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Abstract. Aerosol–cloud interactions (ACIs) are the largest source of uncertainty in inferring the magnitude of
future warming consistent with the observational record. The effective radiative forcing due to ACI (ERFaci) is
dominated by liquid clouds and is composed of two terms: the change in cloud albedo due to redistributing liquid
over a larger number of cloud droplets (Nd) and the change in cloud macrophysical properties due to changes
in cloud microphysics. These terms are, respectively, referred to as the radiative forcing due to ACI (RFaci) and
aerosol–cloud adjustments. While the magnitude of RFaci is uncertain, its sign is confidently negative and results
in a cooling in the historical record. In contrast, the adjustment of cloud liquid water path (LWP) to enhanced
Nd and associated radiative forcing is uncertain in sign. Increased LWP in response to increased Nd is consistent
with precipitation suppression, while decreased LWP in response to increased Nd is consistent with enhanced
evaporation from cloud top. Observational constraints of these processes are poor in part because of causal
ambiguity in the relationship between Nd and LWP. To better understand this relationship, precipitation (P ), Nd,
and LWP surface observations from the Eastern North Atlantic (ENA) atmospheric observatory are combined
with the output from a perturbed parameter ensemble (PPE) hosted in the Community Atmosphere Model version
6 (CAM6). This allows for causal interpretation of observed covariability. Observations of precipitation and
cloud from ENA constrain the range of possible LWP aerosol–cloud adjustments relative to the prior from the
PPE by 15 %, resulting in a global value that is confidently positive (a historical cooling) ranging from 2.1 to
6.9 g m−2. It is found that observed covariability between Nd and LWP is dominated by coalescence scavenging
and that this observed covariability is not strongly related to aerosol–cloud adjustments.
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1 Introduction

Atmospheric aerosols affect the global radiation budget
through direct interactions with radiation and indirect inter-
actions via clouds. Aerosol–cloud interactions (ACIs) are fa-
cilitated by aerosols serving as surfaces for water vapor to
condense onto, forming cloud droplets. These aerosols are
called cloud condensation nuclei (CCNs) and are essential
for forming clouds in the troposphere (Gordon et al., 2023;
Mason, 1960; Wilson, 1900).

While many CCNs have natural sources, such as dust and
sea spray (e.g., Carslaw et al., 2013), there are also CCNs
emitted from anthropogenic activities, including increased
emission of carbonaceous aerosols (Hamilton et al., 2018)
and sulfur dioxide (Charlson et al., 1992). Changing the
number of CCNs in a cloud can change the droplet number
concentration (Nd) of the cloud, shifting the cloud’s albedo
(Twomey, 1974). This is referred to as the radiative forc-
ing from ACI (RFaci, following notation from Bellouin et
al., 2020). By affecting cloud and precipitation processes,
changes in Nd driven by CCNs can also change macrophys-
ical cloud properties such as cloud fraction (CF) and cloud
liquid water path (LWP) (Ackerman et al., 2004; Albrecht,
1989). Changes in cloud macrophysics driven by changes in
cloud microphysics in response to anthropogenic aerosols are
referred to as aerosol–cloud adjustments. The sum of RFaci
and forcing due to aerosol–cloud adjustments is termed the
effective radiative forcing due to ACI (ERFaci). This paper
focuses specifically on adjustments to LWP, although these
are not unrelated to adjustments in CF.

Overall, there is high confidence that anthropogenic
aerosols led to cooling during the historical record (Bel-
louin et al., 2020). Aerosol cooling since the Industrial Rev-
olution has offset warming from anthropogenic greenhouse
gas emissions (Andreae et al., 2005; Charlson et al., 1992),
but the degree to which warming has been offset is uncer-
tain. Because of this gap in our knowledge, it is difficult to
know the true sensitivity of Earth’s surface temperature to
greenhouse gas emissions (Forster, 2016; Watson-Parris and
Smith, 2022). Aerosol cooling is dominated by ERFaci (Bel-
louin et al., 2020). Uncertainty in RFaci and aerosol–cloud
adjustments both contribute to uncertainty in ERFaci. Un-
certainty in the radiative forcing due to aerosol–cloud ad-
justments based on observations and global modeling out-
paces uncertainty driven by RFaci (Bellouin et al., 2020;
Gryspeerdt et al., 2020; Heyn et al., 2017). The range of
predicted future climate consistent with the historical record
motivates developing constraints on ERFaci and in particu-
lar the sign and amplitude of the large aerosol–cloud adjust-
ments forcing term (Andreae et al., 2005; Watson-Parris and
Smith, 2022).

There are several factors that contribute to the uncertainty
in RFaci and aerosol–cloud adjustments. While the basic un-
derstanding of what processes set ACI and aerosol–cloud ad-
justments is good (Ackerman et al., 2004; Albrecht, 1989;

Bretherton et al., 2007; Khairoutdinov and Kogan, 2000;
Mülmenstädt and Feingold, 2018; Wood, 2012), these pro-
cesses operate at small spatial and temporal scales that can-
not be resolved by the global models that we rely on to cal-
culate forcing. This scale of the mismatch means that we
must parameterize these processes in global climate mod-
els (GCMs). This results in parametric uncertainty related to
how a given process is parameterized (Regayre et al., 2018).
It also results in structural uncertainty related to which pro-
cesses are parameterized and represented in a given GCM
(Regayre et al., 2023). In addition to uncertainty related to
how microscale aerosol, cloud, and precipitation processes
translate to the global scale, our ability to constrain ER-
Faci is hindered by our lack of knowledge regarding the pre-
industrial (PI) baseline. We lack observations of PI aerosol
spatial distribution, emission, and composition outside of a
few regions (Hamilton et al., 2014) that maintain a pristine
state in the present day (PD). This lack of observational con-
straint of the baseline PI atmosphere drives substantial un-
certainty in forcing due to ACI (Carslaw et al., 2013; McCoy
et al., 2020b).

To narrow uncertainty in ERFaci, we need to confront the
GCMs that we rely on for calculations of ERFaci with ob-
servations of aerosol, clouds, and precipitation to identify
whether there are parameter combinations that agree with ob-
servations and if our GCMs are structurally deficient (Ghan
et al., 2016; Mülmenstädt and Feingold, 2018). A broad is-
sue is that the causality linking aerosol, clouds, and precipi-
tation is complex (Fons et al., 2023; Gryspeerdt et al., 2019;
McCoy et al., 2020a; Stevens and Feingold, 2009). We pro-
vide a schematic illustration of some of the causal linkages
in this aerosol–cloud–precipitation system in Fig. 1. Coales-
cence scavenging of aerosol and cloud droplets further con-
founds the relationship linking the cloud droplet number to
liquid cloud properties (i.e., through aerosol–cloud adjust-
ments that can increase and decrease LWP). Apart from in
very specific situations (Christensen et al., 2022), we can-
not untangle this causality using observations alone. In this
study, we unite a model where causality can be explicitly de-
termined with observations of clouds and precipitation where
we must infer causality.

We examine the adjustment of cloud LWP to changes in
Nd. When evaluating how increased aerosol affects cloud
liquid water content via Nd, there are two main effects of
changes on Nd theorized to play a substantial role in set-
ting ERFaci (Mülmenstädt and Feingold, 2018). The first is
precipitation suppression, wherein the decrease in average
droplet size from increased Nd reduces the precipitation pro-
duction of a cloud, increasing the cloud’s LWP (Albrecht,
1989). The second process is size-dependent evaporation and
entrainment, wherein the increased Nd may increase entrain-
ment or evaporation at the cloud top, reducing cloud liquid
water content (Bretherton et al., 2007; Hill et al., 2009; Wang
and Albrecht, 1994; Wang et al., 2003; Xue and Feingold,
2006).
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Figure 1. A schematic describing the causal links on aerosol–cloud adjustments. The blue or red shading indicates a positive or negative
correlation between the two variables at ENA, and the size of the shaded arrow indicates the relative magnitude of the correlation at ENA.
These data are further detailed in Fig. 7.

Previous observations characterizing the sensitivity of
LWP to Nd have shown a positive correlation between Nd
and LWP in low-Nd clouds and a negative correlation in
high-Nd clouds, with an average negative sign in oceanic
cloud (Fons et al., 2023; Glassmeier et al., 2021; Gryspeerdt
et al., 2019). However, it is challenging to understand cloud
susceptibility to Nd based on observations without account-
ing for precipitation. Coalescence scavenging (via precipi-
tation) is a strong controller of Nd in marine low clouds
(Kang et al., 2022; Wood et al., 2012), and CCNs below the
cloud may be removed by wet scavenging of aerosol (Tex-
tor et al., 2006). These relationships and the observed corre-
lations between clouds and precipitation from observations
from the Eastern North Atlantic (ENA) (Wood et al., 2015)
atmospheric observatory, our surface observation source, are
shown for reference (Fig. 1).

While there have been many studies inferring cloud ad-
justments from LWP sensitivity to Nd observed by satellites
(Amiri-Farahani et al., 2017; Christensen et al., 2017; Fons
et al., 2023; Gryspeerdt et al., 2017, 2019; Lebsock et al.,
2008; McCoy et al., 2020a), there are comparatively fewer
studies of aerosol adjustments from a surface perspective
(Chiu et al., 2021; Feingold et al., 2003; Gettelman et al.,
2020; McComiskey and Feingold, 2012; Wu et al., 2020).
There are benefits and drawbacks to the use of surface ob-
servations. An obvious drawback to using surface observa-
tions is that they only provide a limited sampling of the at-
mosphere relative to a satellite. Another drawback related to
sampling is that it is unclear how surface measurements scale
to a GCM grid cell (McComiskey et al., 2009; Mülmenstädt
and Feingold, 2018). However, surface observations have
several benefits in terms of observing clouds and precipita-
tion. Commonly used satellite Nd products have sparse air-
borne validation and potentially large systematic uncertain-
ties in some cloud regimes (Ahn et al., 2018; Grosvenor et

al., 2018; Gryspeerdt et al., 2022; Kang et al., 2021; Mc-
Coy et al., 2018). One source of uncertainty in satellite Nd
is a lack of homogeneity in the satellite footprint (Grosvenor
and Wood, 2014). Surface remote sensing has a substantially
smaller footprint (McComiskey et al., 2009), which reduces
the uncertainty inherent in passive retrieval-based calcula-
tions of Nd (Cho et al., 2015; Grosvenor et al., 2018; Naka-
jima and King, 1990). Aircraft observations of Nd are in
reasonable agreement with spaceborne estimates in homoge-
neous cloud, but the agreement degrades in more heteroge-
neous cloud (Gryspeerdt et al., 2022). The sensor footprint of
surface-based remote sensing ofNd is drastically smaller and
aircraft evaluation suggests minimal impacts from changes
in cloud heterogeneity (Zhang et al., 2023). Precipitation is
challenging to observe from space (Kidd and Huffman, 2011;
Pradhan et al., 2022; Sun et al., 2018). The ability to directly
observe the precipitation flux at the surface is uniquely ad-
vantageous, although surface precipitation-observing instru-
ments still struggle with observing very light precipitation
and cannot observe virga. There are also benefits in surface
observations of LWP; the retrieval used in this work (detailed
in Sect. 2.1.1) utilizes an ensemble of instruments to observe
LWP, allowing for higher confidence than a large-footprint
passive microwave radiometer.

Here, we constrain aerosol–cloud adjustments based on
observable properties sampled at ENA: cloud and precipita-
tion state variables and their covariances. A perturbed param-
eter ensemble (PPE) hosted in a GCM is used to define the
causal inference from observations. Surface observations are
used to provide a constraint on global-mean aerosol–cloud
adjustments in LWP. Section 2 describes observational data
and the PPE used. Section 3.1 describes the framework used
in this study to provide causal inference from observed cloud
and precipitation. Section 3.2 constrains the PPE using ob-
servations. Section 3.3 provides a constraint on global-mean
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aerosol–cloud adjustments. Section 4 discusses the results
and provides suggestions for future studies. Section 5 sum-
marizes the conclusions.

2 Data and methods

2.1 Observations

We leverage surface remote sensing and in situ observations
from the Atmospheric Radiation Measurement (ARM) East-
ern North Atlantic (ENA) observatory (Wood et al., 2015).
ENA is located in the northeastern Atlantic Ocean approxi-
mately 1000 miles (∼ 1600 km) west of Portugal on Graciosa
Island in the Açores.

Use of surface-based observations and the selection of
ENA are motivated by logistical and scientific concerns. Sur-
face observations provide a unique set of strengths that align
with the framework for constraining aerosol–cloud adjust-
ment strength as described above. Our underlying constraint
framework is not dependent on the source of observations of
LWP, P , and Nd. However, we argue that surface observa-
tions are better suited for this problem than spaceborne re-
mote sensing despite the much larger data volume and cov-
erage afforded by spaceborne remote sensing.

ENA is one of three surface sites administered by ARM
where observations of LWP, Nd, and P are available. The
other locations are the ARM southern Great Plains (SGP) site
centered near Lamont, Oklahoma, and the Layered Atlantic
Smoke Interactions with Clouds (LASIC) field campaign that
took place on Ascension Island in the central Atlantic. Mar-
itime liquid clouds are a significant contributor to the un-
certainty surrounding ERFaci (Bellouin et al., 2020; Carslaw
et al., 2013; McCoy et al., 2017; Wall et al., 2022, 2023),
and we argue that a marine environment provides more in-
formation about the cloud and precipitation processes driving
global aerosol–cloud adjustments. This suggests that SGP is
less relevant to our current analysis. Between ENA and LA-
SIC, ENA has a significantly larger pool of observations due
to its considerably longer observational period, with LASIC
only providing 2 years of data compared to ENA’s 9 (at the
time of writing). Further, LASIC observes layers of carbona-
ceous aerosols in the free troposphere from southern Africa,
the largest biomass-burning region in the world (Zuidema et
al., 2018). This unusual atmospheric aerosol regime adds the
complexity of substantial aerosol semi-direct effects along
with aerosol–cloud adjustments and may not be representa-
tive of a broader global regime. Bearing these points in mind,
we see ENA as the most suitable observatory for the purposes
of this study.

While surface observations provide direct measurements
of precipitation fluxes and are essentially looking through
a much shorter path length in the atmosphere to remotely
sensed cloud properties, due to their nature, their sampling is
limited in extent compared to spaceborne remote sensing. For
developing a constraint, understanding the systematic uncer-

tainty from observations is much more important than under-
standing the random uncertainty; while it is easier to estimate
an instrument’s random uncertainty (e.g., by having two in-
struments measure the same thing), because it scales with

1
√
N

, where N is the number of observational samples, our
random uncertainty goes towards zero quickly over the years
of data recorded. Structural uncertainty is a lot harder to es-
timate for these observations. Unfortunately, no published
systematic uncertainties could be found for the observational
products used. Though the observatory has been recording
data since it was established in May 2014, we are limited to
observations from October 2014 through October 2019 due
to the combined availability of the three datasets detailed be-
low. In all cases, data are averaged from their original time
resolution to a 3 h resolution. In this study we examine the
cloud and precipitation properties highlighted in Fig. 1: LWP,
P , and Nd. We briefly describe the observational datasets
used to quantify each property below.

2.1.1 Liquid water path

Cloud macrophysical state is characterized by LWP. Obser-
vations of LWP are provided by the Microwave Radiome-
ter Retrievals version 2 (MWRRETv2) value-added product
(VAP) at ENA. In the MWRRETv2 VAP, LWP is retrieved
at a ∼ 15 s resolution with a physical-iterative algorithm de-
tailed in Turner et al. (2007) that utilizes microwave bright-
ness temperatures from the on-site three-channel microwave
radiometer and radiosonde temperature, pressure, and hu-
midity profiles (launched three times daily and interpolated
to 1 min temporal resolution).

2.1.2 Precipitation

The ARM video disdrometer quantities VAP (VDIS-
QUANTS; Hardin et al., 2020) provides observations of sur-
face rain rate. Surface rain flux is observed at 1 min intervals.
While the video disdrometer is considered to be reliable and
is frequently used as the truth for validation of satellite re-
trievals of rainfall (Raupach and Berne, 2015; Schuur et al.,
2001; Tokay et al., 2020), the instrument may miss small
drops, including those within the drizzle domain, due to
wind-induced error (Nešpor et al., 2000). The surface precip-
itation measurements are inherently limited in that they miss
virga because the precipitation evaporates before reaching
the surface. Given drizzle and virga’s prevalence in ENA’s
climatology (Wu et al., 2020), this may constitute a compo-
nent of the sink of cloud water through precipitation. Supple-
menting surface flux observations of precipitation with radar
would not only provide an estimate of the virga and drizzle
sink term, but also require the implementation of a radar sim-
ulator (Silber et al., 2022), which is beyond the scope of our
current study. Potential impacts of this sampling uncertainty
are discussed in Sect. 4.
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Figure 2. Trends in PPE 1LWP at ENA and globally. (a) ENA 1LWP regressed on global 1LWP with a slope of 0.94 and an R2 of 0.60.
(b) A map of PPE mean 1LWP, with ENA’s location marked with a star.

2.1.3 Droplet number concentration

Retrievals of Nd from the ARM droplet number concentra-
tion VAP (NDROP) are calculated following the method de-
scribed in McComiskey et al. (2009). This method uses cloud
optical depth obtained from a multifilter rotating shadow-
band radiometer (MFRSR), cloud base temperature and pres-
sure from interpolated radiosonde observations, LWP from
the microwave radiometer, and cloud boundary information
from the Active Remote Sensing of Clouds (ARSCL) VAP.
Because the MFRSR requires sunlight for its retrieval, Nd
retrievals are only available during the daytime. The Nd
calculated from NDROP compares favorably with aircraft
and other surface remote sensing Nd retrievals, but it tends
to overestimate Nd in broken cloud and low-LWP regimes
(Zhang et al., 2023).

2.2 The Sixth Community Atmosphere Model (CAM6)
perturbed parameter ensemble (PPE)

In GCMs, processes that take place on smaller scales than
the model grid size (typically ∼ 100 km) must be parameter-
ized. Parameterizations are a source of uncertainty because
of (i) the uncertainty in the coefficients in the parameteriza-
tion (parametric uncertainty) and (ii) the uncertainty in how
processes are represented mathematically within the model
and which processes are represented (structural uncertainty).
While structural uncertainty is difficult to quantify (Regayre
et al., 2020, 2023), we can use perturbed parameter ensem-
bles (PPEs) to systematically explore parametric uncertain-
ties in GCMs (Lee et al., 2011; Sexton et al., 2021).

We leverage a PPE hosted in Community Earth System
Model version 2’s (CESM2) atmospheric component, the
sixth Community Atmosphere Model (CAM6) (Duffy et al.,
2023; Eidhammer et al., 2024; Song et al., 2024). The CAM6
PPE is utilized as a tool to link the strength of the LWP ad-

justment between the PI and the PD atmosphere to present-
day variability in clouds and precipitation.

Following the setup in Eidhammer et al. (2024), the CAM6
PPE varies 45 parameters that are sampled across 263 ensem-
ble members. In Eidhammer et al. (2024), these simulations
ran for 3 years each; in this study, the simulations were only
run for 2 years each. This PPE architecture was designed to
investigate uncertainties in subgrid-scale processes relating
to cloud microphysics, turbulence, convection, and aerosols
– all processes that are likely to be linked to aerosol–cloud
interactions. Following this motivation, the perturbed param-
eters come from four physics schemes: the Cloud Layers
Unified By Binormals (CLUBB; Golaz et al., 2002) scheme,
version 2 of the Morrison and Gettelman (2008) scheme
(MG2; Gettelman and Morrison, 2015), the Modal Aerosol
Model (Aerosol in Table 1; Liu et al., 2012), and the Zhang–
McFarlane deep convection scheme (ZM; Zhang and McFar-
lane, 1995). Each ensemble member in the PPE has a differ-
ent, random, combination of parameter settings. These pa-
rameter combinations are generated using Latin hypercube
sampling in order to efficiently fill the uncertainty space be-
tween parameters (Eidhammer et al., 2024; Lee et al., 2011).
The varied parameters, along with their default values (i.e.,
the values in CAM6) and bounds, are detailed in Table 1.

The CAM6 PPE uses the default CAM6 spatial resolution
of 1.25°× 0.9375°. Two scenarios are integrated to calcu-
late adjustment strength in the CAM6 PPE: present day (PD)
and preindustrial (PI). Following the setup in Eidhammer et
al. (2024), the PD scenario has anthropogenic emissions set
from an average for 1995–2005. The PI scenario has emis-
sions set for the same emissions, except for aerosols, which
are set for 1850. Again following Eidhammer et al. (2024),
sea surface temperatures have been fixed to averages monthly
sea temperatures (SSTs) for 1995–2005. Wind and tempera-
ture fields are nudged to the Modern-Era Retrospective anal-
ysis for Research and Applications version 2 (MERRA2) re-
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Table 1. Perturbed parameters from the CAM6 PPE. Table from Eidhammer et al. (2024).

Physics Parameter name Description Default Min Max Unit
scheme

CLUBB clubb_C2rt Damping on scalar variances 1 0.2 2 –
clubb_C6rt Low skewness in C6rt skewness function 4 2 6 –
clubb_C6rtb High skewness in C6rt skewness function 6 2 8 –
clubb_C6thl Low skewness in C6thl skewness function 4 2 6 –
clubb_C6thlb High skewness in C6thl skewness function 6 2 8 –
clubb_C8 Coef. 1 in C8 skewness equation 4.2 1 5 –
clubb_beta Set plume widths for theta_l and rt 2.4 1.6 2.5 –
clubb_c1 Low skewness in C1 skewness 1 0.4 3 –
clubb_c11 Low skewness in C11 skewness 0.7 0.2 0.8 –
clubb_c14 Constant for u′2 and v′2 terms 2.2 0.4 3 –
clubb_c_K10 Momentum coefficient of Kh_zm 0.5 0.2 1.2 –
clubb_gamma_coef Low skewness: gamma coef. skewness 0.308 0.25 0.35 –
clubb_wpxp_L_thresh Length-scale threshold below which extra damping is applied to C6 and C7 60 20 200 m

MG2 micro_mg_accre_enhan_fact Accretion enhancing factor 1 0.1 10 –
micro_mg_autocon_fact Autoconversion factor 0.01 0.005 0.2 –
micro_mg_autocon_lwp_exp KK2000 LWP exponent 2.47 2.1 3.3 –
micro_mg_autocon_nd_exp KK2000 autoconversion exponent −1.1 −0.8 −2 –
micro_mg_berg_eff_factor Bergeron efficiency factor 1 0.1 1 –
micro_mg_dcs Ice-to-snow autoconversion threshold 5.00× 10−4 5.00× 10−5 1.00× 10−3 m
micro_mg_effi_factor Scale effective radius for optics calculation 1 0.1 2 –
micro_mg_homog_size Homogeneous freezing ice particle size 2.50× 10−5 1.00× 10−5 2.00× 10−4 m
micro_mg_iaccr_factor Scaling ice/snow accretion 1 0.2 1 –
micro_mg_max_nicons Maximum allowed ice number concentration 1.00× 108 1.00× 105 1.00× 1010 no. kg−1

micro_mg_vtrmi_factor Ice fall speed scaling 1 0.2 5 m s−1

Aerosol microp_aero_npccn_scale Scale activated liquid number 1 0.33 3 –
microp_aero_wsub_min Minimum subgrid velocity for liquid activation 0.2 0 0.5 m s−1

microp_aero_wsub_scale Subgrid velocity for liquid activation scaling 1 0.1 5 –
microp_aero_wsubi_min Minimum subgrid velocity for ice activation 0.001 0 0.2 m s−1

microp_aero_wsubi_scale Subgrid velocity for ice activation scaling 1 0.1 5 –
dust_emis_fact Dust emission scaling factor 0.7 0.1 1 –
seasalt_emis_scale Sea salt emission scaling factor 1 0.5 2.5 –
sol_factb_interstitial Below-cloud scavenging of interstitial modal aerosols 0.1 0.1 1 –
sol_factic_interstitial In-cloud scavenging of interstitial modal aerosols 0.4 0.1 1 –

ZM cldfrc_dp1 Parameter for deep convection cloud fraction 0.1 0.05 0.25 –
cldfrc_dp2 Parameter for deep convection cloud fraction 500 100 1000 –
zmconv_c0_lnd Convective autoconversion over land 0.0075 0.002 0.1 m−1

zmconv_c0_ocn Convective autoconversion over ocean 0.03 0.02 0.1 m−1

zmconv_capelmt Triggering threshold for ZM convection 70 35 350 J kg−1

zmconv_dmpdz Entrainment parameter −1.00× 10−3
−2.00× 10−3

−2.00× 10−4 m−1

zmconv_ke Convective evaporation efficiency 5.00× 10−6 1.00× 10−6 1.00× 10−5 (kg m−2 s−1)0.5 s−1

zmconv_ke_lnd Convective evaporation efficiency over land 1.00× 10−5 1.00× 10−6 1.00× 10−5 (kg m−2 s−1)0.5 s−1

zmconv_momcd Efficiency of pressure term in ZM downdraft CMT 0.7 0 1 –
mconv_momcu Efficiency of pressure term in ZM updraft CMT 0.7 0 1 –
zmconv_num_cin Allowed number of negative buoyancy crossings 1 1 5 –
zmconv_tiedke_add Convective parcel temperature perturbation 0.5 0 2 K

analysis (Molod et al., 2015) at all vertical levels, with a
24 h relaxation time to set the large-scale circulation to be
the same between ensemble members and observations fol-
lowing previous studies comparing CAM6 to observations
(Gettelman et al., 2020; Song et al., 2024).

Data output is cumbersome for PPEs due to their large
number of ensemble members. Higher-frequency outputs and
three-dimensional outputs are provided for the grid box con-
taining ENA, allowing for direct comparison with observa-
tions. The outputs analyzed from the ENA surface site grid
box are detailed in Table 2.

Precipitation rate is calculated by adding together the
convective precipitation rate (PRECC) and the large-scale
precipitation rate (PRECL). The convective scheme in this
model (ZM) is not directly impacted by drop number or
activation. Cloud droplet number concentration is calcu-
lated by dividing vertically resolved, grid-average cloud wa-
ter number concentration (AWNC) by liquid cloud fraction

(CLOUD), giving the in-cloud droplet number concentration.
A vertically distributed Nd calculation is obtained and then
averaged through liquid clouds in the column. We believe
this to be the best analogue for NDROP from CAM6, al-
though it should be noted that NDROP data are constrained
to single-layer clouds, and there is no way to do this in a
GCM. Model LWP (TGCLDLWP) is directly comparable to
microwave radiometer LWP.

This study seeks to provide observational constraints on
aerosol–cloud adjustments based on observations from ENA.
The outputs used to calculate aerosol–cloud adjustments be-
tween PI and PD are detailed in Table 3.

Due to space constraints, the three-dimensional output
saved at ENA is not available over the globe, and cloud-top
Nd is used in the calculation of a global Nd. To calculate
cloud-topNd, average cloud-top droplet number (ACTNL) is
divided by fractional occurrence of cloud-top liquid (FCTL).
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Table 2. CAM6 PPE outputs at ENA analyzed in this study.

CAM6 history field Unit Description

AWNC m−3 Average cloud water number concentration
CLOUD fraction Cloud fraction
TGCLDLWP kg m−2 Total grid-box cloud liquid water path
PRECC m s−1 Convective precipitation rate
PRECL m s−1 Large-scale (stable) precipitation rate

Table 3. CAM6 PPE outputs from the global domain analyzed in this study.

Global model output Unit Description

ACTNL m−3 Average cloud-top droplet number
FCTL fraction Fractional occurrence of cloud-top liquid
TGCLDLWP kg m−2 Total grid-box cloud liquid water path
PRECC m s−1 Convective precipitation rate
PRECL m s−1 Large-scale (stable) precipitation rate

2.3 Gaussian process emulation

PPEs are useful for exploring the parametric uncertainty, but
it would be prohibitively computationally expensive to ex-
plore that uncertainty space systematically because the num-
ber of ensemble members needed to regularly sample a p-
dimensional parameter space with n samples in each dimen-
sion is np (Lee et al., 2011). To explore the parameter space
efficiently, we leverage the Earth System Emulator (ESEm)
package (Watson-Parris et al., 2021) to build Gaussian pro-
cess (GP) emulators. By generating a multivariate distribu-
tion via GP regression of ensemble output (for example,
LWP) on input ensemble parameters, we can emulate the
relationship between sampled parameters and outputs. This
is advantageous, as this sampling of the 45-dimensional pa-
rameter space across 263 PPE members is, with an even
sampling of the space, a collection of discrete points rather
than a smooth surface, so emulation is critical to provide
statistically meaningful results and understand linkages be-
tween processes and model behavior. This approach has been
used in many other model-evaluation studies (McCoy et al.,
2020b; Regayre et al., 2018, 2020, 2023; Song et al., 2024;
Watson-Parris et al., 2020).

To create an emulator, training samples and testing sam-
ples from the PPE members are randomly chosen. Of the
ensemble members available, 15 are set aside as the testing
sample, and the rest are used for training. To validate these
emulators, the testing portion of the dataset withheld from
training is compared with the emulator prediction. GPs carry
an estimate of their own prediction confidence. If the emu-
lator is good, 95 % of the test dataset should overlap with
the 95 % confidence interval for each prediction (Lee et al.,
2011).

After the emulators are validated, 10 million emulated en-
semble members (hereafter referred to as emulates) are cre-

ated by randomly sampling the 45 input parameters within
their individual minimum and maximum bounds (see Ta-
ble 1). This gives a smooth surface to examine the model’s
uncertainty space.

Because we have no observational record of PI cloud prop-
erties, we use the difference between PD and PI PPE sce-
narios to make inferences about the PI to PD adjustment
strength. When discussing the difference in a modeled quan-
tity across PD and PI, 1 is used. For example, 1LWP=PD
LWP−PI LWP.

We create emulators for ENA median lnLWP (median
lnLWPENA), ENA median ln Nd (median lnNd,ENA), ENA
mean-state P (P ENA), ENA ( dlnNd

dlnP ), ENA ( dlnLWP
dlnP ), ENA

( dlnLWP
dlnNd

), PD−PI change in average global LWP (1LWPgl),
and PD−PI change in average global Nd (1Nd, gl). We then
observationally constrain the parameter range by removing
each emulate that does not contain the observed value within
the emulate’s 95 % confidence interval. In the case of the co-
variances, the observation and its 95 % confidence interval
from the standard error of the regression are used for con-
straint. For the other variables, because we are using average
values from a large dataset (5 years of continuous observa-
tions), we are unconcerned with random uncertainty and only
utilize the single observation value in constraint. For all test-
ing emulates in all emulators, there is 100 % overlap of PPE
validation data with the emulates’ 95 % confidence interval
(Fig. 3). The linear regression fit and associated R2 for each
validation are also provided in Fig. 3.
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Figure 3. Validation plots for each emulator. For each emulator, the withheld test runs are plotted against emulator predictions. The vertical
blue error bars are 95 % confidence intervals of the emulate uncertainty. The explained variance and slope are noted for each emulator along
with the kernels used to generate the emulator.

3 Results

3.1 Developing a causally aware framework for
aerosol–cloud adjustments

The relationship betweenNd and LWP does not exist in isola-
tion (Fig. 1). Confounding sources of variability make it diffi-
cult to discern the causal link flowing from Nd to LWP based
on observed covariability between these terms. We illustrate
this by examining the relationship between Nd and LWP in
CAM6 in the PI and PD in the Northern Hemisphere (NH)
(Fig. 4a). This is similar to previous studies examining the
observed PD relationship between LWP and Nd (Gryspeerdt
et al., 2019), but within CAM6, we can contrast PD and PI
relationships between LWP and Nd. The lack of agreement
between the PI and PD illustrates that we cannot assume the
observable covariation between Nd and LWP is, on its own,
predictive of the transient response of LWP to changes in Nd
driven by anthropogenic aerosols.

Given the numerous confounding factors acting onNd and
LWP (Gryspeerdt et al., 2019; Stevens and Feingold, 2009),
a more complex analysis than examining covariance between
Nd and LWP is required to isolate a causal relationship.
Previous studies have described coalescence scavenging of
droplets acting to create a negative correlation between LWP
and Nd (Gryspeerdt et al., 2019; McCoy et al., 2020a). To il-
lustrate the importance of this confounding factor, we exam-

ine PI and PD LWP binned by precipitation rate (Fig. 4b). In
each bin of precipitation rate, coalescence scavenging is ap-
proximately constant. While holding coalescence scavenging
constant, we contrast PI and PD LWP and PD LWP binned
into the top and bottom terciles of Nd (Fig. 4b). Precipitation
suppression in CAM6 leads to higher LWP at higher Nd and
a constant rain rate. For low rain rates, the high-Nd regime
has a distinctly higher LWP than its low-Nd counterpart in
the same precipitation bin.

The relationship between LWP and Nd in the PD is not
predictive of PI to PD changes in LWP (Fig. 4a). We can-
not rely on PD covariance between LWP and Nd to predict
aerosol–cloud adjustments, and we need to consider non-
causal sources of covariance between LWP and Nd in de-
veloping a constraint on aerosol–cloud adjustments from the
PD (Mahfouz et al., 2024; Mülmenstädt et al., 2024a, b). The
following covariances, which are intended to contain infor-
mation about processes illustrated in Fig. 1, are considered:

– dlnNd
dlnP for the below-cloud scavenging of droplets from

precipitation;

– dlnLWP
dlnP for autoconversion, the process by which cloud

droplets collide with each other to form drizzle drops,
which ultimately leave the cloud via precipitation;

– dlnLWP
dlnNd

for the observed susceptibility of cloud liquid
water content to different droplet number concentra-
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Figure 4. Northern Hemisphere (30–70° N) PD and PI LWP in CAM6 binned byNd (a) and rain rate (b). In (b), PD LWP is shown separated
into the top and bottom terciles of Nd. The Northern Hemisphere is used specifically in this figure to highlight the effect of aerosol–cloud
adjustments since this is the region in which we would expect to see the most anthropogenic aerosol emissions (and thus the highest PD−PI
difference).

tions. This can be thought of as an observed adjustment
term, although, as discussed above, it does not describe
a causal relationship between Nd and LWP.

We argue, consistent with previous studies (Fons et al.,
2023; Glassmeier et al., 2021; Gryspeerdt et al., 2019; Mc-
Coy et al., 2020a; Mülmenstädt et al., 2024b), that to in-
fer the strength of aerosol–cloud adjustments, we need to
consider the confounding relationship that flows from LWP
to precipitation and to Nd. By considering covariances be-
tween LWP and P and Nd, we can estimate the strength of
this term. To characterize aerosol–cloud adjustments in the
context of these covariances, we need to have an underlying
causal model. Here, we leverage the CAM6 PPE in this ca-
pacity to allow us to build a framework linking the aerosol–
cloud adjustment due to anthropogenic aerosols to observed
PD covariance between LWP, P , and Nd. We constrain the
PPE by the observed mean states of LWP, P , and Nd and
the covariances between them (Table 4). By selecting the pa-
rameter space where PPE ensemble members agree with the
quantities in Table 4 at ENA, we can link PD observations to
the 1LWP due to anthropogenic aerosol emissions.

One concern is how relevant observations at ENA are to
understanding global-mean aerosol–cloud adjustment and,
by extension, ERFaci. However, across the CAM6 PPE cloud
adjustments at ENA (1LWPENA) are found to be corre-
lated with global adjustments (1LWPgl) with a slope of 0.94
and an R2 of 0.60 (Fig. 2a). This correspondence between
aerosol–cloud adjustments at ENA and global-mean aerosol–
cloud adjustments is sensible because ENA straddles the bor-
der of the extratropics and subtropics (Fig. 2b); we expect
that the same aerosol, cloud, and precipitation processes be-
ing observed at ENA are relevant over the other oceans in
these regions where marine stratocumulus dominates.

In the PPE, we find differences in the predictive ability
of 1Nd for 1LWP in the local (ENA) and global regimes.
Specifically, we find that while 1Nd alone is not a good pre-
dictor of 1LWP in the global regime (as expected following
Fig. 4), it has a higher predictive ability in the ENA regime
(Fig. 5). This indicates that in CAM6 local-scale adjustments
are sensitive to local perturbations in Nd, while global-scale
adjustments are more influenced by physical processes.

3.2 Model–observation comparison

Before applying the framework described in the preceding
section to constrain aerosol–cloud adjustments, we charac-
terize PD Nd, LWP, and P at ENA in the observations and in
the CAM6 PPE (Table 4). The observations are found to fall
within the range of the PPE (Fig. 6).

In the PPE and the observations, the mean state of pre-
cipitation rate is used instead of the median state because
the video disdrometer cannot see extremely low precipitation
rates, which are prevalent in the PPE data over ENA, consis-
tent with most GCMs (Stephens et al., 2010). Differences be-
tween observed and PPE precipitation rate may also be due
to sampling differences between averaged CAM6 data from
a largely oceanic grid cell ∼ 100× 100 km2 and observation
data from a single point on an island.

Covariances between variables are characterized by the
linear regression slope of their constituent variables (e.g.,
dlnLWP

dlnP is the slope of the regression of lnLWP on lnP ).
We observe dlnLWP

dlnNd
to be −0.236 with a 95 % confidence

interval of ±0.051 (from the standard error of the linear re-
gression), dlnLWP

dlnP to be 0.338 with a 95 % confidence in-
terval of ±0.009, and dlnNd

dlnP to be −0.258± 0.092 (Fig. 7).
All values are unitless. These slopes were used to scale the
shaded arrows in Fig. 1. To match the 3 h temporal resolu-
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Table 4. Base-state variables and covariances at ENA used in this study to constrain aerosol–cloud adjustments.

Variable name Description

Median-state
lnLWP

natural logarithm of the median-state liquid water path

Median-state
lnNd

natural logarithm of median-state droplet number concentration

Mean-state P the mean-state precipitation rate

dlnLWP
dlnP the covariance of the natural logarithm of liquid water path with the natural logarithm of precipitation rate

dlnLWP
dlnNd

the covariance of the natural logarithm of liquid water path with the natural logarithm of droplet number
concentration

dlnNd
dlnP the covariance of the natural logarithm of droplet number concentration with the natural logarithm of

precipitation rate

Figure 5. The distributions of emulated 1Nd and 1LWP in the ENA (a) and global (b) regimes are represented by the rainbow-colored
hexbins. The original PPE ensemble members are represented by scattered white dots with black borders.

tion of the PPE data used to calculate the PPE covariances,
we have binned the observations to 3 h. As expected, there
is a strong positive correlation between P and LWP, with an
r value of 0.741 (Fig. 7). Consistent with previous satellite-
based studies there is a negative correlation between LWP
and Nd (Gryspeerdt et al., 2019). Consistent with our un-
derstanding of coalescence scavenging, there is a negative
correlation between P and Nd (Kang et al., 2022; Wood et
al., 2012). Observed dlnLWP

dlnP and dlnNd
dlnP are closer to the PPE

distribution means (Fig. 8), while observed dlnLWP
dlnNd

is on the
very low end of PPE predictions, with an opposite sign com-
pared to most of the PPE distribution. This result is discussed
in more detail in Sect. 4.

We leverage the CAM6 PPE to understand linkages be-
tween covariances and states of LWP, Nd, and P and param-

eterized processes in CAM6. This is done by correlating val-
ues of perturbed parameters (Table 1) with mean states and
covariances (Table 4) across the PPE (Fig. 9). While many
of these correlations are low, there are stronger correlations
associated with cloud and precipitation process parameters.
This supports the utility of the framework in this study since
it is picking out information about these processes.

We briefly discuss some of the stronger correlations
between observables and processes and how these may
link processes and observed quantities in a qualitative
sense. Within CAM6, aerosol–cloud adjustments should
occur through precipitation suppression operating through
the autoconversion parameterization. This can be seen
as a grouping of strong correlations related to mi-
cro_mg_autocon_ parameters (see Table 1 for descriptions).
The inferred strength of coalescence scavenging ( dlnNd

dlnP ) cor-
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Figure 6. Distributions of median lnLWP, median lnNd, and mean P across the PPE with the observational equivalents depicted by black
bars.

Figure 7. Observed covariances at ENA, derived with observations binned to 3 h temporal resolution. Two-dimensional histograms relating
LWP to P (a), LWP to Nd (b), and Nd to P (c). dlnLWP

dlnP , dlnLWP
dlnNd

, and dlnNd
dlnP derived from linear regressions are noted in (a), (b), and (c)

and summarized in (d).

relates strongly with the accretion enhancement factor (mi-
cro_mg_accre_enhan_fact). Mean-stateNd is strongly corre-
lated with the subgrid velocity and liquid activation parame-
ters (micro_aero_npccn_scale, microp_aero_wsub_min, and
microp_aero_wsub_scale). Several parameters are important
for setting the median-state LWP, and strong correlations
can be seen relating median-state LWP to CLUBB param-
eters that relate to skewness in vertical velocity (clubb_c1,
clubb_C8, and clubb_c14), which results in changes in
cloud liquid content and, subsequently, reflectivity (Eid-

hammer et al., 2024; Guo et al., 2014). Mean-state pre-
cipitation properties are correlated with several parameters
in the ZM convection scheme that are important for set-
ting the amount and strength of convection and likely affect
the creation of convective precipitation (zmconv_tiedke_add,
zmconv_momcu, zmconv_ke_lnd, zmcomv_ke, zconv_dmpdz,
and zmconv_capelmt).
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Figure 8. Distributions of dlnLWP
dlnP , dlnLWP

dlnNd
, and dlnNd

dlnP across the PPE with the observational equivalents depicted by black bars.

3.3 Constraining LWP adjustment strength from
present-day observations

We seek to constrain aerosol–cloud adjustment strength in
CAM6 by leveraging process-scale observations at ENA. As
discussed in Sect. 3.1, we need to simultaneously consider
relationships between P , LWP, and Nd. Following the proce-
dure described in Sect. 2.3 on Gaussian process emulation,
we constrain the PPE by removing GP emulates that do not
contain the observation (Table 4) within their variance. Be-
fore constraining global adjustments, it is useful to under-
stand how each observation is constraining its own variable
within the emulated PPE. In Fig. 10, the distribution of each
variable in the emulator field is shown overlaid by the dis-
tribution of emulates that are observationally constrained by
that variable. Observations are found to be within the PPE
distribution for all variables.

When we use these same individual constraints to examine
global-mean aerosol–cloud adjustments (1LWPgl), we see
that observational constraints do not uniformly pull 1LWPgl
one way or the other (Fig. 11). The degree to which an ob-
servational constraint is effective at reducing the 95 % con-
fidence interval for 1LWP is determined by (i) the distance
between the observation and the mean of the distribution and
(ii) the relative variance of the emulates within the distribu-
tion. This illustrates why mean-state precipitation is such a
powerful constraint: the observation is relatively far from the
mean, out towards the right tail of the distribution (Fig. 10e),
while the average relative variance is relatively low. Intu-
itively, dlnLWP

dlnNd
(Fig. 10f) should be one of the strongest

constraints on aerosol–cloud adjustments given its proximity
to the processes responsible for aerosol–cloud adjustments
(Fig. 1) and its relatively large distance from the mean. How-
ever, this emulator was relatively uncertain (Fig. 3), and the
standard error from the linear regression was relatively high
(Sect. 3.2), so the observation remains within the permissible
range for many emulates.

After discarding all invalid emulates, we are left with only
the emulates that agree with the observations. This subset
of emulates is the observationally constrained dataset that is
analyzed for most of the remainder of this paper.

Constraining 1LWP by the variables in Table 4 removes
the vast majority of emulates, leaving 11 053 (0.11 %) of the
original 107 emulates. While this is a small fraction of the
total number of prior emulates, 45 dimensions are being con-
strained, and even moderate constraints in a few dimensions
scale quickly. For instance, a fractional reduction in the range
of f in n dimensions scales as f n remaining emulates, and
the reduction described above is equivalent to constraining to
50 % of the range of six parameters.

The constraints on the prior parameter range results in
a constraint on 1LWPgl (Fig. 12). The prior distributions
of 1LWPgl range from 0.99 to 6.64 g m−2, while the con-
strained1LWPgl ranges from 2.08 to 6.87 g m−2;1LWPgl is
constrained by 15 % (calculated by the change of confidence
intervals). The observational constraint of 1LWPgl does not
strongly skew the distribution away from the CAM6 default
adjustments.

When examining the parameters constrained by the ob-
servations, we see substantial constraints in the distribu-
tions of parameters in the CLUBB, MG2, and ZM physics
schemes (Fig. 13). This is consistent with the correla-
tions between variables in Table 4 and the CAM6 param-
eters (Fig. 9) as well as our a priori expectations based
on underlying model physics. Autoconversion is the pro-
cess through which precipitation is suppressed in aerosol
cloud adjustments in CAM6, and we find that the as-
sociated terms within MG2 (micro_mg_autocon_fact, mi-
cro_mg_autocon_lwp_exp, micro_mg_autocon_nd_exp, and
micro_mg_accre_enhan_fact; see Table 1 for details) are
constrained in that the posterior distribution is very different
than the flat prior distribution for each parameter. Addition-
ally, we find that several parameters that are important for
setting the mean state of Nd (micro_aero_npccn_scale, mi-
cro_aero_wsub_min, and micro_aero_wsub_scale), convec-
tive versus large-scale precipitation occurrence (cldfrc_dp2,
zmconv_capelmt, zmconv_dmpdz, and zmconv_tiedke_add),
and other boundary layer cloud properties (clubb_C2rt,
clubb_c8, clubb_c14, clubb_c11, clubb_c1) (Eidhammer et
al., 2024; Guo et al., 2014) are substantially constrained.
Based on the singularly tight constraint of zmconv_capelmt,
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Figure 9. Correlations between covariances and PPE parameters at
ENA. Note that the color bar bounds span between −0.6 and +0.6,
with the highest-magnitude r value recorded at 0.55.

we posit that this parameter should be limited to a smaller
range in future PPE studies in this area.

Finally, we investigate the relationship between the em-
ulated distributions of 1LWPgl and dlnLWP

dlnNd
(Fig. 14) and

whether their covariance, particularly the correspondence
between negative dlnLWP

dlnNd
and positive 1LWPgl, is causal.

1LWPgl and dlnLWP
dlnNd

are clearly related, but the processes
driving Nd and LWP and their linkage via adjustments are
more complex than can be captured by a simple causal re-
lationship between Nd and LWP characterized by a linear
regression of LWP on Nd.

To interpret these results, it is useful to understand how
autoconversion and accretion are parameterized in GCMs.

In CAM6’s MG2 (Gettelman and Morrison, 2015) and else-
where (Jing et al., 2019; Michibata and Takemura, 2015), au-
toconversion is represented as a power law function of the
form

Raut = Caut ·L
α
cN

β

d , (1)

where Raut is the rate of autoconversion of droplets into rain;
Lc denotes cloud liquid water content; and Caut, α, and β
are constants. Caut is the autoconversion enhancement fac-
tor, represented in the model as micro_mg_autocon_fact; α
alters the exponent on Lc, represented in the model as mi-
cro_mg_lwp_exp; and β alters the exponent on Nd, repre-
sented in the model as micro_mg_nd_exp. β in the CAM6
PPE is a negative number with bounds between −2.0 and
−0.8. Caut and α are positive in the CAM6 PPE with bounds
of 0.005 to 0.2 and 2.10 to 3.30, respectively. Adjustments
are driven by precipitation suppression as characterized by
the exponent on Nd.

Accretion is parameterized in CAM6’s MG2 (Gettelman
and Morrison, 2015) and elsewhere (Michibata and Take-
mura, 2015) with the form

Raccre = CaccreLcqr, (2)

where Caccre is micro_mg_accre_enhan_fact and qr is
the mixing ratio of drizzle. In the CAM6 PPE, mi-
cro_mg_accre_enhan_fact is a positive number with bounds
of 0.0 and 10.0. Like autoconversion, accretion can be
thought of as a sink of cloud water and scales negatively with
1LWP and dlnLWP

dlnNd
(Fig. 14e).

Observed covariability between Nd and LWP is driven by
coalescence scavenging and is strongly determined by the au-
toconversion enhancement factor and more moderately deter-
mined by the accretion enhancement factor. This is shown in
Fig. 14b–e, where it can be seen that micro_mg_autocon_fact
scales primarily with dlnLWP

dlnNd
, micro_mg_nd_exp scales pri-

marily with 1LWP, and micro_mg_autocon_lwp and mi-
cro_mg_accre_enhan_fact scale with both.

The relationship between 1LWP and autoconversion pa-
rameters can be understood using the steady-state conceptual
model in Song et al. (2024) (their Eqs. S1–S5). In the PI and
PD clouds are at a steady-state balance between sources and
sinks. The sink term is enforced by the large-scale moisture
convergence, which is in turn enforced by the global pattern
of sea surface temperature. Considering autoconversion to be
the dominant sink term of cloud, the tendency from autocon-
version should be approximately the same in PI and PD.

Caut ·L
α
cPD
N
β

dPD
= Caut ·L

α
cPI
N
β

dPI
, (3)

which can be solved for the change in lnLc:

1 lnLc =−
β

α
1 lnNd. (4)

While highly idealized, this provides some insight into the
behavior in Fig. 14. The autoconversion scale factor (Caut or
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Figure 10. Distributions of PPE emulates with the observationally constrained regions shaded in. For each plot, the variable is only being
constrained by its associated observation. For instance, the shaded region in (a) is the subset of emulates that contain the observed value
within their respective variances; in other words, the emulates of median-state ENA lnLWP that are observationally constrained. Panels (b),
(c), (d), (e), and (f) are the same for their respective variables.

micro_mg_autocon_fact in Fig. 14c) does not impact the ad-
justment strength, but it does affect the covariance between
Nd and LWP through coalescence scavenging (Wood et al.,
2012) by setting the precipitation rate. This is consistent with
the lack of dependence of1LWP on the autoconversion scale
factor and the strong dependence of dlnLWP

dlnNd
on this parame-

ter in Fig. 14c. As expected, aerosol cloud adjustments scale
very strongly with the Nd exponent (β or micro_mg_nd_exp
in Fig. 14d), while the observed covariability betweenNd and
LWP characterized by dlnLWP

dlnNd
is not strongly affected by this

term because of its weak overall contribution to setting pre-
cipitation rates and, by extension, coalescence scavenging.
This is consistent with the strong dependence of 1LWP in
Fig. 14d on micro_mg_nd_exp and the lacking dependence
of dlnLWP

dlnNd
on this parameter. The modulation of both adjust-

ments and PD covariability between Nd and LWP by α is
less easily interpreted because both the adjustment strength

and PD Nd–LWP covariability are substantially affected by
this term.

If we apply a similar logic to accretion, we get

Caccre ·LcPDqrPD = Caccre ·LcPIqrPI , (5)

which can be solved for the change in lnLc:

1 lnLc =−1 lnqr. (6)

This can be read as the strength of adjustments from
accretion being dependent on the change in precipitation
rates, which we have previously described as strongly
scaled by autoconversion parameterizations. Although ac-
cretion is important for understanding the change in ad-
justments and indeed follows a similar behavior to mi-
cro_mg_autocon_fact, it is less easily disentangled from
the system than micro_mg_autocon_fact given its depen-
dence on qr, a variable modified by accretion’s own pa-
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Figure 11.1LWPgl is constrained by individual constraints, with the color-shaded region in each plot representing the constrained distribu-
tion and the gray region representing the prior distribution. These constraints are (a) median-state ENA lnLWP, (b) dlnLWP

dlnP , (c) median-state

ENA lnNd, (d) dlnNd
dlnP , (e) mean-state ENA P , and (f) dlnLWP

dlnNd
. Vertical black lines are the 95 % CIs for unconstrained emulate distributions,

and colored vertical lines are the 95 % CIs for constrained emulate distributions.

Figure 12. Constrained and unconstrained distributions for the global 1LWP regime. Unconstrained 95 % confidence intervals are bounded
by dashed black lines, and constrained 95 % confidence intervals are bounded by dashed red lines

rameter micro_mg_accre_enhan_fact as well as the pre-
viously discussed autoconversion parameters. Following
Eqs. (2) and (6), the negative correlation between mi-
cro_mg_accre_enhan_fact and both dlnLWP

dlnNd
and 1LWP is

expected: the rate of accretion is an important part of set-
ting precipitation rates (and, by extension, the rate of coales-

cence), and modified precipitation rates are the critical pro-
cess for adjustments.

While precipitation suppression is the main control on ad-
justments in the CAM6 PPE, this does not project directly
onto dlnLWP

dlnNd
. The explained variance (R2) in adjustment

strength (1LWPgl) by dlnLWP
dlnNd

(Fig. 14a) is only 12 %. This
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Figure 13. Grid of the distribution of PPE parameter values within the constrained set of 11 053 emulates, with each distribution colored by
the parameter category it is in as detailed in Sect. 2.2. These categories are CLUBB (orange), aerosols (green), MG2 (teal), and ZM (pink).
For more information on the parameters and their bounds, see Table 1.

highlights the importance of considering other confounding
processes when attempting to use observed covariation be-
tween Nd and LWP as a constraint on aerosol cloud adjust-
ments, as has been done in assessments of the total aerosol
forcing (Bellouin et al., 2020). Because adjustments at ENA
correlate well with global adjustments (Fig. 2), it is presumed
that this weak causality between ENA dlnLWP

dlnNd
and global

1LWP scales accordingly.

4 Discussion

Aerosol–cloud adjustments are described in terms of interac-
tions between Nd and LWP, but these processes occur in the
context of precipitation and its confounding effects, driven
by coalescence scavenging (Figs. 1 and 4). We find that sur-
face observations have utility in constraining global aerosol–
cloud adjustments despite their poor sampling of the global
atmosphere (Fig. 2). Surface observations from the DOE
ARM site at ENA provide a broad suite of cloud and pre-
cipitation measurements (Wood et al., 2015) that enable this
analysis.

The constraint of 1LWPgl found in this paper is rela-
tively weak, decreasing the prior distribution by only 15 %
(Fig. 12) from the variance found in the CAM6 PPE. This
can potentially be attributed to the inherent limitations in
constraining to a single surface observatory as opposed to
broader climatology. While ENA (and other similar surface
observatories) provide a unique and useful venue for observ-
ing fine-scale processes, it should not be expected that ENA
alone will be able to tightly constrain 1LWPgl. For clues as
to the path forward, it is useful to compare the results of
this study to Song et al. (2024), which constrains 1LWPgl
in the same PPE to satellite measurements of globally aver-
aged LWP, Nd, and upwelling top-of-atmosphere shortwave
radiation. When comparing the constrained 1LWPgl ranges
between these two studies, while neither constraint is espe-
cially strong on its own, each constraint rules out different
extremes in 1LWPgl. This work shows a larger minimum
constrained1LWPgl (2.08 g m−2); Song et al., 2024, shows a
smaller maximum constrained 1LWPgl (4.33 g m−2). While
this should not be considered a strict scientific comparison, it
suggests that a more robust constraint can be found by con-
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Figure 14. (a) The density of emulated distributions and (b–e) how autoconversion-related parameters are distributed. The error bar repre-
sents the 95 % confidence interval of the observationally constrained distribution on each axis, and the circle shows the location of the CAM6
default runs. Panel (a) depicts the density of the 107 emulates within the emulator space. Panels (b), (c), and (d) depict the average distri-
butions of micro_mg_autocon_lwp_exp, micro_mg_autocon_fact, micro_mg_autocon_nd_exp, and micro_mg_accre_enhan_fact within this
space. In (b), (c), (d), and (e), pixels that contain fewer than 50 emulates have been masked.

straining on the fine scale (e.g., surface-observed precipita-
tion) and the broader climate scale (e.g., satellite-observed
average global upwelling shortwave radiation) simultane-
ously. This is an idea we will be exploring in future work.

By looking at other studies in this way, we may also
see value in some of the parameters that appear to be
unconstrained in Fig. 13. In Eidhammer et al. (2024), a
CAM6 PPE of the same architecture as this paper was con-
strained off satellite-observed average upwelling radiation
and satellite-observed average LWP. In Fig. 10 of Eidham-
mer et al. (2024), it can be seen that sol_factb_interstitial
shows signs of relatively strong constraint; by contrast, in
this study, the posterior distribution of sol_factb_interstitial
shows no signs of constraint (Fig. 13). This parameter and
others like it may be important for setting climate-accurate
aerosol–cloud adjustments in a way that is not immediately
obvious based on this study alone, so we cannot rule them
out.

Observed state and covariance metrics examined in this
study (Table 4) were within the range produced by the PPE
(Figs. 6 and 8). The regression of LWP on Nd ( dlnLWP

dlnNd
),

which has been used in previous studies to characterize

aerosol–cloud adjustments (Bellouin et al., 2020), barely
overlapped between the PPE and observations (Fig. 8). We
share four potential hypotheses to explain this behavior and
suggested pathways to evaluate these hypotheses: (i) missing
processes in CAM6, (ii) insufficiently broad PPE parameter
priors, (iii) sampling differences between the CAM6 grid cell
and the ENA observation footprint, and (iv) observational un-
certainty. We briefly discuss each below.

The parameterizations in CAM6 only explicitly address
aerosol–cloud adjustments that occur through precipitation
suppression. CAM6 does not contain parameterizations that
fully treat size-dependent entrainment. Size-dependent en-
trainment is partially addressed in CAM6 through size-
dependent droplet sedimentation (Morrison and Gettelman,
2008). An increase of CCNs in a cloud, decreasing the aver-
age droplet size, decreases the effect of sedimentation which,
in turn, increases entrainment. Through this process, there
is a partial representation of the processes leading to size-
dependent entrainment in CAM6. These relationships are il-
lustrated succinctly in Fig. 1 of Karset et al. (2020).

The lack of a complete parameterization of size-dependent
entrainment is common across GCMs (Jing et al., 2019;
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Karset et al., 2020; Michibata and Takemura, 2015). One
possibility would be to implement size-dependent entrain-
ment in a future version of the PPE, following previous
studies, although implementation of this parameterization
in a GCM was not found to substantially affect adjustment
strength (Karset et al., 2020). A challenge in this approach
will be determining if the structure of the size-dependent en-
trainment parameterization is reasonable and selecting cases
and regimes with sufficient measurements to constrain the
size-dependent entrainment process to isolate it from other
confounding processes. We stress that establishing the neces-
sity of a size-dependent entrainment parameterization to ac-
curately represent aerosol–cloud adjustments appears to re-
quire careful analysis to distinguish between thinning due
to size-dependent entrainment and non-causal anticorrela-
tion betweenNd and LWP driven by precipitation scavenging
(Mahfouz et al., 2024; McCoy et al., 2020a; Mülmenstädt et
al., 2024b).

While the prior distribution of dlnLWP
dlnNd

is mostly more pos-
itive than observations, the PPE prior and observations from
ENA do overlap. A simple explanation of the occurrence of
observed dlnLWP

dlnNd
at the edge of the PPE prior may be that

the prior distribution for the CAM6 PPE Nd exponent (mi-
cro_mg_autocon_nd_exp; Table 1) – a parameter that gov-
erns most of the aerosol–cloud adjustment process in CAM6
(shown in Fig. 14c for CAM6 and in other GCMs; Jing et
al., 2019) – may have been too narrow when the CAM6 PPE
was originally designed (Eidhammer et al., 2024). Given the
dependence of dlnLWP

dlnNd
on micro_mg_autocon_fact and mi-

cro_mg_accre_enhan_fact, in future iterations of this and
other PPEs examining aerosol–cloud adjustments, we sug-
gest considering high autoconversion and accretion enhance-
ment factors. This should create more ensemble members
with negative dlnLWP

dlnNd
. This approach would be the most use-

ful combined with the implementation of a size-dependent
entrainment parameterization as discussed above to evaluate
the relative importance of these two processes in producing
observed present-day cloud and precipitation behavior.

Another source of disagreement may be the disparity in
scale between the CAM6 grid and the ARM sampling foot-
print. Model output at finer spatial resolutions would allow
for the characterization of the tolerance when comparing
GCM grid cell properties to ENA observations. One possi-
bility would be to leverage large-eddy simulations (LESs)
to characterize the relationship between observations at a
point to the GCM grid scale. At the time of writing, the
LES ARM Symbiotic Simulation and Observation (LASSO)
project (Gustafson et al., 2020) for ENA is in the plan-
ning phase and may be useful for future constraint stud-
ies. LESs in combination with ENA observations would en-
able further quantification of the impact on adjustments, and
more broadly ERFaci, of subgrid-scale processes that are
not explicitly parameterized in GCMs. For example, ENA
aerosol–cloud–precipitation systems are influenced by var-
ied mesoscale cloud organization (McCoy et al., 2023; Zhou

and Bretherton, 2019) and sometimes are buffered against
precipitation removal by the presence of small, Aitken-mode
aerosols (McCoy et al., 2024). Both of these mechanisms in-
fluence the radiative properties and responses to aerosols of
the cloud systems, but their resulting behaviors are incom-
pletely represented in CAM6 (McCoy et al., 2021, 2023;
Zhou et al., 2021).

From an observational perspective, there remains uncer-
tainty related to observation (or lack thereof) of light pre-
cipitation and virga. Drizzle and virga conditions – two pre-
cipitation regimes for which the disdrometer is inadequately
equipped to observe – are prevalent at ENA (Wu et al., 2020).
To account for this, future work in this area should utilize re-
mote sensing retrievals such as Ka-band ARM zenith radar
(KAZR) reflectivity (Ghate and Cadeddu, 2019; Wu et al.,
2020) to account for these otherwise missed precipitation
events. The reflectivity product available from CAM6 is not
adequate to make a comparison to ENA’s KAZR. To facili-
tate this comparison, instrument simulators such as the Earth
Model Column Collaboratory (EMC2) (Silber et al., 2022)
are required and may be a promising avenue for future con-
straint studies motivated by our finding that precipitation
played an important role in our constraint of aerosol–cloud
adjustments. As it stands, we are unable to disentangle these
last two points, but a more accurate observation would help
eliminate at least one vector for uncertainty. We expect that a
higher-sensitivity precipitation measurement would bring P
down towards the PPE distribution rather than further away
as there would be a higher number of low-rain-rate observa-
tions.

In summary, there are several avenues we can take to
build on the constraint framework laid out here. However,
based on our findings, in a narrow sense, we did not find a
structural disagreement between ENA observations and the
CAM6 model. Critically, although the negative correlation
between Nd and LWP is used to support a prevalent thinning
of cloud in response to increased aerosols in our assessments
of aerosol forcing (Bellouin et al., 2020), we do not find that
this is necessarily the case. Following the results from Mül-
menstädt et al. (2024b), the observed negative dlnLWP

dlnNd
from

this study and elsewhere is not in contradiction with a posi-
tive 1LWPgl. CAM6 can, for a given value of dlnLWP

dlnNd
, pro-

duce a broad swath of1LWPgl values (Fig. 14b–e), support-
ing the idea that this metric is not strongly predictive of PD-
PI adjustments.

5 Summary

We present a framework for constraining aerosol–cloud ad-
justments using mean-state variables and covariances (Ta-
ble 4). Our framework unites causally ambiguous present-
day observations and a perturbed parameter ensemble (PPE)
hosted in the CAM6 global climate model (GCM) to (i) pro-
vide constraints on aerosol–cloud adjustments in liquid wa-
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ter path (LWP) and (ii) link this constraint to different pa-
rameterized processes. Observations from the Eastern North
Atlantic (ENA) were used to constrain global-mean aerosol–
cloud adjustments. This constraint is the result of selecting
model configurations where precipitation rate (P ), liquid wa-
ter path (LWP), droplet number concentration (Nd), and their
covariance: dlnLWP

dlnNd
, dlnLWP

dlnP , and dlnNd
dlnP extracted from the

PPE at ENA match their observed equivalents. Response in
global-mean LWP to anthropogenic aerosols is constrained
to be between 2.08 and 6.87 g m−2, which is a 15 % reduc-
tion from the prior range in the PPE. Within this constrained
emulator space, we see constraint (based intuitively on the
shape of the constrained distribution) on 18 out of 45 of
the perturbed parameters (Fig. 13). Constrained parameters
match our a priori expectations for processes that are relevant
to aerosol cloud adjustments and set cloud and precipitation
states. These processes include the autoconversion param-
eterization that drives aerosol–cloud adjustments in GCMs
(Jing et al., 2019); the accretion parameterization, which is
comparable with constraining confounding linkages between
LWP, precipitation, andNd; and cloud and convection param-
eters that are important for setting the mean-state cloudiness
and precipitation.

As demonstrated in Fig. 14, confounding effects from co-
alescence scavenging (Gryspeerdt et al., 2019; McCoy et
al., 2020a) can operate in conjunction with autoconversion-
driven precipitation suppression to reproduce this negative
correlation between LWP and Nd. We stress that our results
do not necessarily rule out size-dependent evaporation and
entrainment as an important process in setting aerosol–cloud
adjustments, but we do find that this process is not necessary
to produce observed present-day behavior and present-day
observations of clouds and precipitation at ENA are consis-
tent with a moderate increase in cloud liquid water path in
response to anthropogenic aerosols.
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