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Abstract. Anthropogenic (ANTHRO) and biomass burning (BB) emissions are major contributors to ambient
air pollution, with the latter playing a particularly dominant role in nonurban regions. India has experienced a
dramatic deterioration in air quality over the past few decades, but no systematic assessment has been conducted
to investigate the individual contributions of ANTHRO and BB emission changes over the long term in India,
particularly in nonurban areas. In this study, we conduct a comprehensive analysis of the long-term trends in
particulate matter with aerodynamic diameters < 2.5um (PM>s) and ozone (O3) in India and their mortality
burden changes from 1995 to 2014, using a state-of-the-art high-resolution global chemical transport model
(CAM-chem). Our simulations reveal a substantial nationwide increase in annual mean PM, 5 (6.71 uygm™3 per
decade) and O3 (7.08 ppbv per decade), with the Indo-Gangetic Plain (IGP) and eastern central India serving
as hotspots for PM5 5 and O3 trend changes, respectively. It is noteworthy that substantial O3 decreases were
observed in the northern IGP, potentially linked to nitric oxide (NO) titration due to a surge in nitrogen oxides
(NO,) emissions. Sensitivity analyses highlight ANTHRO emissions as primary contributors to rising PM> 5
and O3, while BB emissions play a prominent role in winter and spring. In years with high BB activity, the
contributions from BB emissions to both PM> 5 and O3z changes were comparable to or even exceeded AN-
THRO emissions in specific areas. We further estimate that the elevated air pollutant levels were associated with
increased premature mortality attributable to PMj3 5 and O3, leading to 97 830 and 73911 deaths per decade.
Although there has been a decrease in premature mortality per capita in the IGP region, population increase has
offset its effectiveness.
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1 Introduction

Air pollution is among the most detrimental environmental
factors to human health. According to the World Health Or-
ganization (WHO) database, 99 % of the global population
lives in areas where the air quality surpasses WHO guide-
line limits (https://www.who.int/health-topics/air-pollution#
tab=tab_1, last access: 21 September 2024). The two most
concerning pollutants, particulate matter with aerodynamic
diameters < 2.5 um (PM3; 5) and ozone (O3), can cause sig-
nificant damage to the human heart and lungs (Hoek et al.,
2013; Hystad et al., 2013; Villeneuve et al., 2015), potentially
leading to premature death due to exposure over extended
periods (Dedoussi et al., 2020; Fuller et al., 2022). The latest
Global Burden Disease (GBD 2019) study, a comprehensive
research initiative that quantifies health loss due to disease,
injury, and risk factors worldwide, estimated that exposure
to air pollution, including both household and ambient pol-
lution, led to 6.7 million premature deaths (95 % confidence
interval, CI, of 5.9 to 7.5 million) worldwide in 2019 (GBD
2019 Risk Factors Collaborators, 2020). Thus, mediating air
pollution has become one of the most pressing global chal-
lenges.

It is well known that surface air pollution is usually un-
equally distributed in space, with higher levels in devel-
oping countries than in developed countries (GBD 2015
Risk Factors Collaborators, 2016). For example, India was
ranked as the most polluted country in the world in
2021, encompassing 63 of the world’s 100 most polluted
cities (IQAir: 2021 World Air Quality Report, available
at https://lib.icimod.org/record/35767/files/HimalDoc2022 _
2021WorldAirQualityReport.pdf?type=primary, last access:
21 September 2024). Previous modeling studies have indi-
cated that the number of districts exceeding India’s annual
ambient standard of 40 ugm™3 rose from 200 to 385 (out
of 640) from 1998 to 2020 (Guttikunda and Ka, 2022). The
GBD 2019 study estimated that premature deaths attributable
to ambient PM> s and O3 pollution accounted for 10.4 %
(8.4-12.3) and 1.8 % (0.9-2.7) of the total deaths in India in
2019, respectively, and that the death rate per 100 000 peo-
ple related to these pollutants increased by 115.3 % (28.3—
344.4) and 139.2 % (96.5-195.8) from 1990 to 2019, respec-
tively (India State-Level Disease Burden Initiative Air Pollu-
tion Collaborators, 2021). However, the GBD 2019 study did
not separate the air quality changes due to various contribu-
tion factors, such as anthropogenic (ANTHRO) and biomass
burning (BB). Meanwhile, the elevated chemical reaction
rates in India, driven by intense sunlight and warm temper-
atures, create conditions conducive to ozone formation. Ad-
ditionally, strong convection enhances the transport of ozone
and its precursors, such as reactive nitrogen oxides (NO,),
to higher altitudes, where the prolonged ozone lifetime pro-
motes accumulation. This phenomenon positions India as a
hotspot for ozone pollution and also significantly impacts the
air quality in downwind regions (Zhang et al., 2016, 2021a).
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As seen from the Community Emissions Data System
(CEDS) inventory (Hoesly et al., 2018), the increasing trends
in ANTHRO emissions of major air pollutants, such as nitro-
gen oxides (NO, ), carbon monoxide (CO), and non-methane
volatile organic compounds (NMVOCs), are significantly
higher in India than in other regions (Wang et al., 2022).
Meanwhile, crop yields in India have significantly increased
since the mid-1960s after the Green Revolution, thereby con-
tributing to increased BB emissions (Huang et al., 2022).
Venkatramanan et al. (2021) showed that the crop residue
burning in India increased from 18 x 10° to 116 x 10° t, in
terms of total biomass burned, from 1950-1951 to 2017—
2018. The frequency and intensity of forest fires in India have
also increased in recent years due to persistent warmer tem-
peratures and climate extremes (Vadrevu et al., 2019; Jain et
al., 2021). These fires could pose significant threats to am-
bient air quality and human health, as large amounts of cer-
tain compounds are emitted into the atmosphere, namely, car-
bon dioxide (CO;), NOy, particulate matter (PM), and other
chemical species (Crutzen and Andreae, 1990; Carvalho et
al., 2011; Lan et al., 2022; Miranda et al., 2005). Previous
studies have utilized observational and satellite data to as-
sess the impacts of ANTHRO and BB sources on air quality
trends in some Indian cities (Gurjar et al., 2016; Vohra et al.,
2022). Additionally, model simulations have been employed
to analyze source contributions to air pollution (Conibear
et al., 2018a, b). However, there remains a lack of compre-
hensive assessments regarding the impacts of long-term AN-
THRO and BB emission changes on air quality, particularly
in nonurban areas.

In this study, we aim to improve our understanding of the
spatial-temporal distribution of major air pollutants, mainly
surface PM, 5 and O3, and the related mortality burden in In-
dia from 1995 to 2014 using a state-of-the-art global chem-
istry transport model. In addition, the individual contribu-
tions of changes in ANTHRO and BB emissions are further
separated to better understand the causes of worsening air
quality and escalating health risks in India. The selected pe-
riod encompasses a dynamic phase of rapid changes in both
ANTHRO and BB activities in India, thereby providing an
ideal context for investigating their respective contributions
to air pollution.

2 Methods

2.1 CAM-chem model configuration

We simulate surface PM; 5 and O3 concentrations over India
between 1995 and 2014 using the CAM-chem global chem-
istry model, which is based on version 6 of the Community
Atmosphere Model (CAM6), the atmospheric component of
the Community Earth System Model (CESM2), as detailed
by Danabasoglu et al. (2020) and Emmons et al. (2020).
Following Emmons et al. (2020), the original model is run
at a 1.25° (longitude) x 0.9° (latitude) horizontal resolution
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with 32 vertical levels reaching ~45km. We configure the
Model for Ozone and Related Chemical Tracers — Tropo-
spheric and Stratospheric (MOZART-TS1) chemistry mech-
anism with various complexity choices for tropospheric and
stratospheric chemistry (Emmons et al., 2020). The aerosol
module adopts the four-mode version of the Modal Aerosol
Model (MAM4), including sulfate, black carbon, primary or-
ganic matter, secondary organic aerosols, sea salt, and min-
eral dust. The first level of the model outputs is considered
the surface level, and all of the model outputs are then re-
gridded to a finer resolution of 0.5° x 0.5° to match the grid
cell population and baseline mortality rate datasets with re-
spect to performing the health impact assessment.

Global historical ANTHRO emissions are adopted from
CEDS (version 2017-05-18), which provides monthly emis-
sions of ANTHRO aerosols and precursor compounds at a
0.5° x 0.5° resolution from 1750 to 2014, and were used
in the Coupled Model Intercomparison Project Phase 6
(CMIP6) experiments (Emmons et al., 2020; Hoesly et
al.,, 2018). The ANTHRO emissions include eight sec-
tors: agriculture; energy; industrial; transportation; residen-
tial, commercial, and other; solvent production and appli-
cation; waste; and international shipping (Hoesly et al.,
2018). The air pollutants from the CEDS inventory, espe-
cially NMVOCs, are then re-speciated to match the chemi-
cal species in the latest CESM2 model, following the steps
introduced by Emmons et al. (2020). Interpolation of the
emission inventory from its original resolution (0.5° x 0.5°)
to the target model resolution (0.9° x 1.25°) is undertaken
prior to input into the model. Global historical BB emis-
sions are sourced from van Marle et al. (2017) at a monthly
temporal resolution and a 0.5° native spatial resolution, with
all emissions occurring at the surface. Additionally, the bio-
genic emissions are calculated using the Model of Emissions
of Gases and Aerosols from Nature (MEGAN v2.1). More
emissions used are described in Emmons et al. (2020).

2.2 Numerical experiment designs

As described above, the standard (BASE) simulation is
driven by the year-to-year variability in ANTHRO and BB
emissions from 1995 to 2014. To separate the contributions
from these two emission sources, we then conduct two sen-
sitivity simulations in which ANTHRO emissions (FixAN)
and BB emissions (FixBB) are fixed at 1995 levels individ-
ually, while all other parameters are kept consistent with the
BASE simulation (Table 1). Subtracting each sensitivity sim-
ulation from the BASE simulation enables quantification of
the respective influences of changes in ANTHRO and BB
emissions on air quality and the associated health burden in
India. In this work, we will discuss the air quality and mor-
tality burden changes in six Indian regions based on meteo-
rological conditions and aerosol variability (Fig. 1).
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Table 1. Model simulations performed in this study.

Simulation ~ Anthropogenic ~ Biomass burning
emissions emissions

BASE A% \%

FixAN 1995 v

FixBB v 1995

“V” indicates that particular input is subject to interannual variation
in the simulation during the 1995-2014 period, “BASE” indicates
that global ANTHRO and BB emissions vary according to their
interannual variations during 1995-2014, “FixAN” indicates that
only global ANTHRO emissions are fixed to 1995 levels in the
simulation, and “FixBB” indicates that only global BB emissions
are fixed to 1995 levels.

2.3 Trend estimation

In this study, we apply the Theil-Sen estimator (Theil, 1992;
Sen, 1968) to calculate the magnitude of trends in surface
PM, 5 and O3 concentrations and the attributed mortality bur-
den from 1995 to 2014. The Theil-Sen estimator is a robust
nonparametric method for trend analysis based on the me-
dian slope, which is insensitive to outliers and highly com-
petent with respect to identifying the slope of non-normally
distributed data, as described in Eq. (1). This method has
been widely used to analyze temporal trends in air pollutants
that are always non-normally distributed (e.g., Munir et al.,
2013; Sarkar et al., 2019; Vanem and Walker, 2013; Wan et
al., 2023).

(ti —1)

Here, x; and x; represent the concentrations of either PM5 s,
O3, or attributed premature mortality at the time #; and ¢;
(i > j), respectively, for the same parameter. A slope > 0 in-
dicates an increasing trend, whereas a slope < 0 indicates a
decreasing trend.

In addition to the Theil-Sen estimator, we use the nonpara-
metric Mann—Kendall test to assess the significance of tem-
poral trends within the data series (Zhang et al., 2022a, b).
Both the Mann—Kendall test and Theil-Sen estimator require
independence and randomness in the data, making them suit-
able for identifying monotonic trends. According to previous
studies, a p value of less than 0.05 is most commonly treated
as the absolute threshold of statistical significance (Chris-
tiansen et al., 2020; Wang et al., 2021; Zhou et al., 2017).
The above methods are completed by implementing a Python
program with the “pyMannKendall” package (Shourov et al.,
2023).

Slope = Median @))

2.4 Mortality burdens of surface PM2 5 and Og in India

Based on an integrated exposure-response function utilized
in the most recent GBD studies, we estimate the mortality
burden associated with long-term exposure to ambient an-
nual PM; 5 and the O3 seasonal daily maximum 8 h mixing
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Figure 1. A map of India divided into six regions based on meteorological conditions and aerosol variability (adapted from David et al.,

2018).

ratio (OSDMAS) in India from 1995 to 2014, as described in
Eq. (2):

AMort = yg x AF x pop = yp x <Rl;R 1) X pop. 2
Here, AMort refers to the annual mortality burden attributed
to long-term PM; 5 or O3 exposure; yp is the baseline mor-
tality rate for a specific cause of disease; AF is the at-
tributable fraction, which is a measure of the disease burden
attributable to PMj 5 or O3z exposure, represented as Rgl;l
(RR refers to relative risk); and pop represents the exposed
population above the age of 25 for each grid cell in the do-
main.

Following our previous work (Zhang et al., 2021b), we
obtain the baseline mortality rate (yg) for each country and
S5-year age group from 1995 to 2014 from the GBD 2017
project (GBD 2017 Risk Factor Collaborators, 2018). The
RR of long-term PM; 5 exposure associated with the mor-
tality burden due to specific diseases was estimated using
an integrated exposure-response model (IER) constructed by
Burnett et al. (2014) and updated in GBD 2017. The RR for
long-term O3 exposure is obtained from Turner et al. (2016),
who indicated an RR of 1.12 (95 % confidence interval, CI,
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of [1.08, 1.16]) for respiratory disease. The recent GBD 2019
reported a relatively lower RR for chronic obstructive pul-
monary disease (COPD), a subcategory of respiratory dis-
ease (1.06, with a 95 % CI of [1.03, 1.10]). To be comparable
with the GBD 2019 results, we also estimate the O3-related
mortality burden for COPD in India during the same period.
The population distribution with age stratification data (pop)
were retrieved from the GBD 2017 with a horizontal resolu-
tion of 0.1°. The population-weighted (pop-weighted) aver-
age of specific air pollutants discussed in the results is calcu-
lated by weighting the population of all grid cells inside each
administrative region or country. Additionally, we calculate
mortality rates per capita (avoidable deaths per 100 000 peo-
ple) in each administrative region to exclude the influence of
varying populations.

3 Results and discussion

3.1 CAM-chem evaluation

We perform a comprehensive model evaluation by compar-
ing our simulated monthly concentrations from the BASE
simulation with multiple datasets, including ground-based

https://doi.org/10.5194/acp-25-4767-2025
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observations in India; a historical multi-model simulation
from the CMIP6 project; and different versions of multiyear
reanalysis data from the Atmospheric Composition Analysis
Group (ACAG) at Washington University in St. Louis, here-
inafter referred as “Wustl Extracts” (van Donkelaar et al.,
2021). We also compare our simulated PM; 5 and O3 with
previously published studies in India using either global or
regional chemical transport models (CTMs) as well as with
the concentration reported from the GBD 2019 study. We
select available ground-level PM5 5 observations over India
from previous studies (Latha and Badarinath, 2005; Panwar
et al.,, 2013; Reddy et al., 2012; Saradhi et al., 2008; Ti-
wari et al., 2009, 2013), which were also collected by the
ACAG. The locations of these sites are listed in Table S1 in
the Supplement. Figure S1 indicates that the model exhibits
good performance with respect to capturing seasonal vari-
ations in surface PM; 5 observations, especially during the
peak months, with correlation coefficient (R) values ranging
from 0.59 to 0.91. Two exceptions are Mumbai (with an R
of —0.16), where the model shows a contrasting trend for
the seasonal PMj 5 characteristics (Fig. S1b), and Muktesh-
war (with an R of 0.45). One possible explanation for this
is the potential underestimation of emission inventories, es-
pecially during early periods for developing regions, such as
India (McDulffie et al., 2020; Wang et al., 2022; Agarwal et
al., 2024). For O3, our model shows an even higher R value
when compared with the available surface observation sites
in India from 1997 to 2011 (Fig. S2). Unlike the underestima-
tions of surface PMj 5 in India, the CAM-chem model tends
to overestimate surface O3, which is not very uncommon for
global CTMs and has also been frequently discussed in pre-
vious studies (Hou et al., 2023; Tilmes et al., 2015; Young et
al., 2018; Zhang et al., 2021b). The overestimation is partly
caused by the coarse resolution, which leads to diluted emis-
sions of O3 precursors and then simulated high O3z produc-
tion. Figure 2 compares our study with previous studies and
other publicly available PM» 5 and O3 datasets, as detailed in
Tables S2 and S3. The comparisons indicate that our simu-
lated results using CAM-chem agree very well with previous
studies for both PM; 5 and O3, based on various metrics, such
as average O3, pop-weighted average O3, or OSDMAS, con-
sistent with the findings within the multiple CMIP6 models
(Turnock et al., 2020). Figure S3 further compares the long-
term trend in annual surface PM5 5 concentrations from 1998
to 2014 in the BASE simulation and Wustl Extracts dataset.
A consistent increasing trend is found in both datasets, with a
temporal R of 0.86 and lower estimations in our model. The
model performs better in eastern India than in western India,
with R values usually larger than 0.9 and normalized mean
bias (NMB) values lower than —25 %. Similarly, compared
to the simulated trend in our study with different versions
of Wustl Extracts and the GBD 2019 study, our simulated
PM; 5 concentration is lower, whereas the simulated O3 is
higher (Fig. S4). The underestimation of the surface PM s is
partly caused by the missing model representation of nitrate
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and ammonium (Ren et al., 2024) and the secondary organic
aerosol (Liu et al., 2021).

3.2 Spatial and temporal distribution of air pollution
changes in India from 1995 to 2014

3.2.1 Historical emissions in India from 1995 to 2014

We first assess the interannual variation in ANTHRO and BB
emissions of CO, NO,, NMVOC:s, sulfur dioxide (SO»), am-
monia (NH3), black carbon (BC), and organic carbon (OC)
in India between 1995 and 2014 from the CEDS inventory.
Figure S5 indicates an overall increase in ANTHRO emis-
sions prior to a slow decrease after 2011. Significant interan-
nual variations in BB emissions, such as in 1999, 2006, and
2009, were mainly caused by climate-change-induced hot
and arid conditions (Sahu et al., 2015). Figure S6 shows that
ANTHRO emissions occurred predominately in the Indo-
Gangetic Plain (IGP) and central India, significantly increas-
ing across all regions. Unlike other administrative regions,
northern and eastern areas in India, such as Punjab and Ma-
nipur, feature a higher ratio of BB emissions to ANTHRO
emissions.

3.2.2 The long-term trends in PM2 5 and Og in India
from 1995 to 2014

From the BASE simulation, we estimate that the annual mean
pop-weighted PM; 5 and O3 values for India in 1995 and
2014 were 29.88 ugm™—> and 67.41 ppbv, respectively. Fig-
ure 3a and b show that annual average PM; 5 concentrations
gradually rose from the south to the north, with high levels
predominantly found in the IGP, mainly caused by high AN-
THRO emissions (Fig. S6) and reduced ventilation due to
obstruction by the Tibetan Plateau (Gao et al., 2018). Annual
average O3 concentrations at the surface gradually increased
from west to east and from south to north, with the highest
levels concentrated in northern India and the eastern part of
central India. The spatial patterns in the PM» 5 and O3 distri-
bution in India have also been seen in several previous stud-
ies, although these publications only discussed one or several
specific years (Jia et al., 2021; India State-Level Disease Bur-
den Initiative Air Pollution Collaborators, 2021).

From Fig. 3, we also find that both PM> 5 and O3 showed a
statistically significant increasing trend throughout the coun-
try from 1995 to 2014, with a nationwide increasing rate of
6.71 ugm™> per decade (p < 0.01) for pop-weighted PM 5
and 7.08 ppbv per decade (p <0.01) for pop-weighted O3
(Fig. S7), mainly driven by rapid industrialization and sub-
stantial economic development (Pandey et al., 2014; Sa-
davarte and Venkataraman, 2014). However, distinct spa-
tial heterogeneity in the increasing trend was observed for
the two air pollutants. PM» 5 exhibited varying degrees of
increase across India, with the most distinctive increase
occurring in the IGP, where the maximum trend reached
12.60 ug m~3 per decade. This notable rise can be attributed

Atmos. Chem. Phys., 25, 4767—4783, 2025
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Figure 3. Spatial distributions of PM; 5 (a—e) and O3 (f—j) with respect to the annual average in 1995 (a, f) and 2014 (b, g) as well as the
trends in these species from 1995 to 2004 (c, h), from 2005 to 2014 (d, i), and from 1995 to 2014 (e, j). The black dot denotes the areas
where the trend is statistically significant (p < 0.05). The units are micrograms per cubic meter (ug m~3) for PMj; 5 (a, b), parts per billion
by volume (ppbv) for O3 (f, g), micrograms per cubic meter (ug m) per decade for PM; 5 trends (c, d, e), and parts per billion by volume

(ppbv) per decade for O3 trends (h, i, j).

to increased regional ANTHRO emissions (Fig. S6). For O3,
eastern central India experienced the highest O3 increases,
with an obvious increase in eastern India and the lowest val-
ues in western India. It is notable that, in the northern IGP,
including New Delhi, significant O3 decreases were also ob-
served, which could have been caused by inhibited O3 pro-

Atmos. Chem. Phys., 25, 4767—-4783, 2025

duction due to nitric oxide (NO) titration as a result of the
dramatic increase in NO,. emissions, as discussed in Karam-
belas et al. (2018). Splitting the trend into two periods (1995—
2004 and 2005-2014), we find a larger increasing trend in
the latter period than that in the former for both PM; 5 and
O3, which may be due to the rapid urbanization and grow-
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ing transportation activities over populous regions (Fig. S8)
in recent years in India (Gao et al., 2018).

3.3 Driving factor analysis for air pollution changes in
India

3.3.1 Contributions to the annual and seasonal trends

To disentangle the contributions of ANTHRO and BB emis-
sions to long-term trends in PM> s and O3 concentrations
in India from 1995 to 2014, we first analyze their contri-
butions to annual and seasonal trends (Fig. 4). Not surpris-
ingly, changes in ANTHRO emissions dominated the dete-
rioration of PM, s and O3 in India, consistent with stud-
ies based on observational and satellite data (Gurjar et al.,
2016; Vohra et al., 2022). Changes in ANTHRO emissions
alone increased the area-weighted PM, s by 5.46 ugm~> per
decade (p <0.01) and increased the area-weighted O3 by
2.71 ppbv per decade (p <0.01), accounting for 102.21 %
and 104.11 % of the total change, respectively. The contribu-
tions of changes in BB emissions were relatively minor, with
distinct interannual variations and seasonal variations. Spa-
tially, we found that both the long-term PM» 5 and O3 trends
were mostly dominated by the ANTHRO emission changes
throughout India (Fig. S9a, c). Changes in BB emissions led
to a slightly increasing trend in PM> 5 in most of India and a
decreasing trend in eastern India, although neither trend was
statistically significant. BB emissions seemed to increase O3
in the IGP and central India and decrease O3 in western In-
dia, but the trends were insignificant (Fig. S9b, d).

It is well recognized that BB emissions usually fea-
ture a distinct seasonal trend, especially in India, where
monsoons influence them. Hence, we quantify the seasonal
trends in PMj 5 and O3 from ANTHRO and BB emissions
for DJF (December—January—February), MAM (March—
April-May), JJA (June-July—August, monsoon season), and
SON (September—October—November, post-monsoon sea-
son) from 1995 to 2014 by subtracting the FixAN or FixBB
simulation from the BASE simulation. The annual trends in
PM; 5 and O3 for each season were subsequently estimated
using the Theil-Sen estimator and the Mann—Kendall test.
From Fig. 5a-h, we find that the contributions of ANTHRO
emissions had consistent spatial patterns for the seasonal
PMj; 5 trend, with larger influences in the post-monsoon sea-
sons (DJF and SON). These influences were estimated to be
responsible for PM 5 enhancements as high as 17.08 ug m =3
per decade, due to the decreased vertical dispersion and dif-
fusion of aerosol caused by lower solar radiation during win-
ter and surface wind speeds (Bran and Srivastava, 2017). The
contributions of ANTHRO emissions during MAM and JJA
were modulated as a result of increased precipitation, strong
air convergence, and uplift during the presence of the sum-
mer monsoon, which impeded the accumulation of PM; 5
emissions at ground level (Bran and Srivastava, 2017; Gao
et al., 2020; Lu et al., 2018). Unlike PMj; 5, the contributions
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of ANTHRO emission changes to the surface O3z trend in
India had a distinct spatial pattern across seasons (Fig. 5i—
p). The ANTHRO emissions had a much stronger positive
influence on the O3 increases in northern, eastern central,
and eastern India during JJA and SON, while they had the
largest increases in southern India in the pre-monsoon sea-
son (MAM; Fig. 5j). It has been reported that the stronger
solar radiation and higher temperature in MAM are respon-
sible for an increase in the photochemical efficiency of O3 in
the presence of NO, (Doherty et al., 2013; Jacob and Win-
ner, 2009; Pusede et al., 2015). The decreased O3 in the IGP
was most pronounced in DJF (Fig. 5i), mainly due to lower
solar radiation and titration of O3 owing to higher NO, lev-
els (Kumar et al., 2012). Additionally, the occurrence of the
winter monsoon led to extensive air subsidence in northern
India, resulting in low net O3 production and strong horizon-
tal export, ultimately leading to relatively low O3 levels (Lu
et al., 2018).

3.3.2 Contributions to the seasonal air quality changes

BB emissions exhibit a high degree of interannual variabil-
ity, leading to less clear trends in the annual data. Thus, Fig. 6
focuses on the spatial distributions of BB emission contribu-
tions for seasonal PMj; 5 and O3 changes between 1995 and
2014 rather than trends, as detailed in Table S4. These con-
tributions are quantified by subtracting the FixBB simulation
in 2014 from the BASE simulation in 2014. The changes in
BB emissions from 1995 to 2014 contributed significantly to
the PM5 5 increases in eastern India (over 20 ug m~3) with a
high incidence of forest fires (Jena et al., 2015). They also
led to an O3 increase of more than 4 ppbv in eastern India in
MAM. Contributions to seasonal PM; s and O3 changes from
BB emissions were comparable to or even exceeded those
from ANTHRO in some regions, such as Manipur and Naga-
land (Fig. S10). With a higher BB emission fraction in other
years, such as 1999, these contributions could even be even
higher, reaching up to 46.03 uyg m~—> and 6.46 ppbv for PM s
and Og, respectively (Fig. S11). Therefore, despite their vari-
ability, the BB emissions in India posed a great threat to the
air quality and, thus, could not be overlooked.

3.4 Long-term trends in premature mortality due to
PM> 5 and O3 in India

We estimate that the national mortality burden attributable
to ambient PM 5 exposure rose significantly, from 698 291
deaths in 1995 to 893 325 deaths in 2014, at a rate of 97 830
deaths per decade (p <0.01; Fig. 7a). Similarly, the mor-
tality burden attributable to O3 exposure also notably rose
from 414 498 deaths in 1995 to 580028 deaths in 2014 at a
rate of 73911 deaths per decade (p < 0.01). The hotspots of
premature mortality attributable to PM»> s and O3 exposure
were located in the New Delhi and IGP regions in 1995 and
2014 (Fig. 7b—e), coinciding with densely populated areas
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Figure 4. Drivers of trends in the area-weighted (a—c) PM; 5 and (d—f) O3 in India in 1995-2014. The yellow shading in panels (a) and
(d) shows the evolution of model-simulated PM» 5 and O3 concentrations in the FixAN simulation, whereas the red shading illustrates
the estimation of the PM» 5 and O3 concentrations resulting from changes in ANTHRO emissions compared to the 1995 level. Panels (b)
and (e) are the same as panels (a) and (d), respectively, but for the impacts of changes in BB emissions. Panels (¢) and (f) denote the respective
estimated PM, 5 and Og trends in India derived from the BASE simulation and the impacts of ANTHRO and BB emissions.

(Fig. S8). We found that Uttar Pradesh, Bihar, West Bengal,
and Haryana, four states within the IGP region, accounted for
41.00 % and 39.77 % of the national premature mortality due
to PM3 5 and O3 in 2014, respectively. Considering this het-
erogeneous spatial distribution, it is imperative for the IGP
region to implement stronger air pollution control policies to
safeguard human health, as discussed by Jia et al. (2021). Our
estimations for the O3z-related mortality burden are higher
than those reported in the GBD 2019 study (Fig. S12), as we
applied a higher RR and used higher baseline mortality rates
(see Sect. 2.4). After recalculating the O3-related mortality
burden using the GBD 2019 metrics, we report an increasing
trend of 29736 deaths per decade for Os-related mortality,
which is comparable to the GBD 2019 estimation of 33 243
deaths per decade. However, our estimated mortality burdens
are still slightly higher than the GBD 2019 values due to the
O3 overestimation in our model (Figs. 2, S4).

To isolate the effects of population heterogeneity among
regions, we also quantify the mortality burden changes per
capita (avoidable deaths per 100000 people) from 1995 to
2014 (Fig. 8). PMy s-attributable premature mortality per
capita was higher in the IGP and eastern India, with the high-
est value in Chandigarh (427.2), followed by Sikkim (153.6),
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Meghalaya (140.3), and the National Capital Territory (NCT)
of Delhi (126.1) in 1995 (Fig. S13). The spatial distribution
of Ogz-attributable premature mortality per capita resembled
that of PM; 5. However, values were relatively lower, with
the maximum value also appearing in Chandigarh (288.0),
followed by Sikkim (120.2), Meghalaya (68.6), and the NCT
of Delhi (68.0) in 1995 (Fig. S13). Over the period from
1995 to 2014, PM» 5- and Os-attributable premature mor-
tality per capita decreased in the north and increased in the
south (Fig. 8), indicating that the increasing trend in prema-
ture mortality attributable to PM» s and O3 in the IGP region
was mainly driven by population growth (Fig. S8).

Figure 9 shows that changes in ANTHRO emissions from
1995 to 2014 increased the premature mortality per capita
attributable to PM> 5, with higher values located mainly in
the eastern IGP and central India. Changes in BB emis-
sions increased premature mortality attributable to PM» s per
capita in eastern, western, and southern India, whereas these
changes decreased premature mortality attributable to PM3 5
per capita in the IGP and central India. The state with the
largest increase was Manipur (2.55), followed by Nagaland
(2.06), associated with the high incidence of wildfires in
these regions. The state that experienced the largest decrease
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Figure 5. Seasonal patterns in (a—d) ANTHRO and (e-h) BB emission contributions for the trends in PM5 5 and (i-p) for O3 in India from
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for O3. The dots in the plots indicate statistically significant trends (p values less than 0.05).
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Figure 6. Spatial distributions in the BB contribution for seasonal (a—d) PM, 5 and (e-h) O3 changes from 1995 to 2014 for DJF, MAM,
JJA, and SON. The contributions from BB were calculated as the differences between the BASE and FixBB simulations in 2014. The units
are micrograms per cubic meter (ug m~3) and parts per billion by volume (ppbv) for PMj; 5 and O3, respectively.

was Jharkhand (—1.71), followed by Bihar (—1.02). To ex-
plore contribution changes from ANTHRO and BB emis-
sions, we estimate the premature mortality attributable to
PM; 5 per capita in 2000, 2005, and 2010-2014 (Table S5),
consistent with the demonstrations from GBD 2017. There
was a sharp rise in contributions to premature mortality at-
tributable to PMj 5 from changes in ANTHRO emissions
from 1995 to 2014. Not surprisingly, the premature mortality
attributable to PM, 5 from changes in BB emissions fluctu-
ated greatly from 1995 to 2014. In 2000, a year with high
BB emissions (Fig. S5), the contributions of changes in BB
emissions to the premature mortality attributable to PM> 5
in the states of Mizoram, Nagaland, Arunachal Pradesh, and
Tripura reached 5.14, 4.90, 4.86, and 4.17, respectively, ex-
ceeding the contributions of changes in ANTHRO emissions
in that year (Table S5).

4 Conclusions

In this study, we apply a state-of-the-art global CTM (CAM-
chem) to provide a detailed assessment of long-term trends
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in the ambient annual mean PM,s and O3 in India and
their health burden from 1995 to 2014, as well as the driv-
ing factors of ANTHRO and BB emission changes. The
annual mean area-weighted PM; 5 over India increased at
5.34ugm~3 per decade (p < 0.01) from 1995 to 2014, dom-
inated by ANTHRO emissions (5.46ugm~> per decade;
p <0.01). The highest and fastest PMj 5 growth was in
the IGP region, due to rapid industrialization, urbanization,
and transportation growth. For annual mean area-weighted
O3, the increase was 2.60 ppbv per decade (p < 0.01), also
dominated by ANTHRO emissions (2.71 ppbv per decade;
p <0.01). We find that O3 concentrations were highest in
northern India, with the fastest growth occurring in northern,
central, and eastern India. The contributions of BB emissions
to the long-term trends were not significant for either PMj 5
(0.09 ugm™3 per decade; p <0.30) or O3 (—0.01 ppbv per
decade; p < 0.80) and showed significant seasonal variations
due to large interannual variability features. However, when
we examined the air quality changes in specific years, such
as 1999 and 2014, when there was a higher amount of BB
activity in India, we found that the contributions from BB
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Figure 9. Spatial distributions of contributions to premature mortality attributable to PM, 5 per capita (avoidable deaths per 100 000 people)
from changes in (a) ANTHRO and (b) BB emissions from 1995 to 2014.

emissions could be comparable to or even exceed those from
ANTHRO emissions during DJF and MAM, reaching over
46.03 ugm—> and 6.46 ppbv for PM, 5 and O3, respectively.

Further estimation of mortality burden shows a 27.93 %
(698291 to 893 325 deaths) increase in premature mortality
attributable to PMj 5 between 1995 and 2014 (22.94 % for
2005-2014) and a 39.93 % (414498 to 580028 deaths) in-
crease in premature mortality attributable to O3 (44.54 %, in-
creasing during 2005-2014). Changes in ANTHRO and BB
emissions were responsible for an enhancement of premature
mortality attributable to PM> 5 by 88.78 % (97 830 deaths
per decade; p <0.01) and 0.02 % (2383 deaths per decade;
p <0.10). After removing the effect of population growth,
our analysis reveals a notably higher mortality burden per
capita attributable to PM; 5 in the IGP region. However, it
was noteworthy that the mortality burden per capita in the
IGP exhibited a significant decline over the period from 1995
to 2014, despite the increasing trend in premature mortality.
This suggests that population growth was the primary factor
driving the trend in premature mortality.

Our study is subject to several uncertainties and limita-
tions. First of all, the coarser resolution (0.9° x 1.25°) in
the global model frequently cannot realistically represent the
complex physical and chemical processes of regional-scale
air pollution, especially for O3 (Yue et al., 2023). Moreover,
missing chemical mechanisms in the model, such as the lack
of representation of nitrate and ammonium (Ren et al., 2024)
and secondary organic aerosol (Liu et al., 2021), prevented
the model from accurately simulating the PM; 5 concentra-
tion, especially for heavily polluted regions, such as China
and India (Turnock et al., 2020). Another major uncertainty
originated from the inaccurate emission inventory, especially
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for developing regions in early periods, as reported by global
datasets (Paulot et al., 2018; Wang et al., 2022). Zhang et
al. (2021b) revealed that models using the global CEDS in-
ventory tend to predict a lower bias for surface PM5 5 and a
higher bias for surface O3 compared with a regional emis-
sion inventory (MEIC) in China due to disparities in spatial
allocation. Xie et al. (2024) also highlighted a significant un-
derestimation of agricultural fires in the inventory. Moreover,
the uncertainty in health functions, such as the choice of the
exposure-response functions (Ostro et al., 2018; Giani et al.,
2020) and the uncertainties in the baseline mortality rates,
had different impacts on human health (Lelieveld et al., 2015;
Pozzer et al., 2023). Meanwhile, when estimating the mor-
tality burden, we applied an RR derived from a global study
rather than using values specific to India, which could poten-
tially be lower (Brown et al., 2022). Thus, our estimations of
the air-pollution-related mortality burden could be to high.
More epidemiology studies should be conducted in India to
retrieve further RR values. Finally, another limitation in our
experimental design was that we set global fixed emissions
for ANTHRO and BB instead of using values for India only,
thereby ignoring the impact of intercontinental transport.

Code and data availability. The  “pyMannKendall”  pack-
age code is available at https://doi.org/10.5281/zenodo.7536429
(Shourov et al., 2023). The CESM2 model code is available at https:
/Iwww.cesm.ucar.edu/models/cesm2/download (National Center
for Atmospheric Research, 2025). Observation data are available at
https://wustl.app.box.com/s/79pfex658crbq4dykxh51vvfdpksthj5
(Atmospheric Composition Analysis Group, 2025).
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