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Abstract. High-resolution mapping of pollutants based on mobile observation facilitates deep understanding of
air pollutant distributions within a city. This approach fosters science-based decisions to improve air quality, by
adding to the existing but not optimally distributed permanent monitoring stations. In this study, we developed
high-resolution concentration maps of nitrogen dioxide (NO2), particulate matter (PM10) and ultrafine particles
(UFP) for Bucharest, Romania, to evaluate the spatial variation of pollutants across the city during the warm
and cold seasons. Maps were generated using a mixed-effects method applied to a land-use regression (LUR)
model. The approach relies on multiple land-use and traffic predictor variables and assimilation of data collected
by mobile measurements over 30 d in the periods May–July 2022 and January–February 2023. Cross-validation
was done against in situ data extracted from the same collection, while validation was organized by comparison
with standard measurements at fixed reference sites. Our study shows that this combined method has a good
performance for all pollutants (R2 > 0.65), the highest performance being observed for the cold season. PM10
concentration maps indicate multiple sources of particles during the warm season, the most important source
being traffic. During the cold season, PM10 concentration maps show a more uniform distribution of sources in
Bucharest. The city’s principal roads, particularly the Bucharest ring road, are also highlighted in the NO2 maps,
with a higher gradient during the warm period.

1 Introduction

The atmosphere is an essential element for the environment
and life-forms on Earth. Therefore, any change in natural
composition of the atmosphere due to the presence of one or
more pollutants in the atmosphere, such as gases or aerosols
released directly into the atmosphere from natural or anthro-

pogenic sources, can dramatically influence the Earth’s cli-
mate and biosphere, human life and health, and economic ac-
tivities (Nemuc et al., 2013; Kokkalis et al., 2016; Ilie et al.,
2023). Short-term exposure to very high concentrations can
also be a significant risk factor to human health in addition
to prolonged exposure at lower concentrations. One major
concern nowadays is the air quality in urban areas due to its
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significant health risks determined by prolonged population
exposure to gaseous pollutants like nitrogen dioxide (NO2),
as well as particulate matter (PM2.5 and PM10) (Brunekreef
and Holgate, 2002; Bernstein et al., 2004; Almetwally et al.,
2020). Numerous epidemiological studies related short- and
long-term PM10 and NO2 exposure with mortality and mor-
bidity. Short-term exposure to high concentrations of pollu-
tants can be related to both minor discomfort, such as irrita-
tion of the eyes, respiratory tract, or skin, and serious con-
ditions, such as asthma, pneumonia, bronchitis, chronic ob-
structive pulmonary disease and heart problems (Rongqi Ab-
bie et al., 2022; Hasegawa et al., 2023). Furthermore, years
of continuous exposure to PM was shown to be associated
with both newborn mortality and cardiovascular disorders.
A PM2.5 concentration increase of 10 µg m−3 was associated
with an increase of 0.67 %–1.04 % (Hamanaka and Mutlu,
2018) in all-cause mortality, 0.52 % in cardiovascular hospi-
tal admissions and 1.74 % increase in respiratory admissions
(Hasegawa et al., 2023). A PM10 concentration increase of
10 µg m−3 was associated with a 43 % increase in fatal coro-
nary heart disease (Hamanaka and Mutlu, 2018) and 39.31 %
increase in deaths from cardiovascular diseases from short-
term exposure (Seihei et al., 2024). A smaller impact is fore-
seen in the case of short-term exposure to NO2 concentra-
tion, where a 10 ppb increase in concentration was asso-
ciated with a 0.19 % increase in all-cause mortality in the
USA (Hamanaka and Mutlu, 2018). Despite its critical im-
pact (West et al., 2016), air pollution information in urban
areas is not always available or not at an appropriate spa-
tial resolution, hindering effective air quality management
efforts. High-resolution air quality maps are pivotal for en-
vironmental stewardship and public awareness by filling the
gaps in our understanding of urban air quality. These maps
can help to identify pollution hotspots, offering new opportu-
nities for pollution mitigation strategies and influencing both
policy and individual behavior (Apte et al., 2017; Schmitz
et al., 2019).

Mapping pollutant concentrations in urban areas requires
fine-scale spatial interpolation of data collected at air qual-
ity monitoring stations, taking into account known emission
sources and sinks to estimate the actual distribution of pollu-
tants at ambient surface level. Moreover, changes in the com-
position of the atmosphere caused by urban agglomeration
are highly variable in space and time, making their spatial
variation difficult to assess with air quality monitoring in-
struments from ground-based networks or on board satellites
(Hoek et al., 2015). Fixed monitoring stations are suitable for
recording the temporal variation of air pollution, including
long-term trends, but unsuitable to capture the spatial varia-
tion of air pollution at the local level (Li et al., 2019).

It has been demonstrated that gradients at the urban scale
can be identified by mobile monitoring (Deshmukh et al.,
2020). High-resolution mapping of air quality can be done
based on long-term averages of a significant number of re-
peated measurements (Upadhya et al., 2024). However, mo-

bile monitoring measurements to obtain reliable small-scale
variations (for a street segment or a residential area) that are
subsequently time-averaged to provide long-term concentra-
tions is time-consuming, involving extended resources, due
to the necessity to collect a large number of co-located data
and at the same time to cover the whole relevant area (Yuan
et al., 2024). Several models have been developed to over-
come the weakness of the limited availability of the observa-
tional data, collected either at fixed locations or during mo-
bile campaigns or measured by instruments on board of satel-
lites. Data from ground-based mobile and fixed stations as
well as satellite data have been used in land-use regression
(LUR) models (e.g., Apte et al., 2017; Anand and Monks,
2017; Messier et al., 2018; Shairsingh et al., 2019; Kerck-
hoffs et al., 2021, 2022a; Xu et al., 2021b; Knibbs et al.,
2018; Lee, 2019) and dispersion models (e.g., Hamer et al.,
2020; Ramacher et al., 2021; Snoun et al., 2023). Both model
types have emerged as very promising and efficient tools for
high-resolution mapping of the changes in the composition
of the atmosphere, as well as for quantifying the air quality
by long-term averaging at a high spatial resolution.

The LUR model is more widely used in air quality studies
compared to dispersion modeling because of the following:
(a) it is a multivariate linear regression model built on sig-
nificant covariates that can be further used to estimate pol-
lutant concentration elsewhere; (b) linear regression is one
of the most used fine-scale spatial interpolation methods be-
cause it is fast, easy to implement (Hoek et al., 2008; Jer-
rett et al., 2005), and does not require high computing power
such as computational fluid dynamics based on large-eddy
simulation or Reynolds-averaged Navier–Stokes approaches
(Lin et al., 2023, 2024); and (c) a LUR model does not re-
quire detailed information on atmospheric conditions or an
emission inventory as input data. A LUR model usually re-
quires measurement data and land-use predictor variables
(e.g., CORINE dataset) (Kerckhoffs et al., 2021, 2022b). Ini-
tially, LUR models were developed to estimate the concen-
tration of air pollutants linked with traffic emissions, specif-
ically NO2 and NOx (Briggs et al., 1997; Stedman et al.,
1997; Hoek et al., 2008; Eeftens et al., 2012; Lu et al.,
2020; Zhang et al., 2021). Lately, LUR models have been
successfully expanded to include other air pollutants, such
as particulate matter (PM) (Taheri Shahraiyni and Sodoudi,
2016; Karimi and Shokrinezhad, 2021; Zhao et al., 2021;
Wallek et al., 2022), ozone (O3) (De Marco et al., 2022; Wei
et al., 2022), carbon monoxide (CO) (Bi et al., 2022) and
sulfur dioxide (SO2) (Wu et al., 2019; Mikeš et al., 2023).
LUR models can now estimate a wide range of air pollu-
tants, including black carbon (BC) (Xu et al., 2021a; Van den
Bossche et al., 2015), volatile organic compounds (VOCs)
(Zapata-Marin et al., 2022; Choi et al., 2022) and ultrafine
particles (UFP) (Ge et al., 2022; Kerckhoffs et al., 2021;
Lloyd et al., 2023; van Nunen et al., 2020; Jones et al., 2020;
Saha et al., 2019). LUR models can be used for both spe-
cific sites, such as highways (Lee et al., 2013; Patton et al.,
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2014) or neighborhoods (Lim et al., 2019), and in detailed
studies covering a wide range of land-use types across large
city areas (Hatzopoulou et al., 2017; Van den Hove et al.,
2020). Recent studies report on variations in pollutant levels
across different times of the year, based on seasonal mea-
surement campaigns (Xu et al., 2021a; Miri et al., 2019; Shi
et al., 2020).

In general, LUR models tend to smooth concentration lev-
els over a wide area, leading to underestimation or over-
estimation of observed concentrations within each pixel.
Therefore, one of the most feasible and robust approaches
to map air quality at high resolution is to use the mixed-
effects modeling framework that combines the advantages
of measurement-only mapping and LUR modeling (Kerck-
hoffs et al., 2022a, b). Mixed-effects modeling is mostly used
in scenarios where data are hierarchical or clustered (e.g.,
Fokkema et al., 2018; Seibold et al., 2019). In air pollution
research, mixed-effects models are powerful tools that can
account for spatial or temporal clustering inherent in air qual-
ity data. They can accommodate factors like geographic re-
gions or repeated measurements over time, providing a nu-
anced understanding of pollutant distribution. These models
can be computationally complex, especially when dealing
with large datasets or complicated random-effect structures
(Kerckhoffs et al., 2022a).

The mixed-effects model framework has been used in re-
cent air quality studies for urban areas, like Amsterdam and
Copenhagen (Kerckhoffs et al., 2022b) or Oakland (USA)
(Kerckhoffs et al., 2024). Also, a similar mixed-effects ap-
proach has been used to estimate NO2 concentrations over
Hong Kong SAR (Anand and Monks, 2017). Up to now,
no high-resolution mapping of air pollutants at high spa-
tial resolution has been performed for urban areas in Roma-
nia, although many cities face serious atmospheric pollution
episodes (Marin et al., 2019; Ilie et al., 2023).

In this paper, we present the development and use of
the mixed-effects modeling framework for high-resolution
mapping of NO2, PM10, PM2.5 and UFP concentrations in
Bucharest, the capital of Romania. Data from two mobile
measurement campaigns, representative for warm and cold
seasons, were combined with fine-scale land-use parame-
ters to provide the spatiotemporal information necessary to
predict seasonal surface concentrations. Results were vali-
dated against in situ measurements from the Magurele Cen-
ter for Atmosphere and Radiation Studies (MARS) and eight
fixed observation stations operated by the National Air Qual-
ity Monitoring Network (NAQMN) of Romania. A detailed
description of the study area, measurements, and data treat-
ment are given in Sect. 2, and the mixed-effects modeling
framework tuning for Bucharest is given in Sect. 3, together
with model performance evaluation and aggregated pollutant
maps for the warm and cold seasons in Bucharest.

2 Materials and methods

2.1 Study area

Bucharest is the most populated urban area and the most im-
portant industrial and commercial center of Romania. Ac-
cording to the latest census, the population of Bucharest is
approximately 2.1 million residents (INS, 2024), making it
the sixth-largest city in the European Union by population.
The city covers an area of about 240 km2 and has a dense ur-
ban structure. The land use of Bucharest is diverse (Fig. 1).
The central and northern parts of the city are predominantly
residential areas, characterized by a mix of old and new hous-
ing developments. Most of the production sectors (such as
machinery, textile, chemical, and electronics industries, as
well as business parks – all contributing significantly to the
economic base of Bucharest) are located in the southern and
western areas (Ilie et al., 2023; Balaceanu et al., 2018). The
surroundings of Bucharest are mostly agricultural areas and
rural/pre-urban residential areas.

Located in the southeastern part of Romania, in the Ro-
manian Plain, Bucharest has a humid continental climate,
characterized by hot summers, cold winters and two short
transitional seasons, spring and autumn. Due to atmospheric
circulation patterns specific to the north midlatitude zone,
episodes of long-range transport of aerosols from desert re-
gions (Sahara, Arabian Peninsula and Persia) and from wild-
fires can affect Bucharest’s air quality. However, the major
pollution sources are local, influenced by the topography, the
different local-scale wind regimes and anthropocentric ac-
tivities (Fenger, 1999; Grønskei, 1998; Marmureanu et al.,
2017; Balaceanu et al., 2018; Marin et al., 2019; Ilie et al.,
2023).

2.2 Observational data

Data were collected during two intensive mobile measure-
ment campaigns carried out in Bucharest during May–July
2022 and January–February 2023. For each campaign, at
least 15 measurement routes of approximately 100 km long
and around 8 h duration were carried out, under various me-
teorological conditions. In order to ensure consistent and
quality data that highlight the variability of pollutants spe-
cific to warm or cold seasons, rainy and/or windy days were
excluded from the measurement campaigns. Measurements
were performed from Monday to Friday, from early morn-
ing to the afternoon, being therefore representative for day-
time working times. The route comprised high-traffic streets;
residential, industrial, and commercial districts; and subur-
ban neighborhoods. The mobile measurement route is lim-
ited to the areas where the car had access, excluding some
urban areas (e.g., parks, agricultural zones and water bodies).
Portable instruments measuring UFP, particle matter frac-
tions (PM1, PM2.5, PM10) and NO2 were employed in both
campaigns, with a measurement rate of 1 s. An additional
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Figure 1. Land-use distribution in Bucharest, according to CORINE, 2018. The black line overlapping the data represents the mobile
measurement route, and the dashed rectangle represents the modeled area.

GPS system had been used to independently save the precise
location. A Nafion dryer was also used during warm periods
to reach a humidity below 40 % for UFP measurements.

The mobile data had been filtered before being ingested
into the model. A moving-average filter with a 3-data-point
window was used to remove data points with values exceed-
ing 1.5 times the window mean (above or below).

2.3 High-resolution mapping model

We used the land-use regression and mixed-effects modeling
framework to develop high-resolution air quality maps for
Bucharest. In a LUR model, the concentration of a pollutant
is expressed as a linear combination of variables that approx-
imates the influence of different emission sources and sinks.
Usually, LUR models are fixed-effects models because of the
following: (a) they use predictor variables that are temporally
invariant (e.g., classes from the land cover inventories, sta-
tistical values of population density or traffic intensity, and
street networks) and, (b) they are applied to the average at-
mospheric state over the entire observation period. There-
fore, LUR models based on fixed variables are not sensitive
to unobserved heterogeneity arising from temporal variabil-
ity in emissions and/or other environmental conditions.

The mixed-effects LUR model considered in this work is
similar to the one developed in Kerckhoffs et al. (2022a). The
daily mean concentration at a reference point i on day j (Yij )
is assumed to be a linear function of the random effect (Aij )
and the predictor variables (Xijk) computed at the same ref-
erence point:

Yij = α0+α1 ·Aij +
∑
k>0
βk ·Xijk +∈ij . (1)

In Eq. (1), α0 is the random intercept, while α1 is the ran-
dom slopes of Aij , respectively. The βk represents the re-
gression coefficients of predictor variables Xijk at reference

point i and day j . The regression coefficients are the same
for all measurement days. The error term of the model is rep-
resented by ∈ij . Mixed-effects model results were averaged
per point, similar to the average of the data-only approach.
Mean NO2, PM10, PM2.5 and UFP concentrations from each
reference point were used as the dependent variables Yij in
Eq. (1).

The route taken during campaigns was divided into road
segments with a length of approximately 250 m, equivalent
to the distance traveled by a car with an average speed of
30 km h−1 in a time interval of 60 s. The reference points
were considered at the midpoint of each road segment.

A temporal correction was applied on the data to synchro-
nize the measurements. The correction factor is calculated
for each point as the difference between the daily average
values corresponding to the point and the whole-campaign
average value corresponding to the same point. Values mea-
sured within a 250 m street segment were averaged for each
day. Similar correction and averaging methods were reported
in previous studies (e.g Kerckhoffs et al., 2021, 2022a).

The performance of the model has been evaluated in three
steps. First, a subset containing 15 % of the data collected
through mobile measurements (and not used to tune the
model) was used for cross-validation. This percentage rep-
resents the optimal value for which the models developed
in this study can recognize the relationship between the at-
tributes of the input data and the output variable with R2

score greater than 0.75. When selecting this percentage, pro-
viding as much quality data as possible (85 %) was consid-
ered an important factor in the learning process to increase
the performance of the model, as well as to avoid data leak-
age between the learning process and cross-validation. Sec-
ond, an independent set of data collected at fixed sites was
used for validation. In addition to the MARS site, eight mon-
itoring stations operated by NAQMN in Bucharest were se-
lected for validation, based on data availability, representing

Atmos. Chem. Phys., 25, 4639–4654, 2025 https://doi.org/10.5194/acp-25-4639-2025



C. Talianu et al.: Mixed-effects modeling framework 4643

all types of environments: two urban-type stations located in
the east and northeast of the city, one suburban station located
4 km to the south of the capital city, three industrial-type sta-
tions situated in the southern half of the city, and two traffic-
type stations located in the center of Bucharest. The evalua-
tion involved direct comparison of statistical metrics (corre-
lation, root-mean-square error, relative differences) between
model outputs and pollutant direct measurements. The last
step was the evaluation of the model performance to resolve
different types of environment (traffic, urban, industrial). De-
tails and results are provided in Sect. 3.1.

2.4 Tuning the mixed-effects land-use regression model
for Bucharest

Based on the specificity of the climate in the region of
Bucharest, we decided to use the residential areas (predic-
tor variable) as time-dependent variables with major differ-
ences between the warm season and the cold season (Ilie
et al., 2023). Residential areas are considered sources of pol-
lution due to household activities, heating being responsi-
ble for the major difference between the cold and the warm
seasons. However, the time dependence of this variable is
not sufficient to describe the day-to-day variability, because
the residential heating is generally switched on in late au-
tumn and off in late spring, with no real daily variability. To
model NO2, PM10, PM2.5 and UFP concentrations over the
Bucharest area, an additional variable was needed in the LUR
models to cover the fast time dependencies (the so-called ran-
dom effects). In this mixed-effects framework, the pollutant
concentration can be expressed as a linear relationship be-
tween fixed variables and time-dependent variables, where
the random effect is modeled by including a discrete dummy
variable.

In our work, for each reference point, the random effect
was modeled as the difference between the standard devia-
tion calculated for the entire period of mobile measurements
and the standard deviation calculated for each day of mobile
measurements. Therefore, the magnitude and/or sign of the
random effect were not the same over all reference points
of measurements. The mixed-effects models were fitted to
the observational dataset using the Python modules scipy,
sklearn and statsmodels.

Other predictor variables used for the LUR models include
vehicle traffic intensity (calculated separately for the warm
and for the cold seasons) as well as aggregated values of
spatial predictor variables calculated within circular buffers
ranging from 25 m to 2 km in radius.

The mixed-effects LUR models (one model for each pol-
lutant considered in this study) were adjusted and trained for
Bucharest to obtain consistent datasets. For the training pro-
cess, 85 % subsets of mobile measurements were randomly
selected. The remaining 15 % of the mobile measurements
were used to cross-validate the LUR models. By dividing the
dataset used in the learning process into 85 % for training

and 15 % for testing, it was followed, on the one hand, to in-
crease the performance of the models developed in this study,
and, on the other hand, the aim was to reduce the overfitting
effect of the models by obtaining the smallest possible differ-
ence between the R2 score obtained during training and test-
ing. The regression coefficients obtained as an output of the
training were further used to generate high-resolution maps
of seasonal concentrations of NO2, PM10, PM2.5 and UFP
with a resolution of 100 m, over an area of approximately
240 km2 (the entire area of the city of Bucharest).

2.4.1 Spatial predictor variables

To define the optimal configurations of LUR architectures for
Bucharest, for each 250 m street segment, spatial predictor
variables were extracted using the following data sources: (i)
CORINE for the land cover (European Environment Agency,
2018), (ii) Open Street Map (OSM) (OpenStreetMap, 2021)
for the road network and (iii) the National Institute of Statis-
tics (INS) of Romania for the population density.

There is no recent source quantifying the traffic intensity
on road segments in Bucharest; therefore, the value for this
predictor was estimated for each direction of the street seg-
ment i using the following relationship:

Countsi =
N

L
· f ci · vi, (2)

where N represents the total number of vehicles per day ob-
tained from INS, L represents the total length of street seg-
ments (km), vi represents the speed on the street segment
(km h−1) and f ci represents cost function for the street seg-
ment (h) retrieved from the geofabrik.de database (Geofab-
rik, 2024).

In order to tune and train the mixed-effects models for the
specifics of Bucharest, the spatial predictor variables were
selected from a number of proxies that describe the possi-
ble sources and sinks of NO2, PM10, PM2.5, PM1 and UFP
emissions. These variables are presented in Table 1. The col-
umn “Effect” represents the effect that the predictor variables
have on the concentration of the pollutant in the atmosphere.
Variables associated with emission sources have a positive
effect, while variables associated with sinks, such as vegeta-
tion cover, have a negative effect. The circle radii most com-
monly used for buffering the variables describing the sources
and sinks at a given location are given in column “Buffer
sizes”.

2.4.2 Predictor variable selection

For the selection of variables, we first removed proxies with
a percentage of null values greater than 90 %. After applying
this filter, proxies that describe the possible sources and sinks
for LUR models tuned for Bucharest were associated with
the following:
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Table 1. Description of spatial predictor variables.

Source Variable Description Unit Effect Buffer
data name sizes (m)

INS POPDENS_X Population density no. m−2
+ 100, 150, 200, 250, 300, 500, 1000, 2000

LDRES_X Low-density residential m2
+ 100, 150, 200, 250, 300, 500, 1000, 2000

HDRES_X High-density residential m2
+ 100, 150, 200, 250, 300, 500, 1000, 2000

AIRPORT_X Airport area m2
+ 100, 150, 200, 250, 300, 500, 1000, 2000

INDUSTRY_X Industrial areas m2
+ 100, 150, 200, 250, 300, 500, 1000, 2000

CORINE 2018 AGRI_X Agricultural areas m2
± 100, 150, 200, 250, 300, 500, 1000, 2000

FOREST_X Forest areas m2 – 100, 150, 200, 250, 300, 500, 1000, 2000
GREEN_X Urban green areas m2 – 100, 150, 200, 250, 300, 500, 1000, 2000
CONSTR_X Construction sites m2

+ 100, 150, 200, 250, 300, 500, 1000, 2000
WATER_X Water bodies m2

± 100, 150, 200, 250, 300, 500, 1000, 2000

Road network LENGTH_X Length of road segments m + 25, 50, 75, 100, 150, 200, 250, 300, 500, 1000, 2000
TRAFFIC_X Total traffic load (veh d−1) · m + 25, 50, 75, 100, 150, 200, 250, 300, 500, 1000

geofabrik.de, INS COUNTS Traffic intensity veh d−1
+ N/A

– traffic, with predictor “COUNTS” (number of vehicles
per day) and road length variables in buffers of 50 to
1000 m;

– land use, with predictors industry, green, residential
lower density (individual residential), residential higher
density (collective residential), construction, and water
in buffers of 100 to 2000 m;

– population density in buffers of 100 to 2000 m.

To determine the optimal combination of predictor variables,
the supervised forward stepwise regression approach pro-
posed within the European Study of Cohorts for Air Pollu-
tion Effects (ESCAPE) project (ESCAPE, 2024) was used.
The ESCAPE model starts from a constant value, and after
that the predictor variables are added based on the goodness
of fit given by the adjusted cross-correlation (R2) value. The
direction of effect for all variables was kept as in Table 1.
The variable with the highest adjusted R2 was included in
Eq. (1) as Xk . The process of building the model stops when
the new variables do not contribute significantly (more than
1 %) to the improvement of the adjusted R2 value. The LUR
model configurations were generated using all possible com-
binations of generated predictor values. From the total of the
models obtained, only the LUR models for which the ad-
justed R2 value was higher than 0.5 were selected.

In a second step, we calculated the confidence level
(p value) and variance inflation factor (VIF) to identify that
predictor’s contribution to a collinearity problem. The statis-
tically insignificant variables (p > 0.05) and predictor vari-
ables where VIF> 5 sequentially were not used in the model.

The predictor variables and the size of the buffers used in
this work are shown in Table 1. The predictors passing the
above conditions are shown in bold. The sizes of the buffers
are those established within the ESCAPE project for the de-
velopment of LUR models. In the case where no buffer sizes

were used, their value was noted with N/A. The “number
of vehicles” was noted in the table with “veh”. These buffer
sizes are used to determine the spatial proximity of different
features by defining a distance zone around the features.

3 Results and discussion

3.1 Evaluation of the model performances

For each individual pollutant, four configurations of LUR
models were defined, out of those showing the adjusted R2

greater than 0.5. Furthermore, only the results and perfor-
mances of the LUR models for which the highest adjusted
R2 value was obtained are discussed.

The mixed-effects model tuned for Bucharest city has been
evaluated using mobile measurements and fixed-site mea-
surements. The performance assessment involved not only
the averages at some points, but also the overall agreement
on specific types of urban areas covering the entire pollutants
concentration intervals. The performance of each model (one
for each type of pollutant) was tested following three steps
described in detail in Sect. 2.3. Moreover, in the first step, the
15 % kept for testing covers all possible situations regarding
the spatial distribution of the predictor variables used in the
model. Second, the average concentrations calculated by the
model at the locations of the fixed observation sites have been
validated by comparison with the seasonal-average concen-
trations measured at those sites. Also, model data clustered
based on the type of environment (traffic, industrial, urban)
have been compared to similarly clustered data collected at
the fixed observation sites.

3.1.1 Cross-validation against mobile measurements

Cross-validation is performed for each model by comparing
the model-predicted dataset against the observed data col-
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Figure 2. Relative difference between model-predicted values and mobile measurements of NO2 (a, b) and PM10 (c, d) during the warm (a,
c) and cold (b, d) seasons.

lected by mobile measurements. Agreement between the two
datasets is quantified by calculating the adjustedR2 and root-
mean-square error (RMSE). The RMSE of each model was
calculated as the square root of the mean of the squared er-
rors. We also present the relative differences between mod-
eled and measured data as a general indicator of the model
accuracy. Results show very good correlations (R2 > 0.91)
for each model as a follow-up to the training process. The
cross-validation shows higher correlations for the cold sea-
son (R2 = 0.81 for NO2 and R2 = 0.88 for PM10) than for
the warm season (R2 = 0.59 for NO2 and R2 = 0.72 for
PM10). The weaker performance of the models during the
warm season can be explained by the large variability of NO2
and PM10 concentrations in the warm season compared to
the cold season (Ilie et al., 2023), which is not completely
captured by our method. Moreover, this strong variability is
also suggested by the RMSE values which for the NO2 are
higher in the warm season (2.94 ppb) than in the cold season
(2.64 ppb). In contrast, the RMSE values for PM10 are lower
in the warm season (2.18 µg m−3) than in the cold season

(3.06 µg m−3). Cross-validated scatterplots were also added
in the Supplement.

The relative differences between mobile mea-
surements and model retrievals, computed as
“(Model−Observed)/Observed”, show the ability of
the models to estimate PM10 and NO2 concentrations
(Fig. 2). It can be seen that the model for NO2 tends to
overestimate the predicted concentrations in the warm
season, especially in urban agglomeration areas (upper left
panel), while the model for PM10 tends to underestimate
the predicted concentrations (lower left panel). However,
such differences are acceptable considering the assumptions
made, the uncertainty of the data used for training the models
and the general performances reported in the literature (Ma
et al., 2024).

3.1.2 Validation against independent measurements at
fixed observation sites

The model output was evaluated against the seasonal aver-
age of the hourly values of NO2 and PM10 measured at nine
long-term in situ stations, out of which eight stations were
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operated by NAQMN. These sites are considered represen-
tative for urban, industrial and suburban areas as pictured
in Fig. 3. The model could not be evaluated in the case of
UFP, due to unavailability of the data at all fixed stations.
More information about what type of variables are measured
by NAQMN are given in Ilie et al. (2023). A detailed de-
scription of the MARS site is given in Pîrloagă et al. (2023),
where continuous PM concentrations are performed using
optical particle counters (Mărmureanu et al., 2019) and gas
analyzers (Castell et al., 2018). Statistical metrics, like R2,
RMSE and relative differences, were calculated similarly as
for the cross-validation. Statistical parameters are summa-
rized in Table 2.

In Fig. 3, the mean mass concentrations measured at the
fixed observation sites are represented by the diameter of the
circle, and the type of environment is represented by the color
of the circle. The missing data in Fig. 3 are due to the fact
that no measurements were available for these periods, due
to various non-scientific reasons (technical problems with the
measurement equipment, labor problems, etc.) It can be seen
that the variation of the concentrations across the city is rel-
atively low, especially for particulate matter during the cold
season. PM10 concentrations range from 21 to 32 µg m−3 in
both seasons. The highest PM10 concentrations are observed
at the urban, suburban and traffic stations, while the low-
est PM10 concentration is measured at the industrial stations.
The western part of the city shows highest PM10 values. NO2
concentrations range from 8 to 20 ppb in the warm season
and from 9 to 24 ppb in the cold season. The highest NO2
concentrations correspond to the areas with intense traffic
and industrial activities, while the lowest concentrations are
observed in the suburban areas, which are less impacted by
traffic.

The comparison between model-predicted values and the
observed values at the nine fixed sites is presented in Table 2.
Overall, the model performed well, even if the NO2 val-
ues tend to be slightly overestimated, and PM10 tends to be
slightly underestimated when compared with measured mean
concentrations. Mean values of modeled NO2 are within the
range of the observed values, as indicated by the standard
deviation. The differences can be explained by the local to-
pography and the specifics of the land use. The road sys-
tem in Bucharest is very dense, so the distance from a street
to residential or industrial sectors is often very short, some-
times less than a few meters; therefore, the NO2 100×100 m
grid resolution cannot always resolve the variations. This
smoothing effect caused by insufficient spatial resolution of
the model is pinpointed by the lower values of the standard
deviations returned by the model in comparison with those
returned by observations.

The trends and seasonal differences of both NO2 and
PM10 are resolved well by the model, as shown by the com-
parison with observations. The R2 correlation between ob-
served mean concentrations and modeled mean concentra-
tion is above 0.65 for all pollutants for the warm season and

.

Figure 3. Average concentrations of NO2 (a, b, units ppb) and
PM10 (c, d, units µg m−3) during warm (a, c) and cold (b, d) sea-
sons at fixed sites: the diameter of the circle represents the mean
mass concentrations measured at the site, and the color of the circle
represents the type of environment at the site

0.75 for the cold season. These values can be attributed to the
good performance of the model, in accordance with the val-
ues reported for other cities (Yuan et al., 2023). The lowest
correlation value is noted for particulate matter during the
warm season. This result can be explained by the fact that,
during the warm season, photochemical processes are inten-
sified at the street level, and the model cannot capture the
effects properly.

The RMSE is another important parameter for assessing
the performance of the model, accounting for the level of ab-
solute error. As in the case of R2, we noticed a better model
performance for the cold season. The difficulties of the model
to capture the small variations during the warm period for
both NO2 and PM10 are depicted by higher RMSE values.
High values of RMSE correspond to low R2 values, demon-
strating that the model cannot fully capture the variations of
NO2 or PM10 concentrations.

3.1.3 Evaluation of the model performance to resolve
different types of environment

The model was tested for its robustness in capturing dif-
ferences between various types of environment such as ur-
ban (including pre-urban), industrial and traffic. Long-term
datasets collected at the nine fixed observation sites were
used for this purpose. Figure 4 shows mean concentrations
of NO2 and PM10 as retrieved by the model and measured at
the stations, clustered by the type of environment and sepa-
rated for the warm and cold seasons. The relative differences
between values modeled and measured in different environ-
ments are also highlighted.
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Table 2. Comparison between model output and measured values at fixed sites for NO2 and PM10 in Bucharest (Romania) during the warm
period of 2022 and the cold period of 2023, as well as statistical metrics.

Pollutant Season Observed mean concentration Modeled mean concentration R2 RMSE

NO2
warm 12.58± 7.71 ppb 16.38± 2.47 ppb 0.66 4.97 ppb
cold 15.98± 9.52 ppb 17.25± 1.17 ppb 0.75 2.27 ppb

PM10
warm 24.64± 13.18 µg m−3 24.29± 4.38 µg m−3 0.65 2.02 µg m−3

cold 26.33± 18.50 µg m−3 25.64± 4.43 µg m−3 0.76 1.69 µg m−3

Figure 4. Model (light color) versus measurement (dark color) mean concentrations of NO2 (a) and PM10 (b) during the warm (red) and
cold (blue) seasons, along with the relative difference between the cold and warm seasons from model (grey diamond mark) or measurements
(black diamond mark); symbols show the relative difference between model and measurements for the warm (purple circle mark) and cold
(dark purple circle mark) seasons.

NO2 is the most variable species, with high differences be-
tween seasons and between environment types. Lower NO2
concentrations are depicted for the urban group, whereas the
highest NO2 concentration is associated with traffic, as an-
ticipated. The traffic group has the lowest variability among
seasons and is also better captured by the model. The model
shows increased NO2 concentrations during the warm sea-
son for urban and industrial categories, while in the case of
traffic areas the model underestimates a bit the measurement
averages. The overall relative differences between the cold
and warm seasons for both model and observational data in-
side each defined environment are less than 35 %. Higher
relative differences between modeled and measured data are
observed for the warm season for all areas, with the lowest
difference in the case of traffic areas (around 10 %). Over-
all lower relative differences between modeled and measured
data are observed during the cold season in comparison with
the warm period, with NO2 average concentration in indus-
trial and traffic areas underestimated by the model, high-
lighted by relative differences up to −20 %.

PM10 concentrations show an overall lower seasonal vari-
ability and also lower differences between model and ob-
served data, with relative differences less than 20 %. Particu-
late matter concentrations for urban, industrial and traffic ar-
eas varied slightly among seasons. Modeled PM10 concentra-

tions show higher values for industrial environment in com-
parison with observational data for both seasons. Moreover,
industrial areas present the lowest PM10 concentrations dur-
ing the cold season, as shown by both modeled and measured
data. Urban and traffic environment PM10 concentrations are
slightly underestimated by the model. The overall relative
differences of PM10 concentration between cold and warm
seasons for both model and observational data inside each
defined environment is less than 15 %. Small relative dif-
ferences between modeled and measured data are observed
for PM10 concentrations, during both seasons. PM10 average
concentration in urban and traffic areas are slightly underes-
timated by the model, highlighted by relative differences up
to −10 %, which can also be influenced by the low number
of available fixed stations in each environment.

3.2 Mapping atmospheric pollution in Bucharest

The validated model was further used to produce NO2, PM10
and UFP concentration maps for Bucharest, representative
of the warm and cold seasons (Fig. 5). The results are valid
for daytime and working days of the week. It should also
be taken into account that, in the absence of spatiotemporal
emission inventories with a high spatial resolution and traffic
data, modeled data were used. In analyzing these results, it
must be noted that the near-surface concentrations of atmo-
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Figure 5. Near-surface concentration maps for Bucharest, resulting from the model for NO2, PM10 and UFP during warm (a, c, e) and cold
(b, d, f) seasons.

spheric pollutants are influenced not only by the emissions,
but also by the height of the planetary boundary layer, trans-
port from other regions, dry and wet deposition, and chemi-
cal processes, all in relation to relatively fast changing meteo-
rological conditions (e.g., air temperature, wind field). Model
results show that (overall and regardless of the season) NO2,
PM10 and UFP concentrations are higher on the main road
sections, with higher values in Bucharest’s western area.

NO2 concentration maps show that this pollutant is highly
related to traffic, the road network of Bucharest being clearly
visible both during the warm and during the cold season. The
main roadways, especially the Bucharest Ring ring road, are
depicted as the primary NO2 source. Also featured are the
city’s central routes, where traffic remains heavy through-
out the day and seasons. The highest NO2 concentrations is
noted around busy highways due to the presence of a large

number of NO-emitting automobiles. Sinks related to the
green areas and water bodies are identified in dark green col-
ors. Overall, NO2 concentration is higher during the warm
period, when concentrations are higher on key roadways
(35.79± 8.38 ppb) and other sources in the city add up. The
conversion of NO to NO2 in the presence of sunlight and
ozone is significant. During cold months, the NO2 concen-
tration is lower in absolute values across the city; however,
the main roads are still depicted as major sources, followed
by several industrial areas such as power plants serving the
centralized heating of the city. The distribution of the NO2
concentration on all street segments is almost uniform during
cold season, with a slight increase for the main street seg-
ments, including the Bucharest ring road (20.67± 3.44 ppb).
At the level of the city of Bucharest, the average value of the
NO2 concentration as estimated by the model for the cold
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Figure 6. Model maps of PM2.5 /PM10 ratio during the warm and cold seasons.

season is 16.66± 4.04 ppb, while for the warm season it is
18.75± 1.98 ppb.

The spatial variation of PM in the city area is substantial,
with an abundance of small particles and a high mass con-
centration of larger particles in densely populated residential
areas. Significant concentrations of particles have been iden-
tified, mostly in industrial areas and anthropogenic agglom-
erations, but also along certain major transportation routes.
During the cold periods, the PM fractions (all sizes) have
larger loading and lower gradients, as reported also for other
cities (Ndiaye et al., 2024). This is related to increased emis-
sions from residential heating. A gradient of PM10 concen-
trations is evidenced within the city, with higher loading in
the western and southern areas. Average PM10 concentration
in Bucharest during cold season is 1.2 times higher than in
the warm season. During the warm periods, the PM10 clusters
are localized around source areas, while during cold periods
the source distributions are more homogeneous.

The average UFP number concentration throughout the
mobile route exhibits an important spatial gradient, partic-
ularly during the warm season, with variations up to a factor
of 2 in the mean, highlighting extensive human exposure to
ultrafine particles. The UFP number concentrations are ele-
vated on the main roads, as well as on some areas related
to industrial activities in southern, northern and western city
regions, mostly during the warm season. A more uniform dis-
tribution of UFP mean number concentration is observed dur-
ing the cold season, when the house heating emissions add
up to the traffic. Traffic sources have less impact during the
cold season, as chemical processes diminish due to limited
sunlight. House heating sources, more evenly spatially dis-
tributed than the roads, generate a more homogeneous distri-
bution but also larger absolute values of UFP. Average sea-
sonal concentration for Bucharest city during the cold season
(29132± 4362 particles cm−3) is 1.4 times higher than in the
case of the warm season (21469± 3528 particles cm−3).

Since measurements of PM2.5 were only available at a few
fixed stations, we included the modeled ratio of PM2.5 to
PM10 as the result to show what we expect for the fraction of
fine particles from the model. The model shows the fine par-

ticle fraction (PM2.5 /PM10) to be larger during the cold pe-
riods compared to warm periods, with fine particles account-
ing for up to 95 % of the PM10 concentration (Fig. 6). This is
explained by the fact that household activities generate pre-
dominantly small particles, and higher percentages are seen
in the peri-urban regions (outside of Bucharest) where the
house-heating sources are contributing more (lighter color
of purple, Fig. 6 right panel) to PM2.5 concentrations. Dur-
ing warm periods, the fine particle fraction is approximately
50 % within the city and less than 40 % in the villages close
to Bucharest, where the agricultural activities increase the
PM10 fraction (Fig. 6 left panel). The main rivers and lakes
within Bucharest’s perimeter are clearly sinks for small par-
ticles, producing lower fine mode fractions in both seasons.

4 Conclusions

The regression-based methods fed by mobile data can pre-
dict NO2, PM10 and UFP concentrations for regions which
are not properly covered by observations. In order to do this,
the right combination of data sampling frequency, duration
and route, as well as the correct number and type of predic-
tor factors (corresponding to the surrounding environment),
must be considered. Mobile monitoring together with mod-
eling tools can therefore compensate for spatial and tempo-
ral data gaps which are collected by the monitoring stations
and can assist individuals and policymakers in identifying re-
gions and causes of poor air quality. In this study, we demon-
strate the effectiveness of combining mobile measurements
with mixed-effects LUR models to derive seasonal maps of
near-surface PM10, NO2 and UFP. The study shows first-time
validated results for Bucharest, the capital city of Romania,
which is characterized by a large, densely populated surface
with a very dense and heavily used street network.

Despite the limited number of fixed stations available
for this work (8+MARS), the tuned mixed-effects LUR
model proved to be robust and accurate in producing high-
resolution mapping of NO2, PM10 and UFP for the warm
and cold seasons. Overall, good model performance was ob-
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served for both seasons and all concentrations, similar to
other studies. The slightly higher mean squared error values
coupled with smaller cross-validation R2 values obtained for
the warm season suggest that the mobile campaign data col-
lected for this study did not capture all the important NO2
and PM10 concentration variations. Even if the route selected
for the two mobile measurement campaigns included all ur-
ban structures, the limitation of car access remains a source
of error, which can lead to an underestimation of the concen-
tration of pollutants. The performance of this model can be
greatly improved by the involvement of citizens (pedestrian
or by bicycle) to collect data from areas where cars are not
allowed. Datasets systematically collected by citizens during
daily (repeated) activities or walks could provide improved
estimates of spatial variability for these areas (Snyder et al.,
2013; Hankey and Marshall, 2015; Van den Bossche et al.,
2016, 2018). The citizen involvement could increase the pol-
lutant data collection in areas restricted for cars or bicycles
and could enable the possibility to study the sinks on green
or water areas, but these methods would be only based on
low-cost sensors. Further improvements could also be made
by the inclusion of spatiotemporal emission data with a high
spatial resolution, such as traffic volumes or emission inven-
tories.

The results provided by the model show that high con-
centrations of particulate matter during the cold season are
representative for Bucharest city, due to the added effect of
house heating (either dispersed in residential areas or local-
ized at the city’s power plants). Fine particles dominate dur-
ing the cold season, although they remain at high levels dur-
ing the warm season as well. NO2 is less challenging but
still an important factor, especially during the warm season
and along the main roads. The seasonal high-resolution air
quality maps for Bucharest based on mixed-effects modeling
pinpointed pollutant variability mostly during the warm sea-
son and higher concentrations and fine particle ratios during
the cold season. Water and vegetation areas are evidenced
as effective sinks for NO2 and fine particles, while traffic
and residential heating are evidenced as effective sources in
Bucharest. Based on these findings, a more extended certified
air quality station network would be beneficial for human-
health-related pollutant monitoring, as well as inclusion of
fine particle measurements among these.

The approach presented in this paper can be adjusted for
high-resolution mapping of NO2, PM and UFP in other cities
as well, using the series of predictor variables identified in
this study as necessary. This is feasible as long as the urban
structures are characterized well and there is a fairly dense
and diverse network of in situ monitoring stations, whose ob-
servational data can be used for model calibration and vali-
dation.
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Pîrloagă, R., Adam, M., Antonescu, B., Andrei, S., and Ştefan,
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