

Supplement of

Impacts of irrigation on ozone and fine particulate matter $(PM_{\rm 2.5})$ air quality: implications for emission control strategies for intensively irrigated regions in China

Tiangang Yuan et al.

Correspondence to: Amos P. K. Tai (amostai@cuhk.edu.hk)

The copyright of individual parts of the supplement might differ from the article licence.

Experiment	Irrigation	Anthropogenic	Aerosol-radiation interaction	Grid–nudging
		emissions	& Aerosol-cloud interaction	
CTL	Off	Normal	On	On
NOIRR	Off	Normal	Off	Off
IRR	On	Normal	Off	Off
Emiss_20c	On	NO _x and NH ₃	Off	Off
		emissions are		
		reduced by 20 %		
Emiss_50c	On	NO_x and NH_3	Off	Off
		emissions are		
		reduced by 50 %		
Emiss_50NO _x	On	NO_x emissions are	Off	Off
		reduced by 50 %		
Emiss_50NH ₃	On	NH ₃ emissions are	Off	Off
		reduced by 50 %		

Table S1. Design of model experiments

Figure S1. Spatial distribution of summertime Standardized Precipitation Evapotranspiration Index (SPEI) with 3-month timescale from 2014 to 2018.

Figure S2. Changes in the root mean square error (Δ RMSE) of (a) air temperature at 2 m (T_2 , °C), (b) dew point temperature (T_d , °C), (c) relative humidity (RH, %) and (d) wind speed (m s⁻¹) against observations at each station over the model domain in IRR relative to NOIRR, and (e–h) the corresponding relative percentage changes (%). Positive values indicate reductions in RMSE due to irrigation, while negative values indicate increases in RMSE due to irrigation.

Figure S3. Spatial distribution of the change in downward solar radiation (W m^{-2}) in IRR relative to NOIRR averaged over the summer of 2017.

Figure S4. Vertical profiles of daily average potential temperature (°C), RH (%), PM_{2.5} (μ g m⁻³), NO_x (ppb), CO (ppb) and O₃ (ppb) from IRR (blue lines) and NOIRR (red lines) in Chengdu.

Figure S5. Spatial distribution of changes (%) in PM_{2.5}, nitrate, sulfate, ammonium, SOA and BC in IRR relative to NOIRR averaged over the summer of 2017. Dotted area indicates the changes are statistically significant at 95% confidence level using two-tailed Student's *t*-test.

Figure S6. Contribution (%) of secondary formation to the increase in (a) $PM_{2.5}$ and (b–e) secondary components (nitrate, sulfate, ammonium and SOA). Contributions are calculated by subtracting the fractional changes in BC (\triangle BC) from the fractional changes other secondary $PM_{2.5}$ components (\triangle PM_{2.5}), i.e., \triangle PM_{2.5}– \triangle BC.

Figure S7. Spatial distribution of changes in nighttime ozone (ppb) in (a) NOIRR, IRR with (b) 20 % and (c) 50 % combined emission reduction of NO_x and NH₃, 50 % individual emission reduction of (d) NO_x and (e) NH₃, relative to IRR averaged over the summer of 2017. Black squares indicate North China Plain and Sichuan Basin, respectively. Red square is the city cluster of Beijing-Tianjin-Hebei region (BTH).