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Abstract. Intensive irrigation is known to alleviate crop water stress and alter regional climate, which can in
turn influence air quality, with ramifications for human health and food security. However, the interplay between
irrigation, climate and air pollution especially in the simultaneously intensively irrigated and heavily polluted
regions in China has rarely been studied. Here we incorporated a dynamic irrigation scheme into a regional
climate–air quality coupled model to examine the potential impacts of irrigation on ozone (O3) and fine par-
ticulate matter (PM2.5) in China. Results show that irrigation increases PM2.5 by 12 µg m−3 (28 %) but reduces
O3 concentration by 3–4 ppb (6 %–8 %). Among PM2.5, nitrate and ammonium aerosols rise by 70 % and 40 %,
respectively, upon introducing irrigation, with secondary formation contributing to ∼ 60 % and 10 %–30 %, re-
spectively. High humidity and low temperature promote the formation of ammonium nitrate aerosols. To mitigate
these adverse effects on PM2.5 air quality, we found that a 20 % reduction in NH3 and NOx emissions is more
effective compared with individual emission reductions, while the enhancement in O3 due to the NOx reduction
can be completely offset by irrigation itself. Our study highlights the potential benefits of irrigation regarding O3
pollution but potential problems regarding PM2.5 pollution under currently prevalent irrigation modes and an-
thropogenic emission scenarios, emphasizing the need for an integrated approach to balance water conservation,
air pollution, climate change mitigation and food security in the face of development needs.
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1 Introduction

Air pollution has become a global environmental concern
because of its detrimental effects on human health (e.g.,
Lelieveld et al., 2015), agricultural production (e.g., Tai et
al., 2014), ecosystem health (Zhou et al., 2018; Zhu et al.,
2022) and climate (IPCC, 2021), especially in developing
countries undergoing rapid urbanization and industrialization
such as India and China. Among the various pollutants, fine
particulate matter with diameters < 2.5 µm (PM2.5) and sur-
face ozone (O3) are closely associated with increased mor-
tality risks in China (Liang et al., 2019; Wang et al., 2016).
The annual PM2.5 concentration in the North China Plain
(NCP) exhibited a steady increase from 1970 to 2013 based
on visibility data (An et al., 2019), with the Beijing–Tianjin–
Hebei region recording a peak level of 106 µg m−3 in 2013
(Wang et al., 2020), which was three times the annual stan-
dard (35 µg m−3) of the Chinese Ambient Air Quality Stan-
dards Grade II. Although it has declined by roughly 40 %
following the implementation of the Air Pollution Preven-
tion and Control Action Plan since 2013 (An et al., 2019;
Wang et al., 2020), more than 65 % of the Chinese peo-
ple are still exposed to PM2.5 above the standard of the
Chinese Ambient Air Quality Standards Grade II (Zhao et
al., 2021). Meanwhile, the warm-season (May–September)
O3 showed positive trends of 0.16 and 0.42 ppb yr−1 dur-
ing 1981–2019 in the NCP and Sichuan Basin (SCB), re-
spectively (Mao et al., 2024). In recent years, the summer-
time maximum daily 8 h average O3 concentration (MDA8)
in China climbed continuously during 2013–2019 (Wang et
al., 2022c; Lu et al., 2018). The rising trend is particularly
evident in the NCP (3.3 ppb yr−1; Li et al., 2020), which was
mainly caused by the weakened titration by nitrogen oxides
(NOx ≡NO+NO2) and aerosol uptake of hydroperoxyl rad-
icals under the context of huge emission reductions (Li et al.,
2019; Wang et al., 2022b).

PM2.5 consists of primary aerosols such as mineral dust
and black carbon (BC), as well as secondary aerosols
from gaseous precursors including secondary organic aerosol
(SOA) and secondary inorganic aerosol (SIA, e.g., nitrate,
sulfate and ammonium), while surface O3 is mainly produced
by its precursors including NOx , volatile organic compounds
(VOCs) and carbon monoxide (CO) through photochemical
oxidation in the presence of sunlight. There is a complicated
nonlinear response of O3 and PM2.5 to emission reductions
and meteorological conditions. During the COVID-19 lock-
downs when the large reduction in NOx emission enhanced
atmospheric oxidative capacity, the level of secondary PM2.5
and surface O3 rose in megacity clusters of China, includ-
ing the NCP and SCB, although the lockdown effectively re-
duced primary PM2.5 concentration (Huang et al., 2021; Shi
et al., 2021).

Le et al. (2020) and Wang et al. (2022a) argued that the
contribution of meteorological factors to the enhancement of
O3 and PM2.5 may outweigh the impact of NOx reduction

in eastern China during the lockdown. Furthermore, multiple
studies indicate that meteorological conditions make up ap-
proximately 10 %–70 % of PM2.5 variability and 49 %–84 %
of summertime O3 increases in China, outweighing the con-
tribution of anthropogenic emissions (Dang et al., 2021; Yin
et al., 2021; Leung et al., 2018). Meteorological factors influ-
ence O3 and PM2.5 through various pathways. For instance,
low planetary boundary layer height (PBLH) and wind speed
can trap all pollutants near the surface, and high relative hu-
midity (RH) promotes SIA formation through heterogeneous
reactions and aerosol hygroscopic growth, although heavy
precipitation causes wet scavenging that removes aerosols
and other gaseous pollutants (Chen et al., 2020; Zhang and
Cao, 2015; Tie et al., 2017). Moreover, high temperature can
enhance biogenic VOC emissions and accelerate SO2 oxi-
dation and other photochemical reactions, thereby increasing
sulfate, O3 and SOA. However, it usually has the opposite ef-
fect on nitrate, shifting it from the aerosol to gas phase (Tai et
al., 2010; Shi et al., 2020). High temperatures are also usu-
ally associated with subtropical highs, which can generate
stagnation events that tend to trap air pollutants and worsen
air quality (Tai et al., 2010, 2012). Therefore, meteorologi-
cal conditions are crucial for determining regional air quality
through both physical and chemical processes.

Large-scale irrigation in agriculture has been shown to
modify boundary meteorology substantially via enhancing
evapotranspiration directly and provoking land–atmosphere
feedback indirectly (McDermid et al., 2023). Specifically,
evapotranspiration induced by irrigation can reduce surface
air temperature, increase RH and cloud cover, and contribute
to cloud formation. These effects, in turn, can stabilize and
lower the atmospheric boundary layer (e.g., Cook et al.,
2015; Qian et al., 2020). Yuan et al. (2023) demonstrated that
through these processes flood and sprinkler irrigation in the
NCP can enhance convective precipitation by raising con-
vective available potential energy (CAPE) and precipitable
water, whereas drip irrigation may cause a distinct hydrome-
teorological feedback and further suppress summertime pre-
cipitation slightly. These meteorological changes induced by
irrigation may then affect O3 and PM2.5 pollution, but only
very few studies thus far have examined the relationships be-
tween irrigation, climate and air pollution. Jacobson (1999)
first found that initializing a coupled meteorology–chemistry
model with high soil moisture lowers the PBLH and in-
creases surface air pollutants including O3 in Los Angeles
(CA, USA). By adding irrigation water into the soil directly
to mimic irrigation, Jacobson (2008) showed that the PM2.5
and O3 could increase by approximately 2 % and 0.1 %, re-
spectively, in California. Li et al. (2016) incorporated a dy-
namic irrigation method into the Weather Research and Fore-
casting with Chemistry (WRF-Chem) model and found that
irrigation enhanced the concentrations of surface primary
pollutants such as carbon monoxide (CO) and VOCs but re-
duced O3 slightly over irrigated areas in the Central Valley of
California. The enhanced divergence over irrigated areas fur-
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ther transported pollutants from irrigated regions to nearby
non-irrigated areas, leading to relatively higher O3 concen-
trations in the surrounding areas. In addition, irrigation may
affect natural emissions including soil NOx and soil ammo-
nia (NH3) by altering soil moisture and temperature, which
are essential precursors of PM2.5 and O3 (Shen et al., 2023;
Song et al., 2021). Thus, large-scale irrigation may exert im-
portant but under-researched roles in modulating regional air
quality.

China currently possesses the largest irrigated cropland
area in the world, whereby the irrigated area expanded dra-
matically from ∼ 16 to ∼ 68 Mha during 1949–2017, con-
suming over 70 % of the fresh water (Han et al., 2020b).
The rapid irrigation expansion has caused water scarcity and
depletion of groundwater storage, threatening food security
and natural ecosystems (Currell et al., 2012). The NCP and
SCB are the two regions with intensively irrigated areas, high
food production and severe air pollution in China. Consider-
able research efforts have been devoted to the effects of ir-
rigation on crop yields based on crop, hydrological or land
surface models, and on hydrometeorology based on global
or regional climate models (McDermid et al., 2023), while
relatively little attention has been paid to the nonlinear in-
teractions between irrigation, meteorology and air pollution.
Moreover, a deeper understanding of such complicated in-
teractions is essential to the co-formulation of effective air
quality and agricultural management strategies; this is not
only because irrigation can affect air quality, but also because
high agricultural production contributes significant amounts
of NH3 to the atmosphere, which is an important precursor
of PM2.5 in these two regions. To address these questions,
we incorporated a dynamic irrigation scheme into a coupled
climate–air quality model, the Weather Research and Fore-
casting (WRF) meteorological model (v3.9.1.1) coupled with
the GEOS-Chem chemical transport model (v12.7.2) (WRF-
GC v2.0; Feng et al., 2021). This study represents the first
comprehensive assessment of the possible impacts of irriga-
tion on O3 and PM2.5 in China and proposes effective emis-
sion control strategies to counteract the corresponding ad-
verse effects, which would be helpful for policymakers and
farmers to evaluate the co-benefits and tradeoffs between
agricultural and air quality management practices, especially
with the rising application of water-saving irrigation systems
in these intensively irrigated areas.

2 Data and methodology

2.1 General model configuration

The WRF-GC model is a newly developed regional climate–
atmosphere chemistry model (Lin et al., 2020; Feng et al.,
2021), in which the GEOS-Chem chemical transport model
is coupled to the WRF model, a mesoscale weather model for
atmospheric research and weather forecasting (Skamarock
et al., 2008). Currently, the WRF-GC v2.0 simulates online

interactions and feedbacks between meteorology and chem-
istry, and it considers a vast array of physical and chemi-
cal processes including emission, transport, deposition and
chemistry, with multiple parameterization options. It enables
users to examine land–atmosphere physical and chemical in-
teractions at high spatial resolutions. The standard chem-
ical mechanism includes detailed Ox–NOx–VOC–ozone–
halogen–aerosol chemistry in the troposphere as inherited
from the GEOS-Chem model. Some aerosol species such as
SIA, SOA, BC and primary organic carbon (POC) are treated
as bulk masses by assuming a lognormal size distribution,
while dust and sea salt aerosols are divided into four and two
size bins, respectively. The thermodynamical equilibrium of
SIA is simulated by the ISORROPIA II module (Pye et al.,
2009). The “simple SOA” scheme without detailed chemi-
cal processes was used to simulate SOA yields (Hodzic and
Jimenez, 2011; Kim et al., 2015), whereby SOA formation
is directly related to emissions at fixed yields and shows no
dependence on other factors such as temperature and NOx

concentration. For a detailed description and evaluation of
WRF-GC, one can be referred to Lin et al. (2020) and Feng
et al. (2021), who proved that WRF-GC demonstrates satis-
factory performance against observations regarding the mag-
nitudes and spatial patterns of air pollutants, cloud properties
and meteorological fields over China.

Figure 1a shows our model domain, which covers the in-
tensively irrigated areas including the NCP and SCB at a hor-
izontal resolution of 27 km. Model vertical levels are divided
into 50 layers from the surface to 10 hPa. Anthropogenic
emissions including BC, POC, CO, NH3 and VOCs are de-
rived from the MIX emission inventory for Asia (Li et al.,
2017a), overwritten by monthly Multi-resolution Emission
Inventory for China (MEIC) version 1.3 of 2017 at a res-
olution of 0.25° over China (http://meicmodel.org.cn, last
access: 1 May 2024; Li et al., 2017b; Zheng et al., 2018).
MEIC accounts for emissions from five sectors: power plant,
residential activities, transportation, industry and agriculture;
data are available from 2008 to 2017. Monthly biomass burn-
ing emissions are taken from the Global Emissions Database
version 4 (GFED4; Randerson et al., 2018). Biogenic emis-
sions, soil NOx and dust emissions are calculated online by
the Model of Emissions of Gases and Aerosols from Nature
version 2.1 (MEGAN2.1; Guenther et al., 2012), Berkeley–
Dalhousie Soil NOx Parameterization (BDSNP; Hudman et
al., 2012), and Dust Entrainment And Deposition (DEAD;
Zender et al., 2003), respectively, in the Harmonized Emis-
sions Component (HEMCO) module. The initial and bound-
ary meteorological conditions are provided by ERA5 reanal-
ysis data with a spatial resolution of 0.25° and 6 h temporal
interval (https://cds.climate.copernicus.eu/datasets, last ac-
cess: 1 May 2024). Initial and boundary conditions of chem-
ical species were obtained from the GEOS-Chem Classic
global model outputs, which use the same chemical mech-
anisms and emissions as WRF-GC but at 2× 2.5° resolution
and with a 1-year spin-up time. The physical schemes used
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Figure 1. Spatial distribution of (a) irrigated area fraction and (b) land use and land cover as WRF-GC model input. Intensively irrigated
areas such as the North China Plain (NCP) and Sichuan Basin (SCB) are shown with rectangles. Two cities in the irrigated areas, Puyang and
Chengdu, have been selected for further analysis. Some relevant provinces, including Hebei, Henan, Gansu, Shaanxi and Inner Mongolia,
are marked in blue font.

Table 1. Model configuration.

Physical process Schemes

Microphysics Morrison two-moment scheme (Morrison et al., 2009)
Cumulus parameterization New Tiedtke (Tiedtke, 1989; Zhang et al., 2011)
Shortwave radiation RRTMG (Iacono et al., 2008)
Longwave radiation RRTMG (Iacono et al., 2008)
Land surface Noah-MP (Niu et al., 2011)
Planetary boundary layer Mellor-Yamada Nakanishi and Niino Level 2.5 (Nakanishi and Niino, 2006)

here are listed in Table 1, which have been tested and verified
systematically by Feng et al. (2021).

2.2 Irrigation scheme

Previous work has documented the parameterization of irri-
gation in numerical models, which can be characterized by
three major methods. The first approach involves maintain-
ing the soil moisture at different percentages of soil field ca-
pacity or saturation point during the growing season (e.g.,
Lobell et al., 2008). This method keeps a high soil moisture,
which can cause a cool bias and is deemed unrealistic (Kana-
maru and Kanamitsu, 2008). The second one is to derive a
time-invariant irrigation rate based on census irrigation wa-
ter use (IWU) data (e.g., Sacks et al., 2009; Liu et al., 2021b),
but it ignores the feedbacks from weather and climate on ir-
rigation itself. The last one is a dynamic irrigation method
that mimics real irrigation processes regarding irrigation wa-
ter amount and ways of water application (e.g., Leng et al.,
2017; Yuan et al., 2023). It has been suggested that the dy-
namic irrigation method can improve simulated surface en-
ergy fluxes, temperature and humidity greatly, particularly at
fine resolutions (Sorooshian et al., 2014; Qian et al., 2020).
Therefore, we followed He et al. (2023) and implemented the

dynamic irrigation schemes into the Noah land surface model
with multiparameterization (Noah-MP; Niu et al., 2011) em-
bedded within WRF-GC.

Our previous work has investigated the climate effects of
different irrigation methods, i.e., flood, sprinkler and drip
irrigation, over the NCP based on the dynamic irrigation
schemes using WRF alone, and we found that flood and
sprinkler irrigation have comparable effects on air temper-
ature and precipitation, except that flood irrigation is associ-
ated with a larger irrigation amount and surface runoff (Yuan
et al., 2023). Hence, following previous studies, we used the
sprinkler irrigation method to represent present-day irriga-
tion in China to avoid the excess water use in the model
(e.g., Liu et al., 2021a; Yang et al., 2015). The irrigation wa-
ter amount at time t (It , mm) is the water availability between
field capacity and current soil moisture, weighted by the irri-
gated area fraction (IF) and green vegetation fraction (GVF),
when the relative soil moisture is below the management al-
lowable deficit (MAD), following:

It = (SMfc−SMt )×DZS× 1000× IF×GVF

if
SM−SMwt

SMfc−SMwt
< MAD, (1)
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where SMfc and SMwt are soil moisture at soil field capacity
and wilting point, respectively; SMt is soil moisture at cur-
rent time (t); and DZS denotes root zone depth (m). MAD
is set at 60 %, which is in line with the setting of Yuan et
al. (2023). In sprinkler irrigation, water is applied over the
canopy as precipitation. Under this circumstance, part of the
water is intercepted by the canopy and evaporates to the at-
mosphere before reaching the ground. Irrigation rate (IR,
mm) at each time step is limited to the minimum of infil-
tration (i, mm), irrigation amount and the rate of 5 mm h−1

(SIrate) used in Lawston et al. (2015):

IR=min(i, I,SIrate×1t), (2)

where 1t is the time step. The evaporative loss (E, %) from
spraying during application is parameterized as a function of
wind speed (u, m s−1), saturation vapor pressure (es, hPa),
actual vapor pressure (e, hPa) and surface air temperature
(Ta, °C), following Bavi et al. (2009):

E = 4.375exp(0.106u) (es− e)−0.092T −0.102
a , Ta > 0, (3)

E = 4.337exp(0.077u) (es− e)−0.098, Ta < 0. (4)

In the next time step (t+1t), the remaining irrigation amount
is

It+1t = It − IR. (5)

Irrigation would not be stopped until It is completely ap-
plied to the soil surface (i.e., It = 0). Subsequently, the
model would check if irrigation can be triggered again in
the next time step when the previous irrigation event has
finished. Five conditions need to be met before scheduling
irrigation during growing season: (1) IF > 10 %, (2) pre-
cipitation < 1 mm h−1, (3) leaf area index (LAI) > 0.3,
(4) SM−SMwt

SMfc−SMwt
< MAD, and (5) land type is cropland.

To represent irrigation more realistically, we used the ac-
tual 500 m irrigation map of 2017 and the National Land
Cover Dataset of China (NLCD) in 2015 (Fig. 1), which
were available from Zhang et al. (2022a) and the National Ti-
betan Plateau Data Center (http://data.tpdc.ac.cn, last access:
1 May 2024), respectively. The irrigated cropland map was
generated by integrating statistics, satellite remote sensing
and existing irrigation maps, and it has an overall accuracy
of 73 %–82 % against 5648 samples collected from ground-
truth images, surpassing the accuracy of other existing irri-
gation data. The biggest advantage is that it represents the
area that is actually irrigated in a year. The NLCD land cover
dataset with 1 km resolution was produced based on Land-
sat Thematic Mapper (TM) or Enhanced TM Plus (ETM+)
digital images via a human–computer interaction approach
and has more than 90 % overall accuracy based on field sur-
veys (Liu et al., 2014). The land cover was then converted
to 24-category US Geological Survey (USGS) land cover
types as model input. Since the model default LAI and GVF
are outdated, we updated them with 8 d composite LAI and

GVF from the Global Land Surface Satellite (GLASS) prod-
uct at 0.05° (http://www.glass.umd.edu/Download.html, last
access: 1 May 2024; Liang et al., 2021), which were pro-
cessed based on the Moderate-resolution Imaging Spectrom-
eter (MODIS) satellite products. It has been shown that these
products have the best accuracy and quality compared to
other products such as GEOV1 (the first version of Geoland2
satellite products), by comparing with ground observations
of LAI and GVF (Li et al., 2018; Jia et al., 2018). They were
linearly interpolated from 8 d time intervals to daily products
for model input.

2.3 Model experiments

Before examining the irrigation effects, we conducted a stan-
dard experiment with grid nudging (denoted CTL, control) to
show the ability of the default WRF-GC model to simulate
atmospheric physical and chemical variables. Subsequently,
two sensitive experiments, one with the irrigation scheme de-
scribed above (IRR) and one without irrigation (NOIRR),
were designed and conducted. To clearly show the causal-
ity of irrigation and air quality, the climate effects of aerosols
(i.e., aerosol-cloud interaction and aerosol-radiation interac-
tion) and nudging were switched off in the sensitivity exper-
iments (Table S1 in the Supplement). Therefore, the differ-
ences between IRR and NOIRR directly indicate how irriga-
tion modifies meteorology and thus affects emission, trans-
port, chemistry and deposition of air pollutants, and the ex-
perimental design decidedly did not address how changes in
stimulated atmospheric species that are climate forcers (e.g.,
aerosols) would further modulate climate in the same model
experiment.

Since we found that irrigation promotes nitrate forma-
tion and further worsens PM2.5 pollution through the above
experiments, we then performed four additional sensitivity
experiments to identify suitable mitigation strategies. The
model settings of the four experiments including the irriga-
tion scheme, physical and chemical schemes, and spatiotem-
poral resolutions, as well as natural and anthropogenic emis-
sions, are the same as those of IRR except that the anthro-
pogenic emissions of NOx and NH3 were scaled with dif-
ferent ratios to mimic different emission reduction strategies
(Table S1): (1) 20 % combined reduction in NOx and NH3
emissions (Emiss_20c), (2) 50 % combined reduction in NH3
and NOx emissions (Emiss_50c), (3) 50 % reduction only
in NOx emissions (Emiss_50NOx), and (4) 50 % reduction
only in NH3 emissions (Emiss_50NH3). These strategies lie
in the fact that previous studies have highlighted the effec-
tiveness of the reductions in NH3 and NOx emissions in re-
ducing PM2.5 pollution in China (Zhai et al., 2021; Liu et
al., 2021c). In addition, considering the demanding compu-
tational resources required for WRF-GC, we had to choose
a study year with relatively normal climate conditions to re-
duce the possible influences of interannual climate variabil-
ity. Due to the limited availability of measurements of air pol-
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lutants in China, which are mostly accessible from 2014 on-
wards, and the occurrence of the COVID-19 pandemic dur-
ing 2019–2022, we ultimately selected the summer of 2017,
which has an absolute Standardized Precipitation Evapotran-
spiration Index (SPEI) below 0.5 in the NCP and SCB (see
summertime SPEI from 2014 to 2018 in Fig. S1). Indeed, the
simulated effects of irrigation on regional climate are similar
to the longer-term simulations in our previous work (Yuan et
al., 2023), reflecting small effects of interannual variability
of climate on our model results. All seven simulations were
conducted from 1 May to 1 September 2017, with the first
month used as model spin-up time. Only the results for the
summer of 2017 were analyzed.

2.4 Observations

The monthly land surface temperature (LST) data with
a spatial resolution of 0.05° from MODIS aboard Aqua
and Terra (https://ladsweb.modaps.eosdis.nasa.gov/, last ac-
cess: 1 May 2024) were used for model validation. The
soil moisture output from the Global Land Data Assimi-
lation System (GLDAS) Noah land surface model (https:
//search.earthdata.nasa.gov/search?q=GLDAS, last access:
19 November 2024), which assimilates satellite- and ground-
based observations using advanced data assimilation ap-
proaches, was also utilized to evaluate model performance.
This dataset has a spatial resolution of 0.25° and a tem-
poral resolution of 1 month. Daily air temperature (T2),
dew point temperature and wind speed recorded by weather
stations were derived from the National Oceanic and At-
mospheric Administration (NOAA) National Climatic Data
Center (NCDC) (ftp://ftp.ncdc.noaa.gov/pub/data/gsod/, last
access: 1 May 2024). The hourly concentrations of surface
air pollutants including O3 and PM2.5 monitored in sites dur-
ing 2017 were collected from the Chinese Ministry of Ecol-
ogy and Environment (MEE) (archived in https://quotsoft.
net/air/, last access: 1 May 2024). Here we chose 1334 mon-
itoring sites with valid values over 90 % falling within the
model domain in the summer of 2017 to evaluate the model
results. The monthly SPEI with 3-month timescale for the pe-
riod 2014–2018 at a spatial resolution of 0.5° considered in
this study was provided by the SPEIbase (https://digital.csic.
es/handle/10261/332007, last access: 1 May 2024), which
has been widely used to indicate drought characteristics. It
was generated through monthly gridded potential evapotran-
spiration and precipitation from Climatic Research Unit of
the University of East Anglia (Beguería et al., 2010), and a
value ranging from −0.5 to 0.5 is characterized as normal
climate conditions.

Table 2. Daily mean surface temperature (T2), fine particulate mat-
ter (PM2.5) and afternoon ozone (O3, 13:00–17:00 BJT) from ob-
servations and the control (CTL) experiment over the North China
Plain (NCP) and Sichuan Basin (SCB) averaged over the summer
of 2017.

NCP SCB

T2 (°C) Observation 25.6 24.3
CTL 27.7 26.3

Afternoon O3 (ppb) Observation 78.9 61.8
CTL 78.0 81.8

PM2.5 (µg m−3) Observation 41.2 25.4
CTL 42.6 27.4

3 Results

3.1 Model evaluation

Figure 2 compares the simulated seasonal mean T2, PM2.5
and afternoon O3 from the CTL experiment against surface
observations during summer. The observed air temperature is
around 28–30 °C in southern China and decreases to∼ 20 °C
in the north. The lowest air temperature is observed in west-
ern China because of the high altitude of the Tibetan Plateau.
The WRF-GC model reproduces the spatial pattern and cap-
tures the warmer NCP and SCB, with the spatial correlation
of 0.85 and root-mean-square error (RMSE) of 2.9 °C. How-
ever, the regional average temperature from the model is 27.7
and 26.3 °C in the NCP and SCB, respectively, about 2 °C
larger than the corresponding observations (Table 2). This
warm bias has been reported in many studies and can be re-
duced by including irrigation in the model processes (Yang
et al., 2015; Qian et al., 2020).

We thus compared the simulated LST and soil moisture
from IRR and NOIRR with MODIS LST and surface soil
moisture from GLDAS, respectively, to quantify the abil-
ity of irrigation processes to reduce model biases (Fig. 3).
The large positive differences in LST between MODIS and
NOIRR indicate that the standard WRF-GC model (i.e.,
without irrigation) overestimates the LST greatly with the bi-
ases more than 2 °C in northeast China, central China, south-
west China and parts of southern China (Fig. 3a). When
irrigation is introduced into the model, such warm biases
almost disappear in the intensively irrigated areas includ-
ing Northeast China, Inner Mongolia, Ningxia, Shaanxi, the
NCP and the SCB (Fig. 3b). Regarding soil moisture, NOIRR
underestimates it by more than 1 m3 m−3 in the SCB and
0.06 m3 m−3 in the southern NCP (Fig. 3d). With irrigation,
IRR narrows the negative biases by more than half in the
SCB and almost cancels out the negative biases in the south-
ern NCP, despite the slight increase in positive biases in the
northern NCP (Fig. 3e). The largest improvements for simu-
lated LST and soil moisture primarily occur in the southern
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Figure 2. Spatial distribution of seasonal average (a–b) air temperature at 2 m (T2, °C), (c–d) surface afternoon (13:00–17:00 BJT, Beijing
time) ozone (O3, ppb) and (e–f) fine particulate matter (PM2.5, µg m−3) derived from surface observations and the control (CTL) experiment
during the summer of 2017.

Figure 3. Spatial distribution of the mean differences in (a–c) land surface temperature (LST, °C) and (d–f) surface soil moisture (0–10 cm,
m3 m−3) between (a, d) sensitivity experiment without irrigation (NOIRR) and observations, (b, e) sensitivity experiment with irrigation
(IRR) and observations, and (c, f) the differences between panels (b) and (a) or panels (d) and (e) during the summer of 2017, which
quantitatively show how much the irrigation scheme can reduce the NOIRR biases. Negative values denote model improvements, while
positive values indicate deterioration. MODIS indicates the LST obtained from the Moderate Resolution Imaging Spectroradiometer, and
GLDAS indicates the soil moisture generated from the Global Land Data Assimilation System.
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part of the NCP and the whole SCB where the warm and
dry biases are reduced by more than 2 °C and 0.06 m3 m−3,
respectively, suggesting that irrigation should be properly
represented in numerical models to more accurately simu-
late meteorological variables in intensively irrigated regions
(Yuan et al., 2023).

We also calculated the concentrations of afternoon surface
O3 (13:00–17:00 BJT, Beijing time) and daily mean surface
PM2.5 in the NCP and SCB. Observations show that peak
O3 concentration primarily appears in the NCP, especially in
the Hebei and northern Henan provinces, where O3 is 90–
100 ppb (Fig. 2c). The O3 in the SCB is lower than that in
the NCP, ranging from 60 to 70 ppb, with a few sites ex-
hibiting much higher values. Likewise, PM2.5 pollution is
severe in the NCP where the maximum concentration of
40–60 µg m−3, but it is relatively weaker in the SCB (20–
40 µg m−3) (Fig. 2e). The WRF-GC model successfully cap-
tures the hotspots of O3 and PM2.5 with spatial correlation of
0.78 and 0.70 and RMSE of 11.9 ppb and 8.5 µg m−3 across
the whole domain, respectively (Fig. 2d, f). The simulated
O3 and PM2.5 are 77.8 ppb and 40 µg m−3 in the NCP, re-
spectively, which closely aligns with observations (78.9 ppb
and 41.2 µg m−3) (Table 2). Similarly, good performance
for WRF-GC-simulated PM2.5 was also found by Feng et
al. (2021), focusing on January 2015 in the NCP. In the SCB,
the simulated mean PM2.5 is 27.4 µg m−3, slightly larger than
the observation (25.4 µg m−3). However, the model overes-
timates the regional averaged O3 by approximately 20 ppb,
although it is close to the biases (13 ppb) reported by Feng
et al. (2021) using WRF-GC for the entire China. It is a
common issue for GEOS-Chem to overestimate the sum-
mertime surface O3 in China (Dang et al., 2021; Ye et al.,
2022), which can be attributable to the coarse resolution
of the model and emission inventories, large stratosphere–
troposphere exchange, low cloud cover and precipitation,
and rapid chemical conversion, as summarized by Yang and
Zhao (2023), who reviewed the performance of several pop-
ular air quality models. Ye et al. (2022) confirmed that the
low cloud optical depth and small O3 dry deposition rate in
GEOS-Chem are responsible for the overestimation of O3,
particularly in the SCB. Therefore, the uncertainties inher-
ited from GEOS-Chem may lead to the larger overestimation
of O3 in the SCB. Overall, WRF-GC is able to reproduce the
meteorological fields and chemical variables, despite overes-
timation of O3 in the SCB. These systematic biases are fully
considered in our sensitivity simulations to investigate and
interpret the effects of irrigation on atmospheric chemistry.

3.2 Impacts of irrigation on boundary meteorology

Figure 4 illustrates the differences in meteorological condi-
tions between IRR and NOIRR. The corresponding percent-
age changes are also shown. Irrigation increases soil mois-
ture by around 0.04–0.08 m3 m−3 (20 %–50 %) over irrigated
areas in the NCP and SCB. High soil moisture enhances

soil evaporation and crop transpiration, cooling the surface
air temperature by 1–2 °C (9 %–12 %) and increasing RH
by around 10 %–20 % in the NCP. Such changes are rela-
tively weaker in the SCB because of the lower irrigation in-
tensity. Consequently, including irrigation reduces the root
mean square error of NOIRR for T2, dew point temperature,
RH and wind speed by 30 %, 30 %, 30 % and 6 % against
observations at each weather station, respectively, particu-
larly in the SCB (Fig. S2), underscoring the importance of
improved representation of agricultural management in re-
gional climate models. The enhancement of evapotranspira-
tion due to irrigation increases latent heat flux but reduces
sensible heat flux (not shown), leading to a decline of over
250 and 150 m in PBLH over NCP and SCB, respectively
(Fig. 4d). The low cloud cover increases significantly by
9 %–12 % over both the NCP and the SCB (Fig. 4e). The re-
duction in downward solar radiation in response to cloud for-
mation is up to 10 W m−2 (Fig. S3), in good agreement with
our previous long-term simulation results (Yuan et al., 2023),
albeit being statistically insignificant. Additionally, the sta-
ble atmosphere associated with irrigation reduces the sur-
face wind speed, with significant reduction of 0.2–0.4 m s−1

(6 %–10 %) in part of the irrigated areas (Fig. 4f), implying
more unfavorable meteorological conditions for the dissipa-
tion of air pollutants.

To compare the diurnal variations and vertical profiles
of the changes in meteorological conditions and air pollu-
tants in intensively irrigated areas, we selected two typical
cities, Puyang and Chengdu, which possess the largest irri-
gation fraction and witness the most evident changes in me-
teorological conditions in the NCP and SCB (Figs. 1a and
4), respectively. Figure 5 shows the diurnal cycle of me-
teorological conditions from IRR and NOIRR in the two
cities. In NOIRR, T2 and PBLH reach a maximum at 15:00–
16:00 BJT, but RH drops to a minimum in these two cities
around the same time. In Puyang, strong wind speeds occur
at 15:00–16:00 BJT, while in Chengdu they occur at 09:00–
10:00 BJT. When irrigation is considered, the reduction in
T2 and increase in RH are obvious throughout the whole
day with the remarkable changes reaching up to−2.5 °C and
16 %, respectively, during their peak time in Puyang. Simi-
lar changes are also seen in Chengdu but with comparatively
smaller values (−1.6 °C and 10 %, respectively). The reduc-
tions in wind speed and PBLH mainly occur at midnight and
in the afternoon, respectively, with the changes reaching 0.2–
0.5 m s−1 and 400 m in these two regions.

Figure 6 displays the vertical profiles of daily average
meteorological fields and pollutants in Puyang. Irrigation
strongly lowers the potential temperature but increases RH
below 1.7 km by up to 2 °C and 12 %, respectively, making
the slope of potential temperature with height steeper and
thus stabilizing and moistening the boundary layer greatly
(Fig. 6a, b). Additionally, the RH in IRR is reduced slightly
over the altitude of 1.7 km in comparison to the NOIRR be-
cause of the more stable atmosphere. Chengdu is influenced
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Figure 4. Spatial distribution of changes in (a) topsoil moisture (m3 m−3), (b) 2 m air temperature (T2, °C), (c) 2 m relative humidity (RH,
%), (d) planet boundary layer height (PBLH, m), (e) low-cloud fraction (%) and (f) 10 m wind speed (m s−1) in IRR relative to NOIRR
averaged over the summer of 2017. The dotted area indicates changes that are statistically significant at the 95 % confidence level using a
two-tailed Student’s t test.

Figure 5. Diurnal cycles of (a, e) T2, (b, f) RH, (c, g) 10 m wind speed, (d, h) PBLH from IRR and NOIRR in (a–d) Puyang and (e–
h) Chengdu averaged over the summer of 2017.

by irrigation slightly with variations of up to −1 °C and 4 %
in potential temperature and RH (Fig. S4a, b). Consequently,
a more stable, moister, cooler and shallower boundary layer
is formed over all irrigated areas and adjacent non-irrigated
areas. Overall, irrigation has substantial effects on daytime

temperature and PBLH, as well as nocturnal wind speed,
whereas the effects on RH are comparable during daytime
and nighttime.
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Figure 6. Vertical profiles of daily mean (a) potential temperature (°C), (b) RH (%), (c) PM2.5 (µg m−3), (d) NOx (ppb), (e) CO (ppb) and
(f) O3 (ppb) from IRR and NOIRR in Puyang averaged over the summer of 2017.

3.3 Impacts of irrigation on gaseous pollutants

The variations in meteorology may further modify the for-
mation and fate of air pollutants. Figure 7 demonstrates the
irrigation-induced changes in surface gaseous pollutants. The
shallower atmospheric boundary layer and lower wind speed
induced by irrigation weaken the dispersion and trap primary
pollutants in the PBL. Specifically, irrigation increases sur-
face NOx by 2 ppb (20 %), CO by 40 ppb (16 %) and propane
(C3H8) (a species of anthropogenic VOCs) by 1 ppb (20 %)
over irrigated areas in the NCP and SCB. However, the mean
surface O3 experiences an overall decline over the irrigated
areas, with the largest decrease of 3–4 ppb (6 %–8 %) oc-
curring in northern Henan province. Such changes become
smaller as the irrigated areas stretch to Hebei and Shan-
dong in the NCP. The SCB, on the other hand, only wit-
nesses a slight increase (0–2 ppb) in surface O3, but the neg-
ative changes are found in its surrounding regions and cen-
tral China where irrigated areas are scarcely scattered. More-
over, irrigation reduces atmospheric oxidation capacity, as
evidenced by the decreases in oxidants (HOx) and O3. The
dry deposition velocity of O3 is also reduced in irrigated ar-
eas. Regarding the vertical profiles, irrigation increases O3
precursors including NOx and CO near the surface but de-
creases them above 1 km, while O3 is reduced greatly from

surface to 3.5 km in Puyang, with a reduction of 4 ppb near
the surface (Fig. 6d–f). Irrigation lowers the altitude of max-
imum O3 by around 300 m. A similar pattern is also found
in Chengdu, although the variation in O3 below 1 km is rel-
atively small (Fig. S4d–f). Li et al. (2016) pointed out that
surface O3 has small variations in irrigated areas but rises by
2–7 ppb in surrounding non-irrigated areas in Central Valley
of California, which is different from our results. This dis-
crepancy could be attributable to the more intensive irrigation
in their study, leading to stronger divergence and transport of
O3 precursors to the surrounding areas.

Figure 8 exhibits the diurnal cycle of gaseous pollutants
averaged over the summer. While irrigation has a stronger
cooling effect in the afternoon, the most significant variations
in these air pollutants occur at night with increases of 4 and
60 ppb in NO2 and CO, respectively. The reduction in surface
O3 reaches a maximum of 5 ppb during 00:00–06:00 BJT and
a minimum of 2 ppb in the afternoon. Some other secondary
pollutants such as N2O5 and HONO show drastic increases at
night, implying a distinct nocturnal chemistry. For the most
crucial oxidant, OH, which mainly appears at daytime in the
presence of sunlight, the decrease due to irrigation reaches
the peak at noon and is relatively smaller during morning
and afternoon.
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Figure 7. Same as Fig. 4 but for (a) NOx , (b) CO, (c) propane (C3H8), (d) O3, (e) isoprene (ppb), (f) HOx (ppt) and (g) dry deposition
velocity for O3 (cm s−1).

Figure 8. Same as Fig. 5 but for NOx (ppb), CO (ppb), O3 (ppb), OH (ppt), N2O5 (ppb) and HONO (ppb) in Puyang.

Meteorological variations play a significant role in tro-
pospheric O3 formation and removal through natural emis-
sion pathways and chemical processes (Lu et al., 2019). Us-
ing models and observations, considerable research has sug-
gested that temperature and RH are two principal factors in-
fluencing tropospheric O3, but with opposite effects (e.g.,
Chen et al., 2019; Qian et al., 2022). Therefore, modified
meteorology may influence the biogenic emissions, modu-
lating photochemical production of O3 (Ren et al., 2022).
However, we found that there is a small and insignificant re-

duction in isoprene in the NCP and SCB, indicating its weak
effect (Fig. 7e). Conversely, high water vapor has been found
to enhance O3 loss via more complex pathways such as by
participating in the formation of HOx directly and slowing
photochemical production via increasing cloud cover (Jacob
and Winner, 2009; Han et al., 2020a). Moreover, since the
reaction of NO2+OH is an important pathway for O3 re-
moval in high-NOx environments (Wang et al., 2017), the el-
evated total NOx concentration is likely responsible for day-
time reduction in O3 and OH (Fig. 8). The NO titration might
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also be enhanced under high NOx concentration in IRR. At
night, the elevated NO2 and RH promote the formation of
N2O5 and HONO through O3 oxidation and NO2 hydroly-
sis, respectively, causing a drastic decline in O3 (Fig. 8c).
Li et al. (2019) elucidated that a reduction in heterogeneous
uptake of HO2 onto aerosol surface because of the decrease
in PM2.5 exacerbates O3 pollution in the NCP. Thus, the in-
creases in PM2.5 induced by irrigation may enhance the het-
erogeneous uptake process and hence slow down O3 produc-
tion. Overall, we can exclude the influence of dry deposition
rate of O3 given its reduction (Fig. 7g), which should have
raised O3 instead of lowering it, and the high NOx due to
weak mixing might be the major contributor to the reduction
in O3 through oxidant titration (NO+O3 and NO2+OH).
On the other hand, the declines in O3 in both Puyang and
Chengdu above the PBL can be attributable to the reduc-
tions in temperature (Figs. 6a and S4a) and concentrations
of precursors induced by irrigation (Figs. 6d, e and S4d, e).
Further research efforts are warranted to better understand
and quantify the individual contributions of these processes
to irrigation-induced O3 changes.

3.4 Impacts of irrigation on PM2.5 and its components

Meteorological conditions such as high RH, low PBLH and
weak wind speed also play essential roles in facilitating the
accumulation and formation of PM2.5 (Zhang and Cao, 2015;
Chen et al., 2020). Particularly, humidity is positively corre-
lated with PM2.5 in the NCP due to the favorable conditions
for aqueous-phase aerosol chemistry, while the correlation is
negative in the Pearl River Delta and Yangtze River Delta,
given the dominant role of wet deposition in relation to pre-
cipitation in South China (Wang et al., 2023; Zhai et al.,
2019). Figure 9 illustrates the differences in PM2.5 and its
components between IRR and NOIRR. The corresponding
relative percentage changes are shown in Fig. S5. Irrigation
increases PM2.5, nitrate, sulfate, ammonium, SOA and BC
by around 12 (28 %), 4 (70 %), 0.6–0.8 (10 %–20 %), 1.2–1.6
(40 %), 1.2 (12 %–16 %) and 4 µg m−3 (15 %–20 %) in both
the NCP and the SCB, respectively. Regarding the vertical
profiles, PM2.5 in Puyang and Chengdu mainly peaks at 47
and 58 µg m−3 near the surface in IRR, respectively, approx-
imately 9 and 6 µg m−3 higher than that in NOIRR (Figs. 6c
and S4c). Notably, the RH at 60 %–80 %, which is also seen
in IRR (Fig. 5b, f), favors multiphase chemistry (i.e., hetero-
geneous and aqueous reactions) for secondary aerosol forma-
tion and hygroscopic growth, such as aqueous oxidation of
SO2, aerosol uptake of NO2, heterogeneous uptake of HO2
and N2O5 hydrolysis (An et al., 2019; Tie et al., 2017; Sun
et al., 2018). Therefore, the increase in PM2.5 components
above is the total contribution from physical and chemical
processes. It should be noted that the increase in SOA is pri-
marily due to physical processes, because SOA formulation
in our model is only related to CO, isoprene and other VOC
emissions with no detailed SOA chemistry.

To examine the contribution of chemical processes, we
followed the approach of Huang et al. (2021) using the
ratio of secondary PM2.5 (i.e., nitrate, sulfate, ammo-
nium, SOA) versus BC between IRR and NOIRR, i.e.,
(PM2.5 / BC)IRR / (PM2.5 / BC)NOIRR (Fig. 10). The basis is
that BC is a primary aerosol, and the changes in BC induced
by irrigation can be approximately regarded as the contri-
bution of physical processes. Thus, aerosol formation is en-
hanced if the ratio is larger than unity, while it is weakened
if the ratio is below one. As shown in Fig. S5, the relative in-
creases in BC are around 15 %–20 % (i.e., contribution from
physical process). Secondary formation of PM2.5 and ammo-
nium are enhanced over NCP and SCB with the ratio ranging
from 1.1 to 1.3 (Fig. 10a, c). Sulfate can be generated from
the gas-phase oxidation of SO2 by OH and aqueous oxida-
tion by hydrogen peroxide (H2O2) and O3. The ratio, which
is close to one, suggested that the formation of sulfate is less
evident and even suppressed (Fig. 10d), due to the decline in
HOx and O3 (Fig. 7). As expected, there is no formation of
SOA because of the lack of detailed SOA chemistry in re-
sponse to irrigation (Fig. 10e). By comparing the differences
in the relative changes in secondary aerosols and BC between
IRR and NOIRR (i.e., subtracting the fractional changes in
BC from the fractional changes in other aerosol species), we
can approximately estimate the contributions of secondary
formation to the increases in PM2.5 (Fig. S6), which are
around 5 %–10 %, ∼ 60 %, 10 %–30 % compared to the to-
tal increases in PM2.5, nitrate, and ammonium, respectively,
while it is negligible for sulfate and SOA.

Figure 11 demonstrates the diurnal cycle of relative
changes in PM2.5 due to secondary formation induced by
irrigation at Puyang. Nitrate formation remains at a high
level during daytime, with two peaks occurring at 13:00 and
19:00 BJT, respectively, while it is relatively lower during
nighttime. The enhanced production throughout the day sug-
gests the dominance of the reaction of daytime NO2+OH
and nighttime N2O5 hydrolysis, which are two major forma-
tion pathways for nitrate (Alexander et al., 2020). This is sup-
ported by the drastic increase in N2O5 during nighttime and
the decline in OH during daytime, driven by the elevated con-
centration of NO2 in IRR (Fig. 8). Apart from the chemical
production, the cooling effect of irrigation during daytime
can inhibit the transition of nitrate from the particle phase
to the gas phase, which reduces the nitrate loss and is an-
other possible driver for the drastic increase in nitrate during
daytime. Moreover, the increase in HONO indicates its es-
sential contribution through NO2 hydrolysis to form HNO3
and HONO at high NOx levels (Fig. 8f; Xue et al., 2014;
Alexander et al., 2020). Ammonium formation follows a sim-
ilar trend to nitrate, with the maximum ratio reaching 40 %
at daytime, because of the neutralization of HNO3 by NH3 to
form ammonium nitrate. In general, irrigation enhances the
formation of nitrate and ammonium by lowering the temper-
ature and raising humidity. The contribution of the chemi-
cal pathways is almost triple that of the physical process for
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Figure 9. Same as Fig. 4 but for (a) PM2.5, (b) nitrate, (c) sulfate, (d) ammonium, (e) SOA and (f) BC (µg m−3).

Figure 10. Spatial distribution of the ratio of (a) PM2.5 and (b–e) secondary PM2.5 (sulfate, nitrate, ammonium and SOA) versus BC
between the IRR and NOIRR, i.e. (PM2.5 / BC)IRR / (PM2.5 / BC)NOIRR averaged over the summer of 2017.

nitrate, but comparable for ammonium and PM2.5. The pro-
duction of SOA and sulfate is not sensitive to irrigation. The
enhancement of nitrate formation through the NO2+OH and
N2O5 hydrolysis in IRR is coinciding with the reduction in
O3 and OH during daytime and nighttime as discussed in
Sect. 3.3, respectively.

3.5 Emission control strategies to alleviate the
deterioration of PM2.5 pollution by irrigation

Reducing nitrate is becoming a priority in China in recent
years, as it dominates the chemical composition of PM2.5 in
eastern China and shows relatively smaller decline compared
with the total PM2.5 since the implementation of stringent
emission control strategy in 2013 (Zhai et al., 2021; Sun et
al., 2022). Through the above analysis, we found that irriga-
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Figure 11. Diurnal cycle of the relative changes (%) in the ratio of
secondary PM2.5 components versus BC in IRR relative to NOIRR
in Puyang averaged over the summer of 2017.

tion increases nitrate and ammonium, which makes it even
more challenging to reduce nitrate pollution. However, given
that irrigation has been shown to mitigate both water stress
and heat stress experienced by crops, and since it has been
viewed as an effective way to buffer yield losses caused by
future climate change (Abramoff et al., 2023; Liao et al.,
2024), it is important to explore the suitable emission re-
duction strategies to alleviate nitrate pollution while keep-
ing these irrigation benefits. Therefore, we designed four ex-
tra sensitivity experiments with 20 % and 50 % combined re-
ductions in NOx and NH3 emissions and 50 % individual re-
ductions in NOx and NH3 emissions, respectively. The ef-
fects of emission reductions on both aerosols and O3 can
be estimated by comparing the extra sensitivity experiments
with IRR, while the effects of irrigation on aerosols and O3
can be derived by comparing IRR with NOIRR. Figure 12
exhibits the irrigation benefits and percentage changes in
nitrate and ammonium under different emission scenarios
along with irrigation relative to IRR. Without irrigation, re-
gional average nitrate is reduced by ∼ 28 % and 24 % in the
NCP and SCB, respectively. Notably, the reduction in nitrate
with 20 % combined emission in NH3 and NOx emissions
is comparable to the abovementioned reduction in both re-
gions in NOIRR, in comparison to IRR, which indicates that
20 % combined emission reductions can effectively offset the
irrigation-induced increase in nitrate. The reduction in nitrate
caused by 50 % combined emission reductions even doubles
that in NOIRR in the two regions. However, individual reduc-
tion in NOx and NH3 emissions by up to 50 % only has half
the benefit compared with 50 % combined reduction, imply-
ing the need for synergistic control of air pollution. Changes
in ammonium are similar to those in nitrate except that it
needs a 50 % individual reduction in NOx or NH3 emissions
to totally offset the ammonium increase in IRR over both
regions, and the 20 % combined emission reduction for am-
monium mitigation is not as effective as that for nitrate miti-
gation (Fig. 13b).

Notably, although 50 % combined and individual reduc-
tions in NH3 and NOx emissions can strongly reduce ni-
trate and ammonium, the increase in nighttime O3 due to
the weakened titration effect in large city clusters includ-
ing the Beijing–Tianjin–Hebei (BTH) region, Yangtze River
delta and Pearl River Delta should be recognized, while the
decrease in O3 dominates the rest of other regions, reflecting
nonlinear responses (Fig. S7). Such nonlinear responses of
O3 have great ramifications for human health and crop yields.
To evaluate these, the changes in MDA8 O3 and AOT40
(accumulated surface O3 concentration over a threshold of
40 ppb) in the summer of 2017 were utilized to evaluate the
variations in human and crop exposure to O3 (Fig. 12c, d).
Compared to IRR, NOIRR raises MDA8 O3 by 2.3 % and
0.8 % in the NCP and SCB, respectively. The reduction in
MDA8 O3 under 20 % and 50 % combined emission reduc-
tions and 50 % NOx emission reductions along with irri-
gation relative to IRR substantially exceeds the abovemen-
tioned irrigation benefits, except for the slight degradation in
MDA8 O3 in the NCP under 20 % combined emission reduc-
tions, suggesting the effectiveness of these strategies for O3
and PM2.5 controls. However, only reducing the NH3 emis-
sions by 50 % may cause unintended consequences with the
MDA8 O3 increasing by 2.3 % and 0.5 %, in the NCP and
SCB, respectively. Similar changes are also seen in AOT40
under different sensitivity experiments, except that the re-
sponses of AOT40 to emission reductions are even larger
than that of MDA8 O3. We thus show that irrigation can
enhance crop growth not only by alleviating water and heat
stresses, but also by reducing O3 exposure.

Figure 13 further shows the corresponding responses of O3
in daytime and nighttime. Taking the large megacity cluster
of BTH as an example, excluding irrigation results in an in-
crease of 3.3 % in nighttime O3, which is comparable to the
increase in nighttime O3 under 20 % combined emission re-
ductions along with irrigation relative to IRR. In other words,
irrigation generally counteracts the rise in nighttime O3 due
to NOx reduction with this emission reduction strategy. Re-
garding the 50 % combined and individual emission reduc-
tions, irrigation only cancels out 66 %–77 % of the nighttime
O3 increase (Fig. 13a). By contrast, the 50 % combined and
individual reductions in NOx emissions only reduce daytime
O3 by 0.5 %, and irrigation solely reduces daytime O3 by
2.5 %, leading to a net benefit of 3 % (Fig. 13b). Even though
the 20 % combined reductions raise daytime O3 by 1.7 %, ir-
rigation fully reverses this situation, leading to a net decrease
by 0.8 %. For daily average O3, irrigation still completely
counteracts the O3 increase in all scenarios except the 50 %
individual reduction in NH3, with the contribution of 111 %–
138 % (Fig. 13c). The 50 % NH3 emission reduction leads to
the largest increase in daytime O3 (4.4 %) among all exper-
iments due to less neutralization with HNO3, exceeding the
irrigation benefits (2.9 %) (Fig. 13b). Similar changes in day-
time, nighttime and daily mean O3 are also seen in the whole
NCP (Fig. 13d–e), except that irrigation benefits (3.8 %) ex-
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Figure 12. Percentage changes in (a) nitrate, (b) ammonium, (c) maximum daily 8 h average O3 concentration (MDA8O3) and (d) accumu-
lated surface O3 concentration over a threshold of 40 ppb (AOT40) in NOIRR and IRR with a 20 and 50 % combined reduction in NH3 and
NOx emissions, respectively, as well as and 50 % individual emission reductions in NH3 and NOx , relative to IRR, averaged over the NCP
and SCB during the summer of 2017.

ceed the nighttime O3 increases (∼ 3 %) due to emission re-
ductions in the four scenarios (Fig. 13d). In the SCB, almost
all emission reduction strategies reduce surface O3 substan-
tially, regardless of daytime and nighttime, which is larger
than the irrigation-induced reduction in O3. It is worth not-
ing that 50 % combined reductions in both NOx and NH3
emissions and individual reductions in NOx emissions are
the most effective in this region, followed by 20 % combined
emission reductions, and only controlling NH3 emissions has
the least efficiency.

Overall, we found that a 20 % combined reduction in NH3
and NOx emissions is an effective and feasible way to buffer
the adverse effects of irrigation on nitrate and ammonium in
the NCP and SCB, while leading to the smallest increase in
nighttime O3 and O3 exposure to human health and crops.
Although the 50 % combined emission reduction is more ef-
fective in reducing ammonium nitrate, it is more challenging
to implement this stringent emission strategy and may lead
to an increase in nighttime O3 in large city clusters. Our re-
sults are similar to previous modeling studies in which PM2.5
shows nonlinear responses to emission reductions, and the

combined reduction in precursor emissions are more bene-
ficial for nitrate reduction (Cheng et al., 2019; Zhai et al.,
2021; Liu et al., 2021c).

4 Discussion and conclusions

China possesses the largest irrigated area of the world, and
the expanding irrigated area has driven changes in many
aspects of socioeconomic and environmental concerns, in-
cluding in energy use and its related CO2 emissions, wa-
ter resources, terrestrial emissions of pollutants and green-
house gases (N2O and CH4), and regional climate (Yang
et al., 2023). All of these would alter regional air quality
through influencing emissions, transport and mixing, chem-
istry, and deposition. To reveal the possible underlying mech-
anisms, we implemented a new dynamic irrigation scheme
into the WRF-GC model and found that it substantially re-
duces model biases for LST, topsoil moisture, air tempera-
ture, dew point temperature and wind speed in heavily irri-
gated areas in China. Irrigation substantially shapes bound-
ary layer meteorology by raising RH and cloud cover as well
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Figure 13. Same as Fig. 12 but for nighttime, daytime and daily mean surface O3 in Beijing–Tianjin–Hebei (BTH), NCP and SCB.

as decreasing T2 and PBLH, which subsequently lead to an
increase by 28 % (12 µg m−3) in PM2.5 and a decrease by
6 %–8 % (3–4 ppb) in surface O3. Reduced O3 also alleviates
the O3 impacts on human health and crop yields, with MDA8
O3 and AOT40 decreasing by ∼ 2 % and 6.5 %, respectively,
reflecting an additional pathway via which irrigation can pro-
mote crop growth.

The underlying mechanisms for the contrasting changes
in PM2.5 and O3 were further examined. The reduction in
O3 is more obvious during nighttime, which is associated
with the enhancement of oxidant titration at elevated NOx

concentration. During daytime, in addition to NOx titration,
other mechanisms (such as enhanced O3 hydrolysis under
higher atmospheric water vapor content, slower photochem-
ical reactions due to lower temperature and more extensive
cloud cover, and more heterogeneous uptake of HO2) might
play additional roles as well. The components of PM2.5 show
complex sensitivities to meteorological changes. Specifi-
cally, irrigation-induced high RH promotes nitrate forma-
tion through three major pathways, i.e., NO2+OH, NO2
and N2O5 hydrolysis. Strong cooling at daytime suppresses
the transition of nitrate from the particle to gas phase and
thus reduces the nitrate loss. Ammonium is also enhanced
through the neutralization of NH3 with HNO3, since high
RH and low temperature facilitate the partitioning of gases

to particles. By contrast, weak atmospheric oxidation ca-
pacity due to irrigation suppresses sulfate formation. An-
other important finding is that both weak dispersion and sec-
ondary formation increase nitrate, sulfate, ammonium, SOA
and BC by 4 (70 %), 0.6–0.8 (10 %–20 %), 1.2–1.6 (40 %),
1.2 (12 %–16 %) and 4 µg m−3 (15 %–20 %), respectively,
among which physical processes contribute approximately
15 %–20 %, whereas secondary chemical formation accounts
for ∼ 60 % and 10 %–30 % of the overall increase in nitrate
and ammonium, respectively.

In order to alleviate the increase in ammonium nitrate in
intensively irrigated areas, we suggest that a 20 % combined
reduction in NH3 and NOx emissions can effectively off-
set the negative effects of irrigation on PM2.5 nitrate with-
out worsening nighttime O3 pollution in large city clus-
ters. Meanwhile, the regional average O3 impacts on hu-
man health and crop yields would be greatly alleviated un-
der different emission reduction strategies proposed in this
study, except for the 50 % NH3 emission reductions. There-
fore, agricultural development, air pollution control and cli-
mate change adaptation are closely coupled with each other.
The expansion of irrigated areas in China has slowed down
since the 1980s, and the IWU declines from the mid-1990s
to the early 2000s, because of the advancement of irriga-
tion systems (Zhou et al., 2020; Han et al., 2020b). How-
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ever, the trend was reversed to a slight increase again since
2011 in water-scarce regions including the NCP, primarily
driven by cropland expansion (Qi et al., 2022; Zhang et al.,
2022b). It is projected that the IWU in China will increase
by 8.5 %–17.1 % and 6.8 %–34.8 % by the 2050s and 2100s,
respectively, under various warming scenarios (Liu et al.,
2024a). This corresponds to the paradox of irrigation effi-
ciency (Grafton et al., 2018), in which water conserved from
highly efficient irrigation methods would be used for irri-
gation expansion to maximize crop yields and farmers’ rev-
enues, with government subsidies for modern irrigation sys-
tems (Zhang et al., 2022b). Therefore, the increasing adop-
tion of water-saving irrigation systems in the future may po-
tentially decrease surface water vapor and increase surface
temperature and PBLH, as evidenced by our previous work
(Yuan et al., 2023). These changes are favorable for aerosol
dissipation, conversion of nitrate to the gas phase and sup-
pression of nitrate formation, but they may contribute to
O3 formation, in contrast with the present-day situation of
widespread traditional irrigation. Consequently, the proposed
emission control strategy for nitrate mitigation here is likely
to exacerbate O3 pollution, which cannot be offset by irri-
gation. Thus, future emission control strategies may priori-
tize O3 mitigation (e.g., through reducing VOCs emissions)
during the transition from conventional irrigation methods to
water-saving irrigation techniques. In other words, a tradeoff
between air pollution control and irrigation needs has to be
carefully considered in the future.

We note that all these results discussed above are based on
one summer simulation because of the demanding computer
resources required by the WRF-GC model, and the effects
of irrigation can have interannual variability (Sorooshian et
al., 2012; Li et al., 2016). Conducting long-term simulations
will provide a more comprehensive assessment of these ef-
fects. Indeed, we have conducted long-term simulations us-
ing WRF-only model in our previous work and found that
long-term effects of irrigation on meteorology are similar
to those reported in this study, likely reflecting the summer
of 2017 being rather normal in terms of climate conditions.
Thus, we expect that the interannual variability of climate
may not significantly interfere with our results regarding at-
mospheric chemistry. However, we could not quantitatively
show which pathway dominates the decrease in O3 and in-
crease in PM2.5, given that the standard WRF-GC model can-
not diagnose individual chemical pathways, so perturbation
experiments or tagged simulations are promising for address-
ing this issue in future work. Moreover, the model uncer-
tainty in simulating the composition of PM2.5 should be rec-
ognized, as Travis et al. (2022) found that GEOS-Chem over-
estimates nitrate by 36 % due to the missing sink of HNO3.

Overall, this study represents the first work to gain an in-
sight into the possible range of air quality outcomes arising
from irrigation over China. Our findings indicate the non-
negligible and contrasting effects of irrigation on PM2.5 and
O3 and emphasize the roles of changing irrigation practices

in mitigating regional air pollution, suggesting that a coordi-
nated approach is needed to simultaneously address air pollu-
tion control, water conservation, climate change adaption and
food security. This study not only informs policymakers how
to design emission control strategies and land management
for air pollution control in intensively irrigated and heavily
polluted regions, but also encourages farmers to adopt sus-
tainable farming practices to maximize their socioeconomic
gains. All of these contribute to the multiple Sustainable De-
velopment Goals (SDGs) including SDG 2 “zero hunger”,
SDG 3 “good health and well-being”, SDG 6 “clean water
and sanitation” and SDG 13 “climate action”. For example,
using water-saving irrigation systems in place of traditional
ones can raise crop yields, alleviate water scarcity and reduce
PM2.5 pollution but with a possible worsening of O3 pollu-
tion, which may then have to be mitigated by tighter VOC
emission control measures. On the other hand, as O3 con-
trol has been suggested to be more beneficial for safeguard-
ing food security than PM2.5 control (Liu et al., 2024b), ir-
rigation itself may serve as a potential approach to not only
protect crops from water and heat stresses directly, but also
alleviate O3 exposure and its damage via modulating atmo-
spheric chemistry indirectly. Achieving these various SDGs
requires multi-sectoral collaboration, and our study provides
a valuable reference for decision-making in this regard.
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