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Abstract. Ground-level ozone (O3) has emerged as a significant air pollutant in China, attracting increasing
attention from both the scientific community and policymakers. Chemical transport models (CTMs) serve as
crucial tools in addressing O3 pollution, with frequent applications in predicting O3 concentrations, identifying
source contributions, and formulating effective control strategies. The accuracy and reliability of the simulated
O3 concentrations are typically assessed through model performance evaluation (MPE). However, the wide array
of CTMs available, variations in input data, model setups, and other factors result in a broad range of differences
between simulated and observed O3 concentrations, highlighting the necessity of standardized benchmarks in
O3 evaluation.

Building upon our previous work, this study conducted a thorough literature review of CTM applications
simulating O3 in China from 2006 to 2021. A total of 216 relevant articles out of a total of 667 reviewed were
identified to extract quantitative MPE results and key model configurations. From our analysis, two sets of bench-
mark values for six commonly used MPE metrics are proposed for CTM applications in China, categorized into
“goal” benchmarks representing optimal model performance and “criteria” benchmarks representing achievable
model performance across a majority of studies. It is recommended that the normalized mean bias (NMB) for
hourly O3 and daily 8 h maximum O3 concentrations should ideally fall within ±15 % and ±10 %, respectively,
to meet the goal benchmark. If the criteria benchmarks are to be met, the NMB should be within ±30 % and
±20 %, respectively. Moreover, uncertainties in O3 predictions due to uncertainties in various model inputs were
quantified using the decoupled direct method (DDM) in a commonly used CTM. For the simulation period of
June 2021, the total uncertainty of simulated O3 ranged from 4 to 25 µg m−3, with anthropogenic volatile or-
ganic compound (AVOC) emissions contributing most to the uncertainty regarding O3 in coastal regions and
with O3 boundary conditions playing a dominant role in the northwestern region. The proposed benchmarks
for assessing simulated O3 concentrations, in conjunction with our previous studies on PM2.5 and other criteria
air pollutants, represent a comprehensive and systematic effort to establish a model performance framework for
CTM applications in China. These benchmarks aim to support the growing modeling community in China by
offering a robust set of evaluation metrics and establishing a consistent evaluation methodology relative to the
body of prior research, thereby helping to establish the credibility and reliability of CTM applications. These
statistical benchmarks need to be periodically updated as models advance and as better inputs become available
in the future.
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1 Introduction

Tropospheric ozone (O3) is a secondary air pollutant gen-
erated by complicated photochemical reactions involving
nitrogen oxides (NOx) and volatile organic compounds
(VOCs) (Seinfeld and Pandis, 2016). Ozone has negative im-
pacts on human health (Global Burden of Disease Collabora-
tive Network, 2021), as well as on vegetation and ecosystem
production (Ainsworth et al., 2012). Due to rapid economic
development and fast industrialization and urbanization over
the past several decades, China has experienced heavy haze
pollution in winter and severe O3 pollution in summer, with
the latter extending into the late-winter haze season (Li et
al., 2021). Despite efforts to reduce fine particulate matter
(PM2.5) and heavy-haze days (Wang et al., 2022; Bai et al.,
2019; Chu et al., 2020), ground-level O3 concentrations have
continued to increase in recent years (Dang and Liao, 2019;
Li et al., 2019; Liu et al., 2019a; Lu et al., 2020; Wang et al.,
2017; Yao et al., 2023; Chen et al., 2023; Xu et al., 2023).
The challenge in controlling O3 pollution lies in the signif-
icant influences of meteorological conditions on O3 forma-
tion and its nonlinear chemical relationship with precursors
(Wang et al., 2022). In addition, O3 pollution exhibits strong
regional characteristics, necessitating regional-scale control
efforts (Yang et al., 2021a).

Application of chemical transport models (CTMs) has be-
come increasingly popular in addressing O3-related issues in
China (Yang and Zhao, 2023), providing insights into the role
of local emissions and regional transport (Shen et al., 2022),
sectoral contributions (Liu et al., 2020a), policy effective-
ness (Liu et al., 2023b), and predictions of future O3 levels
(Yang and Zhao, 2023). Ensuring the representativeness of
CTM simulations is crucial and can benefit from establish-
ing performance standards or benchmarks to help put CTM
results in context relative to the existing body of work. While
other regions (e.g., the US and Europe) have proposed eval-
uation criteria for simulated O3 (Emery et al., 2017), these
may not be suitable for China. Several key factors necessi-
tate the establishment of a tailored benchmark for model ap-
plications specific to China. Firstly, ozone concentrations in
China have been significantly higher than those in the US
and have shown a consistent upward trend (Chinese Society
For Environmental Sciences, 2020). For instance, the fourth
highest maximum daily 8 h average (4th MDA8) ozone con-
centration across 74 major cities in China increased from
189 µg m−3 (∼ 95 ppb) in 2013 to 236 µg m−3 (∼ 118 ppb) in
2019 compared to levels at or below 150 µg m−3 (∼ 75 ppb)
in the US during the same period (Table S1 in the Sup-
plement). Secondly, background ozone contributions exhibit
different trends between China and other regions, with China
experiencing a year-on-year increase, especially in urban ar-
eas (Chinese Society For Environmental Sciences, 2020).
Thirdly, the mechanisms of ozone formation may differ be-

tween China and the US. However, a direct comparison of
these formation regimes proves to be challenging as both
countries encompass vast regions with distinct ozone dy-
namics. Jung et al. (2022) identified notable shifts in the
western US, specifically from an NOx-saturated regime to
a transition regime (or from a transition regime to an NOx-
limited regime), while rural areas, especially in the eastern
and southeastern US, have become increasingly sensitive to
VOC emissions. In China, VOC-limited regimes were pre-
dominantly observed in the Beijing–Tianjin–Hebei (BTH),
Yangtze River Delta (YRD), and Guangdong (GD) regions
in 2013 (Zhang et al., 2024), whereas, in 2019, a signifi-
cant transition from a VOC-limited regime to a transition
regime was noted in the BTH area, accompanied by a re-
duction in VOC-limited areas within the YRD and GD re-
gions. These disparities in ozone concentrations, background
contributions, and formation mechanisms underscore the ne-
cessity of a customized benchmark for model applications
in China, which is essential for appropriately addressing the
unique challenges posed by ozone pollution within the coun-
try. Therefore, the increasing prevalence of CTM applica-
tions in China necessitates specific CTM benchmarks tai-
lored to this region.

This study aims to develop customized CTM benchmarks
for O3 simulations in China, building upon our prior work
that proposed evaluation indicators and benchmarks for sim-
ulating other criteria air pollutants (Huang et al., 2021; Zhai
et al., 2024). A thorough literature review was conducted
on O3 simulations using CTMs from 2006 to 2021. De-
tailed information regarding O3 performance was extracted
and analyzed to recommended model performance evalua-
tion (MPE) metrics and to propose benchmarks tailored to
China. Furthermore, uncertainties in O3 predictions due to
various model inputs were quantified using the decoupled di-
rect method (DDM) of sensitivity analysis (Cohan and Nape-
lenok, 2011) in a commonly used CTM. The structure of
this study is as follows: Sect. 2 outlines the data source and
methodology utilized. Section 3 describes the current sta-
tus of O3 simulation studies in China and proposes recom-
mended evaluation metrics and associated benchmarks. Sec-
tion 4 delves into a discussion on O3 uncertainties arising
from different model inputs, and conclusions are given in
Sect. 5.

2 Methodology

2.1 Data collection

The methodology for data compilation was consistent with
our prior studies for other criteria pollutants (Huang et al.,
2021; Zhai et al., 2024) and is briefly described here. We
considered published O3 simulations using five CTMs: the
Community Multiscale Air Quality (CMAQ, https://www.
epa.gov/cmaq, last access: 12 July 2024) model, the Com-
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prehensive Air Quality Model with extensions (CAMx, https:
//camx.com, last access: 12 July 2024), GEOS-Chem (https:
//geoschem.github.io, last access: 12 July 2024), the Weather
Research and Forecasting model coupled with Chemistry
(WRF-Chem, https://www2.acom.ucar.edu/wrf-chem, last
access: 12 July 2024), and the Nested Air Quality Predic-
tion Modeling System (NAQPMS) (Wang et al., 2014; Ge et
al., 2014). We gathered relevant publications using a com-
bination of three keywords in the Web of Science, namely
O3, the models’ names (one of the five models), and China,
for studies published between 2006 and 2021. This process
identified a total of 667 records (250 studies for CMAQ, 186
for WRF-Chem, 163 for GEOS-Chem, 36 for CAMx, and 32
for NAQPMS), with subsequent refinement steps to exclude
duplicates, non-English publications, conference papers, and
journals unrelated to air quality. Through manual selection,
which involved identifying studies that provide extractable
results (i.e., studies offering explicit results from model per-
formance evaluations), a final set of 216 studies was chosen
for detailed analysis (see Table S2 for a complete list of pub-
lications).

Different configurations could be used, even within the
same model. For example, WRF-Chem provides different
chemical mechanisms, ranging from the simple RADM2
without aerosols to the MOZART chemical mechanism with
hundreds of species. Detailed information regarding model
configurations (e.g., modeling period, horizontal resolution,
gas-phase chemistry, initial and/or boundary conditions) and
the results of 23 MPE metrics (Table S3) were extracted and
compiled from those 216 studies. For consistency, we con-
verted O3 concentrations (for example, mean bias, root mean
square error) expressed in parts per billion by volume (ppbv)
to µg m−3 using a factor of 2.14. This factor of 2.14 refers
to the “standard state”, i.e., an ambient air temperature of
273.15 K at 101.325 kPa, defined by the Chinese ambient air
quality standards (GB 3095-2012; Ministry of Ecology and
Environmental of the People’s Republic of China, 2016). A
total of 10 regions in China (Table S4), including the BTH
region, the YRD region, the Pearl River Delta (PRD) region,
the Sichuan Basin (SCB), the North China Plain (NCP), and
five other regions (Fig. 1), were identified for further analy-
sis.

2.2 Recommended benchmarks for O3

Among the 23 collected MPE metrics, we derived recom-
mended benchmarks for the six most frequently used met-
rics (see Table S5 for definitions): mean bias (MB), normal-
ized mean bias (NMB), root mean square error (RMSE), nor-
malized mean error (NME), correlation coefficient (R), and
index of agreement (IOA). The derivation of benchmarks
follows previous studies by Simon et al. (2012) and Emery
et al. (2017). Briefly, each metric’s rank-ordered (from best
to worst, for instance, from 1 to 0 for R) distribution was
generated to identify the values at the 33rd and 67th per-

centiles. As highlighted in Emery et al. (2017), these per-
centiles serve to categorize the entire distribution into three
performance categories: studies falling within the 33rd per-
centile (the goal) attain the best performance that current
models can be expected to achieve, those between the 33rd
and 67th percentiles (the “criteria”) attain the typical perfor-
mance achieved by the majority of modeling studies, while
those beyond the 67th percentile indicate relatively poor per-
formance for the particular metric under consideration. We
present the benchmarks for hourly O3, maximum daily 8 h
average O3 (8 h max O3), and daily maximum 1 h O3 (1 h
max O3), depending on data availability.

2.3 Uncertainty analysis of O3 simulation

In addition to developing the MPE benchmarks for simu-
lated ozone, we further quantified uncertainties in predicted
ozone concentrations using one of the five models (i.e.,
CMAQ). CMAQ version 5.3.2 (https://www.epa.gov/cmaq)
was employed to simulate O3 during June 2021 in China.
Base model configurations are the same as our previous
study (Sun et al., 2024) and are briefly described here. The
modeling domain covers the entirety of China and adja-
cent Asian regions (Fig. 1), with a horizontal resolution of
36 km× 36 km and 23 vertical layers and with a top pres-
sure of 10 hPa. Meteorological fields are simulated using the
Weather Research and Forecasting model (WRF version 4.0),
the model configurations of which are listed in Table S6.
CB6 and AERO7 were chosen as the gas-phase and aerosol
mechanisms, respectively. Emission data include the 2019
Multi-resolution Emission Inventory for China (MEIC-2019)
(http://www.meicmodel.org, last access: 23 June 2022) and
the 2010 Emissions Database for Global Atmospheric Re-
search (EDGAR, https://edgar.jrc.ec.europa.eu/, last access:
23 June 2022). Natural emissions were generated based on
the Model of Emissions of Gases and Aerosols from Nature
(MEGAN version 3.1, https://bai.ess.uci.edu/megan, last ac-
cess: 23 June 2022). The CMAQ default O3 profile (with a
uniform O3 concentration of 29 ppb) was used as the initial
and boundary conditions (BCs). The use of a spatially and
temporally uniform ozone concentration is a rather simplistic
assumption, and, as we illustrate later, the impact of bound-
ary conditions within the domain can range from substantial
to minimally impactful. Among the CMAQ application stud-
ies collected, 54 out of 90 describe the configuration of the
initial and boundary conditions, and 35 of those applied the
CMAQ default profile. Since our purpose in the ozone uncer-
tainty analysis was to quantify how variability in boundary
conditions affects simulated ozone concentrations through-
out China, we elected to mirror how many of the studies
have applied CMAQ. A 10 d spin-up run was conducted to
mitigate the influence of initial conditions.

We followed Dunker et al. (2020) to quantify the uncer-
tainties in predicted O3 concentrations due to six model in-
puts: anthropogenic NOx (ANOx) and VOC (AVOC) emis-

https://doi.org/10.5194/acp-25-4233-2025 Atmos. Chem. Phys., 25, 4233–4249, 2025

https://camx.com
https://camx.com
https://geoschem.github.io
https://geoschem.github.io
https://www2.acom.ucar.edu/wrf-chem
https://www.epa.gov/cmaq
http://www.meicmodel.org
https://edgar.jrc.ec.europa.eu/
https://bai.ess.uci.edu/megan


4236 L. Huang et al.: Recommendations on benchmarks for numerical air quality model applications in China

Figure 1. CMAQ modeling domain with definitions of regions used in this study. The surrounding pie charts display the total number of
studies for each region (excluding studies for the whole of China) and the percentage of different CTMs used. Red stars represent the five
cities selected for the uncertainty analysis. Publisher’s remark: please note that the above figure contains disputed territories.

sions for China, biogenic VOCs (BVOCs) and soil NOx
(SNOx) within China, dry deposition velocities for O3, and
BCs for O3. The uncertainties associated with each of the
inputs (Table S7) are based on previous studies addressing
emission uncertainties (Cheng et al., 2019), deposition veloc-
ities, and BCs (Beddows et al., 2017; Derwent et al., 2018).
Like Dunker et al. (2020), these uncertainties were consid-
ered to be independent and log-normally distributed. The
CMAQ decoupled direct method (DDM) was used to gen-
erate the first-order sensitivities of O3 to each of the inputs
(excluding dry deposition). For dry deposition, we conducted
two parallel simulations in which the O3 dry-deposition ve-
locities were manually changed by ±10 %, and the changes
in simulated O3 concentrations were treated as the O3 sensi-
tivities to dry-deposition velocity:

S
(1)
DEP =

C1.1dep_O3 −C0.9dep_O3

2
× 10, (1)

where S(1)
DEP is the O3 sensitivity to dry-deposition veloci-

ties, andC1.1dep_O3 andC0.9dep_O3 represent the simulated O3
concentrations as dry-deposition velocities are increased and
decreased by 10 %, respectively. The sensitivities obtained
were then combined with their respective uncertainties, en-

abling us to quantify the contributions to the variance in O3
concentrations. For example, the O3 uncertainties due to dry
deposition are calculated as follows:

un(DEP)= var (DEP)=
[

ln (fDEP)
2

× S
(1)
DEP

]2

, (2)

where un(DEP) represents the uncertainty of O3 due to dry
deposition at 1σ , and fDEP (equalling 2 based on Table S7)
is the uncertainty factor for dry deposition and follows the
assumption of a log-normal distribution.

The contribution of dry deposition to the total uncertainty
in O3 is calculated as follows:

%DEP=
var (DEP)

var (ANOx)+ var (AVOCs)+ var (BNOx)
+var (BVOCs)+ var (DEP)+ var (BCs)

. (3)

3 Results and discussion

3.1 General overview of O3 simulation studies in China

In the last decade, there has been a significant increase in
research focusing on O3 in China, as illustrated in Fig. 2.

Atmos. Chem. Phys., 25, 4233–4249, 2025 https://doi.org/10.5194/acp-25-4233-2025



L. Huang et al.: Recommendations on benchmarks for numerical air quality model applications in China 4237

The issuance of the Three-Year Action Plan for Winning
the Blue Sky Defense Battle in 2017 (http://www.gov.cn/
zhengce/content/2018-07/03/content_5303158.htm, last ac-
cess: 15 April 2024) led to a further surge in studies related
to O3, with a noticeable decline in 2020, which is possibly at-
tributable to the impact of the COVID-19 pandemic. In 2021,
there were 48 studies dedicated to addressing O3-related is-
sues using CTMs, marking a 6-fold increase compared to
2011. Similarly to PM2.5, the BTH (74 studies), YRD (59
studies), and PRD (58 studies) regions emerged as the top
three most studied regions. Among the various CTMs em-
ployed, CMAQ stood out as the most commonly utilized
model (90 studies), followed by WRF-Chem (84 studies).
The application of CAMx (14 studies) and NAQPMS (8 stud-
ies) was less frequent by comparison. In terms of MPE met-
rics, R had the highest frequency of occurrence at 19 %, fol-
lowed by NMB (18 %), MB (16 %), RMSE (13 %), and NME
(11 %). Nearly half of the studies incorporated two or three
metrics for evaluating O3, while less than 7 % assessed at
least five different metrics. The three most common types of
O3 concentrations evaluated were hourly O3 concentration,
the maximum daily 8 h average O3 (8 h max O3), and the
daily maximum 1 h O3 (1 h max O3). Among all the articles
examined, 77 % focused on evaluating hourly O3, 16 % fo-
cused on 8 h max O3, and 7 % focused on 1 h max O3.

3.2 Quantile distributions of O3 MPE results

Figure 3 shows the quantile distributions of various evalua-
tion metrics collected in this study. The results are presented
for different types of O3 concentrations, namely hourly O3,
1 h max O3, and 8 h max O3, whenever data are available.
Previous studies have shown that using maximum O3 values
(i.e., 1 h max and 8 h max) instead of hourly O3 can lead to
differing results within the same study (e.g., Ni et al., 2020;
Li et al., 2016). Peak O3 concentrations typically occur be-
tween 12:00 and 18:00 LT (Beijing Time, UTC+8). For ex-
ample, in Ni et al. (2018), 8 h max O3 showed an overestima-
tion tendency compared to average hourly O3, but, in another
study (Yang et al., 2021b), there was an opposite trend. Un-
derestimation of peak O3 concentrations might be offset by
overestimation during non-peak hours and vice versa. There-
fore, achieving satisfactory performance in daily averaged
O3 levels does not necessarily indicate the model’s ability
to accurately capture high O3 concentrations.

Hourly O3 exhibited equivalent overestimation and under-
estimation in terms of MB and NMB, with MB ranging from
as low as −40 to nearly 50 µg m−3 and with NMB ranging
from less than −50 % to more than 70 %. However, frac-
tional bias (FB) indicated more underestimated than overes-
timated hourly O3 concentrations. For all three bias metrics,
8 h max O3 exhibited more overestimation than underesti-
mation, suggesting a tendency for models to overestimate
off-peak hours. For 1 h max O3, both NMB and FB dis-
played equivalent overestimation and underestimation, with

NM showing a wider range than FB, likely due to there be-
ing fewer data points. For error metrics, 8 h max and 1 h max
O3 generally performed better than hourly O3. For instance,
the median values of NME were 34.8 %, 26.6 %, and 29 %
for hourly O3, 8 h max, and 1 h max O3, respectively. R and
IOA indicate how well the model captures observed varia-
tions, either temporally or spatially. The use of IOA was sig-
nificantly less than R, and no studies reported IOA values for
1 h max O3. For the other two O3 types, IOA values (median
value of 0.8 for O3 and 0.77 for 8 h max O3) were gener-
ally higher than R (median value of 0.69 for O3 and 0.66 for
8 h max O3). Six studies reported both R and IOA values, of
which four (Liu and Wang, 2020; Wang et al., 2019; Liu et
al., 2019b; Gao et al., 2017) reported higher IOA values than
R.

3.2.1 Regional and seasonal differences

Like our previous studies (Huang et al., 2021; Zhai et al.,
2024), we discuss the influences of various key factors on
model performance in simulating O3 concentrations. We first
considered whether there were discernible regional or sea-
sonal differences. Figure 4 presents the distribution of R and
NMB values, grouped by three key regions in China: the
BTH, YRD, and PRD (see Table S4 and Fig. 1 for region
definition). These regions are the most densely populated and
economically developed urban clusters in China. In terms of
hourly O3, the R values across the three regions display sim-
ilarity, with median values of around 0.7. For 8 h max O3,
however, the PRD stands out with notably lower R values
compared to the BTH and YRD. Regarding NMB values, the
BTH tends to have more underestimation, while the YRD
and PRD lean towards overestimation. Over the past decade,
the BTH has consistently recorded the highest O3 levels and
number of O3 pollution days among the three regions (Wang
et al., 2024). The variations in NMB values among regions
suggest a trend of current models underestimating O3 levels
in areas with more severe O3 pollution.

In terms of the seasonal variations (Fig. 5), the NMB
values of hourly O3 concentrations exhibit similar patterns
across different seasons, showing equivalent overestimation
and underestimation. However, when assessed over the en-
tire year, hourly O3 concentrations tend to be largely under-
estimated. The seasonal patterns of NMB distributions are
similar for 8 and 1 h max O3, with summer O3 concentra-
tions being more frequently underestimated compared to in
other seasons. For instance, in the case of 1 h max O3, peak
O3 concentrations are predominantly underestimated (with
a median NMB of −23 %), while they are overestimated in
winter (with a median NMB of 31.5 %).

3.2.2 Impact of horizontal resolution

The selection of a horizontal resolution for a CTM applica-
tion depends on several factors, such as the objective of the
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Figure 2. Number of O3 studies published during 2006–2021. Pie charts show the frequency of different MPE metrics (left) and the number
of metrics used in one study (right).

Figure 3. Quantile distribution of common O3 performance indicators.

study, the geographical scope of the study area, and the avail-
ability of input data. Generally, a coarse horizontal resolu-
tion (> 50 km) is utilized for global simulations (i.e., GEOS-
Chem applications at a global scale), while a finer hori-
zontal resolution (< 4 km) with nested grids is preferred for
regional- or city-scale modeling. A coarser horizontal resolu-
tion may result in multiple monitoring stations falling within

a single grid cell, potentially smoothing out extreme val-
ues observed at specific locations. Among the 216 studies
reviewed, 29 different horizontal resolutions (based on the
resolution of the innermost domain) were identified, rang-
ing from 1 to 200 km. The horizontal resolutions were classi-
fied into five groups in this study: < 5, 5–10, 10–25, 25–50,
and 50–100 km (horizontal resolutions over 100 km were ex-

Atmos. Chem. Phys., 25, 4233–4249, 2025 https://doi.org/10.5194/acp-25-4233-2025



L. Huang et al.: Recommendations on benchmarks for numerical air quality model applications in China 4239

Figure 4. Quantile distribution of R and NMB of O3 in the BTH,
YRD, and PRD.

cluded from the analysis due to limited data points). Figure 6
shows the distribution of eight statistical indicators by dif-
ferent horizontal resolutions while ignoring the differences
in other model configurations. Overall, no clear trend was
evident to indicate better model performances as horizon-
tal resolution decreases. For example, the median R value is
0.73 for the< 5 km group, surpassing the 5–10 and 25–50 km
groups but falling below the 10–25 and 50–100 km groups.
Studies conducted with a horizontal resolution of 10–25 km
exhibit the best model performance in terms of NME and FE
distributions compared to other groups. While most studies
assess models within a single domain (usually the innermost
domain with the finest horizontal resolution), a few studies
have conducted multi-domain analyses, where finer horizon-
tal resolutions generally have superior results compared to
coarse horizontal resolutions. Liu et al. (2020b) used WRF-
CMAQ to analyze O3 prediction and health exposure at dif-
ferent horizontal resolutions (1, 4, 12, and 36 km). The re-
sults showed more than 20 % difference in premature mortal-
ity due to different model horizontal resolutions being used.
Therefore, modelers should exercise caution and avoid op-
timism when configuring their model at finer resolutions as
reducing the horizontal resolution does not necessarily lead
to improved model performance if the input data resolution
(i.e., horizontal resolution of the emissions) is insufficient for
the model’s resolution.

3.2.3 Choice of gas-phase chemical mechanism

Gas-phase chemical mechanisms play a crucial role in the ac-
curate prediction of atmospheric composition using CTMs.

Some of the commonly used mechanisms include the car-
bon bond mechanism (CB) (Yarwood et al., 2010; Luecken
et al., 2019; Appel et al., 2021; Yarwood and Tuite, 2024),
the Statewide Air Pollution Researcher Center (SAPRC)
mechanism (Carter, 1996; Chang et al., 1999; Carter, 2000,
2010), and the Regional Atmospheric Chemistry Mechanism
(RACM) (Stockwell et al., 1997; Goliff et al., 2013). These
mechanisms have undergone rigorous evaluations against ex-
perimental data, showcasing reliable predictive capabilities
for O3 in diverse atmospheric environments. The CB mecha-
nism is a condensed mechanism in which the carbon bond is
treated as a reaction unit, and the carbon bonds with the same
bonding state are treated as a group (Cao et al., 2021). The
latest version, CB7, contains 91 gaseous species and 230 re-
actions (https://www.tceq.texas.gov/downloads/air-quality/
research/reports/photochemical, last access: 18 June 2024).
In contrast, the SAPRC mechanism categorizes species based
on their reactivity with OH (Carter, 2010). The most recent
SAPRC22 mechanism includes 162 species and 738 reac-
tions (https://intra.engr.ucr.edu/~carter/SAPRC/22/, last ac-
cess: 18 June 2024). RACM was developed based on the Re-
gional Acid Deposition Model (RADM), which is an induc-
tive mechanism for treating hydrocarbons with a fixed pa-
rameterization method and is carried out according to the
reaction rate and activity of different pollutants with qOH.
Compared to the other two mechanisms, RACM and RACM2
contain detailed chemical processes of radicals, biogenic
VOCs, and less reactive VOCs able to survive during long-
distance transport. A total of 119 reactive species and 363
reactions were included in RACM2, describing the oxidation
reactions of 21 types of primary VOCs in the system (Liu et
al., 2023a).

Among the 216 studies compiled, nearly half of them used
the CB mechanism for simulations, approximately a quarter
employed RACM and/or RADM, and only 15 studies uti-
lized SAPRC. Figure 7 compares the distribution of R and
NMB, grouped by different gas-phase mechanism. In terms
of R values, CB tends to perform slightly better than RACM
and/or RADM, with SAPRC showing the highest R me-
dian value (0.93) for hourly O3 but the lowest for 8 h max
O3 among the three mechanisms. Regarding NMB, SAPRC
tends to overestimate peak O3 values compared to the other
mechanisms, particularly for 1 h max O3, a trend observed in
previous studies (Qiao et al., 2019).

3.3 Recommended benchmarks for O3 MPE

Figure 8 illustrates the ranked distributions of various statis-
tical indicators, including R, IOA, NMB, NME, FB, and FE
for hourly O3, 1 h max O3, and 8 h max O3. The absolute
values of NMB and FB are presented to indicate deviations
from zero. In terms of R and IOA, the ranked distributions
for hourly O3 and 8 h max O3 are quite similar, withR values
ranging from around 0.72 at the 33rd percentile to 0.60 at the
67th percentile. The corresponding IOA values are slightly
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Figure 5. Quantile distribution of O3 R and O3 NMB values in different seasons.

Figure 6. Quantile distribution of O3 with respect to commonly used assessment indicators at different horizontal resolutions.

higher, ranging from ∼ 0.83 at the 33rd percentile to ∼ 0.73
at the 67th percentile. For 1 h max O3, the limited number of
data points (less than 20) resulted in an R value of 0.80 at
the 33rd percentile and 0.60 at the 67th percentile, while the
IOA distribution was not available due to missing data. For

NMB and NME, the results for 8 h max O3 show the low-
est values, indicating that models perform better in capturing
the 8 h max O3 concentrations. The 33rd percentile of ab-
solute NMB for 8 h max O3 is less than 10 %, and the 67th
percentile is below 20 %. In terms of FB and FE, the ranked
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Figure 7. Quantile distributions of R and NMB by gas-phase chemical mechanism.

distributions for 1 h max O3 are flatter compared to the other
two O3 types, likely due to the smaller number of available
data points. For both metrics, the 8 h max O3 exhibits lower
values than O3. At the 33rd percentile, the absolute FB (FE)
is less than 10 % (25 %) for 8 h max O3 and less than 20 %
(50 %) for O3. At the 67th percentile, the absolute FB (FE)
is 25 % (38 %) for 8 h max O3 and 34 % (65 %) for O3. In
addition, we provide a more detailed ranked distribution in
Table S8.

Following Emery et al. (2017) and Huang et al. (2021), we
propose recommended statistical indicators and correspond-
ing benchmarks for evaluating O3, as detailed in Table 1.
The goal values, corresponding to the threshold at the 33rd
percentile, represent the optimal model performance antici-
pated from current models. The criteria values, reflecting the
threshold at the 67th percentile, represent the performance
levels achieved by the majority of studies. Due to limited
data availability, the derivation of benchmarks for certain
metrics concerning 1 h max O3 remains uncertain. In such
cases, benchmarks for IOA andR for hourly O3 were directly
adopted due to minimal variations among different O3 types.
Similarly, benchmarks proposed for 8 h max O3 were applied
to 1 h max O3 for FB and FE, given their closer distributions.
Our findings indicate that benchmarks tend to be more strin-
gent for 8 h max O3 compared to for the other two types, with
the exception of IOA, where they remain the same. Based on
our results, a value of R greater than 0.70 and 0.55 would
meet the goal and criteria benchmarks, respectively, for 8 h
max O3. Correspondingly, the goal and criteria values for
NMB are 10 % and 20 %.

In contrast to Emery et al. (2017), we provide separate
benchmarks for O3, 8 h max O3, and 1 h max O3. Emery et
al. (2017) found rather similar results between hourly and
8 h max O3 in the US and so recommended a single set of
benchmarks for ozone. Out of the 216 studies analyzed, 15
studies evaluated at least two O3 types. The use of a cutoff for
evaluating O3 is extremely limited in China (only five studies
applied cutoffs), thereby precluding any specific recommen-
dation regarding cutoff values. In addition to the benchmarks
for NMB, NME, and R provided by Emery et al. (2017), we

have introduced benchmarks for IOA, FB, and FE, backed
by a sufficient number of data points. The few values marked
with an asterisk in Table 1 indicate that our benchmarks are
more stringent than the corresponding values in Emery et
al. (2017), implying that achieving our recommended 33rd
(or 67th) percentile may pose greater challenges.

Overall, however, our proposed benchmarks are more le-
nient than those of Emery et al. (2017), particularly in the
context of hourly O3. For NME, our suggested goal and crite-
ria for O3 stand at 30 % and 45 %, respectively, nearly double
the figures reported by Emery et al. (2017), who recommend
15 % for the goal and 25 % for the criteria. The criteria value
for R is an exception, where our proposed value (0.55 for 8 h
max O3 and 0.60 for O3) is higher than that (0.50) in Emery
et al. (2017).

3.4 Uncertainty analysis of O3 simulation using CMAQ

In order to further investigate the uncertainties in O3 con-
centrations simulated by CTMs, a base model simulation
was conducted using CMAQ (the most frequently used CTM
in China) for June 2021, a typical month with elevated
O3 in northern and eastern China. The uncertainties due
to six model inputs were quantified for this case: VOC
and NOx emissions in China, differentiation between an-
thropogenic and biogenic sources, O3 dry-deposition veloc-
ities, and boundary conditions (BCs). The evaluation of the
base model results indicates generally acceptable simulated
MDA8 O3 concentrations when compared to the observa-
tions. The results showed an overall MB of 6.1 µg m−3 and
an overall NMB of 5.2 % (Fig. 9). O3 underestimation is
observed over the BTH region, while overestimation occurs
over the Sichuan Basin. The values of NMB, NME, and R
meet the goal benchmark we proposed above.

As displayed in Fig. 10, the first-order sensitivity of
MDA8 O3 to the six model inputs exhibits substantial vari-
ations in terms of spatial distributions and magnitudes. A
higher sensitivity occurs in larger urban areas, while the
sensitivity is relatively low in rural areas. The sensitivity
to VOC emissions is always positive (i.e., higher VOCs
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Figure 8. Rank-ordered distributions of R, IOA, NMB, NME, FB, and FE for O3, 1 h max O3, and 8 h max O3 speciated components. The
number of data points and the 33rd, 50th, and 67th percentile values are also listed.

Table 1. Recommended benchmarks for evaluating simulated O3 by CTM application in China. NA: not available.

Metrics Benchmark O3 8 h max O3 1 h max O3 Emery et al. (2017)
level 1 h max O3 and

8 h max O3

R Goal > 0.70 > 0.70 > 0.80∗ > 0.75
Criteria > 0.60∗ > 0.55∗ > 0.60∗ > 0.50

NMB Goal <±15 % <±10 % <±20 % <±5 %
Criteria <±30 % <±20 % <±35 % <±15 %

NME Goal < 30 % < 20 % < 25 % < 15 %
Criteria < 45 % < 35 % < 35 % < 25 %

IOA Goal > 0.80 > 0.80 NA NA
Criteria > 0.70 > 0.70 NA NA

FB Goal <±20 % <±10 % < ±5 % NA
Criteria <±35 % <±30 % < ±10 % NA

FE Goal < 50 % < 25 % < 25 % NA
Criteria < 65 % < 40 % < 30 % NA

(1) See descriptions in the main text for bold values; (2) values with an asterisk indicate that our benchmarks are
stricter than the corresponding values in Emery et al. (2017).

lead to higher O3), whereas the sensitivity to NOx emis-
sions could be both positive and negative. High O3 sen-
sitivity to AVOC emissions is observed for the BTH, the
northern YRD, the PRD, and major metropolitan areas (e.g.,
Chengdu in Sichuan Province, Xi’an in Shaanxi Province)

due to NOx-rich and VOC-limited urban conditions. Con-
versely, anthropogenic NOx emissions resulted in negative
O3 sensitivity in the aforementioned regions and positive
sensitivity in others where rural conditions are more VOC-
rich and NOx-limited. The sensitivity to biogenic precur-
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Figure 9. Spatial distributions of (a) MDA8 O3 concentrations (µg m−3), (b) total uncertainties (µg m−3), and (c) total uncertainty in percent
(%). Results are averaged for June 2021. Publisher’s remark: please note that the above figure contains disputed territories.

Figure 10. Contributions to uncertainty in MDA8 O3 simulation. Contribution of (a) AVOCs, (b) BVOCs, (c) ANOx , (d) SNOx , (e) O3
BCs, and (f) dry deposition in µg m−3. Results are averages over all days in June 2021 and represent 1σ . Publisher’s remark: please note that
the above figure contains disputed territories.

sor emissions (BVOCs and SNOx) was much lower com-
pared to their anthropogenic counterparts. The sensitivity to
O3 BCs predominantly extends towards the northwest (up to
50 µg m−3), where O3 precursor emissions are low. The sen-
sitivity to O3 dry-deposition velocity exhibits a uniformly
negative distribution (higher deposition rates lead to lower
ozone), with higher values in more vegetated areas and an
average of −13.7 µg m−3.

When the individual first-order sensitivity coefficient is
multiplied by the corresponding 1σ uncertainty (Table S7),
the contributions to the uncertainty in O3 predictions can
be obtained (Fig. 10). Summing up all these uncertainties
yields the total uncertainty (Fig. 9b). Large ozone uncertain-

ties (> 20 µg m−3) were observed over the BTH, the central
YRD region, and major metropolitan areas (e.g., the PRD,
Chengdu in Sichuan Province). Regions with high uncer-
tainties in O3 predictions generally align with regions with
poorer model performance. In the BTH, YRD, and PRD, the
total ozone uncertainty due to the six model inputs is between
11.7–31.8, 7.0–34.6, and 5.0–19.0 µg m−3, respectively, cor-
responding to a relative percentage of O3 concentration of
9.2 %–18.1 %, 7.9 %–25.8 %, and 7.6 %–14.6 %. It should be
noted that our uncertainty estimates represent conservative
estimates because the effects of uncertainties in the mete-
orological inputs and the uncertainties associated with the
O3 chemistry are not included, the latter of which have been
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shown to have a comparable contribution to the total con-
tributions from emissions, dry deposition, and O3 BC in the
Dallas–Fort Worth region in the US (Dunker et al., 2020).

Among the six model inputs, AVOC emissions make the
largest contributions (exceeding 15 µg m−3) to the total un-
certainty in regions displaying high O3 sensitivity, such as
the BTH, the northern YRD, the PRD, and several metropoli-
tan areas. The large uncertainties, stemming from both the
high first-order sensitivities (Fig. S1) and a relatively high
uncertainty factor (1.97), suggest that, in these regions, un-
certainties associated with AVOC emission estimates would
result in more significant biases in simulated O3 concen-
trations compared to in other areas. O3 uncertainties due
to BVOC emissions, ranging between 0.1–10.4 µg m−3, are
mainly located in southern China, where BVOC emissions
are high. A similar spatial pattern is observed for uncertain-
ties in ANOx emissions, although its contribution is larger
(0.5–11.9 µg m−3). While the first-order O3 sensitivity to
SNOx emissions is minimal (Fig. S1), the contribution to
O3 uncertainty from SNOx emissions is noteworthy (0.5–
9.7 µg m−3), given a large uncertainty factor of 2 (Table S7).
Uncertainty in O3 BCs is relatively less important, except
in the northwest, where it represents the largest contribut-
ing factor. Dry deposition serves as an important O3 sink.
The uncertainty contribution of O3 dry-deposition velocities
(0.3–10.4 µg m−3) is comparable to that of ANOx emissions
but has a more evenly distributed spatial impact.

Figure 11 compares the observed MDA8 O3 to the model
results, including their ±1σ uncertainty range for five major
cities: Beijing, Shanghai, Guangzhou, Chengdu, and Xi’an.
In Shanghai, the majority of the observed O3 falls within the
±1σ uncertainty range. However, in Beijing; Chengdu; and,
to a lesser extent, in Guangzhou, the model tends to over-
predict lower O3 observations. In Xi’an, the model fails to
capture the exceptionally high O3 concentrations (MDA8 O3
> 250 µg m−3) on 6 and 7 June. Expanding the uncertainty
limits to a ±2σ range may encompass some of the lower
O3 observations, but the current uncertainty estimates do not
fully account for all the discrepancies between model re-
sults and observations. This discrepancy could be attributed
to the coarse horizontal resolution (36 km) used in this study,
which may not adequately resolve the impact of local emis-
sion sources. Furthermore, as mentioned earlier, uncertain-
ties related to O3 chemistry and meteorological inputs were
not accounted for and should be quantified in future work.

The relative contributions to the total uncertainty are also
shown in Fig. 11. Across all five cities, uncertainties in the
AVOC emissions contribute the most (43 %–65 %), while
the relative importance of other model inputs differs by lo-
cation. For example, O3 BCs represent the second largest
uncertainty source in Beijing (accounting for 18 %) but are
negligible in Guangzhou and Chengdu. In Shanghai and
Guangzhou, uncertainties in ANOx emissions (10 %–17 %)
become the second largest contributor. Uncertainties asso-
ciated with BVOC emissions are minimal in Beijing and

Shanghai but are noteworthy (7 %–8 %) in Guangzhou and
Chengdu. O3 deposition uncertainty contributes to 8 %–30 %
of the total uncertainty, with a higher contribution for cities
located in the west.

3.5 Recommendations for future modeling practices

The purpose of this and our previous related papers (Huang
et al., 2021; Zhai et al., 2024) is to establish a guideline that
offers modelers in China a contextual reference for evaluat-
ing their statistical performance metrics against a historical
framework of published modeling results. It is crucial to rec-
ognize that all models inherently possess a certain degree of
error, which may arise from factors such as discretization,
approximations, and parameterizations. Merely stating that
a model exhibits a 20 % bias has no real value unless con-
textualized within the framework of historical performance.
Without such context, it remains unclear whether this bias
aligns with, surpasses, or falls short of commonly achieved
standards or optimal expectations. Statistical results outside
the proposed benchmarks indicate poor model performance
that should be improved upon so that more reliance can be
placed on the model to properly characterize air quality and
predict responses to changes in model inputs. Based on the
above analysis, we list several recommendations for future
modeling practices that might help improve model perfor-
mance.

1. Meteorology is an essential input to CTMs. Many stud-
ies have highlighted the strong responses of ozone to
various meteorological variables (Coleman et al., 2013;
Lu et al., 2019), including transport patterns, temper-
ature, planetary boundary height, and relative humid-
ity. Consequently, it is imperative to conduct a thorough
validation of meteorological simulations prior to initi-
ating ozone simulations. The influence of uncertainties
associated with simulated meteorological variables on
ozone predictions necessitates further exploration.

2. Modelers are encouraged to select the highest feasible
horizontal resolution that matches the available emis-
sion data horizontal resolution. Our analysis illustrates
that finer horizontal resolutions do not invariably lead to
enhanced model performance, particularly when the in-
put data do not possess a correspondingly high horizon-
tal resolution. Thus, it is advisable for modelers to en-
gage in sensitivity testing to ascertain the optimal equi-
librium between horizontal resolution and data quality.

3. The uncertainty analysis reveals a substantial contri-
bution of AVOC emissions throughout China. There-
fore, it is essential to intensify efforts aimed at en-
hancing the accuracy of AVOC emissions, focusing on
both magnitude and speciation profiles. Additionally,
the chemical mechanisms within CTMs should be rou-
tinely updated to accommodate emerging species, such
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Figure 11. Time series of simulated and observed MDA8O3 for five cities in June 2021. The uncertainty limit of MDA8 O3 is±1σ . The pie
chart shows the contribution of each factor to the total uncertainty of the predicted average MDA8 O3 in June 2021.

as volatile chemical products (VCPs; Yarwood and Tu-
ite, 2024).

4. The majority of model applications reviewed in this
study apply a spin-up period of less than or equal to
10 d. However, studies (Hogrefe et al., 2017; Karam-
chandani et al., 2017) have shown that a commonly used
spin-up period of 10 d (or a week) might not be suf-
ficient to reduce the effects of initial conditions to less
than 1 %. Thus, a longer spin-up period, preferably 20 d,
depending on the domain size, is recommended to miti-
gate the influence of initial conditions.

5. Given the considerable effect of boundary conditions on
simulated ozone uncertainties – especially in areas char-
acterized by low precursor emissions – modelers should
carefully select and validate boundary conditions. This
may involve using multiple global models or observa-
tional data to define more accurate initial and boundary
conditions.

6. In the context of ozone attainment demonstrations,
modelers should place a particular emphasis on the
model’s performance in relation to high and peak ozone
values. Merely achieving satisfactory average ozone
concentrations may not suffice; it is essential to ensure
robust performance in capturing peak ozone levels as
well.

4 Conclusions

Chemical transport models are increasingly being employed
to tackle the severe ozone pollution issues in China. This
study involved the compilation and analysis of 216 peer-
reviewed studies focused on the use of CTMs to simulate
O3 levels in China. Essential model configurations such as
study region, simulation season, horizontal resolution, gas-
phase mechanism, and quantitative model performance out-
comes were systematically documented. The study presented
quantile distributions of common statistical metrics found in
the literature and discussed the influence of different model
configurations on performance outcomes. Furthermore, we
proposed benchmarks for six widely used MPE metrics (R,
IOA, NMB, NME, FB, and FE) based on the concepts of
goals and standards to offer guidance to modelers for a more
consistent and contextual evaluation of models. Additionally,
we utilized CMAQ-DDM to assess the uncertainties in pre-
dicted O3 concentrations resulting from uncertainties in six
model inputs. The findings revealed significant variations in
the spatial distributions and magnitudes of ozone sensitivity
to different model inputs, with the most substantial contribu-
tions to total uncertainty originating from AVOC emissions
in regions with high ozone sensitivity.

The proposed benchmarks for assessing simulated O3 con-
centrations, in conjunction with previous studies on PM2.5
(Huang et al., 2021) and other criteria air pollutants (Zhai et
al., 2024), represent a comprehensive and systematic effort
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to establish a model performance framework for CTM ap-
plications in China. These outcomes not only offer valuable
guidance to the growing modeling community in China but
also support the community’s endeavors in utilizing CTMs to
address various research challenges and to enhance air qual-
ity management.
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