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182 00 Prague 8, Czech Republic
3 Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3,

121 16 Praha 2, Prague, Czech Republic
4ATEM – Studio of ecological models, Roztylská 1860/1, 148 00 Prague 4, Czech Republic
5Nansen Environmental and Remote Sensing Centre, Jahnebakken 3, 5007 Bergen, Norway

6UiT – The Arctic University of Norway, Postboks 6050 Langnes, 9037 Tromsø, Norway

Correspondence: Petra Bauerová (petra.bauerova@chmi.cz)

Received: 24 April 2024 – Discussion started: 4 July 2024
Revised: 21 January 2025 – Accepted: 10 February 2025 – Published: 24 April 2025

Abstract. As part of the TURBAN project, the “Legerova campaign” investigated air quality and meteorology
in a traffic-dense area of Prague, Czech Republic, from 30 May 2022 to 28 March 2023. The study deployed
a network of 20 low-cost sensor (LCS) stations to measure NO2, O3, PM10 and PM2.5 concentrations, comple-
mented by advanced meteorological instruments such as a microwave radiometer and Doppler lidar. Ensuring
data quality from LCS measurements presented significant challenges. Initial field tests at a reference monitoring
station revealed strong correlations between raw LCS and reference data (r > 0.90 for NO2 and PM2.5, r > 0.80
for O3 and PM10). However, individual biases were observed. Applying the multivariate adaptive regression
splines (MARS) method effectively reduced biases and enhanced alignment with reference measurements for
all pollutants (R2 0.88–0.97). During the campaign, sensor ageing and technical issues were identified through
double mass curve analysis and final field testing. The highest NO2 concentrations were recorded in streets with
dense building blocks and traffic lights, corresponding to peak traffic patterns (with medians of concentrations
20–34 ppb). Aerosol concentrations were generally low (medians of PM10 < 25 µg m−3 at all sites), with less
temporal and spatial variability than NO2. Elevated PM10 and PM2.5 levels occurred primarily during temper-
ature inversions, often linked to local sources, and during a short, non-local episode. This study highlights the
MARS method as a reliable tool for field calibration of LCS networks and provides valuable data on urban air
quality and its dynamics with high spatiotemporal resolution.
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1 Introduction

With growing awareness of people around the world of ongo-
ing climate change and the development of appropriate adap-
tation measures, the need to improve the modelling capabili-
ties of meteorological and air quality conditions in the com-
plex environment of large cities is increasing worldwide. To
enable the improvement of atmospheric assessment and ad-
vanced modelling in cities, it is always necessary to improve
the spatial availability of measured or otherwise estimated
data (i.e. indicative measurement, remote sensing monitor-
ing, estimates from satellite data) that may be used for anal-
yses. Since reference meteorological and air quality moni-
toring (AQM) stations are technically demanding and often
not possible to relocate easily for targeted short-term obser-
vation campaigns, supplementary non-referential measure-
ments such as low-cost sensors (further abbreviated as LCSs)
have become very popular in the last few years (Castell et al.,
2017; Kumar et al., 2015; Morawska et al., 2018; Narayana
et al., 2022).

Together with better availability, interest in LCSs among
laypeople and the interested public and even among scien-
tists has increased (Jerrett et al., 2017; Mahajan et al., 2020;
Wesseling et al., 2019). However, their common problem is
data quality and how to verify and correct it. Most of the
LCSs for ambient AQM are burdened by unstable measure-
ment performance over time and lowered inter-unit precision
(Narayana et al., 2022; Peltier et al., 2020). Electrochemi-
cal (EC) LCSs for gaseous pollutants are known for their re-
duced operational lifetime (between 12–15 months on aver-
age due to the degradation of electrolyte performance over
time); vulnerability to cross-sensitivity of different gases
(e.g. known interference between NO2 and O3; Baron and
Saffell, 2017; Bauerová et al., 2020; Cui et al., 2021; Spinelle
et al., 2015); and changes in meteorological conditions, es-
pecially air temperature and relative humidity (Bauerová et
al., 2020; Collier-Oxandale et al., 2020; Jiao et al., 2016;
Mead et al., 2013; Vajs et al., 2021). By contrast, aerosol
LCSs based on optical particle counters (OPCs) have a longer
operational lifetime (typically 2–3 years) and usually higher
inter-unit precision than EC LCSs (Sayahi et al., 2019; Tagle
et al., 2020). However, even OPCs are known to interfere
with meteorological conditions, especially with relative hu-
midity and air temperature (high probability of measurement
error under condensation conditions). The mass concentra-
tion of the coarse fraction of aerosol particles (PM10) is usu-
ally burdened by weaker measurement performance and by
the greater probability of measurement error with respect to
relative humidity than the fine fraction PM2.5 (Bauerová et
al., 2020; Crilley et al., 2018; Tagle et al., 2020; Tryner et al.,
2020). However, it is known that the error rate of the mass
concentrations of all aerosol fractions depends mainly on the
type of particle compounds and their ability to bind water
(Charron, 2004; Giordano et al., 2021; Robinson et al., 2023;
Venkatraman Jagatha et al., 2021; Wang et al., 2021).

A general recommendation to overcome the given uncer-
tainties and drifts of “zero values” in LCS measurement is
to undergo the following control process: (1) physical cali-
bration of all the LCSs in a laboratory under controlled con-
ditions; (2) comparative measurement of all LCSs with ap-
propriate reference monitors (RMs) or other equivalent mon-
itors (further abbreviated as EMs) at the AQM station (often
called LCS field calibration), followed by the application of a
suitable statistical correction method (Clements et al., 2022;
Peltier et al., 2020; Schneider et al., 2019; Spinelle et al.,
2015); and (3) periodic check of the sensors’ performance
over time, if possible repeating comparative measurement
at the reference station (identification of data drifts). Per-
forming an individual laboratory calibration of a large num-
ber of LCSs is relatively technically, financially and time-
consuming for most end users (see, for example, Cui et al.,
2021, or the European standard CEN/TS 17660-1:2021 (E),
2021, for air quality of LCSs for gaseous pollutants). The ad-
vantage of laboratory calibration is the possibility to identify
possible differences in sensor response to different concen-
tration levels. On the other hand, it is known that the labo-
ratory calibration alone is not fully sufficient for successful
LCS field deployment, as changes in weather conditions and
mixtures of gases and compounds occurring in the outdoor
environment cannot be demonstrated under controlled condi-
tions (De Vito et al., 2009; Kamionka et al., 2006). Therefore,
some studies have already focused fully on field calibration
for the evaluation of LCS performance (e.g. Cordero et al.,
2018; deSouza et al., 2022; Feinberg et al., 2018; Liu et al.,
2020; Mukherjee et al., 2017), as we did in this study. The
recommended minimum duration of such a field compara-
tive measurement is 30 to 40 d (CEN/TS 17660-1:2021 (E),
2021; Clements et al., 2022; Peltier et al., 2020; Yatkin et
al., 2022a, b). Nevertheless, considering the duration of one
season in central European conditions, this length does not
ensure that a sufficiently wide range of meteorological con-
ditions would be covered. Therefore, it is even more reason-
able to choose a longer period than generally recommended
or repeat the field comparison tests after the season changes.
Besides this, there are two main challenges of long-term
field LCS tests, namely random data drifts and the possibil-
ity of performance changes after transfer to another location
(De Vito et al., 2009; Papaconstantinou et al., 2023; Sayahi
et al., 2019; van Zoest et al., 2019). Therefore, the most com-
mon approach follows the general recommendation to collo-
cate at least one sensor at the nearest RM station during the
entire final deployment (CEN/TS 17660-1:2021 (E), 2021;
Clements et al., 2022; Peltier et al., 2020; Yatkin et al., 2022a,
b).

To obtain the most reliable data from the LCS measure-
ments, it is always necessary to find an appropriate tech-
nique for statistical correction of raw measured data. Due
to the weaknesses of the LCSs described above, it is evi-
dent that corrections based on single variable linear regres-
sion (i.e. on the relationship between LCSs and RM- or
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EM-measured concentrations) may not be fully sufficient.
Therefore, multiple linear regression (MLR) analyses, gen-
eralized additive models (GAMs), random forests (RFs), K-
nearest neighbours (KNNs), gradient boosting (GB) and ar-
tificial neural networks (ANNs), as well as other complex
algorithms that account for additional explanatory variables
and non-linear relationships, are increasingly used, achiev-
ing different levels of final LCS data quality (Considine et
al., 2021; deSouza et al., 2022; Kumar and Sahu, 2021; Ma-
hajan et al., 2020; Narayana et al., 2022). In any case, the
applied correction method should be sufficiently transpar-
ent and computationally reproducible (avoiding black box
methods), which is not always true for some new statisti-
cal machine learning techniques (e.g. random forests, neural
networks). From this point of view, the multivariate adap-
tive regression splines (MARS) method can be a suitable
statistical tool for LCS measurement correction since it is
a non-parametric regression technique that can reflect non-
linearities and different interactions between several contin-
uous or categorical data (Friedman, 1991a, b). Generally, the
MARS method is flexible and simple to understand and inter-
pret and requires almost no data preprocessing (is capable of
dealing with “noisy” data). Moreover, it is computationally
time-feasible and reproducible (Friedman, 1991a, b; García
Nieto and Álvarez Antón, 2014; Keshtegar et al., 2018; Ev-
eringham et al., 2011). When using MARS, the exact form
of the non-linearity does not need to be known explicitly or
determined a priori. The algorithm will search for, and de-
tect, non-linearities in the data that help maximize the per-
formance of LCSs’ data correction procedure. In addition, if
the algorithm is sufficiently trained (during field compara-
tive measurement), data from the RM are no longer needed
to calculate the corrected concentration values.

A common challenge when using different machine learn-
ing techniques is the possible loss of accuracy due to the
incompleteness of the initially defined computation model,
leading to “concept drift” (De Vito et al., 2020; Ditzler et al.,
2015). Therefore, it is still recommended to perform contin-
uous or backward controls of the performance of any cor-
rection algorithm used (similar to the previously mentioned
need for LCS data drift control). Several data control mech-
anisms have already been described in papers focusing on
LCS measurement (De Vito et al., 2020; Harkat et al., 2018).
However, to our knowledge, no previous study has used the
double mass curve (DMC) method for data continuity control
in LCS measurement. The DMC is a simple graphic method
usually used for checking the consistency of hydrological
and climatological data continuously measured at several sta-
tions in a selected area (Kliment et al., 2011; Liu et al., 2023).
Based on our experience, we assume that it is fully applicable
to control the performance of the LCS network measurement.

For the possibility of a better understanding of complex
atmospheric processes in the urban environment (including
the accumulation and dispersion of pollutants), it is impor-
tant to obtain data from different heights, not only within the

urban canopy layer but also above it. Therefore the combi-
nation of traditional ground measurement with remote sens-
ing monitoring of temperature and wind profiles above the
rooftops is beneficial (Allwine et al., 2002; de Arruda Mor-
eira et al., 2020, 2018; Münkel et al., 2007). The advantage of
using microwave radiometers (MWRs for temperature pro-
files) and Doppler light detection and ranging systems (li-
dars for wind profiles) nowadays is their high temporal res-
olution (compared to radiosondes), portability and the pos-
sibility of installation in the city without disturbing the sur-
roundings (in contrast to acoustic wind profilers or SODAR-
RASS systems; Lokoshchenko et al., 2009; Tamura et al.,
2001). However, even these devices are burdened by their
technical limitations, and some data verification is recom-
mended (if not against the available RM, at least compared
to other remote sensing measurements). The Doppler lidars’
accuracy of wind measurement can be deteriorated by rain
(and low stratus clouds), and profiles have a high vertical
resolution but non-stable height range because of the varying
signal-to-noise ratio (SNR). The MWRs’ measurement per-
formance is quite independent of meteorological conditions
(with some exceptions in older instruments as in Ezau et al.,
2013); moreover, MWRs have null overlap and do not use
aerosols as tracers. On the other hand, MWRs usually have
a stable height range but a lower vertical resolution than li-
dars (de Arruda Moreira et al., 2020, 2018). Both systems
were used in the TURBAN measurement campaign to al-
low monitoring of the boundary layer conditions (tempera-
ture and wind vertical profiles) at the target site.

The objective of this study was to obtain credible air
quality and meteorological data using a high-spatiotemporal-
resolution supplementary network consisting of air quality
LCSs, MWRs and Doppler lidars in a part of the city cen-
tre of Prague (within Legerova street and its surroundings;
Prague 2 district, the Czech Republic) to support the valida-
tion of the updated LES PALM microscale model (Patiño et
al., 2024; Resler et al., 2024). This area represents a typi-
cal urban environment with a high traffic load within central
European cities. The Prague Legerova reference AQM sta-
tion is classified as a hotspot (see NO, NO2 and NOx mea-
surement statistics across all traffic stations in Prague in Ta-
ble S1 in the Supplement). Therefore, it is also one of the
most frequent target locations for public attention and protest
actions to limit automotive traffic (and automotive speed) in
Prague. Innovative procedures resolving the quality of the
LCSs’ data were applied in this study: long-term field testing
of all LCSs was performed before their target deployment,
the MARS statistical method was used for correction of the
original LCSs’ data and possible data drifts were identified
using the DMC method. The paper is structured according to
its main objectives: (1) evaluation of LCS data quality and
performance of MARS correction method used in the TUR-
BAN project, (2) monitoring of raw and corrected data qual-
ity during the Legerova campaign and after the end of the
project, and (3) analysis of air quality measurement results
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during the Prague Legerova campaign including interesting
episodes related to meteorological conditions in the atmo-
spheric boundary layer.

2 Materials and methods

2.1 Study area and experimental design

The study area of the TURBAN measurement campaign cov-
ered the streets of Legerova, Sokolská and Rumunská and
their immediate surroundings (district of Prague 2, Czech
Republic; Fig. 1) including the urban traffic hotspot AQM
station of Czech Hydrometeorological Institute (CHMI)
called “Prague Legerova” (locality code: ALEGA; CHMI,
2025a) and the adjacent “Prague Karlov” professional me-
teorological station (MS) placed on a building roof (station
ID: P1PKAR01; WMO, 2023a). Legerova, Rumunská and
Sokolská streets are characterized by a high daily traffic load
(the traffic intensity is between 35 000 and 45 000 cars per
day; TSK, 2023) and street canyon conditions consisting
mainly of compact midrise buildings on both sides of the
streets (with only small fractions of open spaces). Particu-
larly problematic in the long term are the high concentrations
of NO2, which, despite improvements in recent years, still
reach the applicable limit value (see Figs. S1–S3 in the Sup-
plement). For the TURBAN measurement campaign (further
referred to as the Legerova campaign), a total of 20 combined
LCS stations (for NO2, O3, PM10 and PM2.5) have been de-
ployed in this area and measured mainly from 30 May 2022
to March 2023 (except for the LCSs S3, S4 and S16; see
details in Table 1). Of these, 11 LCSs were placed in the
streets with the highest traffic load: 10 LCSs were installed in
pairs at two different height levels (first 5–7 m a.g.l. and sec-
ond 12–15 m a.g.l.) in five locations, and 1 LCS (identified as
S4) was collocated with the Prague 2-Legerova traffic AQM
station throughout the entire campaign. Furthermore, five
LCSs were installed at greater distances and higher heights
from these streets and were established as background loca-
tions: two LCSs on the roofs of the Prague Karlov MS (S3;
30 m a.g.l.) and Le Palais Art Hotel Prague (S16; 22 m a.g.l.),
two LCSs (S7 and S9; 5 and 7 m a.g.l.) within the closed
school courtyard (a student sports field with no traffic), and
one LCS (S19; 3 m a.g.l.) at a mobile meteorological mast in-
stalled about 50 m away from the middle of Sokolská street
(see Fig. S4 in the Supplement). Examples of photos from
the LCS installation are shown in Fig. 2. The meteorological
mast (hereinafter abbreviated as MM) was deployed in the
garden of the Prague Waterworks and Sewerage Company
(hereinafter referred to as the PVK garden) for basic me-
teorological measurement below the level of the rooftop in
this area. Furthermore, one Doppler lidar (for wind vertical
profile) was installed on the roof of the PVK administrative
building (hereinafter referred to as the PVK roof), and one
MWR (for temperature vertical profile) was installed on the
roof of the Prague Karlov (for both see Fig. S4 in the Sup-

plement). A complete list of measurements, installation sites
and other metadata is given in Table 1 and shown in Fig. 1c.

The performance of all LCSs was tested before and after
the end of the Legerova campaign at the Prague Libuš subur-
ban background AQM station (locality code: ALIBA; CHMI,
2025b; Fig. 3) with the adjacent Prague Libuš professional
MS (station ID: P1PLIB01; WMO, 2023b), both located out-
side of the Legerova target domain (see station position in
Fig. 1b). The initial field comparative measurement lasted
for most of the LCS stations (17 out of 20) from 16 Decem-
ber 2021 until 30 May 2022 (165 d). During this time, three
LCSs were identified as defective (two were replaced later),
the settings of all LCSs were synchronized (device time and
data transfer to the data storage server), and measurement
deviations and errors were identified against the appropriate
RMs (gases) and EM (aerosols). In two exceptions, the initial
field comparative measurement lasted for a shorter period,
namely until 23 February 2022 for LCS S3 (69 d) and until
24 March 2022 for LCS S4 (98 d) due to the earlier installa-
tion of these sensors to target locations, namely at the Prague
Karlov MS roof (LCS S3) and at the Prague Legerova AQM
station (S4). Two sensors (S8 and S17) identified as faulty
during the initial field comparative measurement were later
replaced, compared on separate dates and left together with
LCS S6 at the Prague Libuš AQM station; they later served
as verified spare units in the case of failure of other sensors.
After the end of the Legerova campaign, a final comparative
measurement of all LCSs was done (lasting from 9 May to
14 June 2023, i.e. 37 d) to re-assess the data quality (both raw
and corrected). All data gained during comparative measure-
ments were used for the statistical data correction process
described in Sect. 2.3.

2.2 Technical specification of instruments used and
measurement methods

For the air quality monitoring, 20 combined LCS enviSENS
platforms (Envitech Bohemia, CZ) were used. They were
constructed as small airflow boxes with dimensions of 125×
225× 110 mm, each equipped with a Cairsense EC LCS for
NO2 and O3 (combined O3/NO2 sensor; FR; Envea, 2023)
and low-cost aerosol particle counter PMS7003 (CN; Plan-
tower, 2023) for PM10 and PM2.5 mass concentrations (see
Table 2 for the main technical parameters). This selection
was based on our previous experience with an almost 1-
year testing field comparative measurement (Bauerová et al.,
2020). All LCS stations were powered by 230 V electricity,
and the data were transferred remotely via LTE modems to
the internal server of CHMI. The measurement frequency
was set to 10 min intervals in all sensors, from which 1 h
averages were calculated. Furthermore, the data from RMs
and EMs measuring at AQM stations Prague Legerova and
Prague Libuš were used as a control. All AQM stations are
equipped with the RM Teledyne API T200 for NO2 moni-
toring based on the chemiluminescence detection principle,
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Figure 1. (a) Map of the Czech Republic with the city of Prague and the locality of Hřensko highlighted. (b) Map of the city of Prague
with Legerova location selected (highlighted in red rectangle), Libuš reference monitoring station and meteorological station, and Vysočany
reference monitoring station. (c) Map of the individual device placement within the Legerova campaign. Sx is the individual low-cost sensors
for air quality monitoring (AQ LCS), L is the lower height (m a.g.l.) and H is the higher height (m a.g.l.). Background sites are marked with an
asterisk. State boundaries in (a) © EuroGeographics. Background data in (a) and (b) are an Open Street Map provided by WMS by Terrestris
GmbH & Co. KG. Orthophoto in (c) is provided through WMS by the Czech Office for Surveying, Mapping and Cadastre – ČÚZK.

Figure 2. Photos of LCSs deployed in the Legerova campaign (Prague, Czech Republic). (a) The detailed picture of LCS stations used for
monitoring of NO2, O3, PM10 and PM2.5 concentrations. (b, c) Installation of LCSs at two different height levels at the Sokolská school
location and Legerova location. (d) Picture of the lift platform used for installation of LCSs.
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Figure 3. (a) Initial field comparative measurement of all LCSs (for measuring NO2, O3, PM10 and PM2.5) conducted at the Prague Libuš
AQM station (CHMI, 2025b) from 21 December 2021 to 30 May 2022. (b) LCS stations in detail.

RM Teledyne API T400 for O3 monitoring based on UV ab-
sorption (US; Teledyne API, 2023a, b), and EM Palas Fi-
das 200 S (DE; Palas, 2023) optical particle counters for the
measurement of PM10 and PM2.5. Since the RM for O3 mea-
surement is not available at the Prague Legerova urban traf-
fic station, as a substitute, O3 concentrations measured at the
Prague Vysočany AQM station (classified as an urban traffic
station; CHMI, 2025c; see station position in Fig. 1b) were
used for indicative comparison with O3 LCS measurement
during the Legerova campaign. The technical parameters of
all used devices are listed in Table 2.

Technical specifications and measurement methods of
ground-based and remote sensing meteorological instru-
ments used within the Legerova campaign are described in
Sect. S2.2 in the Supplement.

2.3 Data processing and statistical analyses

A summary diagram of the entire LCS air quality data control
process with correction methods used and the evaluation of
the correction performance is shown in Fig. 4.

In the first step, the data from the initial field compara-
tive measurement of all LCSs were processed. Raw measured
concentrations underwent quality checks before calculating
1 h averages; i.e. hours with more than 30 % missing sam-
ples (due to instrument defects, power outages, etc.) were
marked as not available (NA) and were omitted from further
processing. Then summary statistics for the checked data (1 h
LCSs’, RMs’ or EMs’ concentrations) were calculated and
visualized using R software (R Core Team, 2021) with the
following packages: ggplot2 for box plots (Wickham, 2016),
corrplot for correlation matrices (Wei and Simko, 2021), ope-
nair for time–variation graphs (Carslaw and Ropkins, 2019),
tdr for statistical error calculation (Lamigueiro, 2022) and
plotrix for the Taylor diagram visualization (Lemon, 2006).
Summary statistics included the coefficient of variation (CV)
to express mean precision of LCS measurements during
field measurements, along with mean, median, standard de-
viation (SD) and parameters derived from regression anal-

yses: intercept (a), slope (b), coefficient of determination
(R2), Williamson–York regression parameters (a, b, using
the maximum given RM, EM and LCS uncertainties; accord-
ing to Cantrell, 2008), mean bias error (MBE) and root mean
square error (RMSE). No significant outliers, defined as val-
ues greater than 3 times the maximum of the hourly average
concentration measured by an RM or EM (Bauerová et al.,
2020; van Zoest et al., 2018), were detected during the test-
ing period (not even during the Legerova campaign or during
the final comparative measurement). Therefore, all LCS raw
measured data were used in the subsequent statistical correc-
tion process.

In the second step, the raw LCS data were corrected using
the MARS statistical method (Friedman, 1991b; Everingham
et al., 2011; see Sect. S2.3.1 in the Supplement for detailed
description of this computational method). Software options
for MARS analysis include the free R package earth (Mil-
borrow, 2011) or commercial products such as TIBCO Sta-
tistica (version 13.1.0; TIBCO, 2020), which were used in
this study. The main correction equations (COR) were cal-
culated for each LCS separately based on the dataset gained
during the initial field comparative measurement. All MARS
correction equations were built of 1 h concentrations mea-
sured by an RM or EM as a dependent variable and the fol-
lowing list of continuous independent/explanatory variables:
1 h concentrations measured by LCS, further 1 h averaged
temperature (TMP), relative humidity (RH), wind velocity
(WV), global radiation intensity (GLRD) and hour of the day.
The maximum number of basis functions in the MARS equa-
tion was set to 21, the degree of interactions to 1 (i.e. no inter-
actions included), the penalty to 2 and the threshold to 0.0005
(and pruning was allowed). In the case of O3 measurement,
besides the raw O3 concentration, the ratio of O3/NO2 con-
centration from separate LCSs was added as explanatory
variables (for the possibility of taking into account the inter-
ference effect of the combined O3/NO2 sensor). The sum-
mary statistics of MARS correction equation performance
for each LCS, including the frequencies of use of each in-
dependent variable/predictor, are listed in Tables S2–S9. An
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example of the calculation of corrected NO2, O3, PM10 and
PM2.5 concentrations based on the MARS correction equa-
tion (COR) in the case of LCS S2 is shown in Table S10.

Within the framework of testing different correction meth-
ods, one alternative method was chosen during the process
of finding the optimal correction procedure. This method was
named COR2 and was based on MARS correction calculated
on the combined dataset from the initial and final compara-
tive measurements at the Prague 4-Libuš station (i.e. com-
bined data gained from 16 December 2021–30 May 2022
and 9 May–14 June 2023). This combined dataset assumes
the inclusion of the change in the quality of the raw LCS
measurement at the end of the measurement campaign (af-
ter more than 1.5 years of sensor measurement in the field).
The conditions for calculating the correction were similar to
those in the case of the initial correction (COR), with the age
of sensors added to independent/explanatory variables. The
resulting correction equations (COR and COR2) obtained
for individual LCSs were applied to calculate the corrected
concentrations of particular LCSs during the Legerova cam-
paign, utilizing meteorological data from the Prague Karlov
MS (see overview in Table 3).

In the third step, a double mass curve (DMC) method was
used (Searcy and Hardison, 1960) to check data consistency
and identify possible random or systematic data drifts in raw
LCS concentrations. This method involves linear regression
of cumulative 1 h average RM concentrations (independent
variable; the abscissa) against cumulative raw and corrected
1 h average LCS concentrations (dependent variable; the or-
dinate), both over the entire period. Deviations from the lin-
ear regression fit indicate a change or break points in LCS
measurement (data gaps, abrupt or systematic gradual data
drifts, change of measurement location). This method was
applied to the entire LCSs’ measurement. For the Legerova
campaign, all the LCS raw and corrected concentrations were
indicatively compared with the concentrations measured by
an RM (in the case of NO2) or EM (in the case of aerosols)
at the Prague Legerova AQM station and by a more distant
RM at the Prague Vysočany (in the case of O3).

Further details on the preparation of the meteorological
data obtained during the Legerova campaign and their sta-
tistical analyses are described in Sect. S2.3.2 in the Supple-
ment.

3 Results

3.1 Data quality verification – results

The initial field comparative measurement of all the LCSs
(17 stations, except 3 broken ones) showed differences/vari-
ability between individual LCSs raw measurement and also
between each LCS and RM measurement (see standard de-
viations and correlation coefficients in Fig. 5, box plots in
Fig. 6 and a 1-month data example in Fig. S7 in the Supple-
ment). The mean coefficients of variation (CVs) for original

(raw) LCS measurements were 27.69 %, 16.71 %, 23.44 %
and 23.16 % for NO2, O3, PM10 and PM2.5, respectively;
see Table S11 in the Supplement). The comparison with
RMs or EMs showed the following correlation coefficients:
r > 0.90 in all NO2, PM10 and PM2.5 LCSs and r > 0.80 in
all O3 LCSs (all correlations statistically significant at the
level p < 0.001). The results of linear regression showed R2

in the range 0.84–0.98 for NO2, 0.54–0.82 for O3, 0.72–
0.89 for PM10 and 0.85–0.91 for PM2.5 and slopes 0.63–0.84
for NO2, 0.30–0.83 for O3, 0.65–1.72 for PM10 and 0.77–
1.51 for PM2.5. The complete results of the summary statis-
tics of LCS raw measurements, including intercepts (a) and
slopes (b) from linear regressions and bivariate regressions
and the statistical errors MBE and RMSE, are available in
Tables S12–S15 and Figs. S9–S12 in the Supplement.

The MARS correction decreased the differences between
LCS concentrations and RM or EM concentrations and be-
tween individual LCS measurements (see Figs. 5–6 and S8
in the Supplement). The mean CVs for LCS measurements
after correction were 9.25 %, 6.06 %, 13.05 % and 14.62 %
for NO2, O3, PM2.5 and PM10, respectively (Table S11 in
the Supplement). The corrections also improved the relation-
ship of the LCS data with the data from RMs or EMs: R2

in the range 0.89–0.99 for NO2, 0.91–0.96 for O3, 0.75–0.92
for PM10 and 0.91–0.95 for PM2.5 and slopes of 0.89–0.99,
0.91–0.96, 0.83–0.92 and 0.91–0.95, in the order of pollu-
tants as previously. For complete summary statistics, see Ta-
bles S12–S15 and Figs. S9–S12 in the Supplement. Three
LCSs showed slightly different performance after the appli-
cation of MARS correction (see Fig. 5), namely LCSs S3,
S4 and S11 in the case of NO2 measurement. The overall im-
provement of LCSs’ measurement after the application of the
MARS corrections was also confirmed by the DMC method
(see Figs. S13–S14 in the Supplement). However, after cor-
rection, some initially very low concentrations turned into
weakly negative values: for gaseous pollutants, they consti-
tuted less than 0.3 % and for aerosol, less than 2.6 % of the
whole testing dataset (part of the summary statistics in Ta-
bles S12–S15 in the Supplement).

During the Legerova campaign itself, the concentrations of
all monitored pollutants were highly correlated in each LCS
pair (i.e. sensors S11+S10, S20+S13, S14+S15, S2+S5,
S12+S18, S9+S7 and S4+RM; always mentioned as lower
(L) + higher (H) elevation; see Figs. S15–S22 with courses
of concentrations and Figs. S23–S24 in Supplement show-
ing particular relationships with the RM Legerova measure-
ment). The only sensor identified as defective during the
Legerova campaign was the NO2 LCS S9 placed within the
closed school courtyard, which showed a significant, grad-
ually increasing data drift to high concentrations over time
(Fig. S20a in the Supplement). For NO2, in addition to the
LCS, S9, mentioned already, the other LCSs, S11 and S12,
were also identified for possible systematic gradual data drift
by the DMC method (see Fig. S25 in the Supplement). Some
technical issues must have occurred in the O3 LCSs, where,
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Figure 4. Summary scheme of particular steps in the LCS air quality measurement process, data control, correction methods and evaluation
of correction performance.

Table 3. Description of the MARS correction models used to correct the raw sensor data. RM denotes the concentrations from the reference
monitor (gases), EM denotes the concentrations from the equivalent monitor (aerosols), SxR denotes the raw measured concentrations from
the particular sensor, TMP is the air temperature (in °C), RH is the relative humidity (in %), WV is the wind velocity (in m s−1), GLRD is
the solar radiation intensity (W m−2), hour is the hour of the day (UTC) and sensor age is the age of the sensor (in days).

LCSs data correction method Dependent
variable

Independent variable

MARS correction model based on
initial field comparative measurement
dataset (COR)

NO2_RM ∼NO2_SxR + TMP + RH +WV + GLRD + hour

O3_RM ∼NO2_SxR + O3_SxR/NO2_SxR + TMP + RH +WV + GLRD +
hour

PM10_EM ∼PM10_SxR + TMP + RH +WV + GLRD + hour

PM2.5_EM ∼PM2.5_SxR + TMP + RH +WV + GLRD + hour

MARS correction model based on the
combination of initial and final field
comparative measurement datasets
(COR2)

NO2_RM ∼NO2_SxR + TMP + RH +WV + GLRD + hour + sensor age

O3_RM ∼NO2_SxR + O3_SxR/NO2_SxR + TMP + RH +WV + GLRD +
hour + sensor age

PM10_EM ∼PM10_SxR + TMP + RH +WV + GLRD + hour + sensor age

PM2.5_EM ∼PM2.5_SxR + TMP + RH +WV + GLRD + hour + sensor age

Atmos. Chem. Phys., 25, 4477–4504, 2025 https://doi.org/10.5194/acp-25-4477-2025
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in all sensor units, a sudden partial data drift occurred from
October to November 2022 (see Fig. S26). Therefore, there
is no clear warranty in O3 data after 15 October 2022. In
the case of the aerosol LCS measurement (PM10 and PM2.5),
no data drifts were identified based on the DMC method
(Fig. S27 in the Supplement).

Last but not least, the ranges and medians of raw and
MARS-corrected LCS concentrations of all pollutants dur-
ing the final comparative measurement at the Prague Libuš
AQM station are shown in Fig. S28 in the Supplement. In the
case of NO2 measurement, 10 out of the 17 LCSs achieved
R2 > 0.80 with corrected concentrations (COR); 5 LCSs
achieved R2 > 0.60; LCS S4 achieved R2

= 0.56; and the
weakest relationship was detected in S9, with R2

= 0.17 (for
the complete statistics of all LCSs including statistical er-
rors, slopes and intercepts, see Table S16 and Fig. S29 in
the Supplement). The absence of a relationship in the case
of LCS S9 during the final comparison confirmed the sensor
failure, and therefore this sensor was not used for Legerova
campaign evaluation. In the case of O3, the improvement of
the relationship between RM data and the corrected data was
not significant at the end of the measurement campaign; in
LCSs S3 and S4, the relationships were even slightly wors-
ened (Fig. S28 in the Supplement). Although R2 > 0.85 was
achieved in all O3 LCSs compared to RM data, the inter-
cept was shifted to negative values (i.e. the corrected con-
centrations were underestimated at the end of the measure-
ment campaign in most of the O3 LCSs; for complete statis-
tics, see Table S17 and Fig. S30 in the Supplement). In
aerosol measurement, the weakest relationships compared
to EM were reached in the case of PM10 concentrations.
Although MARS-corrected concentrations significantly im-
proved the relationship with EM and narrowed the variation
of originally measured concentrations even at the end of the
campaign (Fig. S28 in the Supplement), the R2 ranged only
from 0.47 to 0.63 (Table S18). The worst relationship was
achieved for the S3 LCS, which, even after correction, sig-
nificantly underestimated the PM10 concentrations compared
to the EM (see Fig. S31 in the Supplement). Better relation-
ships were achieved for PM2.5 measurement, with resulting
R2 values between 0.73 and 0.89, where none of the LCSs
achieved significantly underestimated or overestimated con-
centrations, even at the end of the campaign (see Table S19
and Fig. S32 in the Supplement). Recalculation of the COR2
correction method (taking into account the initial and final
comparison measurements and the LCS age) yielded similar
results, with the difference that COR2 sometimes behaved in-
appropriately at low concentrations (intercept/absolute term
ranging between −2.68 and 9.20; see Fig. S33 in the Sup-
plement). Therefore, the COR correction method was used
to evaluate the Legerova measurement campaign. Examples
of linear regression results of NO2, O3 and PM10 concentra-
tions corrected by the COR and COR2 method for LCSs S2,
S4 and S6 and the EM are shown in Fig. S34 in the Supple-
ment.

The complete results of meteorological data verification
are shown in the Supplement in Sect. S3.1.5.

3.2 Air quality monitoring within the Legerova campaign

In the case of NO2, which is one of the primary emission
outputs from transport, the results showed a significant dif-
ference in the concentration trends measured during working
days (with a high traffic intensity in the monitored streets)
and during the weekends (when automotive traffic is de-
creased; Fig. 7). Furthermore, the effects of rush hour in
the morning (from 06:00 to 09:00 UTC) and afternoon (from
15:00 to 18:00 UTC) were clearly visible during working
days (Fig. 7). The highest 1 h average concentrations were
measured by the most exposed LCSs during August 2022
and November 2022 (Fig. 7). Given the medians and even
the averages of 1 h NO2 concentrations, the most exposed lo-
cations were CKAIT Sokolská (at the crossroads of Sokol-
ská and Rumunská streets), with the LCS S10 measuring
a median concentration of 33.21 ppb at the higher height
and the S11 measuring a median of 31.12 ppb at the lower
height; Legerova (at the crossroads of Legerova and Rumun-
ská streets), with the LCS S14 at the lower height and the
S15 at the higher height, both with a median concentration
of 25.13 ppb; and Rumunská, with the LCS S20 measuring
a median concentration of 24.49 ppb at the lower height and
S13 measuring a median of 23.34 ppb at the higher height
(see Table 4, Figs. 7 and 9a). The maximum 1 h average
NO2 concentrations were 129.93 ppb measured by the LCS
S12 (Sokolská school at lower height) and 92.50 ppb mea-
sured by the LCS S18 (Sokolská school at higher height; Ta-
ble 4 and Fig. 9b). However, overall, according to the median
and mean NO2 concentrations, the Sokolská school site was
rather moderately polluted, similar to the nearby Legerova
school site (LCS S2 and S5; both sites with median con-
centrations ranging from 18.58 to 20.35 ppb) and the Prague
Legerova RM site with the collocated LCS S4 (median con-
centrations of 18.82 and 20.67 ppb, respectively; Table 4,
Figs. 7 and 9a). The lowest NO2 1 h average concentrations
were measured with the background LCSs, namely the S3
placed on the roof of the Prague Karlov MS and the S16
placed on the roof of the Le Palais Art Hotel Prague (median
of concentrations below 10 ppb) and further with LCSs S19
placed in the PVK garden (median concentration 11.28 ppb)
and S7 placed within the closed school courtyard (median
concentration 11.47 ppb; Table 4, Figs. 7 and 9a).

In the case of O3 LCS measurement, no significant change
was detected in the daily cycle of concentrations between
weekdays and weekends (Fig. S40 in the Supplement). The
highest O3 concentrations were measured around midday
(from 11:00 to 14:00 UTC) and, quite understandably, during
the summer months (from June until August 2022; Fig. S40).
The difference in the LCS-measured O3 concentrations prob-
ably depended strongly on the individual conditions of par-
ticular locations. The highest medians of average 1 h O3
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Figure 5. Taylor diagrams show the difference, expressed by standard deviation and the correlation coefficient, between individual LCSs
and the control measurement. A solid grey line and grey blank point represent the standard deviation of RMs and EMs during the initial
field comparative measurement at the Prague Libuš from 16 December 2021 to 30 May 2022. Raw measurements are in the left column, and
in the right column are the data corrected using the MARS method (COR). LCSs S3 and S4 had a shortened period of initial comparative
measurement.
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Figure 6. Box plots showing medians and ranges of (a) NO2, (b) O3, (c) PM10 and (d) PM2.5 hourly averaged concentrations originally
measured by LCSs (raw; red colour), corrected by the MARS method (corrected; blue colour) and by the reference or equivalent method
(RM; grey colour) during the initial field comparative measurement at the Prague Libuš from 16 December 2021 to 30 May 2022. Black dots
show the deviated concentrations. Some weakly negative values are shown in MARS-corrected data (less than 0.3 % of the whole dataset for
gases and less than 2.6 % for aerosols).

concentrations were 13–16 ppb, measured by the LCSs S7,
S18, S11 and S16 (Fig. S40), and the maximum concentra-
tions were 103–109 ppb, measured by the LCSs S14, S20,
S7 and S9 (see complete statistics in Table S20 in the Sup-
plement). Since there is no RM for measuring O3 available at
the Prague Legerova AQM station, the data from the Prague
Vysočany RM were used for indicative comparison with all
LCS measurements at the Prague Legerova domain.

Measurements of aerosol particle pollution also showed
a difference between weekdays and weekends. The highest
1 h average PM10 and PM2.5 concentrations were measured
on Wednesdays, Thursdays and surprisingly also Sundays,
while a significant drop in aerosol concentrations was de-
tected on Saturdays (for PM10, see Fig. 8, and for PM2.5,
see Fig. S41 in the Supplement). The highest concentrations
were measured during the winter months (see Fig. 8). How-
ever, in general, no extremely high levels of PM10 or PM2.5
pollution were detected within the entire area of interest, de-
spite the high traffic load in the monitored streets. LCSs S10
and S11 placed in Sokolská street (at the crossroads with Ru-
munská), LCSs S14 and S15 in Legerova street (at the cross-
roads with Rumunská), and LCSs S20 and S13 in Rumunská
street were again the locations with the highest medians of
1 h average PM10 and PM2.5 concentrations ranging between
23–26 and 15–18 µg m−3 (respectively; see Fig. 9b, Table 5

and Fig. S41 and Table S21 in the Supplement). Conversely,
the LCSs placed on the school building at the exit to the
Nuselské valley and the LCSs placed in the background lo-
cations were less loaded overall (similar to the case of NO2
pollution), with medians of measured PM10 concentrations
< 20 µg m−3 (Table 5 and Fig. 9c, Fig. S41 and Table S21).
The lowest average PM10 and PM2.5 concentrations were
measured by the S3 LCS placed on the roof of the Prague
Karlov MS (median of PM10 concentration 11.41 µg m−3,
PM2.5 concentration 9.14 µg m−3). The maximum 1 h aver-
age PM10 and PM2.5 concentrations were achieved by LCSs
S5, S13, S10, RM and S2 (see Tables 5 and S21 for complete
statistics) and were significantly influenced by the temporary
pollution episode in July 2022 (see Sect. 3.3). The medians
and maxima of NO2 and PM10 concentrations measured dur-
ing the entire measurement campaign at different locations
are shown in maps in Fig. 9. The difference between raw
measured and MARS-corrected (COR) NO2, O3, PM10 and
PM2.5 concentrations in all LCSs during the Legerova cam-
paign is shown in Fig. S42 in the Supplement.
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Figure 7. Daily (a), hourly (b), monthly (c) and weekly (d) corrected NO2 concentrations (ppb) measured by all low-cost sensors (LCSs S2-
S20) and by the Prague Legerova reference monitor (RM) within the Legerova campaign. Measuring period from 30 May 2022 to 28 March
2023 (in monthly graph May to December 2022, January to March 2023). LCSs located at background sites are marked with an asterisk.

Table 4. Summary statistics of 1 h average MARS-corrected NO2 concentrations measured by all LCSs during the Legerova campaign. Valid
N is the number of valid values, percentage valid is the percentage of valid values in the dataset, CI mean is the lower and upper confidence
interval of the mean, Min is the minimum value, Max is the maximum value, SD is the standard deviation, CI SD is the lower and upper
confidence interval of standard deviation, and SE is the standard error of the mean. The table is sorted in ascending order according to the
mean concentration values. The RM and LCS S4 highlighted in bold were collocated during the campaign. LCSs located at background sites
are marked with an asterisk within the ID.

Measurement Valid N Percentage valid Mean CI mean CI mean Median Min Max SD CI SD CI SD SE
ID (lower) (upper) (lower) (upper) mean

S16∗ 6008 83.36 10.82 10.64 11.00 9.33 −1.92 55.80 7.14 7.01 7.27 0.09
S3∗ 7205 99.97 12.15 11.98 12.32 9.92 −3.59 52.68 7.43 7.31 7.56 0.09
S19∗ 7193 99.81 13.01 12.83 13.18 11.28 −1.75 56.74 7.59 7.47 7.72 0.09
S7∗ 7205 99.97 13.04 12.86 13.22 11.47 −9.03 58.13 7.86 7.74 7.99 0.09
S9∗,a 7206 99.99 18.66 18.46 18.86 18.12 −5.84 64.40 8.80 8.65 8.94 0.10
S2 7206 99.99 20.00 19.77 20.23 18.58 0.61 63.14 9.91 9.75 10.08 0.12
RM 6766 93.88 20.21 19.97 20.46 18.82 0.52 63.63 10.38 10.20 10.55 0.13
S5 7206 99.99 20.31 20.08 20.54 18.65 0.55 71.05 10.04 9.88 10.21 0.12
S18 5664 78.59 21.16 20.81 21.51 17.51 −1.27 92.50 13.38 13.13 13.63 0.18
S4 5947 82.52 22.67 22.36 22.97 20.67 0.58 71.57 11.97 11.76 12.19 0.16
S12 7206 99.99 24.02 23.68 24.37 20.35 −1.03 129.93 15.05 14.81 15.30 0.18
S13 7206 99.99 24.89 24.64 25.13 23.34 4.97 71.15 10.70 10.53 10.88 0.13
S20 7206 99.99 26.22 25.95 26.48 24.49 4.82 71.80 11.63 11.44 11.82 0.14
S15 7206 99.99 26.22 25.97 26.47 25.13 2.72 73.26 10.81 10.64 10.99 0.13
S14 7206 99.99 26.31 26.05 26.56 25.13 0.40 70.07 10.99 10.81 11.17 0.13
S11 7206 99.99 31.70 31.38 32.01 31.12 −2.21 86.12 13.56 13.34 13.78 0.16
S10 7206 99.99 34.21 33.88 34.53 33.21 5.77 90.08 14.07 13.84 14.30 0.17

a In the case of LCS S9, a significant data shift towards overestimation was found (flagged as a defective LCS unit that was not used for the assessment).
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Figure 8. Daily (a), hourly (b), monthly (c) and weekly (d) variations of corrected PM10 concentrations (µg m−3) measured by all low-cost
sensors (LCSs S2–S20) and by the Prague Legerova equivalent monitor within the Legerova campaign. Measuring period from 30 May 2022
to 28 March 2023 (in monthly graph May to December 2022, January to March 2023). LCSs located at background sites are marked with an
asterisk.

Table 5. Summary statistics of 1 h average MARS-corrected PM10 concentrations measured by all LCSs during the Legerova measurement
campaign. Valid N is the number of valid values, percentage valid is the percentage of valid values in the dataset, CI mean is the lower
and upper confidence interval of mean, Min is the minimum value, Max is the maximum value, SD is the standard deviation, CI SD is the
lower and upper confidence interval of standard deviation, and SE is the standard error of the mean. The table is sorted in ascending order
according to the mean concentration values. The RM and LCS S4 highlighted in bold were collocated during the campaign. LCSs located at
background sites are marked with an asterisk within the ID.

Measurement Valid N Percentage valid Mean CI mean CI mean Median Min Max SD CI SD CI SD SE
ID (lower) (upper) (lower) (upper) mean

S3∗ 7204 99.96 13.96 13.75 14.18 11.41 −3.49 94.50 9.28 9.13 9.44 66.48
S19∗ 7198 99.88 19.59 19.31 19.87 17.94 −6.43 153.00 12.07 11.87 12.27 61.60
S4a 5947 82.52 19.63 19.31 19.94 16.48 −6.45 170.25 12.35 12.13 12.57 62.92
S16∗ 6046 83.89 20.57 20.22 20.93 17.93 −7.77 141.03 13.96 13.71 14.21 67.83
S7∗ 7205 99.97 22.14 21.80 22.47 19.43 −7.09 176.32 14.48 14.25 14.73 65.43
S20 7206 99.99 22.80 22.49 23.10 20.02 −3.15 97.99 13.15 12.94 13.37 57.68
S18 5665 78.60 22.86 22.55 23.17 21.51 −2.89 158.43 11.83 11.61 12.05 51.73
S12 7206 99.99 22.89 22.56 23.21 20.65 −6.08 163.03 14.21 13.98 14.44 62.08
S9∗ 7203 99.94 23.19 22.86 23.53 20.91 −8.54 150.96 14.39 14.16 14.63 62.05
RM 7089 98.36 23.41 23.06 23.77 20.00 2.00 182.00 15.09 14.85 15.35 64.46
S10 7206 99.99 23.85 23.53 24.17 21.70 −7.32 188.66 13.78 13.56 14.01 57.76
S5 7206 99.99 24.04 23.66 24.42 20.66 −4.52 423.74 16.43 16.16 16.70 68.33
S15 7206 99.99 24.19 23.87 24.51 21.99 −6.08 91.38 13.83 13.61 14.06 57.18
S2 7204 99.96 24.29 23.91 24.66 20.87 −3.26 178.43 16.23 15.97 16.50 66.84
S14 7206 99.99 26.66 26.31 27.01 23.97 −2.70 154.70 15.08 14.84 15.33 56.57
S11 7205 99.97 27.73 27.29 28.17 23.90 −0.83 175.30 18.96 18.66 19.28 68.39
S13 7206 99.99 29.03 28.58 29.49 26.05 −7.69 205.94 19.72 19.40 20.05 67.92
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Figure 9. Map with measurement locations showing (a) median and (b) maximum NO2 concentrations (ppb) and (c) median and (d) maxi-
mum PM10 concentrations (µg m−3). Both were measured during the entire measurement period (from 30 May 2022 to 28 March 2023) in
Legerova and its surroundings. The sensors were placed at two height levels in six locations (see legend). The colour scales differ between
median and maximum concentrations and between pollutants. Background map is provided by WMS by the Czech Office for Surveying,
Mapping and Cadastre – ČÚZK.
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3.3 Episodes with temporarily increased air pollution
concentrations

A significant pollution episode was recorded in July 2022,
when a large-scale forest fire broke out in the České Švý-
carsko National Park (around 90 km north of the investigated
area; see map in Fig. 1a), and the aerosol pollution emitted
into the air spread across the republic over long distances.
On 26 July 2022, around 04:00 and 21:00 UTC, this trans-
ported aerosol pollution was also detected in Prague. Al-
most the entire LCS network (including background loca-
tions, with some exceptions of weaker response in LCSs S3,
S15 and S20) responded accordingly, with a significant in-
crease in PM10 and PM2.5 concentrations (see Fig. 10 and
maximum concentrations in Table 5). This aerosol pollution
was also detected by increased backscatter intensities from
the CL51 ceilometer at Prague Karlov and from the Doppler
lidar placed on the PVK roof (see Figs. S43 and S44 in the
Supplement).

Otherwise, some temporary episodes with increased con-
centrations of PM2.5 and PM10 were measured usually dur-
ing the temperature inversions, when disperse conditions had
worsened, and negative values of the TMP gradient were de-
tected from the MWR measurement (see Fig. 11 with PM2.5
concentrations over the whole Legerova measurement cam-
paign and Fig. 12 with examples of PM10 episodes during
September and December 2022 and February 2023). Simi-
larly, short-term high concentrations of PM10 and PM2.5 oc-
curred during New Year’s Eve (see Figs. S45–S46 in the Sup-
plement). Furthermore, in Sect. S3.2.1 of the Supplement,
we present two examples of individual days with a fast and
slow reconstruction of TMP stratification in the atmospheric
boundary layer, corresponding well to the pollution situation,
especially in the case of aerosols.

A general overview of all the meteorological measurement
results is given in Sect. S3.3 in the Supplement.

4 Discussion

The discussion is structured according to the sub-topics ad-
dressed in this article.

4.1 Data quality of LCS measurement

4.1.1 Raw LCS measurement

With regard to the set study design based on the long-term
initial field testing of all LCSs at the Prague Libuš AQM sta-
tion (in total lasting 5.5 months), it was not sure whether all
LCS units (especially the EC Cairsens NO2 and O3 LCSs
with a stated maximum operational life of 15 months) would
be able to measure data for the entire Prague Legerova cam-
paign without failure. Finally, no major data outages or LCS
malfunctions occurred with some exceptions; i.e. three EC
LCSs were identified as defective at the beginning of the field
test and served after repair as spare LCSs, and in the case

of two LCSs, the communication unit failed during the Leg-
erova measurement campaign (namely S18 located at Sokol-
ská school had been broken since 13 December 2022 and was
replaced by the spare S8 unit, and S4 located at the RM Leg-
erova station had been broken since 5 February 2023; both
LCSs were subsequently repaired and returned to the final
field comparative measurement at the Prague Libuš station).

Evaluation of raw LCS measurement showed quite a high
correlation with RM or EM for NO2 LCSs (R2 > 0.84 in
all sensors) and PM10 and PM2.5 LCSs (R2 > 0.72 and
R2 > 0.85, respectively). The weakest correlation was de-
tected for combined O3/NO2 LCSs, with two units achiev-
ing only R2

=0.52, three units R2
= 0.69, and the remain-

ing units R2 > 0.76 compared to the O3 RM. However, all
LCSs suffered from different zero shift (intercept shift), re-
sulting in the following ranges of MBE: −2.98 to 4.56 ppb
in NO2, −3.41 to 14.52 ppb in O3, −3.54 to 8.16 µg m−3 in
PM10 and −3.92 to 3.90 µg m−3 in PM2.5. Especially in the
case of used EC Cairsens sensors, we achieved much better
results in raw measurements than in other previous studies
testing these sensor types in outdoor conditions (Bauerová et
al., 2020; Feinberg et al., 2018; Jiao et al., 2016; Spinelle
et al., 2015). Therefore, we assume some relevant techni-
cal improvements could have been made in these sensors
in recent years. Conversely, the Plantower optical particle
counters used have been known for their precise lower limit
of detection (range of LLOD 0.08–0.24 number of parti-
cles cm−3) and low susceptibility to relative humidity (Bu-
lot et al., 2020), which results in better performance than
for other types of OPCs (Bauerová et al., 2020; Bulot et al.,
2020; Hong et al., 2021; Sayahi et al., 2019). Our results
for PM10 and PM2.5 are consistent with those of other stud-
ies using these sensors in long-term field tests, including the
slightly weaker R2 for coarse PM10 concentrations than for
fine PM2.5 concentrations (Bauerová et al., 2020; Hong et
al., 2021; Lee et al., 2020; Sayahi et al., 2019). Overall, no
significant/extreme outliers were detected in the raw gaseous
or aerosol LCS measurements, either during the initial field
comparative measurement, the Legerova campaign or final
field comparative measurement (see maximum 1 h concen-
trations in Tables S12–S19 in the Supplement and Tables 4–
5).

4.1.2 MARS-corrected LCS measurement

Mathematical correction using the non-parametric MARS
method achieved the best results of all correction procedures
tested in this study (linear regression and GAM). Pros and
cons of MARS were described elsewhere (Everingham et al.,
2011; Friedman 1991a, b; Hastie et al., 2009; Kuhn and John-
son, 2013; Steinberg and Colla, 1999). The superiority of the
MARS methodology over other competing models has also
been discussed in many publications (Leathwick et al., 2006;
Lee et al., 2006; Muñoz and Felicísimo, 2004), although to
our knowledge, no study has applied this method for sensor
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Figure 10. Concentrations of (a) PM10 and (b) PM2.5 measured by the LCS network and the Fidas equivalent monitor (EM) at the Prague
Legerova AQM station during the pollution episode caused by aerosol transported from a large-scale forest fire in Hřensko (the northern part
of the Czech Republic) on 26 July 2022 in the morning and evening hours.

Figure 11. Daily (a), hourly (b), monthly (c) and weekly (d) variations of corrected PM2.5 concentrations (µg m−3; hourly averages from all
LCSs) and TMP gradient (°C per 100 m), both variables normalized for comparison. The median and quantiles are shown during the whole
Legerova measurement campaign from 30 May 2022 to 28 March 2023 (in the monthly graph May to December 2022, January to March
2023).
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Figure 12. The course of PM10 concentrations (µg m−3) during 22–30 September 2022 (a), 8–18 December 2022 (b) and 6–17 February
2023 (c). An increase in PM10 concentrations is evident under conditions of ground temperature inversion (shown as negative temperature
gradient, TMP_gradient).

correction to date. The MARS calculation is flexible, compu-
tationally time-feasible (calculation of the model without the
interactions took several seconds, with the inclusion of inter-
actions tens of seconds) and easy to interpret and allows vari-
ous explanatory variables to be taken into account, including
their interactions (Friedman, 1991a; Keshtegar et al., 2018).

Moreover, if the quality of the correction equations is suffi-
ciently tested in advance (over a sufficiently wide range of
meteorological conditions), no reference measurements are
needed later within the sensor network to calculate the cor-
rected concentration values. The RM is then used only for an
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indicative comparison of the performance of the whole sen-
sor network over time.

To calculate the correction equations, we used the raw
LCS concentrations, TMP, RH, WV, GLRD and hour of the
day as the explanatory variables. Most of the previous stud-
ies used raw LCS measurement, TMP and RH (Considine et
al., 2021; Cordero et al., 2018; Crilley et al., 2018; deSouza
et al., 2022; Jiao et al., 2016; Malings et al., 2019; Vajs et al.,
2021). Fewer studies then also included the effect of WV, air
pressure or hour of the day, with mixed results (Hagler et al.,
2018; Mead et al., 2013; Munir et al., 2019; Spinelle et al.,
2015, 2017). In this study, the most frequently used predic-
tors in NO2 correction models were NO2 raw LCS concen-
trations, TMP, WV and GLRD, and the least frequently used
were RH and hour of the day (see Table S3 in the Supple-
ment). In the case of O3, the most frequently used were O3
raw LCS concentrations, the ratio of O3 and NO2 LCS con-
centrations, TMP, RH and WV; on the other hand, GLRD and
hour of the day were, quite surprisingly, the least used pre-
dictors (Table S5). In the PM measurement (both PM10 and
PM2.5), the most frequently used were raw LCS concentra-
tions and then all other predictors with a similar weight. Here
again, quite surprisingly, the RH was not a dominant predic-
tor in PM correction equations (see Tables S7 and S9 in the
Supplement). Double interactions between variables were ul-
timately not included in the corrections, as they led to signif-
icant outliers in both gaseous and aerosol measurements (es-
pecially at high peak concentrations). Nevertheless, MARS
corrections decreased MBE to nearly zero for all measured
pollutants in all cases. The MARS corrections improved the
relationships with RMs or EMs with an average R2

= 0.97
in NO2, 0.94 in O3, 0.87 in PM10 and 0.94 in PM2.5. The
average of generalized cross-validation (GCV) error of the
MARS correction models was the lowest (1.14) in NO2 LCS
corrections and the highest (27.54) in PM10 LCS corrections.
Comparing the results of NO2 and O3 MARS corrections
with the performance of other statistical correction models
(MLR, RF or ANN) in previous studies, we achieved better
or similar results (according to R2 resulting from linear re-
gression between reference data and corrected LCS data; e.g.
maximum R2

= 0.75 with the MLR model in Spinelle et al.,
2015, R2

= 0.97 with the RF model in Cordero et al., 2018).
In the case of aerosol particles, Vajs et al. (2021) achieved
better results (R2 > 0.90) in the correction of PM10 LCS
measurement with different ANN or RF models, and Kumar
and Sahu (2021) achieved slightly better results (R2

≥ 0.98)
in PM2.5 LCS measurement with KNN, RF, regression tree
(RT) or GB methods. Conversely, Vogt et al. (2021) achieved
worse results for both PM10 and PM2.5 in the case of cor-
rection with sensor-specific linear models (highest R2 val-
ues 0.64 for PM10 and 0.73 for PM2.5), similar to Kumar
and Sahu (2021) with MLR correction (R2

= 0.77) and Hong
et al. (2021) with non-linear regression (R2 > 0.88), both in
PM2.5 measurement.

Very similar results were achieved when comparing the
two correction procedures COR (based on initial compari-
son) and COR2 (based on initial and final comparison, in-
cluding sensor ageing). However, the diversity of applica-
tions must be taken into account. While the COR method can
be used to correct operationally measured LCS data, COR2
can be applied only retroactively after the end of the entire
measurement campaign.

4.1.3 LCS data drift evaluation

The issue of data drift detection has been addressed in var-
ious studies. Malings et al. (2019) describe the drift adjust-
ment based on the method of “deployment records”, using
the biases between LCS and RM measurements during col-
location (before deployment). The LCS with the lowest bias
is identified as a “benchmark” sensor, which is collocated
for the entire measurement period. Any subsequent possible
non-standard deviations in the LCS measurement network
were then assessed against the bias of this benchmark sensor.
This method is useful; however, it assumes that the bias is
generalizable/transferable across all LCS units, which is not
always the truth due to the high differences in LCS measure-
ment precision (De Vito et al., 2020; van Zoest et al., 2019).
Harkat et al. (2018) described a much more challenging and
complex framework consisting of air quality modelling, fault
detection, fault isolation and reconstruction to set the bound-
aries for probable and improbable LCS measurements (using
a combination of midpoint-radii principal component anal-
ysis (PCA), generalized likelihood ratio test and exponen-
tially weighted moving average for detecting changes in the
LCS model residuals). A simpler technique was described by
van Zoest et al. (2019) where the control of LCS drifts was
based on the time series of the difference/bias between the
mean NO2 concentrations measured by RMs placed within
the area of interest and mean NO2 concentrations measured
by all LCSs in the network. A zero difference was not ex-
pected here because the LCSs were differently spaced, and
the difference may be subject to NO2 seasonality and me-
teorological conditions. However, when the difference/bias
began to systematically decrease or increase regardless of
changes in conditions, the data drift could be indicated.

As part of this study, we tried to apply similarly simple and
effective data control methods, targeting the possible data
drifts caused either by relocation of the LCS stations to tar-
get deployment sites, by technical failures of the LCSs (e.g.
ageing) or by loss of the MARS correction performance (the
concept drift). Firstly, all measurements were checked by the
mutual comparison of the concentration courses of LCSs lo-
cated in pairs (also including the two collocated LCSs with
RMs); secondly, by the DMC method to check the data con-
tinuity; and thirdly, by the final field comparative measure-
ment carried out at the Prague Libuš AQM station. The con-
trol within pairs of LCSs or in between collocated LCS S4
and RM did not show any deviations after the relocation of
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the LCSs to the final deployment sites. The change in mea-
surement performance was visually detected a few months
later in the case of the NO2 S9 LCS, which drifted to grad-
ual overestimation from September 2022 (similar to that de-
tected in the PM sensor in Sayahi et al., 2019). This was
probably caused by a technical issue (different aspects dis-
cussed in Weissert et al., 2019) because the data drift was
detected in both raw and corrected concentrations. This data
drift was later confirmed by the DMC analysis and by final
comparative field measurement (final intercept 16.43, slope
0.61, R2

= 0.17, MBE=−14.39). The NO2 S9 LCS mea-
surement was therefore marked as invalid and was not fur-
ther used for the Legerova campaign evaluation. Another two
NO2 LCSs had weaker performance during the final compar-
ative measurement, namely S4 and S3 (with values of R2

0.58 and 0.76, intercept 5.67 and 4.60, slope 0.97 and 0.84,
and MBE −5.48 and −3.77, respectively). Two LCSs were
further identified based on DMC as cases of possible drift to
gradual underestimation, the S11 and S12. In these cases, the
data drifts were not as significant as in the S9, and during the
final comparative measurement, these LCSs still performed
well (R2 > 0.81, intercept ∼ 2.82, slope 0.79 and 0.94, MBE
−1.70 and −2.54, respectively; see Table S16 and Fig. S29
in the Supplement). A possible reason for the drop in LCSs’
performance could be the loss of sensitivity of the electro-
chemical cell (see van Zoest et al., 2019).

In O3 LCS measurement, a technical problem was most
likely detected, as a sudden data drift (in the sense of jump
to overestimation) was recorded for all LCSs from Octo-
ber to November 2022 (Fig. S26 in the Supplement). Since
this phenomenon also appeared in the raw measurement, the
drift of the correction concept can be ruled out (De Vito
et al., 2020; Spinelle et al., 2015). During October 2022 a
rapid change in air temperature (with a drop below 4 °C) oc-
curred, which may have triggered this change in LCS mea-
surement performance (although the correction model was
trained for winter conditions; Weissert et al., 2019). In the
case of aerosol measurement, no gradual or sudden data drifts
were detected during the Legerova campaign, not even dur-
ing the final comparative measurement. One exception was
the PM LCS S3, which was already partly underestimating
data from the start of measurement (see corrected PM10 and
PM2.5 concentrations in Fig. 6). Since this LCS had a short-
ened initial comparison measurement time compared to the
other LCSs (installed on the roof of the Karlov MS since
23 February 2022), it could be the result of an under-trained
MARS correction model. However, the PM data from the S3
LCS were not marked as invalid, only as permanently under-
estimated (see Fig. 8), because it was not typical data drift
as described above (no change of measurement performance
detected during the campaign). Although no major data drifts
were observed in the case of PM10 and PM2.5 measurements,
it should be noted that all sensors had weaker performance
during the final comparative measurement. In the case of
PM10 the resulting range of R2 was 0.47–0.63 and of MBE

was −4.40 to 4.80; in the case of PM2.5 measurements, R2

was 0.77–0.89 and MBE was−4.44 to 1.20 (see Tables S18–
S19 in the Supplement).

4.2 Air quality and meteorological measurement within
the Legerova campaign

The results of the almost year-long observation campaign
in Legerova, Sokolská and Rumunská streets and their sur-
roundings showed that the largest load in this area is NO2
pollution, due to the high daily traffic within this selected
area of the city centre of Prague (with the following inten-
sity of cars per day: 37 336 in Sokolská, 35 736 in Legerova
and 9608 in Rumunská; TSK, 2023). Therefore, the daily and
weekly courses of NO2 concentrations corresponded well to
the traffic regime in the given localities (with typical morn-
ing and late-afternoon rush hour peaks of concentrations),
including the lower concentrations in background locations
more distant from the emission sources (Fig. 9). The high-
est NO2 concentrations in medians and averages behaved ac-
cording to the expectations in street canyons with continu-
ous building blocks and several traffic lights (LCSs S10 and
S11 in Sokolská, S14 and S15 in Legerova, and S20 and S13
in Rumunská). Locations with more open space nearby, i.e.
with a higher probability of ventilation effect, came out as
moderately loaded (LCSs S12 and S18 in Sokolská school,
S2 and S5 in Legerova school, and S4 collocated with the
Prague Legerova RM). Nevertheless, the maximum 1 h av-
erage NO2 concentrations were measured by LCSs S12 and
S18 placed in the Sokolská school location (Fig. 9b). Since
the maximum concentration peaks were measured by both
LCSs installed at different height levels, we assume that this
was a reflection of some real local emission effect (e.g. a
started supply car standing near the LCSs) and the random
LCS error can be ruled out. The mean and maximum NO2
concentrations measured within the most loaded locations
during the Legerova campaign in Prague were comparable
to the study of Schneider et al. (2017) focused on moni-
toring traffic-polluted urban sites in Oslo (FI), where the
measured concentrations ranged between 42 and 63 ppb, or
Moltchanov et al. (2015) in the city of Haifa (IL), with con-
centration peaks ranging between 50–95 ppb. On the other
hand, our measurements were higher than those of Graça et
al. (2023) in the city of Aveiro (PT), with NO2 concentrations
between 15 and 32 ppb, or those of Wesseling et al. (2019),
measuring around 15 ppb in Amsterdam or Utrecht (NL).
However, these comparisons are only indicative due to dif-
ferent conditions in cities.

Other interesting results within the Legerova observation
campaign were reached in the case of aerosol pollution mea-
surement. Although some daily patterns were recognizable
in PM10 and even in PM2.5 concentrations, the concentra-
tion peaks, especially during the late afternoon, were shifted
to later than the usual rush hours. The concentration peaks of
NO2 were observed between 15:00 and 18:00 UTC, while the
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PM10 and PM2.5 concentration peaks usually occurred be-
tween 17:00 and 21:00 UTC (see Fig. S56 in the Supplement
for details). Overall there were quite low levels of PM pol-
lution and smaller differences between different sites within
the whole area of interest (medians of PM10 ranging between
11 and 26 µg m−3 and PM2.5 between 9 and 18 µg m−3). Ac-
cording to the measured aerosol concentrations, the most bur-
dened locations (with medians of PM10 > 23 µg m−3) were
LCSs S13 (in Rumunská), S11 (in Sokolská) and S14 (in
Legerova; similar to NO2 pollution) and the least burdened
were the background LCSs S3, S16, S19 and surprisingly
even the S4 collocated with the Prague Legerova RM (with
medians < 18 µg m−3; see Fig. 9c and d). Similarly low lev-
els of PM10 and PM2.5 concentrations were measured in the
city of Aveiro by Graça et al. (2023) and in Nantes (FR) by
Gressent et al. (2020). These results may suggest that with
the current development of cars in recent years, transport
might not be the main source of aerosol pollution in Euro-
pean cities, unlike nitrogen oxides (see for example Scerri
et al., 2023). Transport can produce particles of a smaller
size fraction (PM2.5, PM1 and smaller), which can be emit-
ted from the incomplete combustion of engines and emis-
sions from brake and tire abrasion, which are part of PM2.5
and larger size fractions. However, in both cases, the contri-
bution of these sources forms a very small part of the total
PM pollution from transport. A significant part of the pollu-
tion here is made up of coarse particles (PM10 and larger),
which settle on the road surface for a long time and are sub-
ject to resuspension (secondary dust from traffic; the amount
of specific types of emissions from transport in the Sokol-
ská and Legerova streets is shown in Fig. S57 in the Supple-
ment). This also explains the similarity of PM10 concentra-
tion trends and only slightly higher values of concentrations
measured at the Prague Legerova RM and other rather back-
ground AQM stations in Prague that are less loaded with traf-
fic (see Fig. S58 in the Supplement). The highest aerosol pol-
lution (PM10 > 130 µg m−3 and PM2.5 > 110 µg m−3) was
measured temporarily in all LCS stations during the early-
morning and late-evening hours on 26 July 2022 according to
the transported pollution from the Hřensko forest fire (a sim-
ilar situation was detected even in other parts of the Czech
Republic).

Similarly, as in Frederickson et al. (2024), we had some
difficulty in demonstrating the vertical gradient pollution ef-
fect from the LCS measurement installed at two height levels.
Therefore, higher concentrations were not always measured
at low heights closer to the emission sources but sometimes
even at a higher height above the ground. The vertical con-
centration profiles depend mainly on atmospheric stratifica-
tion, street architecture, air flow and surface properties (Fred-
erickson et al., 2024). In connection with the atmospheric
stratification, we observed high PM10 and PM2.5 concen-
trations (i.e. > 40 µg m−3) especially under temperature in-
version conditions, even at night. From this point of view,
the level of aerosol pollution was more influenced by atmo-

spheric stratification than NO2 pollution, which was more
subject to the traffic regime in the streets. Therefore, we also
showed a few examples of vertical stratification reconstruc-
tions and low-level jets monitored above the area of interest
under temperature inversion conditions (using the Doppler
lidar and MWR measurement). Similar continuous TMP and
wind vertical profile data above the urban surface are not as
common (Allwine et al., 2002; Kallistratova and Kouznetsov,
2012; Sánchez et al., 2022) and are very useful in supporting
advanced modelling and assessment of the impacts of air pol-
lution and climate change in the urban environment.

5 Conclusions

This study evaluated the performance of low-cost sensors
(LCSs) in monitoring air quality, with a specific focus on the
application of MARS correction, the overall performance of
the LCS network and methods of data quality control.

The application of the MARS correction method proved
to be highly effective, offering significant improvements in
measurement accuracy for all observed pollutants. Compared
to alternative correction models such as linear regression and
GAM analyses, MARS demonstrated superior performance
due to its flexibility, computational efficiency, and ability to
incorporate multiple explanatory variables and non-linear re-
lationships in the data. Notably, the method reduced biases
and brought measurement accuracy to levels comparable to,
or better than, other state-of-the-art correction models (like
artificial neural networks or random forests) in previous stud-
ies. However, its dependence on high-quality initial field-
calibration data and the potential challenges in addressing
concept drifts over time remain key limitations.

The LCS network demonstrated robust performance
throughout the measurement campaign, with minimal data
outages and consistent results across most sensors. Never-
theless, several LCS units exhibited gradual or sudden data
drifts, primarily due to sensor ageing or technical issues.
These were effectively identified and addressed using a com-
bination of methods, including within-pair comparisons, data
continuity monitoring (double mass curve (DMC) method)
and final comparative measurements. While these methods
proved practical and efficient, their accuracy still depends
on indicative validation against reference monitors (placed
at different distances from the sensors).

The Legerova campaign revealed that nitrogen dioxide
(NO2) pollution posed the most significant burden in the
monitored area due to intense traffic, with peak concentra-
tions corresponding to morning and evening rush hours. Me-
dian NO2 levels were highest in street canyon locations with
limited ventilation and near traffic lights, such as Sokol-
ská and Legerova streets. Particulate matter concentrations
(PM10 and PM2.5) showed less spatial and temporal vari-
ability, with peaks often occurring later in the day and at
night, particularly under the influence of temperature inver-
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sions and poor dispersion conditions. Supplementary mete-
orological measurements, such as those capturing vertical
stratification and airflow, were crucial for interpreting pol-
lution dispersion patterns and understanding the impact of
atmospheric dynamics on local air quality.

Overall, the findings affirm the potential of MARS-
corrected LCS networks as a cost-effective solution for air
quality monitoring, especially in urban areas. However, ad-
dressing challenges such as sensor ageing, concept drift and
the robustness of correction models under varying environ-
mental conditions is essential for their broader application.
The data obtained in this study were used to evaluate and test
the sensitivity of various urban modelling tools (Resler et al.,
2024; Patiño et al., 2024) and can be further used to validate
microscale urban models.
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cluding metadata, is publicly available in the Zenodo library
(https://doi.org/10.5281/zenodo.10655032, Bauerová et al., 2024).
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