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Abstract. The distinction between riming and aggregation is of high relevance for model microphysics, data
assimilation, and warnings of potential aircraft hazards due to the link between riming and updrafts as well
as the presence of supercooled liquid water in the atmosphere. Even though the polarimetric fingerprints for
aggregation and riming are qualitatively similar, we hypothesize that it is feasible to implement an area-wide
discrimination algorithm based on national polarimetric weather radar networks only. Quasi-vertical profiles
(QVPs) of reflectivity (ZH), differential reflectivity (ZDR), and estimated depolarization ratio (DR) are utilized
to learn about the information content of each individual polarimetric variable and their combinations for riming
detection. High-resolution Doppler spectra from the vertical (birdbath) scans of the C-band radar network of
the German Meteorological Service serve as input and ground truth for algorithm development. Mean isolated
spectra profiles (MISPs) of the Doppler velocity are used to infer regions with frozen hydrometeors falling faster
than 1.5 m s−1 and accordingly associated with significant riming. Several machine learning methods have been
tested to detect riming from the corresponding QVPs of polarimetric variables. The best-performing algorithm
is a fine-tuned gradient-boosting model based on decision trees. The precipitation event on 14 July 2021, which
led to catastrophic flooding in the Ahr valley in western Germany, was selected to validate the performance.
Considering balanced accuracy, the algorithm is able to correctly predict 74 % of the observed riming features;
thus, the feasibility of reliable riming detection with national radar networks has been successfully demonstrated.

1 Introduction

The reliable detection and prediction (classification) of rim-
ing based on ground-based remote sensing observations is a
crucial but not trivial endeavor. Despite the wealth of infor-
mation offered by polarimetric radar measurements and their
numerous associated advances in research, the distinction
between dominant aggregation and riming processes using
weather radar has been questioned to date. In this study, ma-
chine learning is exploited to reveal the relationship between
different polarimetric variables as well as their combinations
and the dominating riming processes in radar-monitored pre-
cipitation cells.

Ice crystals are subjected to a variety of microphysical pro-
cesses during their lifetime as they fall to the ground (e.g.,
Kumjian et al., 2022). The most fundamental growth pro-
cesses in the ice phase are aggregation, riming, and vapor
deposition. However, these processes also occur in combi-
nation with fast transitions within the evolution of ice-phase
particles (DeLaFrance et al., 2024). During aggregation pro-
cesses, two or more ice crystals stick together through ice–ice
collisions (Field et al., 2017) to form a single larger particle,
transforming dense individual ice crystals into aggregated
particles with reduced density but similar water content. In
contrast to aggregation, riming describes the process when an
ice particle collects supercooled liquid cloud droplets (rang-
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ing in size from micrometers to tens of micrometers); thus,
ice water content increases at the expense of liquid drops.
These rimed particles typically exhibit enhanced fall veloci-
ties (Kumjian et al., 2016) due to their rapid increase in mass
and density. They can reach large sizes and become more
isotropic (e.g., Maahn et al., 2024). While the increase in size
and thus reflectivity (ZH), as well as the decrease in differen-
tial reflectivity (ZDR), is evident in both aggregation and rim-
ing, densely rimed particles fall with up to twice the speed of
an equivalent unrimed particle with exactly the same maxi-
mum dimension (Locatelli and Hobbs, 1974).

The distinction between aggregation and riming below the
dendritic growth layer (DGL; Ryzhkov and Zrnić, 2019),
usually located between −10 and −15 °C, is important as
the latter signals the presence of supercooled liquid water
(SLW), and its accretion to the airframe (Serke et al., 2011)
and critical flight data sensors (Milani et al., 2024) may pro-
duce an in-flight icing hazard for aircraft (Ellis et al., 2012).
These dangerous conditions can be observed before or dur-
ing the presence of riming signatures as long as SLW is not
fully depleted. Overall, riming represents a key process as a
large percentage of cloud systems contain SLW (Hogan et al.,
2003), especially below the DGL. SLW may also trigger
additional ice growth via the Wegener–Bergeron–Findeisen
process (Wegener, 1912; Bergeron, 1935; Findeisen, 1938).
Furthermore, riming favors secondary ice production through
the Hallett–Mossop ice multiplication process, also known
as rime splintering (Hallett and Mossop, 1974), which is ac-
tive between −3 and −8 °C. Thus, future benefits and ap-
plications of the envisioned area-wide riming detection algo-
rithm based on slant-viewing polarimetric weather surveil-
lance radars only are manifold. It supports and improves pro-
cess understanding and enables detailed model evaluation.
Also, state-of-the-art polarimetric microphysical retrievals
(e.g., ice water content, number concentrations, and mean
volume diameters) show convincing accuracy and encourage
their use for model evaluation and data assimilation (Blanke
et al., 2023). However, these retrievals are not designed for
riming conditions when graupel or even hail can be present.
With a riming detection on hand, the assimilation of such
modified retrievals into numerical weather prediction mod-
els could be restricted to regions where enhanced accuracy
can be expected to further improve, for example, quantitative
precipitation forecasts.

Since cloud droplets mostly present with less than 50 µm
in diameter, the direct detection of SLW with weather radars
is not possible. Instead, past studies repeatedly employed
the mean Doppler velocity from profiling radars to detect
and study riming. For example, Mosimann (1995) derived a
quantitative relationship between radar Doppler velocities of
a vertically pointing X-band radar and riming in stratiform
precipitation. Fall velocities of unrimed snow particles do
not exceed 1 m s−1 (Locatelli and Hobbs, 1974; Karrer et al.,
2020), because during the aggregation process the impact of
increasing mass on the terminal velocity is to a great ex-

tent balanced out by the additional air drag (Zawadzki et al.,
2001). However, substantially rimed particles can exhibit fall
velocities ranging from 1.5 to 2.5 m s−1 or even faster (e.g.,
Vogel et al., 2015; Matrosov, 2023).

To set up the area-wide riming detection algorithm based
on slant-viewing polarimetric weather surveillance radars
only, we utilized and analyzed quasi-vertical profiles (QVPs;
Trömel et al., 2013; Ryzhkov et al., 2016) of ZH, ZDR, and
in particular depolarization ratio (DR). Ryzhkov et al. (2017)
introduced DR as a good proxy for radar circular depolar-
ization ratios and a potential candidate for the detection of
riming. Due to the inherent noise reduction and the presen-
tation of polarimetric variables in a time versus height for-
mat, QVPs facilitate the detection of fingerprints for domi-
nating microphysical processes and their temporal evolution
in a sufficiently homogeneous cone spanning above the radar.
The polarimetric fingerprints for (heavy) riming and aggrega-
tion are qualitatively the same, exhibiting an increase in ZH
and decreases in ZDR as well as specific differential phase
KDP, unless a substantial concentration of columnar ice crys-
tals is simultaneously prevalent, which may lead to an ob-
servable increase instead of decrease in KDP (e.g., Kumjian,
2012; Kumjian et al., 2022). However, the time–height for-
mat of QVPs enables the investigation and quantification of
the relationships between different polarimetric variables and
Doppler velocities. In this study, profiles of Doppler spectra,
which can be interpreted as a distribution of particle fall ve-
locities superimposed with vertical air movements as a func-
tion of height (Fabry, 2015), are used to introduce and train a
radar algorithm for the discrimination between the two pro-
cesses. Similar to ZDR, DR is lower in rimed snow than in
aggregated snow, but the corresponding difference in DR is
generally larger. While ZDR differs by 0.2–0.4 dB, DR dif-
fers by 2–4 dB between these two processes (e.g., Ryzhkov
et al., 2017). Such differences are clearly evident in QVPs.

A variety of techniques and machine learning methods
for classification are available in the literature. In this study,
we focused on four approaches, namely, logistic regression
(LR; Wilks, 2011), a quadratic discriminant analysis (QDA;
Geisser, 1964), gradient-boosting machine (GBM; Fried-
man, 2001), and multilayer perceptron (MLP), artificial neu-
ral network, to set up the algorithm. One great advantage
of these methods lies in their ability to sift through large
amounts of training data and discover meaningful patterns
that are not easily discernible to humans.

The article is structured as follows. In Sect. 2 an overview
of the remote sensing observational database and process-
ing techniques is provided. Section 3 introduces the different
methods tested as well as the performance metrics consid-
ered throughout this work, while Sect. 4 details DR and the
algorithm development. The main results and verification are
presented in Sect. 5. The final algorithm is subsequently ap-
plied to an independent riming case, followed by an elabo-
ration on the main advantages along with the limitations of
the newly proposed algorithm. Section 6 closes with a sum-
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mary and a comprehensive discussion of directions for future
research and refinement opportunities.

2 Data and processing

The quality of the training data is key for the performance
of algorithms developed with machine learning techniques.
Schultz et al. (2021) pointed out that the proper selection
and preparation of data is of crucial importance in order
to achieve good and generalizable results. Accordingly, this
section presents the preparation and processing of the radar
data used.

2.1 Polarimetric C-band radar data

Our analysis is based on observations of DWD’s national C-
band (wavelength ≈ 5.6 cm) weather radar network includ-
ing 17 state-of-the-art polarimetric Doppler radars continu-
ously performing 3-D volume scans in a 5 min scan schedule.
These include plan position indicator (PPI) scans measured
at 10 radar elevation angles between 0.5 and 25°, each with
a resolution of 1° in azimuth and 0.25 km in range. Typical
maximum slant ranges are about 180 km. At higher elevation
angles of more than 8°, the maximum slant range decreases
to around 60 km. A vertically pointing scan, so-called bird-
bath scan, ends the 5 min sampling sequence. More detailed
information of the scanning routine, radar systems, and data
processing at DWD can be found in Helmert et al. (2014) and
Frech et al. (2017).

This study explores riming cases observed at DWD’s Es-
sen radar site (ESS; Fig. 1), located in western Germany in
order to train the riming algorithm. These data include five
stratiform precipitation events monitored on 13 May 2021,
24 July 2021, 3 November 2021, and two time segments
on 2 January 2022. Furthermore, one additional event on
14 July 2021 is used for final evaluation (Table 1).

QVPs of polarimetric variables are generated based on PPI
scans measured at 12° elevation, enabling the joint analysis
with the birdbath data. We constrained the calculation of the
QVPs to a maximum range of 35 km (Fig. 1) in order to, on
the one hand, improve the comparability and, on the other
hand, still cover sufficiently high altitudes. Preceding quality
control, calibration and preprocessing of the radar data are
performed as follows.

To mitigate the impact of noise and non-meteorological
scatterers, data are filtered with a cross-correlation coeffi-
cient ρhv ≥ 0.8. Noise corrections following Ryzhkov and
Zrnić (2019) are applied to ρhv, and the theoretical ZH–ZDR
relationship for C-band in light rain (Ryzhkov and Zrnić,
2019) is used to calibrateZDR. Due to the identified elevation
dependency of the offset, this calibration method was pre-
ferred to the use of the birdbath scan. Furthermore, only radar
data with a signal-to-noise ratio (SNR) greater than 10 dB are
taken into account after the correction of ρhv. For the devel-
opment of the riming algorithm, it is particularly important

to exclude events with pronounced updrafts and downdrafts
associated with convection. Thus, only stratiform precipita-
tion with a detectable melting layer (ML) is considered. So,
after QVP calculation, the ML detection strategy introduced
by Wolfensberger et al. (2016) is used to derive a first-guess
estimate of the ML locations and then adjusted to nearby lo-
cations where ρhv returns to values above 0.97 (Giangrande
et al., 2008). The precise detection not only allows for the
selection of stratiform rain, but also enables us to restrict the
analysis to the pure ice phase above the ML.

2.2 Doppler spectra

Doppler spectra can provide high-resolution profiles of the
radar’s equivalent reflectivity factor, mean Doppler velocity
(MDV), and spectrum width and are widely used to deter-
mine microphysical and dynamical properties of clouds (e.g.,
Kollias et al., 2007; Kalesse et al., 2016; von Terzi et al.,
2022; Billault-Roux et al., 2023). Only since the update of
the scan schedule for the national radar network of the DWD
on 18 May 2021 are Doppler spectra stored for the entire
C-band radar network on a regular basis. Previously, the op-
erational birdbath scan was mainly used for the calibration of
ZDR (Frech and Hubbert, 2020), but the Doppler spectra now
provide new opportunities for operational applications. This
study employs them as ground truth for riming occurrences.

The flexible multistep post-processing of the Doppler
spectra as described in Gergely et al. (2022) is performed to
isolate the weather signal from non-meteorological echoes
exploiting polarimetric attributes (e.g., the signal power in
one of the two available polarization channels, the abso-
lute value of the uncalibrated spectral differential reflectivity
sZDR, and the texture of sZDR) and to calculate the proper-
ties of each precipitation mode identified, as well as potential
multimodal characteristics, if more than one mode is present.
These characteristics, such as bimodal amplitude and separa-
tion (as defined in Zhang et al., 2003), are used to quantify
the relation among the individual simultaneously occurring
precipitation modes. Figure 2 demonstrates the performance
of the method. The complete spectra (left panel) include un-
wanted non-meteorological contributions and static clutter at
Doppler velocities close to 0 m s−1 at all heights. These ar-
tifacts are removed in the processed spectra (right panel) to-
gether with the antenna near-field signal, which extends up to
a height of about 650 m at all Doppler velocities and deter-
mines the minimum valid height. The weather signal reaches
up to an altitude of about 8 km with a transition from frozen
precipitation to much faster-falling rain at heights about 2 km
above the radar. Rain below the ML shows a broader dis-
tribution and also higher fall velocities of up to −6 m s−1.
Moreover, this isolated spectrum shows evidence of signifi-
cantly rimed snow above the ML. It contains two precipita-
tion modes between approximately 2 and 3 km height. The
primary mode is characterized by fall velocities larger than
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Figure 1. Panel (a) shows the geographic location (magenta dot) and area covered by the operational Essen radar (ESS; lat: 51.405649° N,
long: 6.967111° E; alt: 185.11 m a.s.l.) in western Germany with the PPI at 1° elevation angle. The larger circle indicates the approximate
maximum range of 180 km around the radar, and the smaller circle indicates the coverage limited to a range of 35 km. Panel (b) displays a
zoom-in view of the limited ESS region. Colors indicate the terrain height of the study area (in m a.s.l). A selection of surrounding cities are
also indicated with magenta dots.

Table 1. List of events including the time periods from consecutive birdbath scans recorded at the ESS radar and their utilization purpose.
While the event on 14 July 2021 (Ahr valley flooding) is used as an independent data set for the evaluation of the riming algorithm, the
remaining events are used for algorithm development and referred to as the initial data set in Sect. 4 and Fig. 5.

Time periods, dates No. of riming periods Note

18:00–20:30 UTC, 13 May 2021 1 development
14:00–19:00 UTC, 14 July 2021 1 evaluation
13:00–20:00 UTC, 24 July 2021 1 development
11:30–15:00 UTC, 3 November 2021 1 development
03:00–09:30 UTC and 17:30–21:00 UTC, 2 January 2022 2 development

−2 m s−1, typical for rimed particles, while the second mode
exhibits reduced velocities around −1 m s−1.

So far, Doppler spectra recorded with DWD’s C-band
radars have only been used to study the profiles of individual
birdbath scans in detail (Trömel et al., 2021; Gergely et al.,
2022). By applying in the ensuing step the novel mean iso-
lated spectra profile (MISP) technique, time series of the pro-
cessed spectral data can be displayed in a convenient time vs.
height format, allowing for a direct comparison with polari-
metric QVPs. The MISP technique uses the mean of the iso-
lated spectra (e.g., right panel in Fig. 2) at each height level
with all included precipitation modes. Note that the derived
MDV from the isolated spectra contains a weighting and is
therefore calculated from the power-weighted mean veloc-
ity v̄ (in m s−1) for all precipitation modes, with the Doppler
power in each individual spectral bin denoted by S, thus ex-
plicitly accounting for the spectral dependence on Doppler
velocity v:

v̄ =

∑
iviS(v)∑
iS(vi)

. (1)

The resulting mean profiles in the time versus height format
are then referred to as MISP. The MISPs of MDV allow for

the distinction between various hydrometeor types. Note that
only stratiform precipitation events should be considered to
minimize misinterpretation due to vertical air motions. Tem-
poral averaging over each 15 s birdbath scan already damp-
ens the effects due to large-scale vertical air motion and re-
duces the influence of turbulence on the measured Doppler
velocities of the falling precipitation particles.

As an example, Fig. 3 shows MISPs of mean power (in
dB) and MDV for a riming event on 2 January 2022. The
rapid increase in Doppler velocities at an altitude of around
2 km indicates the transition from the ice to the liquid phase
and is in agreement with the detected ML height in the QVPs
(not shown). Above the ML, the event shows MDVs exceed-
ing 1.5 m s−1, clearly indicating riming processes (Kneifel
and Moisseev, 2020). However, the potential occurrence of
densely rimed dendrites, as well as lightly rimed aggregates,
e.g., during the fill-in stage of riming growth (Heymsfield,
1982), is challenging to detect with such a fixed threshold
value of 1.5 m s−1. The fall velocity of such rimed parti-
cles may overlap with the ones of unrimed aggregates. Fur-
thermore, larger particles/aggregates, mostly associated with
higher ZH values, fall faster than smaller particles with the
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Figure 2. Mean Doppler power spectra of an exemplary 15 s birdbath scan recorded on 2 January 2022 at 03:40 UTC. The direct output (a),
after the internal radar signal processor had already applied a notch filter to mitigate strong clutter near 0 m s−1 for each individual Doppler
spectrum, is shown together with the isolated average Doppler spectra after postprocessing (b). Colors indicate the uncalibrated radar signal
power (in dB). The black line indicates the corresponding mean profile of power-weighted mean velocity.

Figure 3. MISPs of mean power (a) and MDV (b) observed by the ESS radar, recorded on 2 January 2022 between 03:00 and 09:30 UTC.
Negative MDV values indicate motion towards the radar.

same riming degree (or fraction of riming) but lower reflec-
tivities (e.g., Ryzhkov and Zrnić, 2019).

Decreasing air density with height impacts the fall veloc-
ity of hydrometeors and needs to be taken into account to
avoid misinterpretation. Therefore, raw MDVr data are trans-
formed into fall velocities at surface conditions. Following
Heymsfield et al. (2013), the pressure (p)-transformed MDV
at altitude z is given by

MDV(z)=MDVr(z)
[
p(z)
pref

]0.4

, (2)

where pref is the reference pressure at the surface. In this
study, profiles (p(z)) were obtained from radio soundings
of the worldwide repository hosted at the University of
Wyoming (http://weather.uwyo.edu/upperair/sounding.html,
last access: 27 March 2024) for the permanent sounding sta-
tion Essen (station number 10410), which is the only di-
rectly colocated sounding station available for the DWD net-
work. In the following, the transformed MDVr is referred to
as MDV and interpreted as the typical particle fall velocity.

Finally, the rime mass fraction (RMF), defined as the frac-
tion of total particle mass obtained by riming (Kneifel and
Moisseev, 2020), can be derived from the MISPs of MDV.

3 Methodology

First Sect. 3.1 presents a general description of the learning
techniques utilized, followed by an overview of all statistical
metrics used for evaluation in Sect. 3.2.

3.1 Description of the learning techniques

Several approaches to classify rainy observation periods as
dominated by riming processes or not based on polarimetric
radar variables only were tested. Besides a simple threshold-
based approach (TB), the relationship between Doppler ve-
locities and different polarimetric variables can also be
learned (e.g., by a supervised neural network). Therefore,
we investigated four methodologies: an LR, a QDA, a GBM
based on decision trees, and an MLP ANN (artificial neural
network) trained with a commonly used back-propagation al-
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gorithm (Table 2). In the following, the basic principles of
the selected methods are briefly described together with the
respective hyperparameters that define the architecture and
training process if needed. Tools from the scikit-learn Python
machine learning library (Pedregosa et al., 2011) were uti-
lized for all the learning methods. For more detailed informa-
tion on these methods and their mathematical formulations,
we refer the reader to the scikit-learn user guide.

The most basic detection method for riming, that defines
the TB herein, relies on threshold criteria of the polarimetric
variables estimated via scatterplots of the variables relative
to MDVs faster than 1.5 m s−1. Expectations with respect to
riming based on prior studies (e.g., Ryzhkov et al., 2016) are
also taken into account for the selection of these thresholds.

As a first statistical analysis method, LR is used to model
the dependence of a binary response variable on one or more
explanatory variables. The probability of an event success
is modeled by taking the log-likelihood for the event to be a
linear combination of one or more independent variables. LR
is easy to implement and interpret and efficient to train.

The QDA algorithm is a classic and flexible classifier with
a quadratic decision surface that minimizes the total proba-
bility of misclassification, and it allows for a non-linear sep-
aration of data. Therefore, it fits a Gaussian density (covari-
ance matrix) to each class. No assumption on identical co-
variances for each class is required. After modeling the like-
lihood of the classes with a supervised method, the QDA uses
a normal distribution to make predictions. A QDA algorithm
is easy to compute (no hyperparameters to tune) and inher-
ently multiclass.

The GBM is a learning technique based on decision trees
(Breiman, 1996). It is a generalization of tree-boosting in
which the learning task is posed as a numerical optimization
problem. Boosted trees are comparable to random forests
(Breiman, 2001) in the sense that an ensemble of decision
(regression) trees are considered and calculated. As opposed
to bagging during the ensemble and resampling processes, a
boosting procedure is considered a technique in which simple
parameterized models are sequentially added to the ensemble
at each iteration.

At the beginning, the number of maximum splits within
each tree (also known as the depth) is specified as a hy-
perparameter in the process of model tuning. In order to
reduce variance and bias, each tree is computed as a func-
tion of its predecessors and weighted according to its accu-
racy. The gradient descent procedure is used to iteratively
update the weights, and it minimizes the difference from the
function predicting the actual observation. Using numerous
model outputs in combination is advantageous to further re-
duce biases.

In general, an ANN represents a mathematical model
trained to recognize patterns and to make predictions. A MLP
is a fully connected neural network that consists of an input
layer, several hidden layers (artificial neurons), and an out-
put layer. It typically performs a sequence of matrix multi-

plications, followed by an element-wise non-linear function
(the activation function) for each iteration. These allow the
network to learn linear and non-linear relationships. Simi-
lar to the GBM, hyperparameters such as the number of hid-
den layers (referred to as the layer depth), the corresponding
number of neurons, the type of activation function, and the
initial learning rate needs to be tuned to derive the optimal
architecture for the ANN. In this study, a fairly simple ANN
structure can be employed, which generally reduces the risk
of overfitting and requires less computation.

3.2 Scores and performance metrics

The performances of the proposed riming retrievals are eval-
uated by computing multiple pertinent scores to ensure ro-
bustness of the evaluation procedure. Here, we convert the
ground truth and the results of the retrievals into binary fields
(riming yes/no; in other words, presence of riming or lack
thereof) in order to simplify the analysis and efficiently ap-
ply and adapt it to our needs.

Four distinct types of metrics, including true negative
(TN), false positive (FP), false negative (FN), and true pos-
itive (TP), are broadly used to assess the performance of
binary classification analyses. Based on those, the accuracy
(ACC), precision (PR), true negative rate (TNR; referred to
as specificity), and recall (RC; also known as sensitivity in
diagnostic binary classification) are defined as follows:

ACC=
TN+TP

TN+TP+FN+FP
, (3)

PR=
TP

TP+FP
, (4)

TNR=
TN

TN+FP
, (5)

and

RC=
TP

TP+FN
. (7)

The distinct metrics can be displayed in a 2× 2 contingency
table (Pearson, 1904), which is also referred to as the so-
called confusion matrix (Miller and Nicely, 1955),

M=
(

TP FN
FP TN

)
, (8)

summarizing the results of the classification. The standard
ACC ranges in the real unit interval [0, 1]. The highest possi-
ble value of 1 corresponds to perfect classification, whereas 0
is the lowest possible value indicating clear misclassification.

Overall, ACC tends to provide a too optimistic assessment
of the classification ability if the category to be detected is
underrepresented; that is, ACC is not adequate to quantify
the performance of an unbalanced data set. In general, an
evaluation metric alone is only able to reflect part of the
model’s performance (Wang et al., 2024). One alternative is
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Table 2. Overview of classification techniques.

Classifier Abbreviation Relationship Citation

Threshold-based approach TB linear
Logistic regression LR linear Wilks (2011)
Quadratic discriminant analysis QDA non-linear Geisser (1964)
Gradient-boosting machine GBM linear and non-linear Friedman (2001)
Artificial neural network ANN linear and non-linear Schmidhuber (2015)

the commonly used balanced ACC (BA), which is the arith-
metic mean of sensitivity RC and specificity TNR:

BA=
RC+TNR

2
. (9)

Again, BA ranges between 0 and 1 and is an appropriate met-
ric dealing with unbalanced data sets.

Further, the F1 score represents a harmonic mean of PR
and RC and is calculated as

F1 score= 2 ·
PR×RC
PR+RC

=
2 ·TP

2 ·TP+FP+FN
, (10)

reaching the value of 0 in the case of clear misclassification
and the best value of 1 for perfect classification. This metric
is more sensitive to changes in the detection of positives, be-
cause, unlike ACC, the F1 score does not take into account
TN (not symmetric). Excluding TN can be especially benefi-
cial because it can dominate classification tasks in meteorol-
ogy due to the often rare nature of events (Chase et al., 2022),
e.g., the occurrence of riming.

The Matthews correlation coefficient (MCC; Matthews,
1975) is another measure for the quality of binary classifi-
cations, which is not affected by imbalanced data sets:

MCC=
TP×TN−FP×FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

. (11)

MCC, also known as the φ coefficient, is a correlation coef-
ficient value ranging between −1 and +1. A coefficient of
+1 represents a perfect prediction, 0 an average random pre-
diction, and −1 an inverse prediction. However, MCC rep-
resents a binary classifier that yields a high score only if the
binary predictor was able to correctly predict the majority of
positive and the majority of negative outcomes. Also, the nor-
malized MCC, hereafter defined as NMCC= (MCC+ 1)/2,
can be useful since it linearly projects MCC onto the range
interval from 0 to 1.

The Jaccard index (Jaccard, 1901), also termed “intersec-
tion over union” (Wilks et al., 1990) and frequently referred
to as the critical success index (CSI; Donaldson et al., 1975)
in meteorological literature, is a statistic used for comparing
the similarity and diversity of finite sample sets and defined
as the ratio between the size of the intersection and the size
of the union of the sample sets A and B:

J =
|A∩B|

|A∪B|
=

TP
TP+FP+FN

, (12)

with values ranging between 0 (no overlap) and 1 (complete
overlap). Like the F1 score, J does not consider TN.

Lastly, the widely used Cohen’s kappa (κ) expresses the
level of agreement between two sets and takes into account
the agreement occurring by chance. In meteorology, it is also
known as the Heidke skill score (Heidke, 1926) and is calcu-
lated via

κ =
2× (TP×TN−FN×FP)

(TP+FP)× (FP+TN)+ (TP+FN)× (FN+TN)
, (13)

with values ranging from −1 to 1. Despite known disad-
vantages, e.g., the high sensitivity to the distributions of the
marginal totals, it is included as one of the most popular met-
rics used in machine learning for comparison.

In order to quantify the role of each individual polarimetric
variable as predictor in the riming algorithm, Shapley val-
ues (Shapley, 1953) are used as in Buschow et al. (2024).
The Shapley values, originally developed in game theory,
provide information on how the payout (prediction) can be
fairly distributed among the predictors (also denoted as fea-
tures). Note that these calculated contributions always add
up to the total amount; however, the importance of a vari-
able may vary for each performance measure considered. Es-
sentially, the calculated Shapley values allow for a ranking
of input features according to their relevance. The inherent
impurity-based feature importance (also known as Gini im-
portance or mean decrease impurity; Breiman, 2001) is addi-
tionally used, as it indicates the importance within the same
model, which does not require recalculation or tuning of hy-
perparameters. For random forests, it is defined as the total
decrease in node impurity averaged over all trees of the en-
semble and measures the amount each feature contributes to
the reduction in variance of the model when that feature is
used to split the data. In contrast to Shapley values, this per-
formance measure is considered biased towards features with
high cardinality (Grömping, 2009), i.e., a large number of
distinct values.
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4 Developing a riming detection algorithm for
C-band radars

Section 4.1 emphasizes DR as a promising proxy for ongoing
riming processes and details the microphysical information
content of the to-date still underutilized polarimetric variable
DR in general, while Sect. 4.2 describes the entire workflow
of the riming detection algorithm development.

4.1 Depolarization ratio

The impact of riming on ZDR is twofold. On the one hand,
the ice particles become more spherical due to riming, which
leads to a reduction in ZDR beyond the initial fill-in stage of
riming growth (Sect. 2.2). On the other hand, the associated
increase in density is supposed to increase ZDR. Observa-
tions indicate that the impact of the particle shape dominates
the impact of density, resulting in a small overall reduction
of ZDR in the case of heavy riming (Ryzhkov et al., 2016).
DR, however, proved to be a useful parameter for character-
izing the microphysical properties of snow and shows a more
pronounced riming fingerprint (e.g., Ryzhkov et al., 2017).

DR can be derived from measurements of dual-
polarization radars operating in SHV mode (simultaneous
transmission/reception of orthogonally polarized waves) and
represents a good proxy for the circular depolarization ratio
(CDR) measured by radars with circular polarization (Ma-
trosov, 2004; Ryzhkov et al., 2017). Thus, DR can be de-
rived based on measurements of the DWD network and in-
cluded as predictor in the envisioned riming algorithm. In the
Rayleigh scattering regime, the following proportionality ap-
plies to CDR (in dB) for oriented spheroidal particles assum-
ing dry aggregated snow with low bulk density of snow ρs in-
versely proportional to the equivolume diameterD (Ryzhkov
and Zrnić, 2019):

CDR≈ 10log10
[
ρ2

s (D)(La −Lb)2]
= 10log10

[
(α0frimD

−1)2(La −Lb)2], (14)

where ρs is expressed in g cm−3; La and Lb are the par-
ticle shape parameters; α0 is a constant that is approxi-
mately equal to 0.15; and frim denotes the degree of rim-
ing, which ranges from 1 for unrimed ice to 5 for heavily
rimed ice, and can be expressed as a function of RMF as
frim = 1/(1−RMF). CDR is mostly a function of shape, as
the net effect of Eq. (14) is dominated by the more spherical
shape of rimed snow compared to unrimed snow and not by
the effect of increasing density, which ultimately results in a
stronger reduction of CDR for rimed snow.

As a proxy of CDR, DR (in dB) can be estimated via

DR= 10log10

[
1+Zdr− 2ρhvZ

1/2
dr

1+Zdr+ 2ρhvZ
1/2
dr

]
, (15)

where Zdr denotes the differential reflectivity in linear units.
Equation (15) combines the information content of Zdr and

Figure 4. DR–ρhv relations given by Eq. (15) for different values
of ZDR. The colors represent different values of ρhv.

ρhv in a single, more meaningful quantity. And due to the
inherent noise reduction in the QVP methodology, an even
clearer riming fingerprint can be expected. DR bears several
advantages over CDR measurements and, thus, is more ro-
bust. In contrast to CDR, DR does not depend on propagation
phase shift, is available in all radar resolution volumes where
directly measured co-polarized signals are reliably measured,
and has a rather modest sensitivity to particle wobbling (Ma-
trosov, 2020). In addition, unlike other polarimetric variables
such as ZDR, DR shows only weak dependence on the ori-
entation of the hydrometeors and is less affected by noise
(Ryzhkov et al., 2017). While low DR values are expected
for almost spherical targets, high values indicate a wide va-
riety of shapes or elongated targets. Aside from this shape
dependence, the DR values also depend strongly on the par-
ticle density.

Figure 4 illustrates and quantifies the strong variability of
DR with ρhv. In the case of heavy riming, an increase of
ρhv is to be expected due to decreasing anisotropy, result-
ing in more negative DR values. Eventually, strong vertical
DR columns in QVPs may help to better identify riming and
its vertical extend aloft.

4.2 Workflow

This section describes the setup, training, and evaluation pro-
cedure of the tested algorithms, and Fig. 5 summarizes the
complete schematic workflow of the algorithm development.
First, a preselection of relevant potential predictors based
on manual feature engineering is done, i.e., taking the in-
formation content of the polarimetric variables into account.
Therefore, the same set of polarimetric variables, namely,
ZH, ZDR, and DR, are fed as inputs to all approaches. ZH
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Figure 5. Graphical representation of the classification workflow for the algorithm development. The two steps performed after cross-
validation (CV), indicated as brown boxes, are only carried out for the GBM and the ANN but skipped for the other classifiers.

increases with increasing particle size, and ZDR decreases
with decreasing oblateness; both are well-known effects of
riming. DR was selected as it combines the information con-
tent of ZDR and ρhv and suspected to potentially amplify the
riming fingerprint (see Sect. 4.1).

The overall database is split into two parts: one used for
the algorithm development and referred to as the initial data
set and the other used for the evaluation and referred to as the
independent data set (see again Table 1 and Fig. 5). The em-
ployed data set for development is, however, just a subset of
the initial data set and again split into a ratio of 70 % to 30 %
for a training and validation set, respectively (compare with
Fig. 5). Both the training set and the validation set show the
same proportions of riming and non-riming sequences like
the initial data set (stratification), which is unbalanced (21 %
were labeled as riming and 79 % as no-riming). The predic-
tion task is to classify whether a riming threshold is exceeded
by training all classifiers to predict Doppler velocities faster
than 1.5 m s−1 with a total of 16 491 colocated data points
within the initial data set. To optimize the performance of the
different approaches, a cross-validation (CV) is performed
on the training set to minimize overfitting and to tune hyper-
parameters. Thus, this training data are again divided into k
smaller sets (k folds) of sub-training and sub-validation sets,
whereby a split into five (k = 5, five iterations) equally sized
sets is chosen here. K-fold cross-validation is a method of
validation frequently utilized in machine learning to assess

Table 3. Optimal hyperparameter values of tuned GBM and ANN.

GBM hyperparameter ANN hyperparameter

Learning rate 0.15 Learning rate 0.001
Maximum depth 4 No. of hidden layers 1
No. of boosting stages 100 No. of neurons 8
Subsample 0.7 Weight decay 0.05
Minimum sample split 100 Max iteration 1000

the generalization ability of a prediction model. Model tun-
ing is also performed to investigate the impact of hyperpa-
rameter configurations, that depend on the selected classifier,
on the performances. The best possible set of hyperparame-
ters from a pre-selected parameter space are found via a grid
search method. In summary, the training is performed on the
effective training set, then the initial evaluation of all models
is performed, and if the classification task appears to be suc-
cessful, the evaluation of the winners of the (tuned) models
can be performed on the remaining 30 % hold-out validation
set. The last evaluation step is carried out on the independent
data set for the best model found.

Table 3 shows the best-performing set of identified model
hyperparameters (tuning results) describing the structure for
both the GBM and the ANN as a reference for potential fu-
ture applications. The latter uses a hidden layer with a hyper-
bolic tangent activation function.
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Finally, we tested the TB using selected hard thresh-
olds for all polarimetric variables included (DR≤−22.6 dB;
0.05 dBZ<ZDR < 0.21 dB; ZH > 10 dBZ) on the validation
data set.

5 Results and verification

First, the precipitation event observed on 2 January 2022 be-
tween 03:00 and 09:30 UTC is presented in more detail to il-
lustrate the information content of the polarimetric variables
before, in a second step, the methods described in Sect. 3.1
are applied to all events except the independent (Ahr valley
flooding) case in Table 1 to set up the riming detection algo-
rithm.

Figure 6 shows QVPs of ZH, ZDR, ρhv, and DR for the
selected test case. Similar QVP products have been gener-
ated for all time periods used (not shown here). ML sig-
natures in terms of ZH, ZDR, and ρhv are clearly visible
during the entire period (Fig. 6). A band of enhanced ZDR
values is visible within the DGL located between −10 and
−15 °C (Fig. 6b). In addition, the QVP of DR (estimated
from Eq. 15) in Fig. 6d indicates pronounced maxima within
the ML approaching −10 dB. Downward excursions or sag-
ging of the ML (see also Kumjian et al., 2016, and Xie et al.,
2016) may indicate riming processes; however, also changes
in precipitation intensity and associated cooling due to the
enthalpy of melting may cause these signatures (Carlin and
Ryzhkov, 2019). To illustrate the connection between a sag-
ging ML and riming, the signature is detected by (1) applying
a moving average to the ML top and bottom, respectively;
(2) calculating the first derivative of both time series; and
(3) identifying the negative slopes of ML top and bottom.
Indeed, the QVP of DR shows episodic sagging of the ML
mostly during time periods with noticeably reduced values
of DR directly above the ML and up to altitudes of 4 km
(Fig. 6d). These pronounced DR columns are mostly located
at temperatures above−10 °C, where riming is more favored
(Kneifel and Moisseev, 2020).

A correlation of 0.7 between MDV, derived from the
MISPs of the corresponding radar birdbath scans, and DR
further emphasizes the strong potential of DR for riming de-
tection (Fig. 7). The majority of the displayed data points are
concentrated along the one-to-one line, and the high corre-
lation between ZDR and DR of 0.9 is obvious and not sur-
prising, as DR is a function of ZDR and ρhv. Nevertheless,
DR alone is not sufficient to detect riming. Due to the depen-
dence on ρhv, DR can exhibit quite negative values together
with relatively high ZDR values not expected in the case of
riming (see Figs. 4 and 7). It is also worth mentioning that,
due to the inherent averaging process in the QVP technique,
potential DR values <−28 dB (see Fig. 4) are not observed
in our analyses.

Secondly, based on these preliminary findings, a competi-
tion between all methods is performed for our selected test

cases, i.e., the initial data set (see Table 1), monitored with
DWD’s ESS radar in order to identify the most appropriate
algorithm for the discrimination task at hand. The extension
to more test cases leads to a more robust, universally appli-
cable algorithm that is less prone to potential minimal mis-
calibrations.

The evaluation of all methods as obtained with the training
and validation procedure described in Sect. 4 is summarized
in Table 4. The GBM-based riming retrieval outperforms all
other classifiers, in terms of all performance measures. While
the results of QDA and LR are comparable, the most simple
TB performs slightly worse. Significantly better results than
these are achieved by the ANN, which has a performance
close to that of the GBM. The results highlight that choosing
a learning-based method over a simple thresholding approach
can significantly increase the prediction accuracy of riming.
The inherent impurity-based feature importance of the win-
ning GBM retrieval, which indicates how effective each po-
larimetric input variable for this specific model is, is com-
posed of 43 % for ZH, 30 % for ZDR, and 27 % for DR. This
decomposition states that ZH and ZDR can already provide a
first guess of where riming may occur. Despite the relatively
minor contribution of DR, it is crucial to localize and con-
strain these riming signatures with greater precision. This is
because ZH, for instance, tends to classify artifacts that are
discarded during the learning process when DR is incorpo-
rated. In addition, the three predictors are not independent
and may likely contain overlapping information. This is fur-
ther investigated via Shapley values below.

In order to reduce the impact of possible mismatches, the
GBM-based prediction is additionally smoothed in time and
height via a rolling minimum with window sizes of two. Fig-
ure 8 gives an impression of the performance of the final
tuned and smoothed GBM retrieval (GBMs) applied to the
complete initial input data set. Since the stratified test set is
not a consecutive time series, only the application to the ini-
tial data set allows us to visualize the direct comparison of
the predictions with the retrieval results during the evolution
of the riming processes. In all cases investigated, the over-
all riming pattern is nicely represented, and the GBMs shows
promising results with a balanced accuracy of 79 %, an F1
score of 0.61, and a NMCC of 0.78. Note that these met-
ric values are better compared to the ones obtained with the
hold-out validation set (Table 4), which can be explained by
the smoothing and the fact that the training data have been
included. Additionally, the case of 3 November 2021 (ini-
tial data set) also demonstrates the good performance of the
GBMs algorithm when almost no riming is observed (Fig. 8b,
f). This emphasizes that the GBM retrieval is also capable of
correctly predicting the absence of riming, i.e., dominating
aggregation processes.

It is also interesting to look at the polarimetric input
variables associated with riming prediction and the mean
degree of riming. GBMs applied to the initial input data
set results in a mean RMF of 0.47 with mean fall ve-

Atmos. Chem. Phys., 25, 4167–4184, 2025 https://doi.org/10.5194/acp-25-4167-2025



A. Blanke et al.: A new aggregation and riming discrimination algorithm based on polarimetric weather radars 4177

Figure 6. Composite QVP of ZH (a), ZDR (b), ρhv (c), and DR (d) on 2 January 2022 between 03:00 and 09:30 UTC. Profiles were
constructed from the 12° elevation angle PPI scans. Overlaid dashed lines (in all panels) display the −5, −10, and −15 °C isotherms from
the European Centre for Medium-Range Weather Forecasts Reanalysis v5 (ERA5; Hersbach et al., 2020). The time periods of DR identified
as saggy periods are overlaid in transparent gray.

Table 4. Comparative performances of TB, LR, QDA, GBM, and ANN for classification of riming. The scores refer to the performance of
the methods applied to the 30 % of the hold-out data set. The best scores of each metric are shown in bold.

Performance measures

Classifier ACC BA F1 score MCC NMCC J κ

TB 0.77 0.58 0.32 0.2 0.6 0.19 0.19
LR 0.8 0.58 0.29 0.27 0.64 0.17 0.21
QDA 0.81 0.59 0.32 0.34 0.67 0.19 0.26
GBM 0.84 0.68 0.52 0.47 0.73 0.36 0.44
ANN 0.82 0.65 0.46 0.38 0.69 0.3 0.36

locities of −1.66 m s−1 and corresponding mean values of
DR=−22.67 dB, ZDR = 0.27 dB, and ZH = 21.2 dBZ, re-
spectively. Moreover, periods of a sagging ML in Fig. 6d are
consistent with both observed and predicted riming in Fig. 8c
and d, adding another weight to the presence of faster-falling
particles above the ML.

To assess the performance of the final (smoothed) GBM
retrieval and to investigate the transferability of the devel-
oped retrieval method to cases for which it has not been
trained or validated, it is required to consider another inde-
pendent data set. Therefore, the retrieval and its smoothed
variant are applied to a long-lasting intense stratiform pre-
cipitation event, which led to devastating floods especially in

western Germany in the Ahr valley in Rhineland–Palatinate
on 14 July 2021 (e.g., Mohr et al., 2022). The event lasting
17.5 h ranging from 01:00 to 18:30 UTC comprises a total
number of 13 050 colocated data points, whereas 20 % are
labeled as riming and 80 % as no-riming. The predictions
show convincing results (Table 5). The overall performance
of the GBM algorithm is better or equal when compared to
the performance of the GBM applied to the hold-out data
set, except for the metric of F1 score (0.52 vs. 0.51) and J
(0.36 vs. 0.34), for which nevertheless very similar values
were obtained. This underlines the robustness of the GBM re-
trieval. When comparing the metrics of the GBM to GBMs,
the smoothed variant performs only better in terms of BA
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Figure 7. Scatterplot and linear regression of ZDR vs. DR observed
with the DWD C-band radar in Essen on 2 January 2022 between
03:00 and 09:30 UTC. The coloring of the individual data points
indicates MISPs of MDV. The correlation coefficient r is provided
for ZDR vs. DR.

(74 % vs. 78 %). In general, the GBMs tends to overestimate
riming occurrences, but at the same time the amount of TP
increases and the amount of FN decreases. This leads to the
conclusion that smoothing, which resulted in a better predic-
tion of the GBM applied to the initial complete data set, is not
necessary for the independent data set but also causes hardly
any loss of performance. Both classifiers, GBM and GBMs,
reproduce the overall riming patterns nicely (Fig. 9).

For the Ahr valley flooding event, the GBM retrieval is
able to detect riming with a mean RMF of 0.43. Following
Kneifel and Moisseev (2020), this corresponds to a fall ve-
locity of approximately −1.45 m s−1 at C-band derived via
the RMF-MDV polynomial fit in the Rayleigh regime. More-
over, the predicted data points exhibit mean values of DR=
−21.21 dB, ZDR = 0.3 dB, and ZH = 21.48 dBZ. These val-
ues for ZH and ZDR again correspond to the expected sig-
natures for faster-falling particles, which tend to enhance the
ZH and decrease the ZDR above the ML. The lower mean
ZDR values are in line with riming signatures of particles
that become more spherical, resulting in a lower ZDR by 0.1–
0.3 dB (Ryzhkov et al., 2016; Kumjian et al., 2016; Gian-
grande et al., 2016; Vogel et al., 2015). The mean MDV of
all data points is −0.85 m s−1, while the mean MDV for all
points where riming is predicted is −1.51 m s−1.

Even though the spatiotemporal mismatches caused by the
comparison of a 15 s snapshot of the vertical atmospheric
column with the average profile of a conical volume may
lead to double penalties (Gilleland et al., 2009) affecting the
scores, the developed GBM algorithm overall distinguishes
reliably between dominant aggregation and intense riming
processes.

As the GBM generally provides the most accurate results,
the Shapley values ψ are estimated for all unsmoothed GBM
models and for each parameter combination. This is con-
ducted on both the independent and the complete initial data
set. Thus, calculations are performed for a set of six different
combinations for both data sets, whereby the GBM models
using a combination of two polarimetric variables or only
one alone had to be retrained for their respective hyperpa-
rameters.

From the analyses of the Shapley values on the indepen-
dent data set, ZH emerges as the top predictor with an impor-
tance of 49 %, followed by DR with 27 % (Table 6). DR has
a higher impact than ZDR (24 %), but the difference is not
significant. Other metrics, e.g., BA, also show a fairly bal-
anced importance of DR and ZDR (not shown). Interestingly,
considering the true negative rate (TNR), the Shapley values
indicate that DR has the largest influence at 37 %. This may
be due to the ability of DR to limit the tendency of ZH to
overpredict riming.

The Shapley values calculated for the initial data set show
similar results as for the independent data set, also match-
ing well with respect to the ranking of the predictors. How-
ever, a slightly higher importance of the variables DR (31 %
vs. 27 %) and ZDR (28.5 % vs. 24 %) has been obtained. One
potential reason for the greater impact of DR could be the
presence of more intense and deep riming signatures in the
initial data set, e.g., on 2 January 2022. Thus, learning these
distinct riming features from DR alone was possible, but not
from ZH (not shown). Ultimately, the GBM retrieval using
all three polarimetric variables outperforms the GBM mod-
els using just one or a combination of two for the independent
data set. This indicates that the predictors employed improve
each other.

In its final form, the novel algorithm performs well for all
tested cases and is particularly encouraging in that it can be
easily implemented in operational services for area-wide ap-
plications. This algorithm could be applied to identify dom-
inant riming conditions that pose a potential icing hazard to
aviation. Although the final algorithm cannot be expressed
as a simple equation because it is based on an ensemble of
trees, it can be provided upon request as a stored ready-to-use
model. In addition, the algorithm also enables the creation of
a Germany-wide climatology of riming pre-2021, when no
Doppler spectra were stored.

6 Conclusions

The overarching goal of this study was to develop an al-
gorithm which enables the distinction between rimed and
aggregated snow based on polarimetric weather radar data
alone. The introduced riming detection algorithm delivers
promising results, requires few computational resources, and
bears worldwide opportunities and advantages such as ap-
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Figure 8. Binary time–height plots of MDVs faster than 1.5 m s−1 (top panels, a–d) and corresponding GBMs retrieval results (bottom
panels, e–h) for 13 May 2021 between 15:15 and 20:30 UTC (a, e), 3 November 2021 between 11:30 and 15:00 UTC (b, f), 2 January 2022
between 03:00 and 09:00 UTC (c, g), and 2 January 2022 between 17:00 and 21:00 UTC (d, f). (Predicted) riming is indicated in yellow,
while no (predicted) riming is indicated in purple. ML tops are shown with black lines and the vertical stripes mark discarded data where no
ML has been detected.

Table 5. Metrics for the best-performing GBM riming algorithm before and after smoothing (GBMs). Scores refer to the performance applied
to the independent data set. The best scores of each metric are highlighted in bold.

Performance measure

Classifier ACC BA F1 score MCC NMCC J κ

GBM 0.94 0.74 0.51 0.47 0.74 0.34 0.47
GBMs 0.91 0.78 0.48 0.45 0.72 0.31 0.43

Table 6. Shapley values ψ and their decomposition (listed in paren-
thesis in %) for the independent and initial data set. NMCC has been
considered the metric for calculating the Shapley values.

Predictor Independent ψ Initial ψ

ZH 0.36 (49 %) 0.31 (40.5 %)
ZDR 0.18 (24 %) 0.21 (28.5 %)
DR 0.20 (27 %) 0.24 (31 %)

plicability to any slant-viewing polarimetric weather surveil-
lance radar, even those without a vertical-scanning strategy.

Tests with widely used binary scores identified the GBM
algorithm as the one with the best performance. When con-
sidering predictive BA for an independent case, the trained
GBM riming retrieval was able to correctly predict about
74 % of observed riming features and thus gives confidence

to the detection of area-wide riming based on operational na-
tional radar networks. The underlying assumption is that the
polarimetric riming signature is dominating in the resolved
radar volume and not obscured by other ice particle types.
Another challenge is that small-scale riming features may be
obscured or reduced in magnitude due to the inherent aver-
aging procedure in the QVP technique.

The Shapley values highlight the to-date underutilized DR
estimator as a crucial contribution for the riming detection
algorithm. However, a well-calibrated ZDR is required as in-
put as well as noise-corrected ρhv to ensure the reliability of
DR.

The algorithm was built on a limited number of train-
ing data sets and from the ESS radar only. In the future, a
comprehensive climatological training data set that considers
more radar stations and an even wider range of meteorolog-
ical conditions will enable us to increase robustness and to
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Figure 9. Binary time–height plots of MDVs faster than
1.5 m s−1 (a) together with results of the GBM retrieval (b) and
the GBMs retrieval (c) for the flooding case on 14 July 2021 be-
tween 01:00 and 18:30 UTC monitored with the ESS radar. Colors
and black lines like in Fig. 8.

further improve the performance of the GBM retrieval. How-
ever, building such a data set is challenging, because the fully
automated post-processing chain of the Doppler spectra can
still fail under extreme precipitation conditions and thus must
be replaced by a simpler manual thresholding method, result-
ing in increased computational time and cumbersome effort.
Such an extended database would also allow, in the next log-
ical step, for the separation of fall speeds into several groups
in order to learn multiple riming classes, such as moderate
riming, heavy riming, and potentially a graupel class charac-
terized by fall velocities of up to 3 m s−1. Similar to the envi-
sioned different riming classes in a future refinement of the
algorithm, distinct classes for the aggregation process could
also be introduced. Towards this goal, the vertical gradient
of ZH above the ML (β = ∂ZH/∂z) could be included as an
additional input variable to the classifier.

The applicability of the algorithm to radars operating at
different wavelengths, such as for the operational S-band
radar network of the National Weather Service (NWS) in
the United States, also remains to be investigated and vali-
dated in the future. Mechanical constraints do not allow for
the implementation of a birdbath scanning routine in the scan
schedule, as 20° is the largest elevation angle used (Ma-
trosov, 2020) in the NWS network, requiring the use of al-
ternative measurements as ground truth. The ongoing exten-
sion of the NWS network, with gap-filler radars operating at
X- and C-band led by the private company ClimaVision in
the United States, should allow for the direct application of
our algorithm to at least their C-band radars. Deploying the
riming detection algorithm across radar networks in differ-
ent climatic regions could potentially also prove beneficial in
gaining a deeper understanding of the importance of riming
in the formation and evolution of precipitating clouds.

The radar signatures in QVPs, as used in this study, re-
veal the dominating precipitation process within the moni-
tored radar domain (with a projected range of approximately
34 km for QVPs of 12°). A next potential extension would be
to explore the possibility to also identify smaller-scale rim-
ing conditions via columnar vertical profiles (Murphy et al.,
2020), process-oriented vertical profiles (Hu et al., 2023), or
range height indicator sector vertical profiles (Blanke et al.,
2023). Additional aircraft in situ measurements of particle
size distributions and the particle habits over the DWD C-
band network domain would enable an even more detailed
accuracy assessment and evaluation of potential applications
of such extensions of the algorithm. Such coincident data
could facilitate the development of an algorithm that also di-
rectly quantifies the degree of riming. As already outlined in
Sect. 2.2, larger particles would fall faster than smaller par-
ticles with the same degree of riming; thus, it is challenging
to decouple the effects of particle size and riming on MDV.
Therefore, a strict MDV threshold may not be universal, but
again, an in situ database would help and allow for a decou-
pled approach.

Finally, the riming detection algorithm is also of value for
the evaluation of numerical weather prediction models and
data assimilation. For example, the benefit of state-of-the-art
ice microphysical retrievals for these applications is currently
investigated (e.g., Reimann et al., 2023; Trömel et al., 2021;
Trömel et al., 2023), but most retrievals show reduced accu-
racy in the presence of riming. The novel riming detection
algorithm could therefore be used to just mask those regions
or even replace, in riming conditions, current retrievals by
upcoming developments taking frim into account (Alexan-
der V. Ryzhkov, personal communication, 2024). Nonethe-
less, this study already illustrates the key components and ca-
pabilities of a solely radar-based riming detection algorithm,
without any additional aids like vertically pointing devices.
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