β2max(t− tc,0)
for the change point analysis, the quantile regression
finds the trend estimates through the minimization of
the residuals by the L1 optimization.

T∑
t :Nt≥0

q |Nt | +

T∑
t :Nt<0

(1− q) |Nt | , 0< q < 1 (2)

Changes in different percentiles can be investigated by
adjusting the quantity q (e.g., 0.5 represents the me-
dian and 0.9 represents the 90th percentile). This equa-
tion is a generalized form and typically more relevant to
daily observations, rather than monthly aggregated data.
For instance, the 90th percentile of daily observations
is more representative of the relevant extreme than the
90th percentile of monthly means. However, as the fo-
cus is already placed on specific percentile time series,

Eq. (2) can be simplified using a fixed q = 0.5, which
is also known as least absolute deviations or median re-
gression.

An empirical approach to understand the difference be-
tween conventional multiple linear regression (MLR,
i.e., a mean-based method) and median regression is
through the arguments between the RMSE (root-mean-
square error) and MAE (mean absolute error) (Willmott
and Matsuura, 2005; Chai and Draxler, 2014; Hodson,
2022). When comparing fitted residuals among all of
the techniques under the same trend model, MLR is de-
signed to produce the lowest RMSE and median regres-
sion is designed to produce the lowest MAE. Neither
method can have both the lowest RMSE and MAE, and
both methods have their advantages and disadvantages.
Nevertheless, in terms of trend detection, median re-
gression is less sensitive to outliers than MLR and, thus,
is expected to provide a more robust trend estimation.

For each station, season, and percentile, the trend model
is fitted to each tentative change point candidate be-
tween 2000 and 2013. We then select the one with the
lowest p value for the trend adjustment term β2 as our
final model (or equivalently, the greatest magnitude in
signal-to-noise ratio, or SNR, defined as the trend value
divided by its uncertainty).

– Logistic regression is applied to derive trends in thresh-
old exceedances. The Poisson or negative binomial re-
gression can also be used to model count time series
(Chang et al., 2017); however, the scope of our analy-
sis includes comparisons of exceedances between heat
wave and normal conditions. As the numbers of heat
wave and normal days vary in different years, their
exceedance days are not directly comparable. In or-
der to establish a common baseline, their exceedances
are compared based on the (conditional) probability of
an event that has occurred or not occurred. For May–
September in each year, three probabilities are defined
and calculated.

PE = P (exceedance)

=
number of exceedance days

number of daily observations
PH = P (heat wave)

=
number of heat wave days

number of daily observations
PE∩H = P (exceedance∩ heat wave)

=

number of exceedance and heat wave
co-occurrence days

number of daily observations
(3)
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Then, we can also calculate the conditional probabilities

PE|H = P (exceedance|heat wave)=
PE∩H

PH
and

PE|H = P (exceedance|normal)=
PE−PE∩H

1−PH
.

These probabilities can be interpreted as the likelihood
of an ozone exceedance that occurred under heat wave
or normal conditions, respectively. We can, thus, inves-
tigate the ozone climate penalty associated with heat
waves by comparing trends between PE|H and PE|H .
The statistical model for logistic regression can be ex-
pressed through the logit function g(·) as

g(P (t))= ln
(

P (t)
1−P (t)

)
= θ0+ θ1t,

where t is a temporal index and P (t) can be a time se-
ries of the conditional or unconditional probabilities dis-
cussed above. Note that the term θ1 cannot directly be
interpreted as the trend value (a change per time unit)
for exceedance probability, so the average marginal ef-
fect is used to represent the slope; i.e., the slope can
be represented by calculating the average of the deriva-
tives of the inverse logit function over each time unit t
(Kleiber and Zeileis, 2008).

It is important to point out that exceedance days or prob-
abilities are more sensitive to incomplete data, because ex-
ceedances can only be underestimated if missing values
are present, while the percentiles may sometimes hold to
a reasonable approximation under non-severe incomplete-
ness. Therefore, more detailed change point quantifications
are given to the percentiles (Sect. 3), and we only consider
linear trends for the exceedances in the heat wave analysis
(Sect. 4).

Presently, the standard libraries in Python and R for
the implementation of quantile and median regression are
designed for IID (independent and identically distributed)
or heteroscedastic cases, but autocorrelation is not explic-
itly considered. Although the Prais–Winsten and Cochrane–
Orcutt procedures (or prewhitening) have been applied to
median regression (Dielman, 2005), it can severely distort
the data structure in some cases (Razavi and Vogel, 2018).
Therefore the moving block bootstrap approach is adopted
for all trend estimates (including logistic regression) in this
study to account for autocorrelation and heteroscedasticity
(Fitzenberger, 1998; Lahiri, 2003). The implementation code
can be found in Chang et al. (2023b).

2.4 Percentile change point detection for the overall
regional trends

Spatial heterogeneity, resulting from inconsistent temporal
trends and variability at different locations, must be ac-
counted for when studying regional trends, which can be

dealt with through mapping irregularly distributed measure-
ment locations onto regular grids (see Chang et al., 2021, for
detailed discussions). In this study, the geostatistical mod-
eling is implemented via the framework of the generalized
additive models (GAMs; Wood, 2006). Geostatistical mod-
eling relies on certain flexible spatial correlation structures,
which are fitted through the observations and can then be
used to interpolate and predict values at unobserved loca-
tions. Such spatial interpolations might not always follow a
Gaussian process, so validations are needed, especially for
the extreme percentiles.

The class of generalized extreme value (GEV; Jenkinson,
1955) distributions was specifically proposed to model the
block maxima (Smith, 1989). An incorporation of the GEV
distributions into spatial modeling has been extensively im-
plemented (Yee, 2015; Wood and Fasiolo, 2017; Youngman,
2022). It should be noted that the GEV distributions are only
applied to block maxima or specific block extremes (under
some modifications and additional assumptions, e.g., the an-
nual fourth-highest ozone; Berrocal et al., 2014), while the
rest of the data (i.e., other percentiles) are ignored. There-
fore, an alternative approach is to derive the percentile map
directly from the full dataset via quantile generalized addi-
tive modeling (Fasiolo et al., 2020), which is not appropriate
for modeling the maxima or minima but is applicable to the
extreme percentiles. Standard generalized additive modeling
is an extension of multiple linear regression; likewise, quan-
tile generalized additive modeling is an extension of quantile
regression. Even though quantile generalized additive mod-
eling offers greater flexibility in terms of a wide range of
percentiles, it suffers from far more intensive computational
burdens than standard generalized additive modeling. The
above approaches (Gaussian and GEV links for standard gen-
eralized additive modeling as well as quantile generalized
additive modeling) will be compared and discussed further
in Sect. 3.2. Regional trends are then determined based on
the regional interpolations of all different seasons and per-
centiles.

3 Results: trends in ozone percentiles

In this section, we carry out a change point analysis of long-
term trends in ozone percentiles across the conterminous
USA over the period from 1990 to 2023. The analysis is
conducted by (1) evaluating trends at individual sites and
(2) quantifying regional trends across the west and east.

3.1 Trends at individual stations

To reliably evaluate the change point of long-term trends,
we select the sites with the longest time series of ozone ob-
servations in this particular analysis, i.e., beginning no later
than 1992 and extending at least to 2018 (present day). The
method is applied to different seasonal percentiles (MAM,
JJA, SON, and DJF). A total of 468 sites were selected, but
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the seasonal percentiles are calculated only if the seasonal
data availability is greater than 60 %. For example, most
long-term sites in Oregon and Washington only operate be-
tween May and September, so these sites do not have suffi-
cient data to estimate trends in MAM, SON, and DJF.

For each selected site, (1) the optimized change point
(identified by the greatest SNR for the trend adjustment
term), (2) the trend before the change point (“prior trend”),
and (3) the trend after the change point (“posterior trend”),
are evaluated. Trend results are categorized by different
scales, based on the thresholds of p value at 0.01, 0.05, and
0.33 (corresponding to SNR values of ± 3, ± 2, and ± 1, re-
spectively). The overall confidence levels discussed below
are assessed by the evidence and agreement of trends ob-
served across the conterminous USA (see Appendix A for
further discussions), instead of by the significance at individ-
ual stations (Mastrandrea et al., 2010); patterns recognized in
the east and west or in smaller-scale regions will be pointed
out specifically. We use the results for the seasonal 90th per-
centile to highlight the effectiveness of our approach (Fig. 2).
The complete results for the seasonal 50th and 10th per-
centiles are provided in Figs. A3 and A4, the percentages of
posterior trends by different reliability scales are summarized
in Table A2, and the percentages of trend changes based on
different scenarios (e.g., from positive to negative trends, or
vice versa) are summarized in Table A3. The main findings
are as follows:

– For MAM, JJA, and SON, the plurality of sites show
limited evidence of prior trends in the seasonal 90th per-
centile, except for the Northeastern USA (discussed
below). Nevertheless, with different change points de-
tected since the 2000s (as the latent periods for emis-
sion controls may vary geographically; Box and Tiao,
1975), reliable and consistent negative posterior trends
can be found in MAM, JJA (high agreement and robust
evidence), and SON (medium agreement and robust ev-
idence). However, at the 50th percentile, consistency in
reliable negative posterior trends can only be observed
in MAM (medium agreement and robust evidence) and
JJA (high agreement and robust evidence). In these
cases, stronger decreasing posterior trends are found
at the 90th percentile than the 50th percentile, indicat-
ing faster declines in extreme intensity. Ozone extreme
percentiles not only have reliably decreasing posterior
trends at the majority of sites but also have very few re-
liably increasing posterior trends. In MAM and JJA, less
than 1 % and 3 % of sites show reliably (p ≤ 0.05) pos-
itive posterior trends at the 90th and 50th percentiles,
respectively. While at the 50th percentile in SON and at
the 10th percentile in MAM, JJA, and SON, the plural-
ity of sites show limited evidence of posterior trends.

– For JJA, notably, although the change points at many
sites occur around the early 2000s in the eastern USA,
a distinctive pattern is found across the Northeastern

USA. In the latter region, the optimized change points
are found around 2013 and reliable negative trends are
detected over 1990–∼ 2013, while in the recent decade
(∼ 2013–2023), the trends are flat and do not show fur-
ther decreases. This flattened pattern might be related to
the deceleration of NOx emission reductions since 2010
(Jiang et al., 2018, 2022). The reader is referred to the
next section for further discussions.

– For DJF, many stations have no measurements in
wintertime, so a less dense geographical coverage is
present. Medium agreement and robust evidence of in-
creasing posterior trends can be found at the 10th per-
centile (41.4 %). A substantial number of sites show re-
liable positive posterior trends at the 90th (24.4 %) and
50th (34.6 %) percentiles, although the majority of sites
show no trends (≥ 40 %). Increasing posterior trends are
mainly observed in the Northeastern and the Southwest-
ern USA.

3.2 Regional trends

While the change point detection at individual stations pro-
vides a great deal of details regarding the pattern recognition
of large-scale trend changes, it is not uncommon to observe a
mixture of positive and negative trends in certain subregions
(e.g., mixed trends are commonly observed at the 10th per-
centile), which have become an obstacle to drawing gen-
eralized conclusions. Therefore, this section aims to tackle
this issue by explicitly accounting for spatial heterogeneity
and quantifying the overall regional trends across the east-
ern and western USA. Note that the trend results in Sect. 3.1
are based on selected stations where the longest records are
available; however, in this section, all of the station informa-
tion (including sites with a shorter or an interrupted record
in Fig. 1; the same data availability criterion is applied) is
used to perform geostatistical modeling and regional trend
analysis.

The technical evaluations of different geostatistical mod-
eling approaches are provided in Sect. S1 in the Supplement.
In summary, we find that a fast and robust estimate can be
achieved by the Gaussian process approach, which is applied
in the following analysis. The mapping procedure is carried
out for different seasons and percentiles over the period from
1990 to 2023, and the resulting regionally aggregated time
series are shown in Fig. 3 (trend values are provided in Ta-
ble 1). The overall conclusion is that positive trends have
been observed in MAM, JJA, and SON since 1990, although
with varying turnaround points since the 2000s; these trends
then turned around to be strongly and reliably decreasing (as
expected from Figs. 2, A3, and A4), while flat or weak DJF
trends have been observed in recent years. Specifically, the
following points were found:

– This regional analysis provides effective quantifications
of the overall trends. For example, a visual recognition
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Figure 2. MDA8 trends prior (first column) and posterior (second column) to the change points (third column) for the seasonal 90th percentile
over 1990–2023. For each vector, the direction indicates the trend magnitude and the color indicates its p value. The dot colors indicate the
year of the change point.

of regional patterns in the western USA is challenging,
because the trends are less consistent and spatial cover-
age is relatively sparse compared to the eastern USA.
Nevertheless, our regional analysis shows that, albeit
with weaker magnitudes in the western USA, seasonal
posterior trends at different percentiles generally follow
the same conclusions between the eastern and western
USA.

– In MAM, JJA, and SON, the 90th percentile has strong
and reliable negative posterior trends, except for the
western USA in SON. The results also show that the
lower the percentiles, the weaker the magnitude of the
negative trends. Controls on ozone precursor emissions
in the USA have been designed to reduce extreme ozone
levels, and our observation that the strongest negative
trends occur at the 90th percentile is consistent with
those efforts.
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Figure 3. Regional MDA8 trends in the seasonal 90th, 50th, and 10th percentiles, based on daily MDA8 values from all available sites, in
the western and eastern USA (1990–2023). For the JJA 90th and JJA 50th percentiles in the eastern USA, trends based on one change point
(solid lines) or two change points (dotted lines) are shown.

– The strongest negative seasonal trend in this regional
assessment was found in the eastern USA, at the
JJA 90th percentile (−8.1 (± 3.2) ppbv per decade,
p ≤ 0.01), followed by the SON 90th percentile
(−6.0 (± 2.8) ppbv per decade, p ≤ 0.01), the JJA
50th percentile (−5.3 (± 1.8) ppbv per decade,
p ≤ 0.01), and the MAM 90th percentile (−4.5
(± 0.9) ppbv per decade, p ≤ 0.01).

– As discussed in Sect. 2, we mainly consider one un-
known change point for long-term trends over the 34-
year period. However, previous satellite observations
have shown that US NOx emissions did not decline until
the late 1990s (McDonald et al., 2012), and the pace has
likely decelerated since 2010 (Jiang et al., 2018, 2022),
as primarily found in rural areas (Silvern et al., 2019;

Christiansen et al., 2024). Alternatively, the EPA’s na-
tional air pollutant emission trend dataset can be used
to study total anthropogenic NOx and VOC (volatile or-
ganic compound) emissions (US EPA, 2024b). In ad-
dition, the Fuel-Based Inventory for Vehicle Emissions
(FIVE) provides improved NOx estimates of mobile
emissions (McDonald et al., 2014, 2018; Harkins et al.,
2021). FIVE can be used to replace the estimates from
“highway vehicles” and “off-highway categories” in the
EPA dataset, to produce an updated total anthropogenic
NOx emissions inventory. Based on the same change
point analysis (Fig. 4), the following three findings are
observed. First, reliably negative VOC trends (p ≤ 0.01)
were found between 1990 and 2013, but these trends be-
came positive after 2013 (p= 0.09). Second although
the EPA NOx trends show a reduction in the late 1990s,
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Table 1. Ozone trends (± 2σ and p value), in units of parts per billion by volume per decade, at the seasonal 90th, 50th, and 10th percentiles
in the western and eastern USA, including the optimized change point (CP), prior trends (1990–CP), and posterior trends (CP–2023).

Percentile Season Western USA Eastern USA

Prior trends p value CP Posterior trends p value Prior trends p value CP Posterior trends p value

90th MAM 1.6 (± 2.1) 0.15 2008 −3.8 (± 1.7) ≤0.01 4.0 (± 6.9) 0.25 2001 −4.5 (± 0.9) ≤0.01
JJA 4.4 (± 5.3) 0.11 2001 −3.1 (± 1.8) ≤0.01 0.9 (± 9.8) 0.85 2000 −8.1 (± 3.2) ≤0.01

SON 2.1 (± 5.2) 0.42 2003 −1.4 (± 2.2) 0.22 6.9 (± 7.0) 0.06 2000 −6.0 (± 2.8) ≤0.01
DJF 6.1 (± 2.4) ≤0.01 2000 −0.1 (± 0.7) 0.77 1.5 (± 1.0) 0.01 2011 −0.3 (± 2.2) 0.79

50th MAM 2.3 (± 1.4) ≤0.01 2008 −2.7 (± 1.0) ≤0.01 2.3 (± 2.4) 0.07 2006 −3.0 (± 1.4) ≤0.01
JJA 6.0 (± 4.7) 0.02 2000 −2.1 (± 1.4) ≤0.01 2.2 (± 6.2) 0.49 2001 −5.3 (± 1.8) ≤0.01

SON 3.0 (± 3.5) 0.09 2003 −0.5 (± 1.2) 0.42 4.5 (± 5.4) 0.10 2000 −0.9 (± 1.6) 0.25
DJF 8.0 (± 3.7) ≤0.01 2000 0.1 (± 0.8) 0.78 2.7 (± 1.0) ≤0.01 2011 0.6 (± 2.1) 0.54

10th MAM 3.0 (± 1.4) ≤0.01 2008 −2.7 (± 1.6) ≤0.01 2.2 (± 1.6) ≤0.01 2007 −2.0 (± 1.5) ≤0.01
JJA 5.1 (± 5.8) 0.09 2001 −0.9 (± 1.2) 0.14 2.1 (± 2.6) 0.13 2001 −2.3 (± 1.0) ≤0.01

SON 2.6 (± 2.0) ≤0.01 2005 0.1 (± 1.2) 0.93 3.1 (± 3.8) 0.11 2000 0.8 (± 0.9) 0.11
DJF 7.2 (± 4.9) ≤0.01 2000 0.5 (± 1.1) 0.33 3.5 (± 0.8) ≤0.01 2013 −0.1 (± 3.4) 0.97

Figure 4. Annual US NOx and VOC trends: estimates include EPA
national air pollutant emissions trends for NOx (purple) and VOCs
(orange). In addition, the FIVE NOx (magenta) emissions are based
on the EPA estimates, but the mobile emissions from “highway ve-
hicles” and “off-highway categories” were replaced with the esti-
mates from the Fuel-Based Inventory for Vehicle Emissions (FIVE)
(Harkins et al., 2021).

the first change point is identified in 2003, due to a spike
in 2002, followed by a rapid decline (p ≤ 0.01) over
the period from 2003 to 2013. The decreasing trends
weakened after 2013, although still with high confi-
dence (p ≤ 0.01). Third, similar to the EPA NOx trends,
the FIVE NOx decreased from 1990 to 2022, with an
acceleration at 2000 and a deceleration at 2010, which
occurred 3 years earlier than the change points in the
EPA NOx trends.

Therefore, it is possible to consider an additional pe-
ripheral change point if the junctures occur separately at
around 2000 and after 2010, as each trend segment satis-
fies a benchmark of at least 10 years in length (i.e., these
changes are not likely due to short-term variability). We

identify two cases that fit this scenario, which are the
90th and 50th percentiles in JJA in the eastern USA (the
other cases are so variable that the second change point
is generally unnecessary or premature). We fit the trends
with two change points for these two time series (dot-
ted lines in Fig. 3) and find the second change point
aligned with the flattened ozone after 2013. These two
change points appear to explain two distinct site patterns
of JJA trends in the Eastern USA in Fig. 2: the plural-
ity of sites capture the emission reductions around 2000
(the primary change), and some sites coincide with flat-
tened ozone trends after 2013 (the secondary change).
As Fig. 2 already identified which sites have a change
point around 2013, it seems unnecessary to conduct
a duplicate analysis by considering two-change-point
modeling for individual sites, given that this particular
analysis is reasonable partly due to the regional assess-
ment providing a more clear signal.

– Strong heterogeneity in seasonal trends across the east-
ern USA substantially changes the ozone seasonality.
We compare the regional monthly percentiles over dif-
ferent periods in Fig. 5, based on the same geostatis-
tical modeling approach and based on individual year
and multiyear averages. We can clearly see that the sea-
sonal peaks at the 90th and 50th percentiles shifted from
summer in 1990–1999 to spring in 2013–2023 (this pe-
riod is chosen because JJA ozone tends to be steady over
2013–2022), along with increased ozone in DJF and de-
creased ozone in other seasons. In the western USA, the
shape of the seasonal cycles remains similar, although
the 90th percentile clearly decreased from 2000–2012 to
2013–2023 during MAM and JJA. A modeling study by
Clifton et al. (2014) showed that, under continued emis-
sion controls, surface ozone seasonal peaks are expected
to shift to February–March by the end of the 21st cen-
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Figure 5. Regional MDA8 monthly percentiles over different years (thin lines) and periods (bold lines) in the western and eastern USA
(1990–2023).

tury over the Northeastern USA; the current peak in
April suggests that the observed seasonal cycle might
follow the model prediction by Clifton et al. (2014), but
a modeling study is necessary to confirm the detailed
process.

– For the 6-month warm season (April–September), a
previous regional trend study found an overall mean
MDA8 trend of −0.43 (± 0.28) ppbvyr−1 (p ≤ 0.01) in
eastern North America over 2000–2014 (Chang et al.,
2017). Albeit with a different domain, a trend value
of −0.39 (± 0.16) ppbvyr−1 (p ≤ 0.01) is found in
the eastern USA over the period from 2000 to 2023.
The corresponding trend in the western USA is −0.16
(± 0.10) ppbv yr−1 (p ≤ 0.01).

This analysis summarizes the current status of consistent
decreases in ozone extremes at the regional scale. While the
reductions are apparent and profound, some abnormally high
ozone levels can be observed in recent years (e.g., 2018 and
2021 in the west and 2023 in the east), as also indicated by
the spatially interpolated maps of the 90th percentile in JJA
(Fig. S3), which can be associated with extensive wildfires
seasons and/or heat waves (Bartusek et al., 2022; Langford
et al., 2023; Rickly et al., 2023; Cooper et al., 2024). As wild-
fires and heat waves are expected to continue to increase, they

will likely impact surface ozone levels across the USA in the
near future (see the next section for further discussions).

4 Results: potential ozone climate penalty due to
heat waves

In the previous section, we concluded that strong reductions
in regional surface ozone extremes occurred across much of
the USA over the past 2 decades. In this section, we aim to in-
vestigate potential short-term and long-term impacts of heat
wave events on ozone exceedances. As we expect to classify
a majority of data into normal days and a minority of data
into heat wave days, a comparison based on the extreme per-
centiles might not be feasible due to fewer samples during
heat wave events; therefore, the probability of threshold ex-
ceedances is used in the analysis.

This analysis is focused on the period from 1995 to
2022 for three reasons. First, this period is a balance be-
tween an inclusion of more sites (more than 25 years in
Fig. 1) and a sufficiently long period (nearly 30 years).
Second, ozone exceedances have consistently decreased in
this period (Sect. 4.1), so we can investigate if heat wave
events halt the progress of emission controls. The possible
deceleration of emission trends should not play an important
role here, as its influence is expected to be similar between
heat wave and normal conditions. Third, 2023 is an anoma-
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lous year with many ozone exceedances across the Upper
Midwest and the Northeastern USA due to large forest fire
plumes transported from Canada (Cooper et al., 2024). These
large numbers of exceedances are not observed in the previ-
ous decade (2013–2022). Therefore, the 2023 data are ex-
cluded to avoid skewing our trend estimates.

The distribution and trends in ozone exceedances based
on all daily MDA8 ozone values during May–September
are provided in Appendix B (without distinguishing normal
and heat wave conditions). This section first investigates the
short-term heat wave impact on ozone and then compares
long-term ozone exceedances between heat wave and normal
days.

4.1 Heat wave metrics and short-term impact on ozone

To gain a quick insight into the temperature variability, we
assess trends in Tmax and Tmin (Fig. S5) and the trends in heat
wave frequency (the number of heat wave days per May–
September) based on different heat wave metrics (Fig. S6).
Despite certain clusters of positive trends being detected, in-
consistent spatial patterns of trends are observed between
Tmax/Tmin and different heat wave metrics. It is, thus, im-
portant to acknowledge that temperature trends are also het-
erogeneous, so their assessed impact on ozone should not
be based solely on a single heat wave metric. Nevertheless,
by using generalized additive modeling methodology and
interpolating gridded daily temperature data onto all ozone
monitoring sites, we find substantially stronger correlations
between MDA8 and Tmax than MDA8 and Tmin (Fig. S7).
Therefore, we only consider heat wave metrics based on Tmax
hereafter.

It should be noted that the analysis results in Appendix B
are based on all available long-term sites over the period from
1995 to 2022; however, the higher the temperature thresh-
olds, the fewer the number of sites that qualify (e.g., ex-
treme temperatures are present but have not occurred consec-
utively). To ensure that a site has enough data for accurate
trend detection, we only show the results when heat waves
occurred in at least 10 years between 1995 and 2022. The
implication is that, as a large portion of sites have insufficient
records that meet the TX35deg metric, the TX35deg results
are merely provided for a reference, and the main conclu-
sions are based on the TX90pct and TX95pct metrics.

The results for short-term ozone statistics based on differ-
ent heat wave metrics are shown in Fig. 6. Positive ozone
enhancements can be observed consistently across most lo-
cations, with an overall average enhancement (standard de-
viation, or SD) of 5.9 (SD= 2.9) ppbv, 6.3 (SD= 3.2) ppbv,
and 9.9 (SD= 6.2) ppbv (the latter is subject to fewer sites)
for the TX90pct, TX95pct, and TX35deg metrics, respec-
tively. Although a large portion of sites show no evidence
(p > 0.33) of ozone accumulation (Table S1 in the Sup-
plement), we find that around 30 % of sites in the western
USA have reliable positive accumulation values (p ≤ 0.05),

based on the TX90pct and TX95pct metrics. For the east-
ern USA, reliable positive accumulation values only occurred
at around 10 % of sites, and these are mainly observed in
the Southeastern USA. Both eastern and western USA have
around 10 % of sites with reliably decreasing ozone accu-
mulation (p ≤ 0.05). In summary, ozone deterioration dur-
ing heat wave events can be generally anticipated across the
western and southern USA.

4.2 Ozone exceedances under heat wave and normal
conditions

In this section, we investigate if the long-term trends in ozone
exceedances exhibit any different patterns when the analysis
is constrained to heat wave observations (by partitioning the
time series into two mutually exclusive sets: heat wave and
normal days). The aims of this analysis are to (1) quantify the
differences in exceedance probability (EP) values between
heat wave and normal conditions and (2) evaluate if the ef-
fectiveness of emission controls can be hampered during heat
wave events.

Similar to the unconditional probability (PE) in Fig. B1,
we show the EPs conditioned on heat wave and normal days
based on the TX90pct metric in Fig. 7 (denoted by PE|H
and PE|H , respectively). Similar patterns between PE and
PE|H can be observed for different thresholds and periods.
As expected, PE|H is generally greater than PE|H at differ-
ent thresholds, and it also clearly decreased between 1995–
1999 and 2018–2022. The above results also hold for the
TX95pct and TX35deg metrics (Figs. S8 and S9). To give
an overall comparison and summary of Figs. B2 and 7, we
calculate the annual May–September averages of PE, PE|H ,
and PE|H across all long-term sites (using a simple average,
no weighting is applied) and estimate the trends in Fig. 8.
In terms of probability theory, if PE|H > PE, it implies that
ozone exceedances and heat waves are positively correlated
(see Sect. S2). Nevertheless, the difference between PE|H
and PE|H provides a more clear indication about the mag-
nitude of enhanced EPs during heat waves. The findings can
be summarized as follows:

– For the threshold of 70 ppbv, the baseline EP (PE|H )
is around 17 % in the early period and 3 % since 2013,
with a trend of−4.9 (± 1.9) % per decade. PE|H is sub-
stantially greater than PE|H in the early period, but the
differences are reduced from 18 % in 1995–1999 to 4 %
in 2018–2022.

– For the thresholds of 60 and 50 ppbv, heat waves in-
crease the EP by 16 % and 18 % on average (p ≤ 0.01,
based on paired t test), respectively, but the differences
are reducing over time because PE|H shows stronger de-
creasing trends than PE|H .

– Note that because the baseline EP for 35 ppbv (typically
more than 70 % of days in May–September) is much
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Figure 6. MDA8 average differences between heat wave and normal conditions (enhancement, a–c) and the rate of daily ozone changes
when heat waves events continue and extend (accumulation, d–f), based on various heat wave metrics (May–September, 1995–2022).

higher than 50 and 60 ppbv under normal conditions,
naturally it restricts the room for additional enhanced
EPs during heat waves (bounded by 1). We find that heat
waves increase the EP by 10 % on average (p ≤ 0.01)
for the threshold of 35 ppbv, and we do not find evi-
dence that their differences have changed over time.

We show the distribution of the enhanced EPs (annual esti-
mates of PE|H −PE|H over 1995–2022) under different heat
wave metrics in Fig. 9a. Overall, similar conclusions can
be drawn for the TX95pct and TX35deg metrics (also see
Figs. S10 and S11).

The major limitation of the above analysis is that heat
wave trends and variability are not taken into account. This
technical challenge is because PE|H is undefined when PH =

0, implying that PE|H can only be calculated when a heat
wave has already occurred. Therefore, the above analysis
does not reflect the reality that heat wave events may be fewer
in the early period and more frequent in the present day. In
order to account for the heat wave variability, we estimate
exceedance trends at individual sites based on the logistic
regression, which also allows PH = 0 in certain years. The
hypothesis is that because heat waves have become more fre-
quent, they are likely to contribute to additional ozone ex-
ceedances, slowing the progress of decreasing the frequency
of ozone exceedances. By comparing the exceedance trends
under normal and heat wave conditions, we are able to quan-
tify how many reliable decreasing exceedance trends are sus-

tainable under heat wave conditions. The results are summa-
rized in Fig. 9b: we find that reliable decreasing exceedance
trends cannot be maintained for around 20 %–30 % of sites
at the thresholds of 70, 60, and 50 ppbv or for around 40 %
of sites at the threshold of 35 ppbv. A more detailed view
of exceedance trends under normal and heat wave conditions
is provided in Figs. S12–S14 (and discussed in Sect. S3). In
summary, these findings imply that heat wave events not only
increase the EP but also likely slow down the decreasing ex-
ceedances by its increasing frequency.

Although the TX90pct metric is previously recommended
to study heat waves (Perkins and Alexander, 2013), this
metric might not necessarily be ideal for correlating heat
waves with ozone. The advantages of the TX90pct are that
its threshold is tailored to different environments, and it
thus ensures sufficient heat wave observations. However, the
90th percentile might not represent the extreme temperature
condition, especially for middle and high latitudes. Our find-
ings show that a higher temperature threshold results in fewer
reliably negative exceedance trends and fewer data that meet
the heat wave condition. Therefore, the results are subject to
the limitation of fewer samples being used for trend detection
in heat wave conditions. As a longer time period makes the
estimation of higher temperature thresholds more reliable,
future studies are recommended to use multiple heat wave
thresholds to quantify the heat wave impact on ozone.
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Figure 7. Conditional probabilities of MDA8 exceedances in May–September, based on various ozone thresholds, and the average over
(a) 1995–1999 and (b) 2018–2022.

For our final analysis, we identify the monitoring sites that
have experienced a clear ozone climate penalty over the rel-
atively short time period of 1995–2022. We derived trends
in co-occurrences (PE∩H ) based on different ozone thresh-
olds and heat wave metrics (Fig. S15) and found that posi-
tive PE∩H trends (p ≤ 0.05) can be commonly observed on
the West Coast of the United States. However, we do not
find similar evidence that the correlations between ozone ex-
ceedances and heat waves have increased (Fig. S16). The rea-
son behind this is that the correlations are jointly determined
by PE∩H , PE, and PH; thus, trends in correlations can be
counterbalanced by stronger decreasing PE and weaker in-
creasing PH and PE∩H . This result is consistent with a re-
cent study which shows that emission controls reduce the

summertime ozone–temperature sensitivity (Li et al., 2025).
Therefore, positive trends in co-occurrences do not nec-
essarily lead to increasing correlations between ozone ex-
ceedances and heat waves.

To identify the locations with a clear climate penalty, we
searched for the monitoring sites that show decreasing ozone
exceedances (p ≤ 0.05) but have increasing co-occurrences
of exceedances and heat waves (p ≤ 0.05) over the same pe-
riod (Fig. 10). In this map, we used 70 or 60 ppbv as the
ozone threshold, and all three heat wave metrics were con-
sidered, but we only showed the results when at least two out
of three heat wave metrics revealed a likely climate penalty.
We identified 19 sites that have experienced a climate penalty
since 1995. Co-occurrence time series of 70 ppbv threshold
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Figure 8. Summary of trends in unconditional and conditional exceedance probabilities, based on various ozone thresholds and the TX90pct
metric (May–September, 1995–2022). Squares indicate unconditional probabilities. Upward and downward triangles indicate conditional
probabilities for normal and heat wave days, respectively.

exceedances and heat waves are shown at four of these loca-
tions (Fig. S17). All of these sites are in California and are
associated with daily maximum temperature increases of 1–
3 °C over the 3 decades from 1990 to 2022 (May–September
only) (Fig. 10). Many states in the western USA have regions
with similar or greater temperature increases, but we did not
find evidence of a climate penalty. However, our study is lim-
ited by the fact that ozone monitoring is sparse in many of
these regions and, therefore, the climate penalty cannot be
thoroughly evaluated.

5 Conclusions

Previous studies on US surface ozone observations have
shown a substantial reduction in warm-season ozone across

much of the USA since the early 2000s, in response to
strict controls on anthropogenic emissions (Cooper et al.,
2012; Simon et al., 2015; Strode et al., 2015; Lin et al.,
2017; Jin et al., 2020; Seltzer et al., 2020; Simon et al.,
2024). However, several outstanding issues are noted, in-
cluding (1) oil and gas emissions (McDuffie et al., 2016;
Francoeur et al., 2021), which can contribute to wintertime
ozone exceedances in the Uinta Basin, Utah (Edwards et al.,
2014); (2) wildfire influence, which has been associated with
regional-scale ozone exceedances in recent years (Langford
et al., 2023; Byrne et al., 2024; Cooper et al., 2024); and
(3) heat waves, which provide ideal conditions for ozone pro-
duction (Schnell and Prather, 2017). By quantifying trends
based on all available MDA8 ozone observations over the ex-
tended period from 1990 to 2023, we found that our analysis
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Figure 9. Summary of (a) enhanced exceedance probabilities (each bar is comprised of 28 estimates of PE|H −PE|H over 1995–2022;
averages over 1995–1999 and 2018–2022 are shown using purple and orange crosses, respectively) and (b) the percentages of reliable
decreasing exceedance trends (p ≤ 0.05) under normal and heat wave conditions, based on various ozone thresholds and heat wave metrics
(May–September, 1995–2022).

is consistent with prior studies, but we have been able to up-
date trends to the present day; moreover, for the first time, we
provide observational evidence of the ozone climate penalty
in regions with large temperature increases and widespread
ozone monitoring.

Incorporating change point(s) in the trend detection model
is also known as an intervention analysis in statistics (Box
and Tiao, 1975), as it enables us to quantify the effective-
ness of an intervention (e.g., anthropogenic emissions con-
trol). By focusing on the results after the change points, our
findings can be summarized as follows:

– Based on individual long-term sites (1990–2023), we
find that at least 46 % of sites have reliably negative
trends and at most 3 % of sites have reliably positive
trends at the 90th seasonal percentile in MAM, JJA, and
SON and at the 50th percentile in JJA (medium to high
agreement). In contrast, reliably positive DJF trends are
observed more commonly at the lower percentiles (41 %
at the 10th percentile versus 35 % at the 50th percentile

and 24 % at the 90th percentile), albeit subject to lower
site availability than other seasons.

– Based on regional geostatistical modeling, we found
that the higher the percentiles, the stronger the negative
regional trends in MAM, JJA, and SON. Robust nega-
tive trends (p ≤ 0.01) can be identified in MAM and JJA
at the 50th and 90th percentiles in both the western and
eastern USA, while in SON robust negative trends can
only be found at the 90th percentile in the east.

– In response to the shift in satellite NOx emission trends
from a rapid decline since the late 1990s to a slow-
down after 2010 (McDonald et al., 2012; Jiang et al.,
2018, 2022), we explored the possibility of incorporat-
ing two change points for trend detection. We found
that this shift fits the summer ozone variability in the
Eastern USA (the 90th and 50th percentiles). The pri-
mary change point around 2000 corresponds to sub-
stantial ozone decreases and the secondary change point
at 2013 corresponds to flattened ozone trends (Fig. 3).
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Figure 10. Panel (a) shows ozone monitoring locations with a clear indication of climate penalty: selected sites show decreasing ozone
exceedances above 70 and/or 60 ppbv (p ≤ 0.05), but increasing trends in co-occurrences of ozone exceedances and heat waves are detected
(p ≤ 0.05) based on at least two out of three heat wave metrics. The background indicates increasing heat wave trends (p ≤ 0.05) detected
by one (pink), two (red), or three (brown) heat wave metrics. Panel (b) shows estimated increases in the daily maximum temperatures in
May–September over 1990–2022. Black crosses indicate long-term monitoring locations used in the heat wave analysis.

This pattern is currently not identified in other seasons
and percentiles. Recent studies have also shown that the
slowdown in NOx trends is mainly found over rural ar-
eas, while NOx has continued to decrease in urban areas
(Silvern et al., 2019; Christiansen et al., 2024). The im-
pact of the most recent NOx trends might take additional
years to become apparent and attributable to ozone vari-
ability, and this warrants future modeling studies.

In the eastern USA, despite the fact that flattened JJA
trends are observed after 2013, the added value of our long-
term study is to show that the rapidly declining JJA trends in
the 2000s substantially reshaped the regional ozone season,

with the seasonal peak shifting from summer in the 1990s to
spring in the most recent decade.

To deliver an observational-based assessment of the heat
wave impact on ozone extremes, we compare MDA8 ex-
ceedance probabilities and trends based on different heat
wave metrics. In summary, the effectiveness of emission con-
trols leads to substantial reductions in exceedances above 70,
60, and 50 ppbv. Although the exceedance probabilities are
typically higher during heat waves than under normal condi-
tions, the differences are substantially reduced in the present-
day period (2018–2022). We also find that reliable decreasing
exceedance trends are likely to have halted at 20 %–40 % of
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sites during heat waves, dependent on the ozone thresholds
and heat wave metrics. Therefore, heat waves not only in-
crease the exceedance probabilities but also likely slow down
the effectiveness of emission controls. The limited number
of sites that have experienced a clear ozone climate penalty
since 1995 are all located in California, where the ozone
monitoring network is dense. The sparse ozone monitoring
network across the other regions of the western USA, where
temperatures have increased greatly, hinders our ability to
identify other locations that may have experienced a cli-
mate penalty. This climate penalty analysis is also limited
because the available ozone time series are less than 30 years
in length, while the chemistry–climate model projections for
identifying regions most likely to experience an ozone cli-
mate penalty are based on much longer timescales (Zanis
et al., 2022). Apart from heat waves, recent studies also show
that the increasing occurrence of wildfires could be an impor-
tant factor for ozone exceedances in the present-day and near
future (Langford et al., 2023; WMO, 2023; Cooper et al.,
2024; Seguel et al., 2024).

Appendix A: Further discussions and additional
results for seasonal percentile change point analysis

In Sect. 3.1, our focus has been on the seasonal extreme per-
centile. This section aims to provide more detailed discus-
sions on the confidence levels for a trend assessment and on
the analysis for additional percentiles (Figs. A1 and A2). In
the main text, we applied geostatistical modeling techniques
to summarize the regional trends (Sect. 3.2). An alternative
approach can be used based on the evidence and agreement
obtained from individual sites. Although the method and ter-
minology are based on Mastrandrea et al. (2010), the imple-
mentation details need to be tailored to our study (Table A1):

– Evidence. The reliability of trend estimate is classified
into five scales, including robust (positive and negative
trends with p ≤ 0.05), medium (positive and negative
trends with 0.05<p ≤ 0.33), and limited (trends with
p > 0.33) evidence.

– Agreement. Long-term sites are classified according to
their trend evidence. The consistency is determined by
which scale has the highest percentage of sites, and it
is ranked from high (> 50 % of sites are classified as
the same scale), to medium (33 %–50 % of sites), to low
(< 33 % of sites).

This table is used to assign the confidence level to the trend
assessment of individual long-term sites (Table A2; Figs. 2,
A3, and A4). As geostatistical modeling techniques are more
effective to explicitly quantify the regional trends, we do not
further separate the western or eastern USA in Table A2. In
addition, instead of using the p value to determine the reli-
ability of the change point, a more scientifically meaningful
approach is to categorize different scenarios of trend alter-
ations before and after the change point. We consider trend
alterations based on the following scenarios (Table A3):

A P→N: from reliable positive (p ≤ 0.05) to reliable neg-
ative (p ≤ 0.05) trends;

B W→N: from weak (p > 0.05) to reliable negative
(p ≤ 0.05) trends;

C N→P: from reliable negative (p ≤ 0.05) to reliable
positive (p ≤ 0.05) trends;

D W→P: from weak (p > 0.05) to reliable positive
(p ≤ 0.05) trends;

E P→W: from reliable positive (p ≤ 0.05) to weak
(p > 0.05) trends;

F N→W: from reliable negative (p ≤ 0.05) to weak
(p > 0.05) trends.

All the other scenarios (e.g., the same evidence scale be-
fore and after the change point, or transitions between weak
positive and weak negative) are considered to be no evi-
dence of trend changes. With this approach, the results show
that the plurality of sites are classified as (1) no evidence in
DJF and scenario B in other seasons for the 90th percentile,
(2) scenario B in JJA and no evidence in other seasons for the
50th percentile, and (3) scenario D in DJF and no evidence
in other seasons for the 10th percentile. The above method
to determine level of agreement can also be applied here (not
shown).
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Figure A1. Ozone time series at the seasonal 90th, 50th, and 10th percentiles in the western USA: observations from individual stations are
shown in gray, and simple averages are shown in purple.

Table A1. Criteria to determine agreement and evidence. The level of agreement is determined by which trend evidence scale has the highest
percentage of sites.
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Figure A2. Ozone time series at the seasonal 90th, 50th, and 10th percentiles in the eastern USA: observations from individual stations are
shown in gray, and simple averages are shown in purple.

Table A2. Site percentages of posterior trends by different reliability scales in Figs. 2, A3, and A4 (trends with p ≤ 0.01 are merged into
p ≤ 0.05). A total of 450, 462, 406, and 263 sites are available for MAM, JJA, SON, and DJF, respectively, but the relative percentages are
shown for each row (i.e., sum to 100 %).

Percentile Season SNR ≥ 2 2>SNR≥ 1 |SNR |< 1 −2<SNR≤−1 SNR≤−2 Confidence level
p ≤ 0.05 0.33≤p < 0.05 p > 0.33 0.33≤p < 0.05 p ≤ 0.05

90th MAM 0.4 1.8 17.6 21.1 59.1 High agreement and robust evidence
JJA 0.9 2.6 26.6 14.9 55.0 High agreement and robust evidence
SON 2.3 5.6 26.3 19.2 46.6 Medium agreement and robust evidence
DJF 24.4 17.5 42.2 9.9 6.2 Medium agreement and limited evidence

50th MAM 2.7 4.0 26.9 28.9 37.7 Medium agreement and robust evidence
JJA 2.1 4.1 25.5 13.6 54.5 High agreement and robust evidence
SON 14.0 14.3 41.1 20.4 10.1 Medium agreement and limited evidence
DJF 34.6 16.3 42.2 5.7 1.2 Medium agreement and limited evidence

10th MAM 6.5 9.1 50.9 23.3 10.2 High agreement and limited evidence
JJA 5.5 6.4 35.4 27.0 25.5 Medium agreement and limited evidence
SON 25.1 18.2 47.2 7.4 2.2 Medium agreement and limited evidence
DJF 41.4 17.5 33.8 6.5 0.4 Medium agreement and robust evidence
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Table A3. Same format as Table A2, but the following before and after scenarios are categorized: (A) P → N – from reliable positive
(p ≤ 0.05) to reliable negative (p ≤ 0.05) trends; (B) W→N – from weak (p > 0.05) to reliable negative (p ≤ 0.05) trends; (C) N→P –
from reliable negative (p ≤ 0.05) to reliable positive (p ≤ 0.05) trends; (D) W→P – from weak (p > 0.05) to reliable positive (p ≤ 0.05)
trends; (E) P→W – from reliable positive (p ≤ 0.05) to weak (p > 0.05) trends; and (F) N→W – from reliable negative (p ≤ 0.05) to
weak (p > 0.05) trends. All the other scenarios (e.g., the same reliability scale before and after the change point or transitions between weak
positive and weak negative) are considered to be no evidence of trend changes.

Percentile Season P→N W→N N→P W→P P→W N→W No evidence

90th MAM 3.1 53.8 0.2 0.2 2.2 6.4 34.0
JJA 0.4 50.3 0.2 0.7 1.1 27.7 19.6
SON 1.5 43.8 0.5 1.5 0.5 16.5 35.7
DJF 2.7 3.4 1.1 21.7 8.7 2.3 60.1

50th MAM 12.0 25.3 0.2 2.4 9.8 3.8 46.4
JJA 1.1 49.8 0.6 1.5 1.5 16.0 29.4
SON 1.5 8.4 2.2 10.6 7.6 7.6 62.1
DJF 1.1 0 1.1 29.7 21.7 0.4 46.0

10th MAM 4.4 5.8 0 6.2 21.8 1.3 60.4
JJA 1.7 23.6 0 5.6 3.2 7.1 58.8
SON 0.5 1.7 3.7 20.9 14.0 1.7 57.5
DJF 0.4 0.4 3.4 36.1 24.7 0.4 34.6
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Figure A3. Same as Fig. 2 but for the seasonal 50th percentile.
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Figure A4. Same as Fig. 2 but for the seasonal 10th percentile.
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Appendix B: Distribution and trends in ozone
exceedances

To give an overview of the current distribution of ozone ex-
ceedances, Fig. B1 shows the average exceedance days and
probabilities (PE in Eq. 3) in May–September across the con-
terminous USA, based on the thresholds of 70, 60, 50, and
35 ppbv and the periods 1995–1999 and 2018–2022 (mul-
tiyear averages are taken to ensure representativeness). Ex-
ceedance days above 70 ppbv in the eastern USA in the early
period have greatly diminished in the recent period. Southern
California is the only cluster where greater than 30 ozone
exceedance days per year are found at multiple sites in the
present-day period (2018–2022). The reductions in ozone
above 60 and 50 ppbv in the eastern USA are also obvious.
Changes in the pattern of exceedances above 35 ppbv are less
profound, but a general reduction can be observed in the
eastern USA. Broadly speaking, for the threshold of 50 or
35 ppbv, the number of exceedances across the Southwest-
ern USA has remained relatively constant (except along the
California coast).

We further show the trends in ozone exceedances over
1995–2022 in Fig. B2, based on the probability measure (a
change rate of 1 %yr−1 corresponds to 1.53 dyr−1, given that
the total number of days is constant in May–September).
As expected, the widespread distribution of reliably negative
trends at the thresholds of 70, 60, and 50 ppbv reinforces the
fact that ozone extremes are decreasing across the USA (ex-
cept for a few sites in the Southwestern USA). In these pan-
els (mainly for 70 ppbv and some for 60 ppbv), we use right
angle arrows to indicate when very few average exceedance
days (< 3 d) occur in the present day; thus, the normal ar-
rowheads identify sites with room to improve. It should be
noted that the exceedance trends eventually become flat or
less negative once very low exceedances are reached for sev-
eral years. Therefore, even if the ozone concentrations in
the extreme percentiles are continuously decreasing, the ex-
ceedance trends cannot reflect such decreases once the con-
centrations are below the threshold. As a result, the negative
trends are generally stronger at 60 ppbv than at 70 ppbv.

In summary (Table S2), high agreement and robust evi-
dence of decreasing exceedances at different thresholds are
found across much of the USA: greater than 78 % of sites
show reliable decreases (p ≤ 0.05) in threshold exceedances
based on 70, 60, and 50 ppbv; less than 1 % of sites have reli-
ably positive trends at the thresholds of 70 and 60 ppbv; and
3.5 % of sites have reliably positive trends at the threshold
of 50 ppbv. As for the 35 ppbv threshold exceedances, 7.1 %
of sites have reliably positive trends and 55.7 % of sites have
reliably negative trends.

https://doi.org/10.5194/acp-25-5101-2025 Atmos. Chem. Phys., 25, 5101–5132, 2025



5126 K.-L. Chang et al.: Trends in US heterogeneous seasonal ozone

Figure B1. MDA8 exceedance days (a) and probabilities (b) based on various ozone thresholds in the early period (1995–1999) and present
day (2018–2022).
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Figure B2. Trends (%yr−1) in MDA8 exceedance probabilities based on various ozone thresholds (May–September, 1995–2022).
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Code and data availability. The EPA AQS ozone data are
publicly available at https://www.epa.gov/outdoor-air-quality-data
(US EPA, 2024a), and the emission trend data can be
found at https://www.epa.gov/air-emissions-inventories/
air-pollutant-emissions-trends-data (US EPA, 2024b).
The CPC (Climate Prediction Center) Global Unified
Temperature data are provided by the NOAA PSL at
https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html
(NOAA PSL, 2024). The R packages used in trend estima-
tions include mgcv (Wood, 2006), qgam (Fasiolo et al., 2020), and
quantreg (Koenker, 2005). The implementation of moving block
bootstrapping for quantile regression is provided in Chang et al.
(2023b).
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