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Abstract. Synoptic weather patterns (SWPs) and human activities are significant driving factors of the canopy
urban heat island effect (CUHI), and the CUHI phenomenon exhibits a pronounced diurnal cycle. However, to
date, there has been a significant knowledge gap in understanding how the combination of SWPs and human
activities modulates the diurnal cycle of CUHI. This study systematically analyzed the diurnal patterns of CUHI
intensity (CUHII) in the Yangtze River Delta Urban Agglomeration (YRDUA) by integrating multiple source
datasets and utilizing objective classification methods. Among all SWPs, type 2 (dominated by subtropical high
pressure) exhibited the strongest CUHII, while type 4 (affected by southwestern moisture and southward cold
air) had the lowest. In terms of human activities, landscape percentage (PLAND), largest patch index (LPI), and
anthropogenic heat flux (AHF) showed an increasing trend, with higher values in the east and lower values in
the west, coinciding with the spatiotemporal patterns of CUHII. These findings collectively confirm the pivotal
roles of SWPs and human activities in CUHI phenomena. More importantly, this paper quantifies the contribu-
tions of SWPs and human activities to the diurnal cycle of CUHI using a random forest (RF) model. Shapley
additive explanation (SHAP) revealed that SWPs had a more pronounced influence on daytime CUHII, whereas
human activities dominated nighttime CUHII. During the daytime, the partial dependence plot (PDP) of relative
humidity (RH) decreased more pronouncedly, explaining why type 4 contributed more significantly to CUHII
during this period. When the wind speed (WS) exceeded a threshold, PDP rapidly increased, which might ac-
count for the higher contribution of type 5 to CUHII during this period. During the nighttime, there appeared to
be a threshold for PLAND, beyond which its impact on improving CUHII became markedly more prominent.
These results indicated that there was a clear diurnal asymmetry in the modulation of CUHI by SWPs and human
activities. In conclusion, this study not only provided scientific insight into the complex driving mechanisms of
the CUHI diurnal cycle in YRDUA, but also offered a theoretical foundation for evaluating urban overheating
issues and developing effective mitigation strategies.
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1 Introduction

The expansion of urban areas and the unprecedented growth
of the population have led to the well-known phenomenon
of the urban heat island (UHI) (Roth, 2007; Rizwan et al.,
2008; Oke et al., 2017). Among the various manifestations
of UHI, the canopy urban heat island effect (CUHI) refers
to the temperature differential observed between urban and
rural areas, specifically spanning the range from the ground
surface to the roof of urban structures (Liu et al., 2007; Yang
et al., 2023). This phenomenon is closely linked to human
welfare, as it exerts direct and indirect impacts on human
comfort and health, energy consumption patterns, and even
financial losses (Muthers et al., 2017; Salimi and Al-Ghamdi,
2020; Xia et al., 2018; Herbel et al., 2018; Marks and Con-
nell, 2024; Singh et al., 2023; Yang et al., 2023).

In recent years, scholars have extensively studied CUHI
driving mechanisms (Li et al., 2020; Jiang et al., 2019; Imran
et al., 2019). Human activities, such as land use and cover
changes and emissions, can modulate urban warming (Ren,
2015; Zheng et al., 2020). However, many studies focus
solely on land use and cover data (Ren and Ren, 2011; Shi
et al., 2015, 2021, 2024; Tysa et al., 2019; Xue et al., 2023),
neglecting the pivotal role of landscape patterns (Ren, 2015;
Estoque et al., 2017; Chen et al., 2022). Anthropogenic heat
sources, like buildings and transportation, significantly im-
pact the urban thermal environment (Guo et al., 2021). Stud-
ies show that aerosols can intensify CUHI (Menon, 2002;
Poupkou et al., 2011; Zheng et al., 2018), but others find
contrasting effects (Yang et al., 2020; Wu et al., 2021). In
addition to human activities, certain synoptic weather pat-
terns (SWPs) can cause noticeable changes in CUHI through
their modulation of boundary layer meteorological factors
(Hoffmann and Schlünzen, 2013; IPCC, 2021; Yang et al.,
2022; Zhang et al., 2024). The western Pacific subtropical
high (WPSH) is an important factor in the monsoon sys-
tem, which leads to high temperatures in southeastern China
(Wang et al., 2015). There is significant interannual variabil-
ity in the extent, intensity, and location of the WPSH, and
its positional configuration with the westerly jet and South
Asian high affects the region where high temperatures occur.
Under clear and cloudless conditions, the solar shortwave
radiation received by the ground surface intensifies during
the day (Hong et al., 2018), while light winds further miti-
gate the horizontal dispersion of near-surface heat (Tong and
Leung, 2012), thus rendering local high-temperature events
more stable and persistent. High-pressure systems in sum-
mer can suppress the development of the planetary boundary
layer and induce calm and cloud-free conditions favorable
for radiation enhancement, thus raising temperatures (Miao
et al., 2017; Yang et al., 2018; Wang et al., 2017).

The CUHI phenomenon exhibits pronounced temporal
variability throughout the diurnal cycle (Liu et al., 2022;
Bansal and Quan, 2024; Lin et al., 2024). Specifically, it
tends to intensify significantly after sunset, reaching its peak,

while during the day its influence is notably weaker (Tong
et al., 2018; Zhang et al., 2022). In fact, the intensities and
causes of the day and night CUHI differ. The diurnal CUHI
is usually caused by excess heat dissipated from urban sur-
faces through turbulent transfer, while the night CUHI is pri-
marily caused by the heat stored in urban surfaces during the
day (Giridharan et al., 2004, 2005). Daytime urban excess
warm events have the potential to induce heatstroke and ex-
acerbate ground-level ozone pollution (Filleul et al., 2006;
Gosling et al., 2009; Pu et al., 2017). However, urban excess
warm events at night can hinder the body’s ability to recover
during sleep, potentially leading to insomnia and abnormal
temperature regulation (Le Tertre et al., 2006; Gosling et al.,
2009; Fischer and Schär, 2010). Furthermore, research has
also revealed that excess warm events at night in urban set-
tings can negatively impact agricultural productivity, leading
to reduced crop yields (Bahuguna et al., 2017). In the con-
text of global warming and rapid urbanization, exploring the
diurnal cycle of CUHI is of significant importance for un-
derstanding the impacts of excess urban warming on human
health and social activities. However, to date, there remains a
significant knowledge gap in understanding how the combi-
nation of SWPs and human activities modulates the diurnal
cycle of CUHI. Specifically, how do we quantitatively assess
the relative importance of SWPs and human activities on the
diurnal cycle of CUHI? Do distinct driving effects on day-
time CUHII and nighttime CUHII exist?

The Yangtze River Delta Urban Agglomeration (YRDUA)
is one of the most developed, densely populated, and con-
centrated industrial areas in China. In YRDUA, cities and
regions are closely linked with each other. The diversity and
spatial heterogeneity of the land surface conditions, the dense
population, and the close interconnection of the city regions
make YRDUA an ideal area for the study of the CUHI city
agglomeration (Dong et al., 2014; Du et al., 2016; Zhang et
al., 2022; Yan and Zhou, 2023). This study used multisource
meteorological and environmental data to objectively iden-
tify dominated SWPs over YRDUA. Subsequently, a ma-
chine learning method was employed to explore the modu-
lation mechanisms of both SWPs and human activities in the
diurnal cycle of CUHI. The overarching goal of this research
was to provide valuable insights into the mitigation of urban
overheating and the management of urban planning, thus fos-
tering a deeper understanding of the intricate interaction be-
tween natural factors and human factors in the shaping of the
urban thermal environment.

2 Data and methodology

2.1 Study area

YRDUA is considered one of the influential world-class
metropolitan regions, playing a pivotal role in China’s eco-
nomic and social development processes (Tian et al., 2011).
YRDUA is situated in the middle to lower reaches of the
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Figure 1. Distribution of urban stations and reference stations in
YRDUA.

Yangtze River, serving as the junction between the eastern
coastal region and the Yangtze River basin in China. YR-
DUA denotes the administrative region comprising Shang-
hai, Jiangsu, Zhejiang, and Anhui (Fig. 1). It represents
one of the most developed, densely populated, and highly
concentrated industrial zones in China. With a total area
of 358 000 km2, accounting for less than 4 % of the coun-
try’s total, the region is home to approximately 236 mil-
lion people, inhabited by around 17 % of the national pop-
ulation. In 2023, Shanghai’s GDP reached USD 0.67 tril-
lion, Jiangsu’s GDP amounted to USD 1.82 trillion, Zhe-
jiang’s GDP totaled USD 1.17 trillion, and Anhui’s GDP
stood at USD 0.67 trillion; collectively, these statistical data
surpassed USD 4.26 trillion, accounting for one-quarter of
China’s total economic output. However, this rapid urban-
ization has led to a series of intricate urban environmental
issues, with the CUHI phenomenon being particularly promi-
nent (Huang and Lu, 2015; Du et al., 2016; Zhang et al.,
2022).

2.2 Data

2.2.1 Reanalysis data

The reanalysis data used in this study, comprising 850 hPa
geopotential height, wind speed (WS), total cloud cover
(TCC), relative humidity (RH), boundary layer height
(BLH), and vertical velocity, were derived from the fifth-
generation European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis of global climate and
weather (ERA5). The data period for the specific subset
of the ERA5 dataset used in our study spans the months
of June to August from 2011 to 2020. This dataset boasts
an hourly temporal resolution and a spatial resolution of

0.25°× 0.25°. The dataset was created by the Copernicus
Climate Change Service, operated by ECMWF, and ERA5
data can be derived from https://cds.climate.copernicus.eu
(last access: 12 September 2024).

2.2.2 Observation data

In this paper, we use the hourly temperature, WS, and RH
data covering YRDUA provided by the China Meteorologi-
cal Data Service Centre (CMDC, http://Data.cma.cn/en, last
access: 12 September 2024), spanning the months of June
to August from 2011 to 2020. Daily, monthly, and annual
data used in this study were derived from hourly measure-
ments. To uphold the integrity and rigor of the dataset,
we implemented a quality control procedure following the
methodologies outlined by Xu et al. (2013) and Yang et
al. (2011). Specifically, missing values within the observa-
tional sequences were substituted with the mean values of
synchronous observations from the five nearest neighbor-
ing stations surrounding the target station. Stations with an
excessive number of error records were excluded from the
analysis. BLH data from the sounding stations were calcu-
lated on the basis of the methodologies described by Sei-
del et al. (2012) and Guo et al. (2019). The daily concentra-
tions of PM2.5 and PM10 could be accessed from the follow-
ing links: https://doi.org/10.5281/zenodo.5652265 (Bai and
Li, 2021a) and https://doi.org/10.5281/zenodo.5652263 (Bai
and Li, 2021b), respectively.

2.2.3 Remote sensing data

The anthropogenic heat flux (AHF) data were derived from
the inversion of the National Oceanic and Atmospheric
Administration (NOAA) night light satellite dataset (http:
//ngdc.NOAA.gov/eog/dmsp/downloadV4composites.html,
last access: 12 September 2024), with a calculation error
margin of less than 12 % (Chen et al., 2016).

The annual China land cover dataset (CLCD) is a dynamic
dataset of land use released by Wuhan University. Yang and
Huang (2021) developed the land cover datasets with a spa-
tial resolution of 30 m based on 335 709 Landsat images on
the Google Earth Engine platform. The latest dataset contains
information on land cover for China from 1985 to 2021, and
the overall precision of land classification is 80 %.

The normalized difference vegetation index (NDVI)
dataset used in this study, produced and distributed by the
National Ecological Science Data Center (http://www.nesdc.
org.cn/, last access: 12 September 2024), has a spatial res-
olution of 30 m and a temporal resolution of 1 year. It in-
volves the removal of clouds and shadows by obtaining all
valid Landsat observations, followed by the calculation of
the NDVI index for each Landsat observation. Subsequently,
through a combination of interpolation and smoothing tech-
niques, the maximum NDVI value is obtained for each pixel
location throughout the year (Yang et al., 2019).

https://doi.org/10.5194/acp-25-4989-2025 Atmos. Chem. Phys., 25, 4989–5007, 2025

https://cds.climate.copernicus.eu
http://Data.cma.cn/en
https://doi.org/10.5281/zenodo.5652265
https://doi.org/10.5281/zenodo.5652263
http://ngdc.NOAA.gov/eog/dmsp/downloadV4composites.html
http://ngdc.NOAA.gov/eog/dmsp/downloadV4composites.html
http://www.nesdc.org.cn/
http://www.nesdc.org.cn/


4992 T. Shi et al.: Diurnal CUHI modulation: synoptic weather and human activities

In this paper, a buffer zone with a radius of 5 km cen-
tered around each station is defined as the calculation area,
from which various human activity factors could be ob-
tained for each station, including the percentage of landscape
(PLAND), the largest patch index (LPI), NDVI, and AHF.

2.3 Methods

2.3.1 Synoptic weather classification

The T-mode principal component analysis (T-PCA) method
is an objective classification method. Initially, T-PCA stan-
dardized the weather data spatially and divided them into 10
subsets. Subsequently, the principal components (PCs) of the
weather information were estimated through singular value
decomposition, and the corresponding PC scores were calcu-
lated after oblique rotation. Finally, the resultant subset with
the highest sum was selected by comparing the 10 subsets
based on contingency tables, and the classification result for
this subset could be output (Miao et al., 2017; Philipp et al.,
2014). This paper objectively classifies synoptic circulations
during the summer period of 2011 to 2020, focusing on the
field of geopotential height of 850 hPa within the geograph-
ical range of 0–60° N and 60–150° E. Six summer weather
patterns (SWPs) for YRDUA were identified (as shown in
Fig. 2). The frequency of each SWP type in each month was
defined as the number of days of occurrence divided by the
total number of days.

Under type 1 (23.04 % of occurrences), abundant mois-
ture transport from the South China Sea and prevailing strong
southwest winds create favorable conditions for water vapor
conducive to precipitation formation. In type 2, the subtropi-
cal high jumps northward, placing YRDUA under its control,
with decreased moisture transport from the southwestern sea.
This type occurs most frequently among the six types, with a
frequency of 23.80 %. Type 3 (12.71 %) features the subtrop-
ical high retreating eastward, with uniform pressure dominat-
ing over YRDUA, resulting in lower WS. Type 4 (18.26 %)
involves the subtropical high retreating southward and east-
ward, influenced by both moisture transport from the south-
western sea and southward-moving cold air, favoring precip-
itation and temperature reduction. In type 5 (11.19 %), YR-
DUA is primarily controlled by the subtropical high, with
warm air transported from the southeastern ocean promot-
ing air subsidence, which is conducive to high-temperature
weather. Lastly, type 6 (10.97 %) sees a small cyclone center
emerging in central and southern China, positioning YRDUA
in the vicinity of a weak low-pressure system, potentially in-
fluencing local weather patterns.

2.3.2 Stations selection and CUHII calculation

Since surface air temperature is measured at a height of 2 m,
previous studies (Yang et al., 2013; Cai, 2008; Shi et al.,
2015) have indicated that under conditions of advection and
turbulent transport, the maximum impact of anthropogenic

heat on meteorological observations within a station typi-
cally does not exceed 5 km. Consequently, a radius of 5 km
was selected as a buffer zone to capture the effects of ur-
banization on air temperature. AHF serves as an indicator of
the influence of human emissions and changes in land use on
sensible and latent heat fluxes in the lower atmosphere (Jiang
et al., 2019; Chen et al., 2020). Following the calculation of
the average AHF within a 5 km radius around each station,
the top a third of the stations, ranked by their AHF values,
were designated as urban stations (USs) for this study.

The selection of reference stations (RSs) is the key step
in calculating CUHII (Ren and Ren, 2011). The stations in
the bottom one-third, ranked by their AHF values, were cho-
sen as candidate RSs. Furthermore, RSs must meet the fol-
lowing criteria: they must have continuous records spanning
over 50 years without missing data; the number of reloca-
tions must be less than three, and any relocations must in-
volve a horizontal distance of less than 5 km (Zhang et al.,
2010; Ren, 2015; Shi et al., 2015; Wen et al., 2019; Yang
et al., 2022). As a result, 46 USs and 25 RSs were selected
for this analysis. The method used to calculate CUHII was
specifically based on comparing the air temperature differ-
ences between USs and RSs during the summertime (Ren et
al., 2007; Yang et al., 2022).

CUHII= TUSs− TRSs (1)

In the above equation, CUHII is the canopy urban heat island
intensity during the summertime, TUSs is the air temperature
of the USs, and TRSs is the summer air temperature of the
RSs.

2.3.3 Random forest model

The random forest (RF) model, an extension or evolution of
decision trees, represents a popular and highly versatile ma-
chine learning approach (Tan et al., 2017; Yu et al., 2020).
Unlike traditional linear regression models, RF operates as
a nonparametric method, capable of modeling complex non-
linear relationships among predicted values and various pre-
dictor variables (Hastie et al., 2009), while also identifying
the significance of individual variables (Wang et al., 2019).
Based on previous research (Duan et al., 2021; Chen et al.,
2022), we randomly divided the stations within YRDUA into
train (70 %) and test (30 %) samples. With CUHII serving as
the dependent variable, the RF model incorporated both syn-
optic factors and anthropogenic factors as independent vari-
ables, encompassing SWPs, RH, WS, BLH, AL, PLAND,
LPI, AHF, PM2.5, and PM10. To train and test the RF model,
we employed a 10-fold cross-validation approach (Zeng et
al., 2020). The construction of the RF model and the calcu-
lation of importance scores for influencing factors were im-
plemented using Python.
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Figure 2. The geopotential height of 850 hPa (shading) and wind (vectors) based on the objective classification in six SWPs in summer (a–f),
respectively. The black box indicates the Yangtze River Delta Urban Agglomeration (YRDUA).

3 Results

3.1 Diurnal cycle of CUHII in YRDUA

On the background of climate warming, human activities
have produced considerable amounts of anthropogenic heat
and pollutant emissions, which, to a certain extent, exacer-
bate urban excess warming.

Figure 3a illustrates the hourly variation of CUHII in the
summer in YRDUA from 2011 to 2020. At 08:00 Beijing
time (BJT, same below), as the solar altitude angle increases,
the temperature in suburban areas rises faster than that in ur-
ban areas. Coupled with higher wind speed during the day
compared to night, turbulence intensifies, leading to a rapid
decline in the urban–suburban temperature difference. Con-
sequently, CUHII reaches its minimum value of 0.27 °C at
17:00 BJT. After 18:00 BJT, as the solar altitude angle de-
creases, the shortwave radiation from the sun correspond-
ingly diminishes. For suburban areas, the net radiation gen-
erally turns negative after sunset, leading to a stable atmo-
spheric stratification where the entire underlying surface is
in a state of heat loss, resulting in an increased cooling rate
(Liu et al., 2013). However, in urban areas, due to the accu-
mulation of more heat, longwave radiation from the ground
continues to supply heat to the atmosphere. The urban under-
lying surface is characterized by dense construction, leading
to a much lower sky view factor (SVF) in streets compared
to suburban areas. Longwave radiation from the ground un-
dergoes multiple reflections between walls and the ground,
significantly reducing the amount of heat lost from the sur-
face to the atmosphere (Drach et al., 2018; Tian and Miao,
2019). In addition, high-rise buildings in urban areas with

lower SVF tend to experience lower wind speed (Hang et al.,
2011). These factors collectively contribute to a rapid widen-
ing of the temperature difference between urban and subur-
ban areas during the night. Compared to urban areas, suburbs
can be regarded as cooling sources (Mirzaei and Haghighat,
2010; Yang et al., 2024). Before sunrise, between 00:00 and
07:00 BJT, the cooling rate in urban areas consistently re-
mains lower than that in suburban areas, leading to a gradual
increase in CUHII to its daily maximum value of 0.65 °C.
Overall, CUHII exhibits a clear diurnal cycle characterized
by a gradual decrease, stable low values, rapid increase, and
stable high values, with pronounced day–night differences,
consistent with previous studies (Wang et al., 2017; Zhang
et al., 2022). Figure 3b depicts the intraseasonal variation
of CUHII in YRDUA. It can be observed that the average
CUHII in July and August (approximately 0.63 °C) is signif-
icantly higher than in June, and the day–night difference in
CUHII in June and August (approximately 0.14 °C) is sig-
nificantly greater than in July. Throughout the entire summer
period, the average CUHII during the nighttime is 21.11 %
higher than during the daytime.

Figure 4 illustrates the spatial patterns of CUHII in YR-
DUA. Taking the day CUHII as an example (Fig. 4a), it is
evident that CUHII in the eastern YRDUA is significantly
higher than that in the western YRDUA. Specifically, SH ex-
hibits the highest CUHII, reaching 0.59 °C, with the highest
CUHII observed at the Xujiahui station, peaking at 0.95 °C.
Following SH, ZJ and JS rank second and third, with CUHII
values of 0.52 and 0.37 °C, respectively. In contrast, AH has
the lowest CUHII, at merely 0.25 °C. When considering the
night CUHII (Fig. 4b), SH maintains the highest CUHII,
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Figure 3. Temporal characteristics of CUHII during the daytime and nighttime. (a) The diurnal variation of CUHII, with short lines indicating
standard deviation, blue areas representing day, and purple areas representing night. (b) The monthly variation of CUHII during the daytime
and nighttime (“Sum” indicates summer).

Figure 4. Spatial patterns of CUHII in YRDUA during the day (a) and the night (b). Different colored dots represent different ranks of
CUHII. The bar chart below represents the average CUHII of Anhui (AH), Jiangsu (JS), Shanghai (SH), and Zhejiang (ZJ).

which rises to 0.62 °C, while CUHII at the Xujiahui station
increases even further, reaching 1.04 °C. Similarly, ZJ, JS,
and AH also experience varying degrees of intensification of
CUHII. In conclusion, there is a pronounced difference in the
spatial–temporal patterns of CUHII between day and night.
The underlying mechanisms driving this phenomenon will be
analyzed from the perspectives of SWPs and human activi-
ties in the subsequent sections of this paper.

3.2 Spatial–temporal patterns of SWPs and human
activities in YRDUA

Based on the T-PCA results, the summer synoptic back-
grounds in YRDUA from 2011 to 2020 can be classified into
six distinct SWPs. We first conducted a statistical analysis
of the occurrence frequencies of these different SWPs, as il-
lustrated in Fig. 5. The daily, interannual, and monthly fre-
quency of occurrence of six SWPs during the summer from
2011 to 2020 revealed pronounced variations in atmospheric
circulation patterns. Specifically, type 1 predominantly oc-
curred in late June and early July 2011, as well as in 2017–
2020. Type 2 exhibited the highest frequency, mainly con-
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centrated in mid-to-late July and early August of each year,
with particularly high occurrences in 2013 and 2020. Type 3
appeared frequently in August annually. Type 4 was more
prevalent in mid-to-late June of each year. Type 5 was mostly
observed in mid-July. Lastly, type 6 predominantly emerged
in early August 2011–2012 and 2018–2019.

This paper delves into analyzing the diurnal variation of
CUHII in YRDUA under different SWPs. In Fig. S1 in
the Supplement, across all SWPs, the diurnal variation of
CUHII consistently exhibits a periodic pattern of gradual de-
cline, stable low values, rapid increase, and stable high val-
ues. Specifically, the daily maximum of CUHII occurs un-
der type 2. Under type 2, with the northward movement of
the subtropical high of the western Pacific, the Meiyu sea-
son ends, transitioning into a period dominated by hot and
dry weather, characteristic of midsummer. The daily mini-
mum of CUHII is observed under type 4. Under type 4, in-
tensified low-pressure activities and moisture transport lead
to cloudy skies, bringing about a precipitation-dominated cli-
matic phase in YRDUA. Figure S2 illustrates the spatial pat-
terns of CUHII under various synoptic backgrounds. In gen-
eral, all high-CUHI centers align well with economically de-
veloped and densely populated urban areas of all types. In
general, the average CUHII under type 2 is markedly higher
than that of other types, and type 4 exhibits the lowest av-
erage CUHII. These findings underscore the crucial role of
various SWPs in modulating CUHII in YRDUA.

Next, this study analyzed the spatiotemporal variations
of meteorological conditions within the boundary layer. As
the sun rises, ground warming causes atmospheric stratifica-
tion to become unstable, enhancing turbulence and increas-
ing WS, which opposes CUHII’s diurnal pattern (Fig. S3).
Figure S4 reveals that type 6 exhibits the highest WS, at-
tributable to the highest boundary layer observed over YR-
DUA under type 6 conditions, where a weak low-pressure
system contributes to the upward development of the bound-
ary layer. Type 4 displays the lowest WS, which corresponds
to the lowest boundary layer and increased cloud cover,
thereby reducing solar radiation reaching the ground and in-
hibiting boundary layer growth. Figures S5 and S6 indicate
that as air temperature rises after sunrise, the saturation va-
por pressure increases, leading to a decrease in RH, which
reaches its daily minimum at 15:00 BJT before gradually ris-
ing thereafter. The day humidity is conspicuously lower than
the night humidity. Turning our attention to the BLH, during
the nighttime, the atmospheric stratification is stable, accom-
panied by low WS, which consequently results in a low BLH.
However, as the sun rises and wind speeds intensify, the BLH
begins an upward trend (see Fig. S7). Therefore, the meteoro-
logical conditions of the boundary layer constitute important
factors influencing the spatiotemporal variations of CUHII
(Ren et al., 2007; Yang et al., 2019, 2023).

Figure 6a and b illustrate that PLAND gradually increased
from 44.31 % in 2011 to 51.91 % in 2020, and LPI also rose
from 37.01 % in 2011 to 44.65 % in 2020. The spatial pat-

terns of PLAND and LPI (Fig. S8a and b) indicate that SH
exhibits the highest level of urbanization, as evidenced by
half of the stations appearing in a deep red grade on the map,
followed by ZJ and JS, and AH showing the lowest level,
which generally corresponds to the spatial patterns of CUHII.
Figure 6c reveals a declining trend in NDVI over the years,
and the spatial pattern of NDVI exhibits an opposite pattern
to that of CUHII (Fig. S8c). Figure 6d suggests an increas-
ing trend in AHF. Since AHF is closely related to changes
in the built-up areas surrounding the meteorological stations
(Guo et al., 2021), the temporal–spatial patterns of AHF are
generally consistent with those of PLAND (Fig. S8d). Fur-
thermore, PM2.5 and PM10 concentrations exhibit a trend of
initial growth followed by a decrease (Fig. 6e and f), suggest-
ing an improvement in air quality after an initial period of
deterioration. Following the issuance of the Action Plan for
Air Pollution Prevention and Control released by the State
Council in 2013, various pollution prevention and control
measures have been implemented across YRDUA, leading to
a marked improvement in air quality. The gradual decrease
in aerosol concentrations from the northwest to southeast
within YRDUA (Fig. S8e and f) may be attributed to dif-
ferences in industrial structures, infrastructure, and environ-
mental protection policies between different regions (He et
al., 2024). These findings confirm that human activities, such
as land use, anthropogenic heat, and aerosols, are significant
drivers of the CUHI phenomenon (Ren, 2015; Zheng et al.,
2020; Yang et al., 2023).

3.3 The modulation of CUHII by SWPs and human
activities

In this section, we selected synoptic backgrounds, meteoro-
logical conditions, and urban morphology as influencing fac-
tors and used the RF model to fit the day CUHII and night
CUHII, aiming to explore the driving mechanisms of synop-
tic and human factors on CUHII. Figure 7 compares the per-
formance of the RF models for day and night. During the day
(Fig. 7a), the RF model achieves an R squared (R2) value of
0.95 and a root mean squared error (RMSE) of 0.13 °C in the
train data, indicating an excellent fit between the model pre-
dictions and the observed data. When we turn our attention
to the test data, the performance of the RF model decreases,
which might be attributed to differences in the distribution
between the test and train data. Similarly, for night (Fig. 7b),
the RF model produces excellent results on the train data.
These findings suggest that the RF model might be a power-
ful tool for simulating the local urban thermal environment
(Yu et al., 2020; Chen et al., 2022).

Next, we used the RF model to analyze the contributions
of various factors to day CUHII and night CUHII. Shap-
ley additive explanation (SHAP) is an interpretability frame-
work used to explain model outputs (Park et al., 2023). It
assesses the impact of individual characteristics on predic-
tion results by quantifying their contributions to the result.
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Figure 5. (a) Daily, (b) interannual, and (c) monthly occurrence frequencies of the six SWPs in YRDUA from 2011 to 2020.

As depicted in the left subplot (SHAP value) of Fig. 8, each
row represents a feature, with the horizontal axis indicating
the SHAP value. Each dot corresponds to a sample, where
the reddish colors signify higher feature values and the bluer
colors indicate lower values. It is evident that RH exerts the
most significant influence on the model, regardless of the day
or night. The red dots (high RH) are concentrated on the
left side (SHAP < 0), whereas the blue dots (low RH) are
clustered on the right side (SHAP > 0), with a notable sep-
aration between the two color groups. This clear distinction
signifies a significant negative impact of RH on the model.
Specifically, the red dots, representing higher levels of air
humidity, tend to absorb heat through evaporation, thus mit-
igating the CUHI phenomenon to a certain degree (Huang
et al., 2012; Jiang et al., 2019). Of course, several scholars
contend that humidity can exacerbate heat stress (Mora et
al., 2017; Zhang et al., 2023). CUHII is highly dependent on
variations in WS (Oke et al., 2017; Yang et al., 2020). Dur-
ing the day, WS ranks second in terms of its contribution to
CUHII, but its significance diminishes significantly during
the night. Among SWPs, type 4 exhibits the greatest contri-
bution to CUHII during the day, whereas type 6 dominates
during the night. PLAND ranks sixth in contribution during
the day but gains further importance during the night. Ad-
ditionally, we observed that the SHAP values for SWPs are
more dispersed during the day, indicating that CUHII was
more sensitive to changes in synoptic conditions during this
period. Conversely, the more dispersed SHAP values for hu-

man activities during the night suggest that CUHII was more
responsive to variations in human activities during this pe-
riod. We defined the importance of each feature as the mean
absolute value of its impact on the target variable. As de-
picted in the right subplot (mean SHAP) of Fig. 8, statisti-
cal analysis reveals that during the daytime, the mean SHAP
values for SWPs and human activities are 0.12 and 0.10, re-
spectively. During the nighttime, these values change to 0.08
for SWP and 0.16 for human activities. Consequently, during
the day, SWPs were more crucial than human activities to in-
fluence CUHII, whereas during the night, human activities
surpass SWPs in their importance for CUHII.

In the SHAP plots presented above, the mixed pattern of
red and blue dots signifies that the relationships between
various factors and CUHII do not adhere to simple positive
or negative trends, underscoring the need for an analysis of
their nonlinear associations. Within the framework of ma-
chine learning, partial dependence plot (PDP) refers to the
evaluation of the relationship between a single feature’s value
and the model’s prediction outcomes, while holding all other
features constant (Friedman, 2001). Taking type 4 as an illus-
trative example, this type predominantly occurs in late June,
characterized by rainy and overcast days due to the influ-
ence of low pressure and moisture transport from the south-
western sea, resulting in high air humidity. As evident from
Fig. 9a, during the nighttime, PDP gradually decreases with
increasing RH, while during the day, the decrease in PDP is
more pronounced, indicating that air humidity may exhibit

Atmos. Chem. Phys., 25, 4989–5007, 2025 https://doi.org/10.5194/acp-25-4989-2025



T. Shi et al.: Diurnal CUHI modulation: synoptic weather and human activities 4997

Figure 6. Temporal patterns of PLAND (a), LPI (b), NDVI (c), AHF (d), PM2.5 (e), and PM10 (f) in YRDUA.

Figure 7. Prediction results of day CUHII (a) and night CUHII (b). Red circles represent the train data, while yellow circles represent the
test data. The dashed lines indicate 30 % fit error lines.
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Figure 8. SHAP plots illustrating the influence factors of day CUHII (a) and night CUHII (b) based on the RF model. The left subplot
represents the SHAP values. The right subplot depicts the mean SHAP values, which are used to characterize the importance of various
factors.

a stronger mitigating effect on CUHII during the day com-
pared to during the night. This explains why type 4’s SHAP
value ranks third during the day but drops to eighth during
the night, as the influence of air humidity on CUHII dimin-
ishes. Next, we consider type 5, which typically appears in
mid-July, influenced by warm air transported from the south-
eastern ocean by the subtropical high of the western Pacific,

favoring air subsidence, which leads to higher WS. As illus-
trated in Fig. 9b, during the day, once WS exceeds 1.7 m s−1,
PDP rapidly decreases, significantly improving the ability to
mitigate CUHII. For the entire city, a more consistent wind
field at ground level contributes to a stronger heat transport
capacity (Xie et al., 2022; Yang et al., 2023). However, dur-
ing the night, as the WS increases, the PDP remains largely
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Figure 9. Partial dependence plots of day CUHII and night CUHII
with respect to RH (a), WS (b), PLAND (c), and PM2.5 (d). The
blue and red lines represent the fitted curves for day and night,
respectively. The gray areas indicate the 95 % confidence interval.
Rug plots (small vertical lines) along the x axis represent the distri-
bution of the feature values.

unchanged. This is because urban surfaces undergo radia-
tive cooling during the night, which slows down heat loss.
Although WS can facilitate some heat diffusion, its mitigat-
ing effect is limited by factors such as dense urban buildings
and poor air circulation. Consequently, type 5’s SHAP value
ranks 5th during the daytime but drops to 12th during the
nighttime, as the impact of WS on CUHII rapidly diminishes.

Next, this paper examines the partial dependence of
CUHII on human activities. During the nighttime, when
PLAND exceeds 38 %, the PDP rapidly increases (Fig. 9c).
There may be a threshold for the built-up area, beyond which
its contribution to improving CUHII becomes significantly
more pronounced. This complex correlation pattern is inti-
mately linked to urban climatic conditions, vegetation cover-
age within urbanized areas, the frequency of human activi-

ties, and seasonal and spatial variations in energy consump-
tion (Guo et al., 2016; Yang et al., 2018; Zhou et al., 2014).
In contrast, during the daytime, the upward trend of PDP is
notably weaker than during the nighttime. While buildings
can intensify CUHII by reducing outgoing longwave radia-
tion and WS, they also block more shortwave solar radiation
from reaching the ground, and this shading effect contributes
to lowering near-surface air temperatures (Zhang et al., 2016;
Krayenhoff and Voogt, 2016; Taleghani et al., 2016; Cai and
Xu, 2017). Figure 9d shows that as PM2.5 concentrations in-
crease, PDP gradually decreases. During the daytime, PM2.5
scatters and absorbs part of the solar radiation, reducing the
amount of solar radiation reaching the surface and thereby
inhibiting the CUHI phenomenon (Yang et al., 2021). Dur-
ing the nighttime, changes in CUHII are more dependent on
the energy stored within the urban canopy. The PDP trend ex-
hibits a threshold behavior. When PM2.5 concentrations ex-
ceed 40 µg m−3, PM2.5 slows the loss of surface heat and its
insulating effect becomes apparent (Li et al., 2020). These
results indicate that there is a clear diurnal asymmetry in the
modulation of CUHI by SWPs and human activities. This
finding provides valuable information on the physical mech-
anisms of CUHI and the optimization of predictive models.

4 Discussions

In the context of global climate warming, the frequency and
duration of heatwave (HW) events are also increasing world-
wide, posing significant challenges to urban thermal environ-
ments and resulting in public health issues (IPCC, 2021; Patz
et al., 2005; Xu et al., 2016). Next, we will analyze the HW
activity patterns under different SWPs in YRDUA.

As shown in Fig. 10a, type 2 exhibits the highest frequency
of HW events (29.1 %), corresponding to the highest CUHII
(0.66 °C). Type 4, on the other hand, has the lowest HW fre-
quency and the lowest CUHII. The ranking of the HW fre-
quency and CUHII for other synoptic types generally aligns.
In Fig. 10b, type 4 has the highest cloud cover, forming a
high-value center band in the southeast, while type 2 has a
relatively lower cloud cover. Reduced cloud cover improves
the reach of solar radiation reaching the surface, contribut-
ing to the HW frequency. In Fig. 10c, the relative humidity
across YRDUA is generally high, above 65 %. Type 4 dis-
plays a high humidity center in the southern part of YRDUA.
On the contrary, type 2 exhibits a lower overall relative hu-
midity, influenced by the subtropical high of the western Pa-
cific, which is favorable for the formation of HW events. Fig-
ure 10d presents the zonal profiles of vertical velocity at 500,
700, 850, and 1000 hPa for the six SWPs, with positive val-
ues indicating sinking motion and negative values indicat-
ing ascending motion. Under type 4, the central and southern
regions of YRDUA experience prevalent ascending motion
above 850 hPa, where warm air encounters cold air, leading
to increased cloud cover and subsequently lower HW fre-
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Figure 10. HW frequency (a), cloud cover (b), relative humidity and wind field (c), and vertical velocity profiles (d) under different SWPs
in YRDUA.

quency. On the contrary, type 2, controlled by the subtropical
high of the western Pacific, exhibits a strong sinking motion
in the central region, reducing cloud cover, improving solar
radiation reaching the ground, and increasing the HW fre-
quency.

Previous studies have noted a pronounced amplification of
CUHII during HW periods (Li and Bou-Zeid, 2013; Founda
et al., 2015; Khan et al., 2020; Ngarambe et al., 2020). Does
a similar effect exist for CUHII in YRDUA during HW pe-
riods? If so, what role does this amplification play in the di-
urnal cycle of CUHII? We proceed with our analysis to ex-
plore these questions. Figure 11 illustrates that CUHII during
HW periods (red line) is significantly higher than that during
non-heatwave (NHW) periods (blue line) for all SWPs, indi-
cating a notable amplification of CUHII in YRDUA during

HW periods. Specifically, the differences in CUHII between
HW and NHW range from 0.22 to 0.92 °C (purple bars),
with the most pronounced amplification observed in type 1
and type 2. In particular, amplified CUHII (1CUHII) peaks
around 15:00 BJT during the day, consistent with previous
studies (Tan et al., 2010; Founda et al., 2015), highlighting
the crucial role of day in amplifying CUHII. Statistical analy-
sis of day and night data (box plots) reveals that during NHW
periods, CUHII is significantly higher at night than during the
day. However, during HW periods, the amplification effect is
stronger during the day than at night, significantly narrowing
the difference between CUHII at night and during the day.
For example, under type 3, type 4, and type 6, the difference
between night and day CUHII decreases by over 35 % dur-
ing HW periods compared to NHW periods. Furthermore, in
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Figure 11. Synergies between HW and CUHI during HW periods under different SWPs (a–f). In each panel, the upper line chart represents
the diurnal variation of CUHII, the lower bar chart represents the diurnal variation of the 1CUHII during HW periods, and the box plot on
the right presents the statistical results for both day and night.

type 1, type 2, and type 5, during HW periods, day CUHII
even surpasses night CUHII. To gain insight into the un-
derlying physical mechanisms, Fig. 12 compares the diurnal
variations of RH and WS between the HW and NHW peri-
ods. The results show that, overall, RH during HW periods
is generally lower than RH during NHW periods, with the
disparity widening significantly during the day. As exempli-
fied by type 2, the maximum difference in RH coincides with
the maximum difference in CUHII at 15:00 BJT, suggesting
that during the daytime of HW periods, urban areas are drier
than their suburban counterparts, inhibiting the cooling of the
evaporation and therefore exacerbating CUHII. In addition,
WS analysis indicates that while night WS remains similar
between HW and NHW periods, WS decreases significantly
during the daytime of HW periods (except for type 6), im-
plying suppressed advective cooling and further contributing
to the amplification of CUHII. In summary, HW events not
only significantly amplify CUHII in YRDUA, but also at-
tenuate the diurnal variation of CUHII by modulating local
meteorological factors. Given the unique coastal location of
YRDUA, the influence of sea–land breeze advection cooling

on the diurnal cycle of CUHII cannot be overlooked. Future
research will focus on typical cities within the region, delving
deeper into the effects of sea breezes on the dynamic changes
of the urban thermal environment.

5 Conclusions

This study systematically analyzed the complex modulation
mechanisms of the diurnal cycles of CUHII using objective
classification and a machine learning model, taking into ac-
count both SWP and human factors. The key findings were
summarized as follows.

CUHII in the YRDUA region exhibited a spatial pat-
tern with higher values in the east and lower values in the
west. Night CUHII was 21.11 % stronger than that during
the daytime, with June displaying the largest diurnal ampli-
tude. The temporal–spatial dynamics of CUHII manifested a
pronounced diurnal cycle. At the synoptic system level, this
study clarified the differentiated impacts of six distinct SWPs
on CUHII within the 850 hPa geopotential height field dur-
ing summer. In particular, type 2 (dominated by subtropical
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Figure 12. Diurnal variations of (a) RH and (b) WS during the HW periods (red line) and the NHW periods (blue line).

high pressure) stood out due to its high frequency of occur-
rence and accompanying intense CUHII (0.65 °C during the
day and 0.71 °C during the night). Type 4 (jointly influenced
by southwestern moisture and cold air moving southward)
was characterized by low frequency and relatively weaker
CUHII (0.41 °C during the day and 0.47 °C during the night).
These discoveries indicated that SWPs could play a pivotal
role in regulating the diurnal cycle of CUHII. Furthermore,
this research delved into the contributions of human activities
to CUHII. Apart from particulate matter, PLAND, LPI, and
AHF all exhibited increasing trends over the years, with their
spatial distributions closely mirroring that of CUHII, again
featuring higher values in the east and lower in the west. This
underscored the non-negligible influence of human activities

on CUHII. Most importantly, this paper quantifies the con-
tributions of SWPs and human activities to the diurnal cycle
of CUHI using a RF model. The SHAP value revealed that
SWPs had a more pronounced influence on daytime CUHII
(mean SHAP: 0.12 for human activities, 0.10 for SWPs),
whereas human activities dominated nighttime CUHII (mean
SHAP: 0.08 for human activities, 0.16 for SWPs). During
the daytime, the PDP value for RH exhibited a more sig-
nificant decrease, explaining why type 4 contributed more
prominently to CUHI during this period. When the wind
speed surpassed a threshold of 1.7 m s−1, the PDP rapidly in-
creased, potentially accounting for the heightened contribu-
tion of type 5 to CUHI during this period. Conversely, during
the nighttime, there seemed to be a threshold for PLAND at
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38 %, beyond which its impact on enhancing CUHI became
notably more significant. These findings indicated a clear di-
urnal asymmetry in the modulation of CUHI by SWPs and
human activities. Lastly, this study endeavored to elucidate
the potential physical mechanisms underlying the diurnal
asymmetry in SWP modulation of CUHI, with a focus on
HW events. This research not only improved our understand-
ing of the diurnal drivers of CUHII in the YRDUA region, but
also provided a solid scientific basis for formulating targeted
urban environmental mitigation strategies.
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