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Abstract. Land-use change (LUC) is ranked as the second anthropogenic source of climate change after fossil
fuel burning and yields negative albedo-induced radiative forcing (ARF). This cooling effect has been assessed
using low spatiotemporally resolved LUC datasets derived from historical statistical data with large uncertain-
ties. Herein, we implement a satellite-remote-sensing-derived highly resolved LUC dataset into a compact earth
system model and reassess the global and regional surface ARF by LUC from 1983–2010 relative to 1750. We
find that the magnitude of the negative ARF obtained from the present study is lower than that estimated by
the Intergovernmental Panel on Climate Change by 20 %, implying a weaker cooling effect. The result reveals
that the global LUC-induced surface albedo change may not significantly slow down global warming as was
previously anticipated. Sub-Saharan Africa made the largest net contribution to the magnitude of the global ARF
(39.2 %), due to substantial land-use conversions, typically the conversion from forest to other vegetation lands,
which are accompanied by higher surface albedos. The most remarkable land cover changes occurred in East and
Southeast Asia, which dominated the changes in the global ARF in recent decades. Based on major land cover
types in these two regions, we infer that vegetation lands exert the most vital effect on global ARF variation.

1 Introduction

Anthropological activities that have effectuated global cli-
mate change can be primarily categorized under green-
house gas emissions, the emissions of aerosols, and land-use
change (LUC) (IPCC AR6, 2021). LUC in different tem-
poral and spatial scales varies rapidly from local to global
scales, with significant ramifications for the climate system,
and is one of the key drivers of global climate change (Fed-
dema et al., 2005; Cai and Kalnay, 2004; Foley et al., 2005;
Houghton et al., 2012; Zhu et al., 2019). LUC accounted
for 13 %–20 % of the total anthropogenic carbon emissions
from the 1990s to the 2010s and 20 % in the 1980s and
1990s (Houghton et al., 2012), ranking as the second source

of anthropogenic climate change after fossil fuel combus-
tion (Andrews et al., 2017). The influence of LUC on cli-
mate change is primarily manifested in two critical pro-
cesses: the radiation–energy interface between the surface
and the atmosphere and the changes in the carbon source–
sink. LUC affects climate by emitting or absorbing green-
house gases in the atmosphere, modifying the carbon cycle
within the climate system. In other words, the effect of LUC
on climate balance involved in understanding how changes in
land use (such as afforestation, urbanization, or land restora-
tion) affect the climate system’s energy balance through bio-
geochemical and biogeophysical processes. These processes
drive carbon sequestration and emissions and surface albedo
change (Gries et al., 2019). LUC also modifies the albedo
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and roughness of the underlying surface, altering the surface
heat budget. By functioning as a carbon sink through car-
bon reduction-oriented land management, LUC plays a piv-
otal role in the sequestration of carbon (IPCC AR6, 2021).
Such LUC-induced carbon sinks are crucial for compensat-
ing emissions from other carbon sources, such as fossil fuel
energy, transportation, and housing, that continue to emit car-
bon dioxide.

The extent of the influence of LUC on the climate sys-
tem and energy balance is often measured in terms of ra-
diative forcing (RF) (Andrews et al., 2017; Andrews and
Forster, 2020; Ramanathan, 1975; Bonan, 2008; Betts, 2000;
Ward et al., 2014). The primary effect of RF on climate
change is through a temperature feedback mechanism (Sher-
wood et al., 2015). While the effects of LUC on climate bal-
ance have been extensively studied from the biogeochemi-
cal perspective (Foley et al., 2005; Houghton et al., 2012;
Vose et al., 2004; Gries et al., 2019), knowledge gaps still
remain in the understanding of LUC-induced climate forc-
ing from the biogeophysical perspective. This is partly due
to the lack of extensive investigations in the long-term ef-
fects of LUC-induced climate forcing prediction and uncer-
tainties in this field (IPCC AR6, 2021). Immediate impacts
may be different from those observed over decades or cen-
turies. Long-term temporal studies that track these changes
are limited. The commonly held belief is that the change in
surface albedo associated with LUC has a negative forcing
globally, leading to a cooling effect and functioning as a car-
bon sink. However, the magnitudes of negative forcing vary
between − 0.15 and −0.6Wm−2 in different studies span-
ning the pre-industrial to industrial era (IPCC AR3, 2001;
Myhre and Myhre, 2003; Hansen and Nazarenko, 2004; Betts
et al., 2007; Forster et al., 2007; Pongratz et al., 2009; Ward et
al., 2014; Li et al., 2016; Jiao et al., 2017). The Intergovern-
mental Panel on Climate Change (IPCC) AR3 report (2001)
(IPCC AR3, 2001) adopted−0.25±0.25Wm−2 as the global
average RF due to surface albedo change. This value has been
revised in subsequent reports to −0.15± 0.10Wm−2 (IPCC
AR6, 2021). The magnitude of negative RF induced by sur-
face albedo (hereafter referred to as ARF) obtained from
other studies appears to be greater than the IPCC-adopted
value (Fig. 1). In AR3 of the IPCC, the scientific understand-
ing of the LUC-induced ARF was deemed “very low”. Due to
the limited number of studies and the uncertainty of histori-
cal land cover (LC) changes, IPCC AR6 (2021) assigns these
values a medium confidence level. A substantial proportion
of the uncertainties in the LUC and ARF can be attributed
to the lack of high spatiotemporal resolution in LUC data
and sufficient support by measurements (Gong et al., 2013;
Winkler et al., 2021; Jian et al., 2022). Recently, numerous
high-resolution remote-sensing datasets have been used to
develop highly resolved LUC datasets (Gong et al., 2013;
Winkler et al., 2021). Modern satellites are equipped with
sensors that offer high spatial resolution, allowing for the de-
tailed mapping of land-use changes. This level of detail is

essential for identifying specific types of land-use changes,
such as deforestation, urban expansion, or agricultural in-
tensification, each of which has different impacts on radia-
tive forcing. These remote-sensing-based datasets reveal that
LUC has affected as much as one-third of the world’s land
area in just 6 decades (1960–2019), roughly 4 times greater
than the estimates from long-term land change assessments
conducted previously (Winkler et al., 2021). It is interesting
to know if and to what extent recently developed remote-
sensing-based global land-use (LU) change data with very
high spatial–temporal resolution from a climate perspective
and potentially low uncertainty could improve the estimation
of LUC-induced global and regional climate forcing.

In the present study, we reassessed the LUC-forced ARF
by incorporating a high-resolution (5km× 5km) satellite-
remote-sensing-measured LUC dataset into a compact earth
system model (see “Materials and methods”) and evaluate
the contributions from various LUC and LU types in differ-
ent regions/countries to the global ARF, aiming to provide
a more precise and measurement-based estimate of the re-
gional and global ARF.

2 Materials and methods

2.1 OSCAR model

OSCAR v2.4 (Gasser et al., 2017), a compact model of
global biogeochemical cycles, is used to investigate the ef-
fect of LUC-induced changes in surface albedo on global RF.
OSCAR is not spatially resolved but country- and region-
based. It is a nonlinear box model incorporating as many key
climate components and modules as possible, such as LUC
and aerosol physics–chemistry feedback. The model was de-
signed to simulate long-term trends in earth system change
rather than seasonal and interannual variations in the earth
system. OSCAR is also a parametric model in which several
parameters required to calculate RF are calibrated on (or in-
put from) complex climate models. Model uncertainties are
assessed by Monte Carlo ensembles, including input LUC,
surface albedo, and other model parameters. In the present
study, we have assigned a 5 % uncertainty in the OSCAR-
modeled ARF based on LUC data uncertainty. The uncer-
tainty of the LUC data is subject to their accuracy (82.81 %,
Liu et al., 2020a). We examined the response of the mod-
eled ARF to the 5 % uncertainty by increasing the uncertainty
to 10 % and 15 %. The differences of the simulated mean
ARF between 5 % and 10 % and 15 % were only 0.23 % and
0.47 %, respectively. Further details, advantages of OSCAR
model, and the motivations to use OSCAR model in our ARF
simulations are presented in Sect. S1 in the Supplement.

2.2 Updated global LUC data

The OSCAR’s capability to simulate LU-change-induced RF
is one of its strengths. To assess the combined effects of hu-
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man activities on the carbon–climate system (Hurtt et al.,
2011), the model employs the LU Harmonization (LUH1)
LUC dataset (LUH1-LUC) developed under IPCC-AR5. The
results show a smooth transition of annual changes in LUC,
suggesting that approach and data sources adopted to derive
LUH1 (Sect. S2 in the Supplement) likely missed some im-
portant characteristics of LU transitions, resulting in a sub-
stantial uncertainty in the modeled LUC-induced RF. Al-
though LUH1 was recently updated to LUH2 with a spatial
resolution of 0.25°× 0.25° latitude–longitude (Hurtt et al.,
2020), in the present study, we chose the Global Land Sur-
face Satellite global LC dataset (GLASS-GLC) (Liu et al.,
2020a) to replace the LUH1 inventory with coarse spatial
resolution in the OSCAR model to capture the temporal–
spatial variations of LUC adequately. GLASS-GLC was de-
veloped using 5km× 5km resolution GLASS (Global Land
Surface Satellite) climate data records from 1982–2015. Al-
though both LUH and GLASS-GLC provide annual LUC,
compared to previous LUC products, such as LUH1 and
LUH2, GLASS-GLC based on satellite remote sensing has
greater consistency, a higher spatial resolution, and many
LU types. Compared to the LUH1 dataset derived based on
historical statistics and census data combining with the His-
tory Database of the Global Environment (HYDE) model and
the Global Land-use Model (GLM) (Hurtt et al., 2011), the
GLASS-GLC dataset uses the Google Earth Engine (GEE)
platform with the latest version of GLASS CDRs (Climate
Data Records) from 1982–2015 (Liu et al., 2020a) to obtain
a more reliable land-use inventory.

It should recognize the differences between the satellite-
derived land cover classifications (GLASS-LUC) and the
land-use classifications (LUH1) and reconcile the differ-
ences. Table S1 in the Supplement list mapping categories of
the LUH1 and GLASS-GLC. GLASS-GLC considers seven
LUC classes, including cropland, forest, grassland, shrub-
land, tundra, barren land, and snow/ice, with an overall accu-
racy of 82.81 %. Although the GLASS-GLC data source also
includes urban areas, these small areas are not straightfor-
ward to be distinguished at the 5km×5km resolution as com-
pared to other LUCs (Liu et al., 2020a). Besides, while ur-
ban expansion could contribute to climate warming (Ouyang
et al., 2022), our previous work (Jian et al., 2022) has ex-
plored the impact of urbanization on China’s ARF and found
that the impact of urban sprawl on China’s ARF is very small
(0.59 %) and hence can be neglected, although China has
experienced the world’s most rapid urbanization since the
1980s (Yang, 2013), due to a considerably smaller area of
urban land than the other selected six LU categories. Like-
wise, the urban land also exerts little effect on the ARF from
a global perspective. Therefore, urban areas were not taken
into consideration in this study. The LUC data are available
for download at https://doi.org/10.1594/PANGAEA.913496.
Note that, although the updated GLASS-GLC was extended
to 2015, given that some of the parameters and variables in

OSCAR v2.4 were only available up to 2010, we performed
OSCAR simulations from 1982–2010.

We further compared the GLASS-LUC-derived ARF in
the OSCAR model to the modeling result using another
satellite-remote-sensing-derived LUC, namely, the MODIS-
LUC data (Moderate Resolution Imaging Spectroradiometer,
2014, https://modis.gsfc.nasa.gov/, last access: 6 May 2020).
Given that the MODIS-LUC data are only available from
2001–2023, we replaced the GLASS-GLC by MODIS-LUC
data from 2002–2010 in the OSCAR model. During this pe-
riod, the accumulated RF simulated by the OSCAR in the
globe using the MODIS-LULC (land use and land cover)
and the GLASS-GLC data is 0.0165 and 0.0157 Wm−2, re-
spectively, indicating only a 5 % difference between the RFs
using the two LUC datasets derived from satellite remote
sensing. Sun et al. (2022) compared the applications of six
LULC products in the identification of LUCs in Northwest-
ern China. Their results revealed that while GLASS-GLC
and MODIS (MCD-12Q1) were not superior to other four
products, these two datasets were of most temporal and spa-
tial consistency.

The OSCAR model does not take the surface roughness
length into account. The surface roughness primarily affects
the turbulent exchange of heat and air mass between the un-
derlying surface and air, which may indirectly alter surface
radiation fluxes via changing sensible and latent fluxes un-
der a heat balance status (Andrews, 2012). This characteristic
can significantly influence RF largely via its association with
surface albedo. Given that the OSCAR introduces the surface
albedo directly, it is expected that excluding the roughness
length would not perturb RF prediction significantly.

2.3 Sensitivity analysis

To illustrate the influence of LUC-induced albedo change
on the global RF, we chose five LU types that have dom-
inated the global LUCs over the past 4 decades: cropland,
desert, forest, grassland, and shrub. Considering that, for
many satellite-derived land-use classification products, over-
all classification accuracies range between 70 % and 90 %,
implying that misclassifications can lead to an uncertainty of
10 % to 30 % in land-use area estimates (Gong et al., 2013),
we carried out extensive sensitivity experiments by reducing
each LU transition area by 20 % within five major LU types
(cropland, desert, forest, grassland, and shrub). These sensi-
tivity evaluations aimed to examine the relative significance
and contribution the LU conversion and transition among dif-
ferent LU types to the ARF. Among them, each LU type is
converted to the rest four LU types, thereby accounting for a
total of 20 LU transitions and sensitivity experiments. How-
ever, in the original OSCAR inventory, there were only inter-
conversions between cropland and other land types and no
conversions between desert, forest, grassland, and shrub. Ta-
ble S2 in the Supplement presents these 20 LU transitions
from 1982–2010. To facilitate analysis and refine the effect
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of LUC on the ARF, the world has been divided into nine
regions. These regions include East and Southeast Asia (in-
cluding China), Europe, Latin America, the Near East and
North Africa, North America, Oceania, Russia, Sub-Saharan
Africa, and South Asia (Fig. 2). Table S3 in the Supplement
presents the surface albedos for the five LU types in each
nation and the nine regrouped global regions. Between the
OSCAR LUH1-LUC inventory and the GLASS-GLC inven-
tory, Fig. S1 and Table S4 in the Supplement compare annual
changes in the area of each LU type from 1982–2010 in the
globe and the nine regions. There are distinct differences be-
tween the two LUC inventories. The causes of these differ-
ences and two simulation results are discussed in Sect. S2. By
performing OSCAR simulations with a low spatiotemporally
resolved OSCAR LUH1-LUC inventory (Scenario 1) and a
high spatiotemporally resolved GLASS-GLC inventory (sce-
nario 2), respectively, we also set up two model scenarios for
sensitivity experiments. Detailed results of sensitivity analy-
sis are presented in Table S5 in the Supplement.

2.4 Methods of comparing ARF results for two datasets

The percentage changes in the annual ARF between the two
scenarios are estimated using the following equation:

ARFF = (ARFS2−ARFS1)× 100%/ARFS1, (1)

where ARFF, ARFS1, and ARFS2 represent the percentage
changes in ARF values from model scenarios 1 (S1) and 2
(S2), respectively.

2.5 Disturbance capacity analysis and effective area

We conducted comprehensive sensitivity experiments on OS-
CAR simulations to analyze the impact of each of the 20 LU
conversions on the ARF globally and across of the nine re-
gions. We consider the conversion from each of the five LU
types to the remaining four LU types, resulting in 20 LU con-
version types (Table S2). In these sensitivity experiments, we
introduce a disturbance capacity (DC; %) that determines the
magnitude of the ARF change induced by the 20 LU conver-
sions in the region of interest. The DC is defined as follows:
1RFij = RFi −RF′ij ,

DCij =
1RFij∑20
j=1|1RFij |

× 100% ,
(2)

where RFi represents the mean ARF in region i averaged
from 1983–2010. We reduce the j th LU conversion in region
i by 20 % and define the resultant ARF in region i as RF′ij
in each year. Its mean from 1983–2010 is defined as RF′ij .
Expression (2) can also be considered a statistical formula
for determining the relative significance or the contribution
of the ARF induced by a particular LU conversion to the to-
tal ARF change across all regions and LU conversion types.

For example, the sensitivity experiment for grassland to crop-
land conversion in region i (13th sensitivity experiment or
LU conversion) was conducted by multiplying the area con-
verted from grassland to cropland by 0.8, indicating a 20 %
reduction in the grassland to the cropland transition area. The
changes (or response) of the ARF in region i perturbed by a
20 % reduction in the j th LU conversion area 1RFij were
then used to estimate DCij (Eq. 2).

We also examine net LU conversion among the five LU
types, where net LU conversion is defined as the difference
between a pair of LU conversions. For instance, the net con-
version from grassland to cropland (13th LU conversion, Ta-
ble S2) and from cropland to grassland (3rd LU conversion,
Table S2) is calculated as the area converted from grassland
to cropland minus the area converted from cropland to grass-
land, also referred to as the net two-way conversion. This ad-
justment reduces the total LU conversions in the sensitivity
experiment from 20–10. The DC for the 10 net LU conver-
sion areas is definable as follows:A

t
a↔b = A

t
a→b−A

t
b→a ,

DCa↔b =
DCa→b
|DCa→b|

×

(
|DCa→b| + |DCb→a|

2

)
,

(3)

where Ata↔b is the area of net LU transition; a and b indi-
cate the conversion from LU type a to type b, respectively;
and Ata→b and Atb→a are the transition areas from LU type
a to LU type b and from LU type b to a. The superscript t
denotes a specific year between 1982 and 2010. DCa↔b rep-
resents the disturbance capacity of net conversion between
paired LUs, and DCa→b and DCb→a are the DC of LU con-
version a→ b and b→ a, respectively. After the DC of LU
conversion is determined, we estimate an effective area (EA),
which is defined here as the cumulative area of six net LU
conversions, given by
αik =

DCik∑
|DCik|

, if |DCik| ≥ 1% ,

αik = 0 , if |DCik|< 1% ,

Aeit =
∑10
k=1αik ×Aikt ,

(4)

where DCik represents the DC in the kth net LU conversion
type affecting the ARF in region i. The ratio of DCik to the
absolute value of total DCik , defined by in Eq. (4), can also be
viewed as the proportion of different net LU conversions to
the global EA (Table S6 in the Supplement). Aeit denotes the
EA in year t and region i.Aeit indicates the area of the kth net
LU conversion type in year t and region i. Consequently, the
EA measures the extent of a LU conversion area that signifi-
cantly impacts the change in the ARF. In calculating the EA,
we first exclude net LU conversions with |DC|> 1%, then
sum up these |DC| values (

∑
|DC|), and finally divide the

DC of each net LU conversion with |DC|> 1% by
∑
|DC|

(Eq. 4). Table S6 presents the correlation coefficients and sig-
nificance tests of the EAs. According to Eq. (4), once the
DC is obtained, the EA area can be estimated, which defines
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the converting areas of the 10 net land conversion types be-
tween 1982 and 2010 divided by their respective absolute
DCs. The results explain the change in the ARF from 1983–
2010 (Sect. S3 in the Supplement).

2.6 Quantifying the contribution of regional LU transition
to changes in the global ARF and effective area

The changes in the ARF due to LU conversion in a region
from 1983–2010 can be simply defined as the differences in
the ARF between 1983 and 2010. First, we considered the
ARF change in any region across the globe as

1ARFLU_all = RF′ 2010
i −RF′ 1983

i , (5)

where RF′ 2010
i and RF′ 1983

i denote the ARF in the ith region
in the S2 scenario using the GLASS-GLC inventory in 2010
and 1983, respectively. To remove the effect of LU conver-
sion on the ARF, we reduced the transition area of each LU
type from 20 % to 100 % in the 20 sensitivity experiments,
meaning no occurrence of LU transition. Second, we intro-
duced RF2010

i,j and RF1983
i,j to represent the ARF in the ith re-

gion induced by the j th LU transition in the S2 scenario in
2010 and 1983, so their differences are as follows:

1ARFLU_ind = RF2010
i,j −RF1983

i,j . (6)

This can be regarded as the changes in the ARF induced by
the other 19 conversion types for the j th LU conversion dur-
ing this period. The changes in the ARF subject to any LU
conversion in any of the nine regions can be written as

δF =1ARFLU_all−1ARFLU_ind . (7)

In other words, δF indicates the net effect of regional LU
transition on the ARF. Finally, the contribution of the ARF
from any region and any LU conversion to the changes in the
global ARF is defined as

CARF =
δf

ARF2010
global−ARF1983

global
, (8)

where ARF2010
global and ARF1983

global are the global ARF in 2010
and 1983 from model scenario 2, S2. Their difference is con-
stant (0.0364 Wm−2).

The contribution of regional EAs to the global EA is sim-
ply estimated by Eq. (9):

CEA = αi,k ×

∑28
n=1

EAn,i∑9
i EAn,i

28
, (9)

where i = 1,2, . . .,9 denotes nine regions, n= 1,2, . . .,28 is
the number of years from 1983–2010, and αi,k is defined in
Eq. (4).

The contribution of two-way LU conversions to the
changes in the global ARF is defined by Eq. (10):

CkLV =

9∑
i=1

8∑
j=1

C
i,j

ARF , (10)

where k = 1,2, . . .,5 denotes five LU types, i = 1,2, . . .,9
denotes nine regions, and j = 1,2, . . .,8 indicates paired
two-way LU transitions. Taking cropland as an example, the
one-way transitions between cropland and the remaining four
LU types are the transitions from cropland to forestland,
grassland, desert, and shrubland. The other way includes
transitions from forestland, grassland, desert, and shrubland
to cropland. So the two-way transition includes eight LU
conversions.

3 Results

3.1 Response of global RF to perturbed albedo

To examine the extent of the changes in global RF sub-
ject to the altered surface albedo derived from LU transition
from 1983–2010, we compared the ARF using the coarse-
resolution LU Harmonization v1–LU Change (LUH1-LUC
inventory (OSCAR_L, model scenario 1, S1)) extending
from 1750–2010 and the fine-resolution Global Land Surface
Satellite–Global LC dataset (GLASS-GLC inventory (OS-
CAR_G, model scenario 2, S2)) in OSCAR simulations. It
is noted that the annual ARF derived from model scenario
1 (S1) was relative to the baseline year of 1750. The an-
nual ARF derived from model scenario 2 (S2) was also rel-
ative to 1750, but we replaced LUH1-LUC with GLASS-
GLC after 1982. Figure 1a depicts the OSCAR-simulated
annual global ARF subject to the two model scenarios. From
1983–2010, annual ARFs derived from the two LUC scenar-
ios demonstrated an upward trend. In contrast, the ARF in
the S1 simulation (solid blue line) displays a smoother vari-
ation and a weaker increase with a linear trend of 0.0003
(p value< 0.01). The smooth transition from historical LUC
estimates to future projections in the LUH1-LUC results in
such gradual changes in the ARF. In contrast, the ARF in
the S2 simulation (solid red line) displays strong interan-
nual fluctuations and a more rapid increase with a linear
trend of 0.0018 (p value< 0.01). The dashed brown line in-
dicates that the resulting ARFF ranges from −26.5% (2009)
to 17.6 % (1990). Globally, both scenarios produce nega-
tive forcing, consistent with previous estimates (IPCC AR6,
2021; Li et al., 2016). As mentioned already, even though we
only replaced the coarse-resolution LUH1-LUC inventory
with the fine-resolution GLASS-GLC inventory, the ARF in
the OSCAR model has been predicted since the industrializa-
tion era in the 1750s, the same as the IPCC AR6. This sug-
gests that both scenario simulations utilized the same LUH1-
LUC data before 1982. Consequently, significant annual and
decadal changes in the ARF have occurred over the past few
decades, alongside rapid and remarkable global variations in
LUC. The significant differences in the ARF between the two
scenarios can be attributed to different data sources and ap-
proaches applied to derive LUH1-LUC and GLASS-GLC.
The former was developed from a combination of histori-
cal statistics, population census data, HYDE, and GLM. Be-
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cause the time covered by this inventory is outside the pe-
riod of satellite observations, large uncertainties in LUH1-
LUC have been recognized (Hurtt et al., 2020). A higher-
resolution land-use dataset can ensure interannual consis-
tency and comparability of the LUC and enables the accurate
estimation of the rate and mode in LUC (Gong et al., 2013;
Liu et al., 2020a), which can capture more detailed LUC and
LU transitions. Recent reports indicate that the global LUC
is 4 times larger than previously estimated (Winkler et al.,
2021). The differences between the two LUC datasets are
shown in Sects. S2 and S4, Table S4, and Fig. S1 in the Sup-
plement.

The previously estimated global ARF with coarse-
resolution LUC data has been subject to several concerns.
According to the IPCC Assessment Reports, the global RF
induced by LUC from pre-industrial times to the present
due to changes in land albedo is approximately −0.15±
0.10Wm−2, indicating that the ARF plays a cooling role
(IPCC AR6, 2021). Considering that radiative forcing is of-
ten accumulated from the past, the differences of the ARF
from the two inventories occurred mostly in final year,
namely 2010. Our OSCAR simulation under the S1 sce-
nario using a LUH1-LUC inventory yielded the same neg-
ative ARF value of −0.15Wm−2 as reported by the IPCC
(Fig. 1b). Using coarse-resolution and historical-statistics-
based LUC data, additional studies have also obtained ARF
results with great uncertainties. As depicted in Fig. 1b, all
previous studies yielded stronger negative ARFs than the
IPCC’s estimate, with the negative ARF reaching as low
as −0.24Wm−2 (Betts et al., 2007). However, our estima-
tion subject to the S2 scenario yields an ARF of −0.12±
0.01Wm−2, which is only half of that reported by Betts et al.
(2007). The result suggests that the global LUC-induced sur-
face albedo change may not be acting as anticipated to slow
down the global warming.

3.2 Contribution of regional LUC to the global ARF

In recent decades, LUC has been subject to significant spatial
heterogeneity across the globe. To investigate the magnitude
of the response of the global ARF to continental/regional
LUC that has occurred since the 1980s, we divided 113 coun-
tries and territories in OSCAR into nine regions. Each of the
nine regions encompasses a specific number of countries and
territories (Table S3). The mean ARF value for each of the
nine regions was calculated by averaging the ARFs over the
countries and territories in each of the nine regions. The col-
ored sectional map in the center of Fig. 2 indicates the nine
regions. In addition, the annual variation in the ARF sub-
jected to GLASS-GLC (Wm−2, solid red line, scaled on the
left y axis) and its percentage change (%, dashed brown line,
scaled on the right y axis) in each of these regions are illus-
trated in the nine-line charts of Fig. 2. Below the sectional
map are two bar charts depicting the absolute and relative
contributions of the nine regions to the global ARF. Corre-

spondingly, the total contribution is defined as the proportion
of the mean ARF of each nine regions to the global mean
ARF from 1983–2010. The relative contribution is defined as
the proportion of the change in the ARF in each of the nine
regions to the change in the global ARF between 1983 and
2010. In addition, the OSCAR-simulated ARFs in each re-
gion derived from LUH1-LUC (solid blue line, scaled to the
left on the y axis) are displayed in the line charts. Herein, OS-
CAR predicts ARFs by incorporating fine-scale variations, as
opposed to the LUH1-LUC-derived ARFs with smoothing
variations; GLASS-GLC, on the other hand, displays more
pronounced annual fluctuations. In East and Southeast Asia
and Near East and North Africa, the simulated ARFs de-
rived from the two LUC datasets exhibit opposite trends from
1983–2010, indicating that LUC data substantially influence
regional and continental ARFs.

As evident from the bar charts below the sectional map,
among the nine regions, Sub-Saharan Africa, with a mean
ARF of −0.06Wm−2 on average from 1983–2010, made
the largest net contribution (39.2 %) to the global mean ARF.
The significant contribution from Sub-Saharan Africa is at-
tributable to its large desert area of 697.37 Mha with a high
albedo (Table S3) and pronounced LU conversions among
vegetated LU types (Fig. S2 and Table S4 in the Supple-
ment). South Asia had a mean ARF of 0.02Wm−2 from
1983 to 2010. This region had an absolute negative contri-
bution of −10.98% to the global mean ARF averaged over
the nine regions, most likely because of rapidly expanding
croplands (226.93 Mha) with low albedo associated with the
Green Revolution (Pingali, 2012; Liu et al., 2021; Huang
et al., 2022) (Fig. S2 and Table S4). East and Southeast
Asia, Europe, Latin America, Near East and North Africa,
North America, Oceania, and Russia contributed 14.43 %,
−4.83%, 22.14 %, −7.59%, 21.84 %, 20.94 %, and 4.83 %
to the global mean ARF, respectively.

Although East and Southeast Asia made a moderate abso-
lute contribution to the global mean ARF compared to other
regions, this region experienced the largest LUC between
1982 and 2010. This was characterized by the highest ARF
change (0.017 Wm−2), comprising the most significant rela-
tive contribution (33.58 %) to the global ARF change. Such
a contribution can be attributed to the massive LC changes
brought on by afforestation and the management of land de-
sertification during this time period (Liu and Xin, 2021; Imai
et al., 2018; Zhang et al., 2016), which led to a decrease
in surface albedo. In contrast, deforestation in Sub-Saharan
Africa in recent decades (Keenan et al., 2015) has promoted
rapid shrub growth (Atsri et al., 2018; Mograbi et al., 2015),
resulting in a rise in albedo. Consequently, this region has
the largest negative contribution to the global ARF change,
at −14.78%, promoting a cooling effect on the global cli-
mate. Similarly, the deforestation in Latin America caused
by the conversion of forest to cropland and pastureland in re-
cent decades (Armenteras et al., 2021; Hansen et al., 2013;
Nogueira et al., 2019; Davidson et al., 2012) has also led to
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Figure 1. Annual RF (Wm−2) due to albedo change and ARF percentage change (%) and different ARF values derived from previous
studies. (a) OSCAR-modeled annual RF due to the albedo change and ARF percentage change between the two model scenarios, S1 and S2,
from 1983–2010 derived from the coarse-resolution LUH1-LUC inventory (solid blue line; see “Materials and methods”) and GLASS-GLC
inventory (solid red line; see “Materials and methods”). The annual ARF of 1983 through 2010 from both model scenarios is relative to
the baseline year of 1750. The two-tailed T test yields a p value of 0.025 (< 0.05), indicating the statically significant difference between
OSCAR-G and OSCAR-L data series. Pale-blue shading indicates the uncertainty interval estimated from Monte Carlo simulations. Dashed
yellow line stands for a percentage change in the ARF from the two scenarios. (b) The ARF from present (red color bar) and previous (other
color bars) studies from different time periods. However, the results of the studies covering the year 2010 all point to the result of 2010.

an increase in surface albedo, thus contributing −6.15% to
the global ARF change between 1983 and 2010.

The differences (percentage change, %) in the regional
ARF between the two scenarios for the nine regions are de-
picted by the dashed brown lines (scaled on the right y axis)
in the line charts of Fig. 2. Except for Europe, the Near East
and North Africa, and South Asia, where the annual ARFs
are stronger than those derived from LUH1-LUC, the per-
centage changes in most regions exhibit the opposite phase of
the ARFs predicted by OSCAR using GLASS-GLC. In East
and Southeast Asia, for instance, the ARF derived from the
S1 model scenario decreased from −0.028Wm−2 in 1983
to −0.031Wm−2 in 2010, indicating a reinforced cooling
effect. In contrast, the ARF derived from the S2 scenario
using the GLASS-GLC inventory exhibits the change from
−0.027Wm−2 in 1983 to −0.011Wm−2 in 2010, indicat-
ing an attenuated cooling effect. The result suggests again
that the LUH1-LUC inventory does not capture the change
in LUC in East and Southeast Asia that has occurred since
the 1980s. Other details are presented in Table S7 in the
Supplement. Similar variations and trends of GLASS-GLC-
driven ARFs can be observed in Russia, North America,
and Oceania, where the negative ARFs exhibit rising trends
from 1983–2010, indicating once again the declining nega-
tive ARF values and weakening cooling effect. In South Asia,
the average percentage change in the ARF between the two
scenarios is the highest, at 37.30 %. Moreover, Europe, the
Near East and North Africa, and South Asia yielded posi-
tive ARFs. The increasing ARF trends indicate an intensi-
fication of the warming effect in these regions during this
period. Sub-Saharan Africa experienced the greatest nega-
tive ARF values and fluctuations in both model scenarios.
We found that the ARF from the S1 scenario extended from

−0.057Wm−2 in 1983 to −0.050Wm−2 in 2010. The ARF
from the S2 scenario dropped from −0.051Wm−2 in 1983
to −0.061Wm−2 in 2010. These results illustrate that the
LUH1-LUC data attenuate the cooling effect in Sub-Saharan
Africa, whereas the GLASS-GLC inventory enhances the
cooling effect, demonstrating once again that the LUC data
with significantly different resolutions and sources could al-
ter the conclusions in the evaluation of LUC-induced climate
forcing. Further details are provided in Sect. S4 and Table S7.

3.3 Effective area of LU conversion and interannual
ARF variations

We designed 20 sensitivity experiments to examine the con-
tribution of LU conversion among the five LU types to the
variation in the ARF from 1982–2010 (“Materials and meth-
ods”; Table S2). We introduced a disturbance capacity (DC;
%) and an effective area (EA; see Eq. 4 in “Materials and
methods”) to explain the changes in the ARF caused by the
size of LU conversion areas. Here, DC (%) quantifies the
extent of LU conversion that may considerably impact the
change in the ARF. The EA is the sum of six net LU conver-
sions that quantifies the extent of LU conversion contributing
to the change in the ARF. In the sensitivity experiments, we
reduced the area of LU transition by 20 % for each LU con-
version (Gong et al., 2013). The model combines the ARF re-
sults from 20 sensitivity experiments with the LUC for each
target region. Further details are provided in “Materials and
methods” and Sect. S3. We also analyzed the rate and mag-
nitude of annual ARF fluctuations associated with EAs in the
world and nine regions between 1983 and 2010. The details
are presented in Sect. S5 and Figs. S3–S12 in the Supple-
ment.
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Figure 2. Annual RF (Wm−2) due to the albedo change and ARF percentage change between the two model scenarios, S1 and S2, from
1983–2010 derived from LUH1-LUC inventory (solid blue line) and GLASS-GLC inventory (solid red line) in nine regions across the globe.
The pale-blue shading indicates the uncertainty interval estimated from Monte Carlo simulations. The dashed brown line stands for the
percentage change in the annual ARFi-F between the LUH1-LUC inventory (ARFi-S1) and GLASS-GLC inventory (ARFi-S2), in which
i represents regions, respectively, including East and Southeast Asia, Europe, Latin America, Near East and North Africa, North America,
Oceania, Russia, Sub-Saharan Africa, and South Asia. The first bar chart illustrates the absolute contribution of different regions to the global
albedo-induced RF, and the second bar chart displays the relative contribution of different regions to the global albedo-induced RF changes.
The nine color bars represent different regions, as indicated by the color legend above the colored sectional map.

Figure 3 depicts the annual ARF (scaled on the left y axis)
and EA (scaled on the right y axis) in the globe and nine
selected regions. As seen, the global annual ARF, which
is the sum of the ARFs in the nine regions based on OS-
CAR simulations, is stronger than the regional ARF due to
the larger scale of global land cover change (Table S4 and
Fig. S1) and stronger albedo changes. The correlation co-
efficient between the ARF and EA in the globe is 0.765
(p value< 0.01), indicating that the net LU conversion area
in the globe explains 59 % of the global ARF variation. In
this instance, the global EA consists of a cumulative area of
six net LU conversion types. The percentage of individual
LU conversions to the global EA is presented in Table S6
and Fig. S13 in the Supplement. As shown in Fig. S13a, the
interannual fluctuations of the EA (blue solid line) agree well
with that of the transition area from grassland–forestland

(dashed red line). Together with the grassland–cropland tran-
sition, these two LU transitions contribute the most to the
global LU transition, accounting for 52.5 % of the total EA
worldwide. Such significant LU conversions have been at-
tributed to grassland degradation (Bardgett et al., 2021; An-
drade et al., 2015; Aune et al., 2018; Leys et al., 2018), such
as the expansion of croplands in the United States, which
reduced prairie grasslands (Lark et al., 2020). Since the sur-
face albedo of grassland is greater than that of forestland and
cropland (Jackson et al., 2008), grassland degradation could
be considered to have been a major contributor to the in-
crease in the global ARF since the mid-1990s (Fig. 3a). This
increasing ARF is crucial to the attenuation of the cooling ef-
fect of the global negative ARF from−0.15 to−0.12Wm−2.
In East and Southeast Asia, the correlation coefficient be-
tween the ARF and EA is 0.930 (p value< 0.01), indicat-
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ing that the EA explains 86 % of the ARF change in this
region. In particular, the interannual fluctuation of the EA
agrees well with the LU transition from cropland to forest-
land (dashed green line, Fig. S13b), followed by the tran-
sition from grassland to forestland (dashed red line). Af-
forestation plays a key role in the ARF changes in East and
Southeast Asia, including grassland to forest, shrub to for-
est, and cropland to forest. These three LU transitions ac-
count for 68.6 % of total EA in this region. Previous re-
ports have indicated that the forest area in Southeast Asia
has been decreasing in recent decades (Hansen et al., 2013;
Achard et al., 2002; Estoque et al., 2019) and has suffered
from a net loss of 1.6 Mhayr−1 (0.6 %yr−1), thus reducing
the region’s forest cover from 268 Mha in 1990–236 Mha in
2010 (Stibig et al., 2014). However, China has expanded the
world’s largest afforested area since the late 1980s, and it had
the world’s largest artificial forest area in 2008, comprising
approximately 62 Mha (National Forestry and Grassland Ad-
ministration of China, 2009; FAO, 2010; Zhang et al., 2015).
Consequently, the forest cover in East and Southeast Asia has
expanded accordingly. Given the low albedo of forested land
(Igusky, 2008) and the forestland expansion over the past 4
decades (Zhang et al., 2016; Peng et al., 2014), we observed
a decreasing albedo and a more positive ARF in these re-
gions. In Latin America, the correlation between the ARF
and EA is 0.846 (p value< 0.01). As shown in Fig. S13d,
the annual variation in the EA nearly overlaps with the tran-
sition zone between grassland and forestland. This LU tran-
sition contributes 77.4 % to the EA in Latin America, thereby
playing a significant role in the ARF in this continent. In
recent decades, forest areas in Latin America have experi-
enced a dramatic decline (FAO, 2020), partly due to for-
est wildfires (Aragãoand Shimabukuro, 2010; Escobar, 2019)
and the transition from forestland to pastureland under the
significantly rising global demand for agricultural products
(such as meat and soybeans) in this region. Correspondingly,
remarkable deforestation (Armenteras et al., 2019; Bullock
et al., 2020) and conversion of forest to grassland have been
observed (Andela et al., 2017). Spanning almost 15 years
(1990–2005), Latin America has been reported to have lost
7 % of its forests (Da Ponte et al., 2015). This transition re-
sulted in an increase in albedo and a decrease in the ARF in
Latin America (Fig. 3d).

The correlation coefficient between the ARF and the EA
in Sub-Saharan Africa is 0.834 (p value< 0.01). The EA in
this region consists of the cumulative area of five net LU
conversions (Table S6). The conversion between forestland
and shrubs made the largest contribution (48.9 %) to the to-
tal EA. Sub-Saharan Africa is home to most of the world’s
tropical grassy ecosystems (grasslands and savannas), com-
prising ∼ 33.5% of Africa’s landmass (Parr et al., 2014). In
recent years, the forest area in Sub-Saharan Africa has de-
creased (Bodart et al., 2013), accompanied by an increase in
savanna (including shrubs) (Atsri et al., 2018; Gaillard et al.,
2018). As depicted in Figs. 3i and S13i, declining forestland

in Sub-Saharan Africa consistently produces a negative ARF,
despite annual fluctuations.

In South Asia, the correlation coefficient between the ARF
and EA is 0.97 (p value< 0.01), with the EA including the
cumulative area of six net LU conversions (Table S6). Of
these LU conversions, cropland-related LU transitions con-
tributed up to 81.4 % to the total EA. This region of Asia
has experienced the most successful Green Revolution since
the late 1960s (Liu et al., 2021), and India is one of the
largest producers of agricultural commodities (FAOSTAT:
Food and agricultural data, 2017; Teluguntla et al., 2015),
with more than half of its territory used for cropland. Since
the 1980s, the continuous expansion of cropland in South
Asia (Hinz et al., 2020) has led to a decrease in albedo, in-
creasing the ARF (Figs. 3j and S13j). Further discussions on
EA in Europe, the Near East and North Africa, North Amer-
ica, Oceania, and Russia, as shown in Fig. S13, are presented
in Sect. S6 in the Supplement.

3.4 Response of global ARF change to regional LUC
area and LU conversion

To quantify the contribution of each LU transition in each re-
gion to the changes in the global ARF and EA, we estimated
ARF and EA changes without LU conversion from 1983–
2010 by reducing LU transition areas from 20 % to 100 %
in 20 sensitivity experiments (see “Materials and methods”),
indicating no LU transition. Subsequently, we calculated the
differences between ARF and EA changes with and without
LU conversion to determine the contributions of any LU con-
version in any region to the changes in global ARF and EA,
as defined by CARF and CEA, as described in Eqs. (5)–(9)
of “Materials and methods”. The net conversion of grass-
lands to forests contributed 70.14 % to the change in the
global ARF from 1983–2010. During this period, the global
ARF increased by 0.036 Wm−2, in line with the general up-
ward trend. Since the albedo of grasslands is greater than
that of forests, we would anticipate a decrease in albedo dur-
ing the transition from grasslands to forests, which tends to
increase the ARF. Efforts have been made to increase the
global forest cover through afforestation programs. How-
ever, most afforestation programs have been implemented
at the expense of natural vegetation, particularly grasslands,
rather than agricultural land (Leys et al., 2018; Zablon et al.,
2018). Globally expansive grasslands were found to be suit-
able for future forest restoration programs to offset anthro-
pogenic CO2 emissions (Bond, 2016). With the updated LUC
inventory with the satellite-measured information on a fine
temporal–spatial scale, we could assess the effect of increas-
ing forest coverage on the ARF with greater precision. The
donut charts on the right side of Fig. 4a depict the change
in the global ARF due to LU conversions in each of the
nine regions. The results indicate that grassland–forest con-
version in East and Southeast Asia contributes 19.50 % to
the change in the global ARF, 8.16 % from Europe, −8.71%
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Figure 3. Annual RF (Wm−2) due to surface albedo change in model scenario 2 (S2) from 1983–2010 derived from GLASS-GLC inventory
(solid black line) and effective area (solid blue line) in the globe and nine regions. (a) Globe, (b) East and Southeast Asia, (c) Europe, (d)
Latin America, (e) Near East and North Africa, (f) North America, (g) Oceania, (h) Russia, (i) Sub-Saharan Africa, and (j) South Asia.
Correlation coefficients between the ARF and effective area are marked in each panel. The effective area measures the extent of the area of
all net LU conversion contributing to the change in the ARF (see “Materials and methods”).
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from Latin America, 4.15 % from the Near East and North
Africa, 14.22 % from North America, 0.44 % from Oceania,
15.74 % from Russia, 14.29 % from Sub-Saharan Africa, and
2.35 % from South Asia, respectively. The global net conver-
sion of forests to shrubs contributes −50.15% to the change
in the global ARF, with individual contributions from East
and Southeast Asia (0.16 %), Europe (−0.01%), Latin Amer-
ica (3.54 %), Near East and North Africa (1.01 %), North
America (0.57 %), Oceania (−0.31%), Russia (0.03 %), Sub-
Saharan Africa (−55.49%), and South Asia (0.35 %). Thus,
the contribution of the net conversion of forests to shrubs to
the global ARF change enhanced the cooling effect. The con-
tributions from the remaining four net conversion types are
shown in Table S8 in the Supplement.

The contributions of net conversion from grassland to for-
est, forest to shrubs, grassland to cropland, cropland to for-
est, cropland to shrubs, and desert to cropland to the global
EA (Eq. 4) are 39.60 %, 25.90 %, 12.90 %, 11.20 %, 7.78 %,
and 2.70 %, respectively, as depicted in the pie charts on
the left of Fig. 4b. The contributions of the six net con-
version types in each of nine regions to the global EA are
displayed in donut charts on the right of Fig. 4, provid-
ing additional information regarding the impact of regional
LU conversion on the variation in the global ARF. For in-
stance, the contributions of net conversion type of grassland
to forest in each of the nine regions to the global EA are
as follows: −1.76 % from East and Southeast Asia, 1.87 %
from Europe, 20.36 % from Latin America, 0.26 % from
Near East and North Africa, 4.89 % from North America,
1.49 % from Oceania, 6.91 % from Russia, 5.91 % from Sub-
Saharan Africa, and −0.33% from South Asia. Additional
results for the remaining five types of net conversion in each
of the nine regions are presented in Table S9 in the Supple-
ment.

3.5 Contributions of two-way LU conversion to global
ARF change

We also set up 20 sensitivity experiments to examine the
response of the ARF to two-way LU transition in each re-
gion. The two-way LU transition entails LU conversion from
a particular LU type to the remaining four LU types and
vice versa, which accounts for eight LU conversions for the
five LU types in the GLASS-GLC inventory. We compare
the changes in the global ARF driven by the LU transition
from 1983–2010 to the ARF estimated by reducing LU tran-
sition areas from 20 % to 100 %. The 100 % reduction of LU
transition area means no LU transition. As an illustration,
Fig. 5a-i compares the change in the global ARF caused by
the transition between cropland and the other four LUs (crop-
land to desert, forest, grass, and shrub, solid red line) and
without transition (fixed cropland, solid blue line). Marked
differences can be observed for both with and without the
transition between croplands and other LU types. The trend
and annual fluctuation of the ARF are consistent with the

results subject to LU transition (solid red line). However,
under the fixed cropland (no LU transition) during this pe-
riod (solid blue line), the negative values of ARF change
have decreased since 1990 in comparison to the case with
LU transition. As shown in the inset of Fig. 5a-i, the transi-
tion from grassland to cropland accounts for 41.0 % of the
cropland transition area, while the net transition from desert
to cropland accounts for 9.2 %. The remaining two net LU
transitions occurred from croplands to forests (−48.9%) and
shrubs (−0.9%), respectively, implying that LU transitions
from croplands to other LUs account for −49.8% of the
cropland transition area. By combining these transition areas,
the net cropland transition area was calculated to be 0.4 %,
indicating the growth of cropland (Fig. S1). Since the tran-
sition from grasslands to croplands decreased surface albedo
(Table S3), the LU conversion in this instance decreases the
absolute value of the negative ARF, thereby weakening the
cooling effect.

Using the GLASS-GLC inventory (S2 scenario), we fur-
ther estimated the percentage change (%) in the global ARF
with the transition between cropland and the other four LUs
(solid red line, Fig. S14a in the Supplement) from 1983–
2010. During this period, the percentage changes ranged
from −0.6% to 28.4 %, illustrating a significant upward
trend. From 1998–2010, the annual percentage change in the
global ARF was almost 15 %, indicating that the cropland
transition significantly contributed to the change in the global
ARF. We also observed an overall increase in cropland area
from 1983–2010, as indicated by the positive accumulated
cropland area in Fig. S14a (solid black line, scaled to the
right of the y axis), which is consistent with the growth rate
of cropland area of 0.037 Mhayr−1 during this period.

Similarly, Fig. 5a-ii–a-v illustrate OSCAR-modeled global
ARF variation utilizing the GLASS-GLC inventory with and
without LU transition of individual LU types from 1983–
2010. As shown in Fig. 5a-ii, the conversion of the desert to
other LU types has little effect on the global ARF variation,
and the modeled ARF from simulations with and without LU
transition is nearly identical. Figure S14b demonstrates that
the percentage change in the global ARF was less than 4.2 %
between 1983 and 2010, with a mean value of 1.7 %. As illus-
trated in the inset of Fig. 5a-ii, the net transition from desert
to grassland (light green bar) accounts for 79.1 % of the to-
tal transition area, the net transition from desert to shrubs
(light yellow bar) accounts for 11.5 % of the total transition
area, and the net transition from desert to cropland (deep blue
bar) accounts for 8.9 % of the total transition area, respec-
tively. The percentage change indicates a net decrease in a
desert land, which is supported by the declining accumulated
area of desert land (Fig. S14b). The lack of significant dif-
ference between the global ARF with and without LU tran-
sition is most likely due to the smaller change in the desert
area over the past decades. Detailed discussions of the vari-
ations in the ARF induced by forest, grassland, and shrub
transitions utilizing the GLASS-GLC inventory, as depicted
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Figure 4. Contribution of six net LU conversion types in nine regions (|DC|> 1%) to the change in global ARF and EA globally and
nine regions. (a) Pie charts on the left show the contribution of six LU conversion types in nine regions to the change in the global ARF,
including grassland to forest (orange), forest to shrubs (light blue), grassland to cropland (light purple), cropland to forest (light green),
cropland to shrubs (light yellow), and desert to cropland (light gray). Donut charts on the right show the contribution of each of the six net
LU conversion types in each of the nine regions to the change in the global ARF. Among the nine regions, East and Southeast Asia are
colored red, Europe deep green, Latin America deep yellow, Near East and North Africa deep blue, North America blue, Oceania purple,
Russia green, Sub-Saharan Africa yellow, and South Asia purple gray. The coefficient of variation (CV) is ±5%. (b) Contribution of six LU
conversions (|DC|> 1%) in the nine regions to global EA.

in Fig. 5a from i–v, are presented in Sect. S7 in the Supple-
ment. Overall, Fig. 5a reveals an increasing trend of ARF
change, highlighted by the attenuated negative ARF from
1983–2010, which suggests a weakening cooling effect by
the global ARF (Fig. 1).

Figure 5b depicts the contribution of regional LU transac-
tions to the change in the global ARF (five pie charts on the
right panel of Fig. 5b). Cropland, desert, forest, grassland,
and shrubs contributed 42.76 %, 5.94 %, 31.91 %, 51.26 %,
and−27.31%, respectively, to the change in the global ARF,
as depicted in the pie chart on the left panel of in Fig. 5b.
The donut charts on the right side of Fig. 5b illustrate the
contribution of each of the five LU types in the nine regions
to the change in the global ARF. Taking cropland as an ex-
ample, the contributions of cropland-related conversions in
each of the nine regions to the change in the global ARF are
as follows: 14.11 % (East and Southeast Asia),−3.24% (Eu-
rope), 4.19 % (Latin America), 8.97 % (Near East and North
Africa), 6.37 % (North America), 3.59 % (Oceania), 0.59 %
(Russia), 1.58 % (Sub-Saharan Africa), and 6.59 % (South

Asia). As stated previously and depicted in the left panel of
Fig. 5b, the sum of the contributions from these nine regions
to the global ARF change is 42.76 %. As a result, cropland-
related LU conversion in East and Southeast Asia (primarily
China) made the largest contribution to global ARF variation.
The results for the remaining four LU types are presented in
Table S5.

4 Discussion

By incorporating a recently developed satellite-remote-
sensing-based high-resolution LUC dataset into the OS-
CAR model, we demonstrate that previous estimates of
the ARF derived from historical-statistics-based LUH1-LUC
data with a coarse resolution tend to overestimate the LUC
driving albedo-induced cooling effect. Our revised estimate
reveals that the global ARF (−0.12Wm−2) is lower than the
value adopted by the IPCC (−0.15Wm−2). Our results indi-
cate that, among the nine selected regions covering the global
land area, Sub-Saharan Africa made the largest net contribu-

Atmos. Chem. Phys., 25, 4251–4268, 2025 https://doi.org/10.5194/acp-25-4251-2025



X. Jian et al.: New land-use-change dataset predicts weaker surface-albedo-forced cooling 4263

Figure 5. Changes in the global ARF derived from model scenario 2 (S2) and contribution of five LU types in the globe and nine regions
to the change in the global ARF. (a) Changes in the global ARF subject to LU transition from 1983–2010 (solid red line) and a fixed LU
type without transition (solid blue line) for five LU types, including croplands (cro, a-i), deserts (des, a-ii), forests (for, a-iii), grasslands
(gra, a-iv), and shrublands (shr, a-v). The inset bar chart represents the relative contribution of the two-way LU net transition between the
LU of the interested and other LUs from 1983–2010. Taking the bar chart in (a-i) as an example, the bars with different colors show the
result of the two-way transition between cropland and other LU types from 1983–2010. Positive bars represent the conversion from other LU
types to cropland, and negative bars indicate the transition from cropland to other LU types. Shadings in (a-i–a-v) indicate the uncertainty
interval estimated by Monte Carlo simulations. (b) Contribution of five LU types in each region to changes in the global ARF. The pie chart
shows the contribution of five LU types to the change in the ARF in the globe, including cropland (light blue), desert (light yellow), forest
(gray-green), grassland (light green), and shrubs (light purple). The five small donut charts show the contribution of each type in each of the
nine regions to changes in the global ARF. The coefficient of variation (CV) is ±5%.

tion (39.2 %) to the global mean ARF (−0.06Wm−2), ow-
ing to the transition of forestland to shrubland, which re-
sults in greater surface albedo and, hence, a declining ARF.
The latter became very significant from 1982–2010. East and
Southeast Asia also contributed significantly, following Sub-
Saharan Africa, to the changes in the global ARF at 33.6 %
(0.016 Wm−2) due to the LU conversion from the grass-
land to forest conversion and land desertification manage-
ment, which result in lower surface albedo (Table S3) and an
increasing ARF. In line with previous research studies, we

demonstrate that RF induced by changes in surface albedo is
primarily driven by changes in vegetation (Betts et al., 2000).
The transformation from forest to grass, shrub, and crop and
from crop to grass resulted in decrease in the ARF of −0.68,
−0.48,−0.19, and−0.22Wm−2, respectively, due to the en-
hancement of surface albedo by the transformation from for-
est to these vegetation types. Opposite conversions of these
vegetation types to forests outweigh positive contributions
to the ARF, indicating a rise in surface albedos and cooling
effects. In addition to the magnitudes, we find that the two
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LUC datasets developed based on different data sources, ap-
proaches, and resolutions produce different ARFs, indicating
that LUC data influenced regional and continental ARFs con-
siderably.

Notably, the present study only predicts the ARF and its
change induced by surface albedo subject to LUC and LU
conversions but does not address RF driven by CO2 emis-
sions as a result of carbon source–sink conversions associ-
ated with LUC and the ARF associated with the changes
in snow cover induced by land-use and land cover change
(LULCC). However, the major findings of dominant LU tran-
sition patterns between forest and grassland, shrub, and crop-
land imply CO2 source–sink transitions, which are expected
to influence LUC-driven RF more strongly. On the one hand,
the unexpectedly weaker cooling effect of LUC observed
in this study indicates that global LU and LU conversion
as carbon sinks since the 1980s do not significantly miti-
gate climate warming. On the other hand, land management
must be improved by increasing the capacity of LUC for
carbon sequestration, preserving carbon sinks, and provid-
ing renewable resources. Our results show that Sub-Saharan
Africa contributed the most to the global ARF induced by
the forest–grass and forest–shrub transitions, with predicted
ARF values of −0.20 and −0.40Wm−2, respectively. In ad-
dition, East and Southeast Asia contribute the most to the
ARF due to the conversion of LU from forest to crop and
crop to grass. Furthermore, Sub-Saharan Africa has also been
confirmed to have the highest proportion of forest–grass and
forest–shrub transitions, contributing to a cooling effect.

These findings have substantial ramifications for perti-
nent policy issues. Accordingly, they suggest that local gov-
ernments and international communities should take more
action in Sub-Saharan Africa to slow down or, preferably,
stop deforestation and forest–grassland–cropland conver-
sion, which is a significant contributor to carbon emission en-
hancement (Spawn et al., 2019; Pendrill et al., 2019; Chang
et al., 2021). In our case, even though this LU transition in-
creases surface albedo, thereby increasing LUC- and albedo-
induced negative RF and exerting a cooling effect, this ef-
fect is negligible compared to the increase in RF caused by
CO2 emissions (IPCC AR6, 2021; Li et al., 2016; Jian et al.,
2022). Therefore, the cooling effect of afforestation on re-
ducing CO2 emissions outweighs the warming effect of the
resultant decrease in surface albedo. The crop–forest transi-
tion occurring primarily in East and Southeast Asia, Europe,
and the Near East and North Africa has been partially en-
couraged by national and international cropland and water
resource conservation strategies and programs, resulting in
ARF values of 0.09, 0.02, and 0.01 Wm−2, respectively. The
“Grain for Green” program in northwestern China (Wang
et al., 2023), for example, impedes the transition from crop
to forest in East and Southeast Asia. Although the program
helps improve the ecological environment, from the perspec-
tive of the ARF, it tends to reduce the surface albedo and
increase positive RF, thereby enhancing the warming effect.

It is worth noting that the present study did not incorporate
non-radiative process and the coupling between land and the
atmosphere, which might drive many feedback mechanisms.
The significance of land management in maintaining carbon
sinks and providing renewable resources was also not dealt
with. However, this study provides additional evidence of
the importance of land management in influencing the car-
bon sinks. Optimal land management should implement inte-
grated and enforceable sustainable agriculture, climate-smart
forestry, and climate-friendly land resources with co-benefits
and cost efficiency.

5 Conclusions

We have improved a global simulation and nine regional
ARF simulations using the OSCAR model, an updated LUC
dataset with a high temporal–spatial resolution. We explored
the causes of ARF changes in the world and nine regions
across the globe by disentangling land change data for 20
transformation types. We also developed the concepts of DC
and EA to better explain the changes in ARFs. The major
findings are summarized below:

– The magnitude of the negative ARF obtained from this
study is 20 % lower than previous estimations, implying
a weaker cooling effect. The results suggest that global
LUC-induced changes in surface albedo may not signif-
icantly slow global warming as previously expected.

– Sub-Saharan Africa made the largest net contribution to
the global ARF (39.2 %) due to significant land-use con-
versions, typically from forest to other vegetation land
accompanying with higher surface albedo. The most
significant land cover changes occurred in East and
Southeast Asia, which dominated (33.6 %) the changes
in the global ARF in recent decades.

– The largest change in the global ARF occurs in the net
transition from grassland to forest, contributing 70.14 %
to the LUC-induced ARF, of which the East and South-
east Asia region accounts for 19.50 % of the change in
the global ARF. The net transition from forest to shrub
made the largest negative contribution of −50.15% to
the LUC-induced change in the global ARF, of which
Sub-Saharan Africa accounted for −55.49% to the
change in the global ARF.

– Vegetation lands exert the most vital effect on global
ARF variation, of which grassland contributed 51.26 %.
Among those vegetation lands, the changes in grass-
lands in Sub-Saharan Africa contributed 14.47 % to
global ARF variation subject to the vegetation land tran-
sition, followed by East and Southeast Asia at 13.25 %.
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