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Abstract. Efficiently detecting large methane point sources (super-emitters) in oil and gas fields is crucial for
informing stakeholder decisions about mitigation actions. Satellite measurements by multispectral instruments,
such as Sentinel-2, offer global and frequent coverage. However, methane signals retrieved from satellite mul-
tispectral images are prone to surface and atmospheric artifacts that vary spatially and temporally, making it
challenging to build a detection algorithm that applies everywhere. Hence, laborious manual inspection is often
necessary, hindering widespread deployment of the technology. Here, we propose a novel deep-transfer-learning-
based methane plume detection framework. It consists of two components: an adaptive artifact removal algorithm
(low-reflectance artifact detection, LRAD) to reduce artifacts in methane retrievals and a deep subdomain adap-
tation network (DSAN) to detect methane plumes. To train the algorithm, we compile a dataset comprising 1627
Sentinel-2 images from six known methane super-emitters reported in the literature. We evaluate the ability of
the algorithm to discover new methane sources with a suite of transfer tasks, in which training and evaluation
data come from different regions. Results show that DSAN (average macro F1 score 0.86) outperforms four
convolutional neural networks (CNNs), MethaNet (average macro F1 score 0.70), ResNet-50 (average macro F1
score 0.77), VGG16 (average macro F1 score 0.73), and EfficientNet-V2L (average macro F1 score 0.78), in
transfer tasks. The transfer learning algorithm overcomes the issue of conventional CNNs, which is their per-
formance degrades substantially in regions outside regions with training data. We apply the algorithm trained
with known sources to an unannotated region in the Algerian Hassi Messaoud oil field and reveal 34 anoma-
lous emission events during a 1-year period, which are attributed to three methane super-emitters associated
with production and transmission infrastructure. These results demonstrate the potential of our deep-transfer-
learning-based method in contributing towards efficient methane super-emitter discovery using Sentinel-2 across
different oil and gas fields worldwide.
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1 Introduction

As one of the most important greenhouse gases, methane
(CH4) is behind approximately a quarter of the overall
global warming since the preindustrial age as reported by
IPCC (2013). Among all the sources, reducing methane
emissions from anthropogenic sources, including from oil
and gas (O&G) production, is vital for mitigating near-term
climate change (Lauvaux et al., 2022). Methane emission
in the O&G production sector comes from point emitters
such as malfunctioning flares, wells, storage tanks, and gas
compressor stations. These point emissions exhibit a long-
tailed distribution; that is, a substantial fraction of the total
emissions are contributed by a limited number of anoma-
lous point sources, which are often linked with production
equipment malfunctions or abnormal operating conditions
(Zavala-Araiza et al., 2017; Duren et al., 2019). Therefore,
efficiently detecting these anomalous methane point sources
is crucial for informing prompt mitigation actions.

Atmospheric methane concentrations can be quantified
remotely by measuring backscattered radiation at wave-
lengths (e.g., around 1700 and 2150 nm) that correspond
to the rotational–vibrational resonances of methane molec-
ular transitions (Ehret et al., 2022). Recent studies have
demonstrated that both multispectral and hyperspectral satel-
lite instruments have the capability to identify anomalous
methane point emissions (Guanter et al., 2021; Varon et
al., 2021; Sánchez-García et al., 2022). Hyperspectral in-
struments (e.g., GHGSat, PRISMA, EMIT, and GF-5) of-
fer higher sensitivity to CH4 and thus lower point source
detection limits owing to their fine spectral resolution, but
hyperspectral observations generally exhibit sparsity in both
spatial and temporal coverage (Naus et al., 2023; Pandey
et al., 2023). In comparison, multispectral satellites (includ-
ing Landsat 8, WorldView-3, and Sentinel-2) provide global,
frequent, and spatially continuous observations, though their
sensitivity to methane is lower because of coarse spectral res-
olution (Varon et al., 2021; Ehret et al., 2022). As an illustra-
tion, Sentinel-2 provides global coverage data on a weekly
basis, spanning a period of 8 years. The detection limit of the
Sentinel-2 measurements for methane gas in the atmosphere
is roughly 5000 kg h−1 or greater for heterogeneous surfaces
(Gorroño et al., 2023).

However, the routine scanning for methane super-emitters
across varied O&G areas remains challenging primarily due
to the lack of an efficient automated source detection algo-
rithm (Fig. 1). Currently, source detection predominantly re-
lies on human visual inspection, a process that is time- and
labor-consuming, thereby impeding large-scale deployment
(Jongaramrungruang et al., 2022; Schuit et al., 2023). Deep
learning techniques have been proposed to develop point
source detectors for airborne instruments (Jongaramrungru-
ang et al., 2022), satellite area mappers (e.g., TROPOMI)
(Schuit et al., 2023), and satellite hyper-/multispectral instru-

ments (e.g., PRISMA, Sentinel-2) (Bruno et al., 2024; Joyce
et al., 2023; Vaughan et al., 2024).

One of the key challenges in constructing such an au-
tomated detector for multispectral observations is the low
signal-to-noise ratio (SNR) in the retrieved methane sig-
nals. Because of the coarse spectral resolution, methane sig-
nals obtained from multispectral observations are susceptible
to diverse artifacts, including interferences from vegetation,
waterbodies, and smoke, making source detection a difficult
task, especially over heterogeneous land surface (Cusworth
et al., 2019). Recent studies have proposed various strate-
gies to reduce such noises (Table 1). Varon et al. (2021) in-
troduced an approach that eliminates outliers using a 3× 3
median filter and removes background noises below the
95 % confidence interval. Similarly, Ehret et al. (2022) dis-
carded the 5 % pixels with the poorest predictions from
methane-free background estimation and subsequently ap-
plied a Gaussian filter. Furthermore, Zortea et al. (2023) gen-
erated a binary mask to exclude the waterbody-related arti-
facts using the modified normalized difference water index
(MNDWI). These denoising methods have demonstrated ef-
fectiveness on relatively homogeneous surfaces, where noise
is uniformly distributed and artifacts are spatially small and
temporally infrequent. However, in heterogeneous regions,
artifacts tend to be more pronounced and often cover larger
areas than methane plumes, posing significant challenges to
existing denoising methods.

Another challenge arises from the necessity for an effi-
cient detector to rapidly identify small-scale methane point
emissions in satellite data with large-scale (global) coverage.
Recently, various deep learning architectures have demon-
strated feasibility for the automated detection of methane
super-emissions in satellite imagery, including the vision-
transformer-based network (Rouet-Leduc and Hulbert 2024),
U-Net-based models (Bruno et al., 2024; Joyce et al., 2023;
Růžička et al., 2023; Vaughan et al., 2024), ResNet-50
(Zortea et al., 2023), EfficientNet-V2L (Radman et al.,
2023), and MethaNet (a network based on a convolutional
neural network (CNN) specialized for methane plume detec-
tion) (Jongaramrungruang et al., 2022). Most of these detec-
tors require huge-volume training datasets to achieve optimal
performance.

However, multispectral satellites such as Sentinel-2 have
high detection limits for methane emissions, even more
than 5000 kg h−1 for heterogeneous surfaces (Gorroño et
al., 2023). This means that the retrieved images containing
methane plumes are extremely rare on both spatial and tem-
poral scales within Sentinel-2 observations, as evidenced by
Ehret et al. (2022). So far, a relatively small number of super-
emitters have been detected by multispectral satellite, mainly
in desertic regions with bright, uniform surfaces (Varon et
al., 2021; Ehret et al., 2022; Irakulis-Loitxate et al., 2022;
Sánchez-García et al., 2022; Naus et al., 2023; Pandey et al.,
2023). In contrast, O&G production is spread across ∼ 100
countries worldwide, often with distinct environments (EIA;
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Table 1. Summary of denoising methods introduced in the literature.

References Denoising method Sentinel-2 band used

Varon et al. (2021) 3× 3 median filter and background mask: –
(methane enhancement > 95th percentile)

Ehret et al. (2022) Gaussian filter and 5 % worst-prediction pixels b11, b12

Zortea et al. (2023) Gaussian filter and waterbody b3, b12
mask (MNDWI> 0.2)

https://www.eia.gov, last access: 28 December 2023), result-
ing in different noise and artifact characteristics. Therefore,
an image-level detector is required to efficiently filter out the
myriads of methane-free patches.

Deep learning techniques, including zero-shot general-
ization and deep transfer learning, have recently been ap-
plied to address the training data issue for multispectral
methane plume detection. Růžička et al. (2023) demonstrated
zero-shot methane plume detection by directly transferring
a model trained on one sensor (source domain) to other
satellite observations (target domain). While this approach
is promising, the model may struggle when the target do-
main significantly differs from the source. To overcome this
limitation, deep transfer learning techniques, such as domain
adaptation, have been employed. These methods leverage the
similarities between the source and target domains to adjust
the learned feature distributions during training (Iman et al.,
2023). This approach is particularly valuable for developing
data-efficient detection models with limited real training data
(Jiang et al., 2022).

In this work, we aim to improve methane source detec-
tion using Sentinel-2 observations. We develop an adaptive
artifact detection and masking algorithm that enhances the
signal-to-noise ratio for retrieved methane signals and a deep
transfer learning method that improves detection efficiency
and performance of discovering unknown sources, leverag-
ing knowledge acquired from known methane sources. To
train our method, we also construct a dataset of Sentinel-2
methane retrievals comprising Sentinel-2 detectable super-
emitters reported in the literature. Our method is a step for-
ward towards large-scale operational monitoring of methane
super-emitters by multispectral satellite instruments.

2 Methodology

2.1 Satellite data

We employ the Sentinel-2 Level 1C (L1C) top-of-
atmosphere reflectance product, which is freely available
at https://dataspace.copernicus.eu (last access: 13 Septem-
ber 2023). The Copernicus Sentinel-2 mission is composed
of two polar-orbiting satellites: Sentinel-2A, launched on
23 June 2015, and Sentinel-2B, launched on 7 March 2017.
The mission can provide global coverage data with a revisit

time of 2–5 d and a swath width of 290 km. The MultiSpec-
tral Instrument (MSI) on board both Sentinel-2 satellites in-
corporates 13 channels spanning the visible and near-infrared
spectra, featuring spatial resolutions that vary between 10
and 60 m. Sentinel-2 data have been used to support a variety
of applications including land management, natural resource
monitoring, and risk mapping (Ienco et al., 2019; Ramoelo et
al., 2015; Varghese et al., 2021). Recent studies have demon-
strated the potential of Sentinel-2 to monitor methane super-
emitters (Ehret et al., 2022; Gorroño et al., 2023; Radman et
al., 2023; Varon et al., 2021; Vaughan et al., 2024).

In this study, we use bands 11 (1610 nm) and 12 (2190 nm)
for methane signal retrieval and bands 3 (560 nm), 8
(842 nm), and 11 (1610 nm) for artifact filtering. We resam-
ple the data to 20 m resolution using the ESA SNAP toolbox
for Python and discard scenes with cloud coverage greater
than 80 %. Sentinel-2 observations are collected in the vicin-
ity of six O&G fields with reported ultra-emissions (Irakulis-
Loitxate et al., 2022; Sánchez-García et al., 2022; Varon et
al., 2021; Zhang et al., 2022). These satellite data are then
processed with the methods described in Sect. 2.2 and 2.3, by
which methane retrieval signal datasets used for constructing
and evaluating the proposed method (see Sect. 3) are gener-
ated.

2.2 Framework for multispectral satellite point source
detection and quantification

Figure 1 shows the workflow of methane super-emitter mon-
itoring using Sentinel-2 satellite data, with algorithms devel-
oped in this study highlighted in red text. The workflow pri-
marily includes three steps: methane signal retrieval, source
detection, and flux quantification.

First, methane signals are retrieved from satellite measure-
ments. We employ the structural similarity index measure
(SSIM) algorithm (Zhou et al., 2004) to filter out cloudy ob-
servations (Fig. S1) and the low-reflectance adaptive detec-
tion (LRAD) algorithm developed in this study (Sect. 2.3) to
filter out other interference. We then compute the fractional
methane absorption signal (1R, unitless) using the band ra-
tio method, similarly to Ehret et al. (2022) and Irakulis-
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Loitxate et al. (2022):

1Rt =
bandt12/bandref

12

bandt11/bandref
11
, (1)

where bandt12 and bandt11 represent observations on the date
of interest (t) and bandref

12 and bandref
11 represent reference

conditions without any methane enhancement. We borrow
the idea of sliding time window in Ehret et al. (2022) to pre-
dict bandref

12 and bandref
11 by the multivariate linear regression

(MLR) model trained on band 11 and band 12 observations in
the time window (within 60 d prior to date t). Data excluded
by SSIM and LRAD are not used for the MLR model train-
ing. See Sect. S1 in the Supplement for detailed information
on the methane signal retrieval step.

Second, we train an automated detector to detect potential
methane super-emitters based on retrieved 1R, in place of
human inspection. We annotate 1R images retrieved from
Sentinel-2 observations of six methane super-emitters (Ta-
ble 2). The dataset is then used to train and evaluate a deep
subdomain adaptation network (DSAN) (Sect. 2.4) to de-
tect whether an image contains methane plumes. Our work
demonstrates that the DSAN detector, trained with a rela-
tively small number of annotated1R images, shows promis-
ing performance in unknown source detection.

Finally, we quantify emission fluxes (kg h−1) of detected
methane plumes by employing the integrated mass enhance-
ment (IME) method (Frankenberg et al., 2016; Varon et al.,
2018). See Sect. S2 for detailed descriptions of the flux quan-
tification method.

2.3 Low-reflectance artifact detection (LRAD) algorithm
for artifact removal

To increase the signal-to-noise ratio of Sentinel-2 methane
retrieval, we develop a low-reflectance artifact detection
(LRAD) algorithm to identify and remove various artifacts
associated with low reflectance in the methane-sensitive band
by surface features. Figure 2a and b show examples of these
potential artifacts resulting from varied surface elements in-
cluding smoke (from burning flare), rocky soil (with high
mineral content), dark soil (with high organic matter or water
content), waterbody, cloud shadow, and vegetation (Gorroño
et al., 2023; Naus et al., 2023). These artifacts in the short-
wave infrared (SWIR) bands may be filtered out by lever-
aging additional bands that are sensitive to the artifacts but
insensitive to methane (Fig. 2c).

Algorithm 1 shows the pseudocode of the LRAD algo-
rithm, which creates a surface artifact mask using bands 3
(560 nm), 4 (665 nm), and 8 (842 nm), in addition to bands 11
and 12. For combustion-related artifacts, the algorithm first
filters out pixels with saturated reflectance in bands 11
and 12, which are related to thermal anomalies from high-
temperature combustion (Liu et al., 2021). The algorithm
then filters out pixels affected by heavy smoke, identifiable

by extraordinarily low visible-band reflectance in band 3 (the
5 % lowest values of the scene). We calculate the standard
deviation σ and then apply 2σ (around 95 % confidence in-
terval) as the masking threshold. The above mask is then di-
lated to ensure that interference from combustion sources is
removed.

Additionally, the LRAD algorithm filters out pixels with
concurrent negative values of the normalized difference veg-
etation index (NDVI) (band 8 and band 4) and the normal-
ized difference built-up index (NDBI) (band 8 and band 11),
which are related to low-reflectance objects in SWIR such as
waterbodies (Biermann et al., 2020; Fan et al., 2020; Purio et
al., 2022). Positive values of these indices have been used in
literature to detect healthy vegetation and urban areas (Kuc
and Chormański, 2019).

2.4 Deep transfer learning for methane source detection

We employ the deep subdomain adaptation network (DSAN)
(Zhu et al., 2021) to detect the presence of methane plumes in
retrieved1R images (Fig. 3). DSAN is a transfer learning al-
gorithm that leverages feature representations acquired from
a labeled source domain to enhance performance in the unla-
beled target domain (Pan and Yang, 2010). Using DSAN, we
attempt to address the challenge that a methane-source classi-
fier trained with labeled data in one location (source domain)
tends to perform inadequately in another location where la-
beled data are unavailable (target domain) because of great
differences in surface characteristics between regions (do-
main shift).

Figure 3 illustrates the structure of DSAN applied in this
study. DSAN consists of deep feature extraction blocks and
a domain adaptation module. Feature extraction is performed
by adapting a pre-trained residual neural network (ResNet-
50) as the backbone of DSAN. ResNet-50 has demon-
strated exceptional performance in various image classifica-
tion tasks, especially those based on spatial context, largely
because of its strong feature mining capability enabled by
shortcut connections (Burke et al., 2021) (see Fig. S2).
ResNet-50 consists of 16 residual blocks that contain a se-
ries of convolutional layers and shortcut connections. Fol-
lowing each convolutional layer, there is a subsequent batch
normalization (BN) layer and a rectified linear unit (ReLU)
activation function.

The domain adaptation module transforms deep features
extracted by ResNet-50 to align the feature distributions
between source and target domains. The alignment is per-
formed based on the local maximum mean discrepancy
(LMMD), which measures the distance between feature dis-
tributions (Zhu et al., 2021). The general form of LMMD is
presented as

LMMD(P,Q)=
1
N

N∑
i=1

∥∥∥EiP [φ(Dis)
]
−EiQ

[
φ(Dit )

]∥∥∥2

H
, (2)
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Figure 1. The methane super-emitter monitoring workflow (from Sentinel-2 L1C (S2L1C) product to emission flux of the detected methane
point emission signal). Text in red highlights the novel algorithms developed in this study.

Figure 2. Examples of varied artifacts in Sentinel-2 (S2) L1C reflectance images. (a) S2L1C band 12 (b12) reflectance images in Hassi
Messaoud (20190117T32SKA (based on date in the format yyyy-mm-dd, tile 32SKA)), Gamyshlja Gunorta (20200404T40SBH), and the
Permian basin (20190126T13SGR). (b) Representative RGB images of the artifacts presenting low reflectance in b12. (c) Pixel-wise S2L1C
reflectance spectrum of the background and representative artifacts. Bands used for identifying artifacts are shown in blue shading.
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where Ds and Dt are the samples in source and target do-
main, P and Q are the probability distribution of Ds and Dt,
and i is the class of the sample (plume-containing or plume-
free). φ(·) represents a feature mapping function, and ‖·‖H is
the norm in the Hilbert space. LMMD is designed to capture
both global (whole dataset) and local (each class) domain dif-
ferences and therefore is sensitive to variability within each
class. This property is important for our application because
the differences between the two classes (plume-containing
and plume-free 1R images) are more subtle compared to a
typical image classification task.

DSAN is first trained using labeled 1R images in the
source domain and unlabeled 1R images in the target do-
main before it is used to predict labels for target domain
images. The input 1R imagery is transformed to match the
ResNet-50 (which serves as the backbone of DSAN) input
format. Before feeding into the network (Fig. 3), the input
image was resized to 224 · 224 · 3, augmented by randomly
flipping the images horizontally during the training process
and then normalized to ensure that the three channels had a
consistent scale. The model is trained with a learning rate of
0.001 using a stochastic gradient descent (SGD) optimizer
over 100 epochs.

3 Methane dataset and experimental design

3.1 Methane retrieval (∆R) imagery dataset
construction

We compile 1R datasets containing six reported super-
emitters using Sentinel-2 L1C observations (Table 2). These
super-emitters are located across five oil and gas fields with
substantially diverse surrounding terrain and surface charac-
teristics, and they also vary in the types of emitting facilities
(e.g., compressor stations, flares, well pads, and pipelines)
and in the magnitude of emission fluxes (ranging from 2 to
100 t h−1). Each sample in the dataset consists of a 1R im-
age retrieved from the satellite data and a corresponding la-
bel, manually determined, indicating the presence or absence
of methane sources (plume-containing or plume-free).

3.1.1 Data preprocessing

To construct the dataset, we use Sentinel-2 data tile 40SBH
(March 2017 to March 2023) for emitters 1, 2, and 3; tile
32SKA (January 2019 to December 2022) for emitters 4 and
5; and tile 13SGR (January 2018 to December 2020) for
emitter 6 (Table 2). To account for variations in Sentinel-
2 observation density and the differing emission dates of
super-emitters, we select distinct time periods for data col-
lection. This ensures a comparable number of methane point
source observations across the datasets. The selected satellite
observations are cropped into patches of 16 km2, which are
then prepared as input for the proposed algorithm to facilitate
methane detection.

Atmos. Chem. Phys., 25, 4035–4052, 2025 https://doi.org/10.5194/acp-25-4035-2025
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Figure 3. The architecture of DSAN. DSAN employs ResNet-50 to learn features from labeled (green) and unlabeled (blue) data and then
the domain adaptation module (red) to reduce the domain distribution discrepancy. FC refers to fully connected layer.

Table 2. Reported methane super-emitters detected by multispectral satellite instruments.

Index Emittera Coordinates
(lat, long)

O&G field Land coverb Country Emission flux rangec

(kg h−1) (mm/yyyy or
mm/dd/yyyy)

References

1 Compressor station (38.49393°,
54.19764°)

Korpeje Barren area Turkmenistan 3500–92 900
(08/2015–10/2020)

Varon et al. (2021)

2 Flare (38.33078°,
54.02832°)

Gamyshlja Gunorta Barren area Turkmenistan ≥ 1800
(01/2017–11/2020)

Irakulis-Loitxate et al. (2022)

3 Flare (37.90825°,
53.89857°)

Keymir Barren area and
grassland

Turkmenistan

4 Well-pad device (31.6585°,
5.9053°)

Hassi Messaoud Barren area Algeria 2600–29 100
(10/2019–09/2020)

Varon et al. (2021)

5d Pipeline (31.778°,
5.995°)

Hassi Messaoud Barren area Algeria 3100
(12/29/2020)

Sánchez-García et al. (2022)

(31.768°,
6.000°)

2500
(12/29/2020)

6 Compressor station (31.7335°,
−102.0421°)

Permian basin Shrubland USA 2360–21 830
(07/2020–09/2020)

Zhang et al. (2022)

a Reports of these sources are all based on Sentinel-2 data except for no. 5 which is based on WorldView-3. b Land cover type near the emitter is obtained from the annual ESA CCI land cover map 2020
(https://maps.elie.ucl.ac.be/CCI/viewer/index.php, last access: 8 November 2023) as a reference. It is noted that the land cover map has a spatial resolution of 300 m, which cannot reflect surface features smaller than an
area of 300 m2. c Values in this column represent emission flux during the time range or date studied in the literature. It is noted that the emission flux of emitters 2–3 has not been reported by Irakulis-Loitxate et
al. (2022), and 1800 kg h−1 is the detection limit of Sentinel-2 provided in the literature. d Emitter 5 contains two pipeline leakage sources approximately 1.2 km apart. They are numbered together since they are only
around 60 pixels apart in the 20 m resolution Sentinel-2 image.

Using the Sentinel-2 patches as input, we apply the
methane signal retrieval workflow (Step 1 in Fig. 1) to gener-
ate methane retrieval (1R) imagery. Our workflow includes
the LRAD algorithm (Sect. 2.3) proposed in this study to
reduce noise and artifacts. Figure 4 shows examples of ar-
tifact masks generated by LRAD and compares the 1R

images with and without applying the masks. This result
demonstrates that the algorithm can detect and remove var-
ious types of surface artifacts, including dark soil, rocky
soil, waterbody, burning flare, smoke plume, vegetation, and
cloud shadow. Figure S6 presents additional examples where

LRAD generates masks that are adaptive to temporal changes
in the land cover and are thus capable of detecting seasonally
varying artifacts. As shown in Fig. 4, removing these arti-
facts by the LRAD algorithm enhances signal-to-noise ratios
(SNRs) (defined as SNR= 20·log10(avg/SD), where avg and
standard deviation (SD) are calculated from the entire 1R
image) in 1R images by 12.12 %–42.30 %, facilitating the
following source detection step. Figure S7 compares the av-
eraged SNRs of the six1R datasets before and after deploy-
ing the LRAD algorithm.
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The procedure described above generates 1R images
in grayscale format, with a size of 200 pixels× 200 pix-
els. To ensure compatibility with the input structure of the
pre-trained ResNet50 model, we transform the 200× 200
grayscale 1R matrix into a 224× 224× 3 RGB image by
applying a color map to the grayscale data and resizing it to
the required dimensions. The resulting RGB imagery is then
fed into the plume detection model.

3.1.2 Data annotation

Subsequently, we label the 1R images following the deci-
sion rule as described in Fig. 5 and Sect. S3. Table 3 sum-
marizes the information of the methane imagery dataset re-
trieved from Sentinel-2 L1C data. The dataset consists of
subsets of six super-emitters reported in the literature (Ta-
ble 2). Each subset contains 200–400 samples. These sub-
sets differ greatly in the ratio between positive (plume-
containing) and negative (plume-free) samples, ranging from
8.1 % in no. 6 to 81.95 % in no. 1, reflecting large varia-
tions in emission frequencies among varied sources. Most
of the positive samples contain one methane plume, except
for no. 5, in which occasionally two methane plumes are
present simultaneously. Moreover, the background noises ex-
hibit considerable variations among the six subsets (Fig. 6).
Subsets 1, 4, and 5 present uniform noises originating from
homogeneous surfaces, yet subsets 2, 3, and 6 have greater
heterogeneity, resulting in a higher occurrence of artifacts.
We quantify the emission rates of positive samples using the
IME method (Sect. S2) (Fig. S5). The average emission flux
varies from 1952 kg h−1 in no. 5 to 17 122 kg h−1 in no. 3.

3.2 Experimental design

3.2.1 Performance evaluation on transfer tasks

We design two experiments (Fig. S4) to evaluate the per-
formance of the DSAN framework in detecting unknown
sources, using the six 1R datasets for training and eval-
uation. The detailed training, validation, and test set con-
figuration is presented in Table S1. In the first experiment
(“1→ 1” task), we use one of the six datasets in Table 3 as
the source domain (labels available to the algorithm) and an-
other dataset in Table 3 as the target domain (labels unavail-
able to the algorithm and to be predicted). In total, there are
6× 5= 30 tasks of the 1→ 1 type to be evaluated. For each
1→ 1 task, we roughly have 250 1R images in the source
domain and other 250 in the target domain. In the second ex-
periment (“5→ 1” task), five datasets in Table 3 are used as
the source domain, and the remaining one is used as the target
domain, yielding six 5→ 1 tasks. Each 5→ 1 task contains
about 1250 1R images in the source domain and 250 im-
ages in the target domain. The 1→ 1 tasks assess how well a
detector, trained on data from a known source, can detect un-
known sources, while the 5→ 1 tasks evaluate whether per-

formance can be enhanced by including training data from
multiple sources.

To compare, we also build four conventional convolu-
tional neural networks (CNNs) (Fig. S3) based on MethaNet
(Jongaramrungruang et al., 2022), ResNet-50 (Zortea et al.,
2023), VGG16 (Radman et al., 2023), and EfficientNet-V2L
(Radman et al., 2023), which, unlike DSAN, do not contain
a domain adaptation module. We train the MethaNet model
from scratch and the other conventional CNNs model with a
fine-tuning strategy demonstrated by Radman et al. (2023).
The source domain images serve as the training and valida-
tion sets for conventional CNNs, while the target domain im-
ages are used for testing. The training and validation sets are
created by randomly splitting the corresponding source do-
main data into an 80 : 20 ratio. Unlike DSAN, which does not
require a validation set due to the adaptation layer, conven-
tional CNN models rely on a validation set for hyperparam-
eter tuning to optimize performance and mitigate overfitting.

The performance is assessed for each task with accuracy,
precision, recall, and the macro F1 score using the scikit-
learn package (Pedregosa et al., 2011). The main metric we
use is the macro F1 score, computed as the average of F1
scores for each class (harmonic mean of precision and re-
call). The macro F1 score has a range of 0–1, suitable for
datasets with imbalanced positive and negative samples. A
higher macro F1 score indicates a better overall performance.
Additional metrics encompass accuracy, representing the ra-
tio of correctly predicted instances to the total instances; pre-
cision, calculated as the number of true positive predictions
divided by the total number of positive predictions; and re-
call, determined by dividing the number of true positive pre-
dictions by the total number of actual positive instances.

3.2.2 Real-world application for new source discovery

In addition to the six 1R datasets, we randomly selected
an orbit (tile T32SKA) in the Hassi Messaoud oil and gas
(O&G) field in Algeria to test the proposed workflow (Fig. 1)
in a real-world scenario. The application spans an area of
4× 108 km2 and covers the period from July 2019 to June
2020. Satellite observations in the region are segmented into
patches with an area of 16 km2, generating a total of 3537
1R images. These unannotated images are used as the tar-
get domain for DSAN, with the six labeled 1R datasets
(datasets 1–6, in total 16271R images) serving as the source
domain. Finally, the results predicted by the detector are eval-
uated against manually determined labels.

4 Performance evaluation of the DSAN model

Figure 7 evaluates the ability of the DSAN model to de-
tect a methane source in an unannotated region (transferabil-
ity) with the macro F1 scores achieved for varied 1→ 1 or
5→ 1 transfer tasks (Sect. 3.2.1). For comparison with con-
ventional CNNs, Fig. 8 shows results of MethaNet, ResNet-
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Figure 4. Examples of the 1R images and masks. The first row shows the raw 1R images outputted by Step 1 procedures (Fig. 1) without
LRAD deployed, the second row displays the latent artifacts masks generated by the LRAD algorithm, and the third row exhibits the denoised
1R images outputted by Step 1 procedures (Fig. 1) with LRAD performed. White arrows indicate true methane plumes, and the red arrow
indicates plume-like artifacts. Blue characters and arrows in the binary masks point to different types of latent artifacts.

Figure 5. A flowchart of the labeling decision rule of 1R imagery (detailed description is provided in Sect. S3).

50, VGG16, and EfficientNet-V2L for the same tasks. In ad-
dition to macro F1 scores, Tables S2–S7 also tabulate other
performance metrics from the experiments, including accu-
racy, precision, and recall.

The DSAN model achieves average macro F1 scores of
0.86 (0.69 to 0.93) for the 1→ 1 tasks and 0.89 (0.77 to

0.94) for the 5→ 1 tasks (Fig. 7), which consistently out-
performs MethaNet (0.70 for 1→ 1 tasks and 0.76 for 5→ 1
tasks) (Fig. 8a), ResNet-50 (0.77 for 1→ 1 tasks and 0.81
for 5→ 1 tasks) (Fig. 8b), VGG16 (0.73 for the 1→ 1 tasks
and 0.80 for the 5→ 1 tasks) (Fig. 8c), and EfficientNet-
V2L (0.78 for the 1→ 1 tasks and 0.84 for the 5→ 1 tasks)
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Figure 6. Examples of the plume-containing and plume-free images in 1R datasets 1–6. The date format is mm/dd/yyyy.

Table 3. Description of the six labeled 1R datasets.

Index Sentinel-2 Time span Number of plume- Number of plume- Average emission
tile ID (mm/yyyy) containing observations free observations flux (kg h−1)

1 T40SBH 03/2017–03/2023 109 133 11 076
2 95 164 8826
3 66 186 17 122

4 T32SKA 01/2019–12/2022 92 233 5717
5 128 181 1952

6 T13SGR 01/2018–12/2020 18 222 14 443

Figure 7. Macro F1 scores on the transfer tasks given by DSAN.
Each square represents a transfer task; 5→ 1 represents the source
domain being fused by five datasets except for the target domain
dataset.

(Fig. 8d). The performance of conventional CNN models de-
grades substantially in these transfer tasks (off-diagonal of
each panel in Fig. 8) compared to non-transfer tasks (train-
ing and validation data from the same locations) (average
macro F1 scores are 0.87 for MethaNet, 0.95 for ResNet-
50, 0.79 for VGG16, and 0.84 for EfficientNet-V2L) (diago-
nal of each panel in Fig. 8), demonstrating the challenges of
transfer tasks. Moreover, the performance of CNNs in 5→ 1
tasks (rightmost column of each panel in Fig. 8), which only
marginally improved over their performance in 1→ 1 tasks
(left six columns of each panel in Fig. 8), is still inferior to
DSAN’s performance in most 1→ 1 tasks (Fig. 7), which in-
dicates that including a limited number of training samples
from diverse regions is insufficient for conventional CNNs
to enhance their transferability and underscores the value of
transfer learning algorithms such as DSAN.

The disparity of the performance presented above can
be interpreted by comparing the deep features extracted by
MethaNet, ResNet-50, VGG16, and EfficientNet-V2L and
DSAN. Figure 9 maps high-dimensional deep features to a
two-dimensional plot generated by the t-distributed stochas-
tic neighbor embedding (t–SNE) algorithm (van der Maaten
and Hinton, 2008). Blue points are source domain samples,
and orange points are target domain samples. DSAN exhibits
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Figure 8. Macro F1 scores given by (a) MethaNet, (b) ResNet-50, (c) VGG16, and (d) EfficientNet-V2L. Each square represents a task.
Tasks on the diagonal pertain to non-transfer tasks, with each dataset partitioned into a training set (80 %) and a validation set (20 %). Tasks
outside the diagonal are transfer tasks. Under the 1→ 1 task, the diagonal square shows the macro F1 score on the validation set and the
square outside the diagonal shows the score on the test set; 5→ 1 denotes the source domain being fused by five datasets except for the target
domain dataset.

better alignment between the source and the target domains
compared to conventional CNN models under most transfer
tasks. In the DSAN subfigures, it is evident that not only are
the source and target points well-aligned, but also samples
belonging to different classes exhibit noticeable distinctions.
This result is consistent with our understanding that the do-
main transfer module in the DSAN model can effectively
close background differences between different regions (do-
main shift), enhancing the ability of the algorithm to identify
methane plumes at a new location.

Figures 7 and 8 also indicate that some of the datasets ap-
pear more difficult to predict than others. DSAN’s perfor-
mance for datasets 2 and 6 is not as good as for other datasets
(Fig. 7), while MethaNet and VGG16 perform poorly for
datasets 2, 5, and 6 and ResNet-50 and EfficientNet-V2L ex-
hibit notably poor performance on dataset 6 (Fig. 8). Some
dataset characteristics may have contributed to lower perfor-
mance. Dataset 2 is marked by highly heterogeneous sur-

face; dataset 5 by smaller methane fluxes and plume sizes;
and dataset 6 by weak plume signals, higher surface com-
plexity, and imbalanced positive–negative classes (Fig. 6 and
Table 3).

Increasing the source domain from one dataset (1→ 1
tasks) to five (5→ 1 tasks) slightly improves the perfor-
mance of the DSAN model (Fig. 7), demonstrating the bene-
fit of including more and diverse training samples. However,
dataset 6 remains the most problematic dataset, with no im-
provement.

5 Real-world application for methane source
discovery

We apply the proposed AI-assisted monitoring workflow
(Fig. 1), including the LRAD and DSAN algorithms, to a
432 km2 area (Fig. 10) in the Hassi Messaoud O&G field in
Algeria (Sect. 3.2.2). The algorithm processed in total 3527
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Figure 9. t–stochastic neighbor embedding (SNE) visualizations of the learned feature representations of the 1R datasets across different
models and transfer tasks, providing insights into domain shift and how well the well-trained models identify different classes in the target
domain. From the left to right column: MethaNet, ResNet-50, VGG16, EfficientNet-V2L, and DSAN on three 1→ 1 transfer tasks (1→ 2,
3→ 4, and 6→ 1). Each point represents a data sample. The number in each subfigure denotes the macro F1 score of the target domain label
predicted by the model.

images (200 pixels by 200 pixels) for 1 year, yielding 3168
negative (plume-free) and 369 positive (plume-containing)
detections.

We manually verified that 33 out of the 369 positive detec-
tions contain true methane plumes from three methane super-
emitters (denoted P(1), P(2), and P(3) in Fig. 10) and that one
false negative detection was identified at P(2) (see Fig. S8).
Using the Google Earth map, we attributed P(1) to a pro-
duction well (31.8651° N, 6.1683° E) and P(2) to pipeline
leakage (31.7566° N, 6.1864° E). We did not identify O&G
infrastructure associated with P(3) (31.5846° N, 6.4878° E)
from the Google Earth map. Figure 10 presents visual im-
agery of each source and the true positive plumes detected
by our method. These super-emitters were not known at the
time of our experiment. Two recent studies reported P(1) also
based on Sentinel-2 data (Naus et al., 2023; Pandey et al.,
2023).

Methane plumes are detected twice at P(1), 30 times at
P(2), and twice at P(3) during July 2019 to June 2020
(Fig. 11), resulting in respective detection frequencies of
1.6 %, 24 %, and 1.6 % for the three sources after cloudy days
are excluded. Meanwhile, the LRAD algorithm detects flar-
ing as a byproduct (Fig. S9). We detected 67 flaring events
at P(1) and 1 flaring event at P(2) (Fig. 11). Flaring detec-

tion at P(1) occurs primarily during July to August 2019 and
January to May 2020.

We quantified the emission fluxes of the three sources
using the IME method (Varon et al., 2021) (see Sect. S2
for details about the method). The average emission
rate is 31 133 kg h−1 for P(1), 3990 kg h−1 for P(2), and
8210 kg h−1 for P(3) (Fig. 11). The largest emissions were
found at P(1) due to a blowout event with 18421±
6575 kg h−1 on 4 January 2020 and 43845± 9169 kg h−1 on
7 January 2020. This result is generally comparable to esti-
mates given by Pandey et al. (2023) (21 000±6000 kg h−1 on
4 January) and Naus et al. (2023) (29800±14900 kg h−1 on
4 January and 68400± 34200 kg h−1 on 7 January).

Table 4 summarizes the performance metrics for the real-
world application. Our algorithm demonstrates a good de-
tection capability with an accuracy of 0.90, consistent with
the averaged value for the 36 transfer tasks (Sect. 4). This
performance surpasses the detection accuracy of approxi-
mately 0.80 reported by CH4Net, which used Sentinel-2 for
the west coast of Turkmenistan (Vaughan et al., 2024). For
3168 plume-free images, the DSAN detector achieves a false
positive rate of 0.096 (FP /TN+FP; FP denotes false pos-
itive and TN denotes true negative), higher than the results
of existing detectors tested on synthetic datasets (Zortea et
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Table 4. Manual validation of detections by the AI-assisted framework.

Jul 2019–Jun 2020 TPa FPb TNc FNd Precisione Recall Macro F1 score Accuracy

All 3537 patches 33 336 3167 1 0.09 0.97 0.56 0.90
of the swath 1.00 0.90

a True positive. b False positive. c True negative. d False negative. e The two “Precision” rows correspond to the plume-containing and
plume-free classes, respectively, and the same goes for “Recall”.

Figure 10. From left to right: application area (the rectangular area within the dotted white line) extracted from Sentinel-2 data, RGB images
of the positive patches containing methane point sources (P(1)–P(3)), and examples of the methane plume-containing 1R images detected
by our method. The white pin in the 1R images points to the source location. The date format is mm/dd/yyyy.

al., 2023; Rouet-Leduc and Hulbert, 2024). Nonetheless, this
rate is lower than the 0.14 reported by the U-Plume detector
based on GHGSat-C1 observations (Bruno et al., 2024) and
the 0.18 reported by Vaughan et al. (2024).

Additionally, our detector shows the macro F1 score of
0.56, which is lower than that reported in Sect. 4 for the eval-
uation tasks primarily due to the 336 false positive detec-
tions. Further analyses suggest that these false positives are
related to the categories of smoke, built-up, land surface, and
cloud or cloud shadow (Fig. 12a). We categorize these false
positives based on the type of main artifacts (Fig. 12b). Ar-
tifacts related to land-surface variability account for 77.61 %
of the false positives, followed by those related to cloud
or cloud shadow (19.10 %) and smoke (3.28 %). These re-
sults indicate that some artifacts remain after being processed

by the artifact removal algorithm LRAD. Investigation into
these artifacts, particularly those related to land surface, is
key to further improving the performance.

6 Discussion

6.1 Impact of the denoising method on methane
detection

Noise and artifacts in retrieved 1R imagery pose significant
challenges to real-world image classification tasks such as
satellite-based methane plume detection, impacting the con-
vergence and generalization of deep neural networks (Dodge
and Karam, 2016). To address these issues, our LRAD algo-
rithm leverages additional spectral bands to mitigate multi-
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Figure 11. Time series of detected methane leaking events, flaring, and the retrieved emission flux of the methane plumes for P(1), P(2), and
P(3). It is noted that detected methane leaks and flaring come from different facilities, and the flare burn dates do not coincide with the leak
dates. No detections indicate methane-free and flaring-free. Bad data mainly indicate cloudy data or data that are fully covered by artifacts.
The date format is mm/dd/yyyy.

ple types of artifacts and adapt to diverse land surfaces. As
illustrated in Fig. S6, LRAD generates large-area denoising
masks for heterogeneous surfaces and small-area or even no
masks for homogeneous regions. The effectiveness of this
approach is further demonstrated by the SNR improvements
shown in Fig. S7, where notable enhancements are observed
in heterogeneous regions (datasets 2, 3, and 6), with minimal
improvements in homogeneous areas.

To further investigate the impact of LRAD, we conduct
additional ablation experiments using the 30 tasks of 1→ 1

type and 6 tasks of 5→ 1 type (Sect. 3.2.1) to evaluate its in-
fluence on model performance. Figure 13 shows the macro
F1 scores for the transfer tasks using the detection model
without applying LRAD (WoLRAD-DSAN). The average
macro F1 scores are 0.72 (ranging from 0.53 to 0.92) for
the 1→ 1 tasks and 0.74 (ranging from 0.55 to 0.92) for the
5→ 1 tasks, significantly lower than those achieved by the
LRAD–DSAN model on the same tasks (Fig. 7). The effect
of LRAD is particularly pronounced on datasets 2, 3, and 6,
where the absence of LRAD leads to macro F1 score reduc-
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Figure 12. False positive detection in a real-world application. (a) Representative examples of the false positive results and the corresponding
RGB images extracted from Sentinel-2 L1C product. (b) Contributions of various artifact types to false positive detections. The date format
is dd/mm/yyyy.

tions of approximately 33 %, 28 %, and 23 %, respectively.
These results from the ablation experiments are consistent
with the SNR improvements shown in Fig. S7, further under-
scoring the efficacy of LRAD, especially over heterogeneous
surfaces.

The impact of LRAD can be further elucidated by analyz-
ing the false negative rate (FNR) and false positive rate (FPR)
for the transfer tasks (Fig. S10). LRAD substantially reduces
the FNR (e.g., by 52 %, 46 %, and 33 % for datasets 2, 3, and
6, respectively) but only moderately reduces the FPR by 3 %
to 24 %. These findings demonstrate that LRAD is primarily
effective in reducing omissions of methane super-emitters.

6.2 Additional assessment of transferability with
synthetic data

The evaluation in Sects. 4 and 5 demonstrates the poten-
tial of the LRAD–DSAN framework to enable the develop-
ment of methane plume detectors capable of operating across
diverse regions in a data-efficient manner. Once trained on
1R imagery with labeled methane point sources, the model
can learn feature representations to discriminate plume and
noise, enabling transferability to other regions, even those
with distinct environmental conditions. However, concerns
may remain regarding the limited diversity of environments
represented in the dataset used for training and evaluation,
which contains six super-emitters in only three countries (Ta-
ble 2).

To address this limitation and further assess the trans-
ferability of the LRAD–DSAN method in the absence
of additional real-world Sentinel-2 detections of methane
super-emitters, we construct synthetic datasets by merging
methane-free images with simulated methane plumes. These
datasets encompass six regions across six countries (denoted
Syn 1–Syn 6), each characterized by distinct land cover types

Figure 13. Macro F1 scores on the transfer tasks given by the
WoLRAD-DSAN model. Each square represents a transfer task;
5→ 1 indicates that the source domain is fused from five datasets
excluding the target domain dataset. WoLRAD-DSAN refers to the
DSAN framework without incorporating the LRAD denoising algo-
rithm.

(Table S8). Most of these regions exhibit more heteroge-
neous surface conditions compared to those in datasets 1–6,
as shown in RGB images and NDVI–NDBI variation curves
(Fig. S11), providing an additional test bed for evaluating
the method’s adaptability to varied and complex environ-
ments. See Sect. S4 for detailed information on the synthetic
datasets.

We then train the LRAD–DSAN model with datasets 1–
6 and evaluate its performance separately on each of the
Syn 1–Syn 6 datasets. Table S9 summarizes the performance
of the LRAD–DSAN model on these synthetic datasets. The
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macro F1 scores range from 0.88 to 0.92, consistent with
the performance metrics reported in Sect. 4. As the six syn-
thetic datasets have identical simulated plumes but varying
background noise (Fig. S12), this evaluation further supports
the capability of our proposed method to perform effectively
across a wide range of diverse environmental conditions.

7 Conclusions

Here, we proposed a novel deep-transfer-learning-based ap-
proach that combined an adaptive artifact removal algo-
rithm (LRAD) with a transferable plume detector (DSAN)
to identify methane-plume-containing images retrieved from
Sentinel-2 observations. Our evaluation demonstrated that
the proposed method efficiently detects plumes in differ-
ent O&G fields. Applying the method to the Hassi Mes-
saoud O&G field over a 1-year period led to the discovery
of 33 anomalous emission events from three methane super-
emitters, which were attributed to well blowouts, pipeline
leaks, and unknown facilities, with average emission rates
of 31 133, 3990, and 8210 kg h−1, respectively.

The LRAD algorithm utilized Sentinel-2 bands 3, 8, 11,
and 12 to remove multi-type artifacts associated with low
reflectance in methane-sensitive bands, which greatly im-
proved feature extraction by the deep model, especially in
heterogeneous regions of O&G fields. We applied the LRAD
algorithm to 1R retrieval from Sentinel-2 observations and
compiled 1R datasets (1627 images in total) that include
six different O&G super-emitters. The six labeled datasets
have various ratios of positive (plume-containing) to nega-
tive (plume-free) sample size, plume sizes, and background
noise levels.

The DSAN model was used to detect methane point
sources based on1R images, aiming to resolving challenges
arising from the domain shift between Sentinel-2 1R im-
ages for methane sources in different regions. For transfer
detection tasks across six known methane sources, the DSAN
model achieved an average macro F1 score of 0.86, outper-
forming MethaNet, ResNet-50, VGG16, and EfficientNet-
V2L. Without a need for a huge volume of training data,
our DSAN model operated in a data-efficient manner which
leveraged knowledge acquired from a source domain during
the training process to perform plume classification in a tar-
get domain.

Moving forward, the developed workflow can be modified
to detect methane from other multispectral instruments, in-
cluding Sentinel-2, Landsat 8, and WorldView-3. Also, it has
the potential to detect plumes of other pollutants observable
by satellites such as NO2 or CO2. Moreover, while this study
made efforts to develop a labeling decision rule, the confi-
dence of the labels determined by human analysts was diffi-
cult to quantify. To facilitate robust algorithm development,
we recommend the development of standards for plume iden-

tification and construction of benchmark plume datasets for
various satellite instruments.
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