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Abstract. Independent estimation and verification of fossil CO2 emissions on a regional and national scale are
crucial for evaluating the fossil CO2 emissions and reductions reported by countries as part of their nationally de-
termined contributions (NDCs). Top-down methods, such as the assimilation of in situ and satellite observations
of different tracers (e.g., CO2, CO,114CO2, XCO2), have been increasingly used for this purpose. In this paper,
we use the Lund University Modular Inversion Algorithm (LUMIA) to estimate fossil CO2 emissions and natural
fluxes by simultaneously inverting in situ synthetic observations of CO2 and 114CO2 over Europe. We evaluate
the inversion system by conducting a series of observing system simulation experiments (OSSEs). We find that
in regions with a dense sampling network, such as western/central Europe, adding 114CO2 observations in an
experiment where the prior fossil CO2 and biosphere fluxes are set to zero allows LUMIA to recover the time se-
ries of both categories. This reduces the prior-to-truth root mean square error (RMSE) from 1.26 to 0.12 TgC d−1

in fossil CO2 and from 0.97 to 0.17 TgC d−1 in biosphere fluxes, reflecting the true total CO2 budget by 91 %. In
a second set of experiments using realistic prior fluxes, we find that in addition to retrieving the time series of the
optimized fluxes, we are able to recover the true regional fossil CO2 budget in western/central Europe by 95 %
and in Germany by 97 %. In all experiments, regions with low sampling coverage, such as southern Europe and
the British Isles, show poorly resolved posterior fossil CO2 emissions. Although the posterior biosphere fluxes
in these regions follow the seasonal patterns of the true fluxes, a significant bias remains, making it impossible
to close the total CO2 budget. We find that the prior uncertainty of fossil CO2 emissions does not significantly
impact the posterior estimates, showing similar results in regions with good sampling coverage like western/cen-
tral Europe and northern Europe. Finally, having a good prior estimate of the terrestrial isotopic disequilibrium
is important to avoid introducing additional noise into the posterior fossil CO2 fluxes.

1 Introduction

Carbon dioxide (CO2) from fossil fuels and cement pro-
duction has become the dominant source of anthropogenic
emissions to the atmosphere since around 1950, leading to
a mixing ratio of CO2 in the atmosphere of 419.70 ppm on
16 September 2023, which is 49 % above pre-industrial lev-
els (https://gml.noaa.gov/ccgg/trends/gl_trend.html, last ac-
cess: 18 September 2023). Although land and ocean sinks

of CO2 have increased over the past 6 decades, the frac-
tion of emissions removed from the atmosphere is expected
to decline as the CO2 mixing ratio increases; therefore, a
higher proportion of emitted CO2 will remain in the atmo-
sphere (Eyring et al., 2021). Monitoring CO2 emissions and
removals is important to follow compliance with interna-
tional treaties such as the Paris Agreement (UNFCCC, 2016).
In the agreement, the parties have committed to report their
emissions and removals of CO2 and other greenhouse gases
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(GHGs) to the United Nations Framework Convention on
Climate Change (UNFCCC) through the annual GHG in-
ventory. In the case of fossil CO2 emissions, these invento-
ries have been reported to have uncertainties between 5 %
and 10 % in developed countries. These annual inventories
and other national-level data are used to spatially and tem-
porally distribute CO2 emissions at sub-national and sub-
annual scales. These spatially distributed products help us to
better understand the sources of CO2 emissions and to im-
plement more effective policies toward emission reduction
(Han et al., 2020). Commonly available emission products,
such as the Carbon Dioxide Information and Analysis Cen-
ter (CDIAC) FFCO2 emission maps (Andres et al., 2011),
the Open-source Data Inventory for Anthropogenic CO2
(ODIAC) emission data product (Oda and Maksyutov, 2011;
Oda et al., 2018), and the Emissions Database for Global
Atmospheric Research (EDGAR) (Janssens-Maenhout et al.,
2019), use national energy statistics, power plant emission
data, and spatial proxies such as nighttime light observa-
tions, population data, and road transport networks to spa-
tially and temporally distribute the emissions. This additional
information introduces new uncertainties that, in EDGAR,
for instance, can reach a global uncertainty of approximately
11 % (Solazzo et al., 2021) or can be as high as 120 % in the
case of CDIAC (Andres et al., 2016). These uncertainties can
be more significant and challenging to characterize at sub-
annual and sub-national scales, even in developed countries
(Basu et al., 2016; Miller et al., 2012).

These emission products can be used alongside atmo-
spheric observations of CO2 and other tracers in inverse mod-
eling systems to reduce their uncertainty, enhance our un-
derstanding of fossil CO2 emissions and natural fluxes, and
improve the accuracy of national carbon budgets. So far, at-
mospheric CO2 inversion frameworks have predominantly
been used to constrain terrestrial sources and sinks of CO2
(Basu et al., 2013; Chevallier et al., 2007; Monteil et al.,
2020; Monteil and Scholze, 2021). To constrain the terres-
trial carbon cycle, inverse modelers typically prescribe fos-
sil CO2 fluxes from emission data products, like those men-
tioned previously, assuming them to be perfectly well-known
(Turnbull et al., 2009). Atmospheric CO2 represents a mix-
ture of all sources, with the natural signal being predominant
during most of the year (the growing season covers spring
to fall), masking the contribution of fossil CO2 emissions
(Shiga et al., 2014). Consequently, additional information is
necessary to segregate the fossil contribution from the natu-
ral signal in atmospheric CO2 observations to constrain the
fossil CO2 fluxes. Some strategies have included sampling
approaches where observations are taken close to major fos-
sil CO2 sources (e.g., cities and power plants) (Bréon et al.,
2015) or satellite observations of large point sources such as
column-integrated atmospheric CO2 mixing ratios (XCO2)
(Kaminski et al., 2022; Wang et al., 2020). A more com-
monly employed method is to combine these CO2-only ob-
servations (either CO2 or XCO2) with additional tracers such

as NO2 and the NOx : CO2 ratio (Kuhlmann et al., 2021) or
ground observations of CO (Newman et al., 2013; Brioude
et al., 2013), APO (atmospheric potential oxygen) (Pickers
et al., 2022), and, more widely, the radiocarbon (114CO2)
content of carbon dioxide (Turnbull et al., 2009; Basu et al.,
2016; Wang et al., 2018), which we use in this study.

Radiocarbon is the radioactive isotope of carbon with a
half-life of approximately 5730 years and is produced nat-
urally in the upper atmosphere by cosmic-ray-induced reac-
tions with nitrogen (Turnbull et al., 2009). Fossil CO2 does
not contain radiocarbon (it has already decayed), and adding
its 14C-free emissions to the atmosphere causes a depletion of
114CO2 (Suess, 1955). Meanwhile, radiocarbon is being ab-
sorbed and released by the ocean and the biosphere, making
it an effective tracer of the natural carbon cycle and, there-
fore, a tool to distinguish fossil emissions from the natural
cycle signal in atmospheric CO2 observations (Turnbull et
al., 2009, 2022; Zazzeri et al., 2023). Radiocarbon is also
produced as a by-product of nuclear facilities (e.g., nuclear
power plants) and atmospheric nuclear weapon tests, the lat-
ter occurring mostly between 1945 and 1980, with the high-
est intensity in 1961–1962 (Naegler and Levin, 2006). These
bomb tests caused a significant disturbance in the radiocar-
bon cycle, resulting in an isotopic disequilibrium in the bio-
sphere and ocean (Hesshaimer et al., 1994). Isotopic disequi-
librium is the difference between the isotopic signatures or
radiocarbon content of carbon entering and leaving a pool.
Despite its similar meaning, this occurs differently in the
ocean and the biosphere. In the ocean, the disequilibrium re-
sults from 114C-depleted CO2 from water that has returned
to the surface and was out of contact with the atmosphere,
allowing the radiocarbon to decay significantly. In the bio-
sphere, the disequilibrium is a result of the heterotrophic
respiration of 114C-enriched CO2 assimilated a couple of
decades ago when the atmospheric 114C was higher due to
the bomb spike (Lehman et al., 2013). Therefore, the ocean
disequilibrium flux tends to dilute the atmospheric 114C
content, whereas the biosphere disequilibrium flux tends to
enrich it.

The usefulness of atmospheric 114CO2 observations in
estimating the fossil CO2 content in the atmosphere as
a fraction of the total atmospheric CO2 mixing ratio has
been demonstrated in various modeling studies. For instance,
Levin and Karstens (2007) present an observational ap-
proach to estimate hourly regional fossil fuel CO2 offsets
at a continental site (Heidelberg, Germany) using weekly
mean 14CO2-based fossil fuel CO2 mixing ratios and CO
observations. On a larger scale, Levin et al. (2008) exam-
ine monthly mean 14CO2 observations from two German
stations (Schauinsland and Heidelberg), compared against
background measurements from Jungfraujoch, to assess the
regional fossil fuel CO2 surplus and emphasize the impor-
tance of high-precision radiocarbon measurements for quan-
tifying fossil fuel CO2 contributions at a regional scale in
Europe. The study by Miller et al. (2012) explores the re-
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lationship between fossil fuel CO2 emissions and enhance-
ments in atmospheric mixing ratios of 14CO2 and other an-
thropogenic trace gases. Utilizing a 6-year dataset from ver-
tical profiles in the northeastern US, they separate the fossil
and natural components of atmospheric CO2 using apparent
emission ratios of various gases to fossil fuel CO2, offering
observation-based estimates of national emissions and com-
paring these with inventory-based estimates. Turnbull et al.
(2015) use measurements of CO2, 14CO2, and CO from mul-
tiple sampling towers around Indianapolis (Indiana, US) to
differentiate fossil fuel CO2 from background levels in an ur-
ban environment and evaluate the consistency of a bottom-up
emission product. More recently, by using radiocarbon obser-
vations in CH4 (114CH4) and CO2 (114CO2) over London,
Zazzeri et al. (2023) reveal that fossil fractions of CH4 and at-
mospheric mixing ratios of fossil CO2 are consistently higher
than those predicted by simulations using emission products
such as EDGAR. This discrepancy highlights the potential
of 14CO2 measurements to refine our understanding of fossil
and biospheric CO2 and CH4 partitioning in urban settings,
especially when the influence of nuclear power plants is min-
imal.

Nevertheless, large-scale four-dimensional inversion sys-
tems have only recently begun to include 114CO2 as an ad-
ditional tracer to constrain fossil CO2 emissions. Basu et al.
(2016) introduced a novel dual-tracer atmospheric inversion
technique that differentiates between biospheric and fossil
fuel CO2 fluxes using atmospheric CO2 and 114CO2 mea-
surements over the US. This method not only allows for the
estimation of monthly regional fossil fuel CO2 fluxes but also
addresses biases in biospheric flux estimates that occur when
using traditional CO2-only inversion methods with fixed fos-
sil fuel flux assumptions. Their approach represents a sig-
nificant advancement in quantifying regional and national
fossil fuel emissions from atmospheric observations. Build-
ing upon this study, Basu et al. (2020) presented a more fo-
cused analysis in providing national and sub-national-scale
estimates of fossil fuel CO2 emissions using an extensive
observation database of both CO2 and 114CO2. Graven et
al. (2018) conducted an in-depth analysis of fossil fuel CO2
emissions in California, utilizing atmospheric observations
from nine sites and employing the Weather Research and
Forecasting model along with the Stochastic Time-Inverted
Lagrangian Transport model (WRF-STILT). The research in-
tegrates measurements of CO2 mixing ratio and 114CO2,
uniquely combining these observations with high-resolution
emission data from Vulcan v2.2 and EDGARv4.2, aiming to
refine estimates of regional fossil fuel CO2 emissions and ex-
plore the impact of various factors such as nuclear industry
emissions and air–sea exchanges on atmospheric CO2 lev-
els. In Europe, Wang et al. (2018) evaluated the potential of
a 114CO2 observation network for estimating regional fos-
sil fuel CO2 emissions through atmospheric inversions. They
examined the effectiveness of different network configura-
tions, from minimal to very dense setups, in reducing un-

certainties in fossil CO2 emissions estimations. The study
used synthetic observations and the LMDZv4 global trans-
port model, paying special attention to representation and
aggregation errors. Establishing a network of both CO2 and
114CO2 measurement stations requires significant invest-
ments to ensure long monitoring periods that allow the iden-
tification of sub-annual- and sub-national-scale variations in
fossil CO2 emissions. The Integrated Carbon Observation
System (ICOS) atmospheric network includes 39 stations in
14 European countries and overseas territories. Hourly CO2
atmospheric observations are available for 26 stations, with
the earliest data from 2015 when the network was estab-
lished. However, some of these stations already existed by
then, and there is information from previous years. A total
of 14 stations measure 114CO2 in 2-week integrated sam-
ples analyzed by the ICOS Central Radiocarbon Laboratory.
The ICOS network is expanding to include more stations, and
new sampling strategies are being developed to increase the
number of 114CO2 measurements.

In this work, we present the new capabilities of the Lund
University Modular Inversion Algorithm (LUMIA) system
(Monteil and Scholze, 2021) to perform simultaneous inver-
sions of atmospheric CO2 and114CO2 observations as a first
attempt to develop a model capable of supporting the mon-
itoring and verification of fossil CO2 emissions across Eu-
rope. Such emissions monitoring and verification support ca-
pacities are essential for assessing compliance with interna-
tional agreements, such as the Paris Agreement (UNFCCC,
2016), and for guiding policy decisions aimed at reduc-
ing carbon emissions, as described by Janssens-Maenhout
et al. (2020). We perform observing system simulation ex-
periments (OSSEs), recreating the current state of the ICOS
network and its sampling strategy and using different flux
products (as priors and true values) to demonstrate the per-
formance of the inversion scheme and show its capabilities.
We begin by assessing the impact of oceanic fluxes on the
total mixing ratios of CO2 and 114CO2. Then, we evaluate
the impact of adding114CO2 observations on the estimation
of fossil CO2 emissions by comparing the model’s ability to
recover true fluxes starting from a prior flux set to zero. Fi-
nally, with a more realistic setup, i.e., prior, we evaluate the
impact of the prescribed fossil CO2 flux uncertainty and the
impact of the terrestrial isotopic disequilibrium product.

2 Theoretical background

The depletion of radiocarbon in the atmosphere due to fos-
sil CO2 emissions has been demonstrated in various studies
since the 1950s, primarily through the 114C content of tree
rings (Suess, 1955; Tans et al., 1979). Anthropogenic dis-
turbances in atmospheric radiocarbon content, such as those
from nuclear bomb tests and nuclear power facilities (Hes-
shaimer and Levin, 2000), have led to a deeper understand-
ing of the radiocarbon exchange processes between the at-
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mosphere, the biosphere (Hahn et al., 2006), and the ocean
(Hesshaimer et al., 1994).

With subsequent advances in measurement and model-
ing techniques, 114CO2 observations have been used to es-
timate the fossil CO2 offset within atmospheric CO2 mix-
ing ratios (Levin and Hesshaimer, 2000; Kuc et al., 2003;
Naegler and Levin, 2006; Levin and Karstens, 2007; Levin
et al., 2008). This is achieved by comparing observations
from free-troposphere background stations with those from
regionally polluted stations, establishing an essential founda-
tion for estimating fossil CO2 emissions using inverse mod-
eling, as will be discussed in the following sections.

2.1 Regional transport model

We use the LUMIA (Lund University Modular Inversion Al-
gorithm) system as described by Monteil and Scholze (2021),
modifying the way background mixing ratios (yb in Eq. 1)
are calculated by computing a smoothed and detrended av-
erage of real observations from the ICOS network for each
sampling site. Originally, the LUMIA system was developed
to optimize regional net ecosystem exchange (NEE) fluxes
over Europe using in situ CO2 observations from the ICOS
(Integrated Carbon Observation System) Atmosphere net-
work. In this study, we have extended LUMIA to additionally
assimilate 114CO2 observations from the same network and
optimize multiple flux categories. This extension introduces
a new step in the mass balance of atmospheric transport as
follows:

yCO2 = y
b
CO2
+

∑
c

K (F c) , (1a)

yC114C = y
b
C114C+

∑
c

K (1cF c) , (1b)

where yCO2 and yC114C represent the modeled mixing ra-
tios of CO2 and C114C, respectively, and yb

CO2
and yb

C114C
denote their background mixing ratios (i.e., the boundary
condition), derived from smoothed real observations (see
Sect. 3.3). Since the values of 114CO2 in per mill (‰) units
are not additive (as it represents the change of the 14C:12C at-
mospheric ratio relative to an absolute standard of 14C from
1950; Stuiver and Polach, 1977), we convert all114CO2 val-
ues to values of CO2×1

14CO2 (or C114C for simplifica-
tion) (Basu et al., 2016). In terms of units, for mixing ra-
tios this would be C114C ppm ‰ and for fluxes PgC‰yr−1.
Since per mill (‰) only means multiplication by 1000, we
drop that factor from 114C into the quantity C114C, ex-
pressing it in parts per million (ppm) for mole fractions and
PgCyr−1 for fluxes to maintain the same order of magnitude
and units for CO2 and C114C. For example, a sample with
a CO2 mole fraction of 400 ppm and a 114C value of 45 ‰
would have C114C= 18 ppm. Expressed in this way, C114C
becomes additive and can be transported by a model.

The operator K represents the regional transport model
(pre-computed footprints; see Sect. 3.2), which is used to cal-

culate the contribution of surface fluxes F (in each category
c) to the change of CO2 and C114C in the atmosphere. F c

in this study corresponds to gridded fluxes with a resolution
of 0.5°× 0.5° and 1 h. In Eq. (1b), the term 1c represents the
fraction of 14C in the accompanying flux category F c (Tans
et al., 1979; Turnbull et al., 2016).

Expanding the foreground (regional) part of Eq. (1) to in-
clude the flux categories explicitly yields∑
c

K (F c)=K (F ff)+K (F bio)+K (F oce) , (2a)

where F ff is the fossil CO2 emission, F bio is the net CO2
flux between the atmosphere and terrestrial ecosystems (net
ecosystem exchange, NEE, hereafter also called biosphere
flux), and F oce is the atmosphere–ocean CO2 exchange. Cal-
culating each K(F c) separately tracks the influence of each
category, not just the total. For radiocarbon, the equation
looks similar but includes an additional term for the radio-
carbon from nuclear facilities.∑
c

K (1cF c)

=K (1ffF ff)+K (1atm (F bio+F oce))
+K ((1bio−1atm)F bio2atm)
+K ((1oce−1atm)F oce2atm)+K (1nucF nuc) (2b)

=K (1ffF ff)+K (1atm (F bio+F oce))+K (F biodis)

+K (F ocedis)+K (1nucF nuc) (2c)

Here, 1ff is set equal to −1000 ‰, indicating that the fossil
CO2 does not contain any 114CO2 and therefore dilutes the
atmospheric 114CO2 content. 1atmF bio and 1atmF oce re-
fer to the exchange of “modern” C114C between terrestrial
ecosystems and the ocean, respectively, with the atmosphere,
since 114C in new biomass and the top layer of the ocean
would almost match atmospheric 114C (1atm) (Graven et
al., 2020). F biodis and F ocedis represent the isotopic disequi-
librium, or the isotopic difference between the source (ocean
or biosphere) and the atmosphere. F biodis is “old-captured”
and 114C-enriched C114C released by heterotrophic respi-
ration (F bio2atm). F ocedis is old-captured and 114C-depleted
C114C released through vertical transport of water masses
(F oce2atm) (Lehman et al., 2013; Basu et al., 2016). F nuc is
the radiocarbon production due to nuclear activities, mainly
from nuclear facilities, since radiocarbon production from
nuclear bomb tests has stopped largely (Hesshaimer and
Levin, 2000). Converting 1nucF nuc to C114C notation, for
modeling purposes, as mentioned above, is achieved through

1nucF nuc =
N

rstd
F nuc , (3)

where rstd is the standard 14C : C ratio (1.176× 10−12), and
N = (975/(δ13C+ 1000))2 is the isotope fractionation cor-
rection (Stuiver and Polach, 1977). As the δ13C value, we
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Figure 1. Study domain and location of the ICOS Atmosphere net-
work sampling stations used in this paper. The regions will be used
for the analysis and discussion of the results.

use the global atmospheric yearly average of −8 ‰ (Basu et
al., 2016). Combining Eqs. (1) through (3) for the modeled
CO2 and 114CO2 mixing ratios, yields the following:

yCO2 = y
b
CO2
+K (F ff)+K (F bio)+K (F oce) (4a)

yC114C = y
b
C114C+K (1ffF ff)+K (F biodis)

+K (F ocedis)+K (1atm (F bio+F oce))

+K

(
N

rstd
F nuc

)
(4b)

An additional source of radiocarbon, cosmogenic produc-
tion, occurs naturally in the upper atmosphere as a result of
cosmic-ray-induced reactions with nitrogen. This term is im-
plicitly included in the background yb

C114C.

2.2 Observations

We perform inversions for a regional domain ranging from
15° W, 33° N to 35° E, 73° N, as shown in Fig. 1. This do-
main is consistent with those used in previous studies, such
as Monteil et al. (2020) and Thompson et al. (2020). The
sampling stations depicted in Fig. 1 represent the ICOS
Atmosphere network for the years 2018–2020, noting that
new sampling stations have been added since that period.
The ICOS Atmosphere network is a component of ICOS, a
European research infrastructure designed to provide long-
term, high-quality, and harmonized observations of carbon
dynamics. The network includes 33 stations across Europe,
all measuring CO2, with 15 of these stations also measuring
114CO2.

There are two sampling strategies used at the ICOS sta-
tions: continuous sampling and periodic sampling. Contin-
uous sampling is performed at almost every available sam-

pling height at the station using commercially available au-
tomatic samplers for hourly measurements of, for example,
CO2. Periodical sampling, on the other hand, is conducted
only at the highest sampling height using flask samplers.
These flasks are later analyzed in various ICOS laboratories.
Hourly integrated flask samples, collected every 3 d, serve
both as quality control for continuous sampling and for mea-
suring other gases not continuously monitored (e.g., SF6, H2,
stable isotopes of CO2), in addition to114CO2 for the deter-
mination of the atmospheric fossil CO2 component through
inverse modeling (Levin et al., 2020). Furthermore, a 2-week
integrated flask sample is designed to pass air over an NaOH
solution, specifically for 114CO2 sampling.

In this paper, we use the continuous 1 h CO2 and integrated
2-week 114CO2 periodic sampling strategies for the evalua-
tion of LUMIA. A summary of the stations, including their
location, sampling height, number and average of measure-
ments, and integration days, is presented in Table 1.

2.3 Inverse modeling problem

Atmospheric inverse modeling can be used for a variety of
purposes, including the establishment of the initial condi-
tions of a model, the identification of sources and sinks, and
the evaluation and improvement of prior emissions (Bocquet
et al., 2015). The goal is to estimate the best set of vari-
ables (fluxes) consistent with atmospheric measurements of
a tracer (e.g., CO2 and 114CO2) in the study domain (obser-
vations), given the atmospheric transport that relates the two.
In its most basic form, this can be formulated as

y =H (x,b)+ ε , (5a)

where the control vector x contains the variables to be esti-
mated and the observation vector y contains the observations
(atmospheric mixing ratios). H is the observation operator,
which includes the transport model and any additional pro-
cessing of observations, such as accounting for the bound-
ary conditions and variables b, which we will not optimize.
ε is the error vector that includes the errors in the observa-
tions, the transport model, and the control vector. By pre-
subtracting the prior model estimate for the observations,
yapri, Eq. (5a) can be rewritten as y = yapri

+H (x)+ε, with
yapri the a priori model estimate for the observations, com-
puted following Eq. (4). In this case, Eq. (5a) can be simpli-
fied as

δy =Hx+ ε , (5b)

where δy = y− yapri is the vector storing the prior model–
data mismatches. In our case, the atmospheric transport is
linear; thus, H (x) can be rewritten as Hx, where H is the
Jacobian of H (Monteil and Scholze, 2021).

There are multiple approaches to solving the inverse mod-
eling problem. In this paper, and in general in LUMIA, we
use the variational approach, in which the control vector x
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Table 1. Observation stations used in this study. Included is a summary of the number of observations (Nobs), the average observa-
tions± 1 standard deviation, and the integration time of 114CO2 samples for the year 2018 based on data accessible through the ICOS
Python API (https://pypi.org/project/icoscp/, last access: 7 January 2025). Stations with zero Nobs did not measure or report observations of
the corresponding tracer in 2018 to ICOS but are incorporated into this study for a comprehensive analysis.

Code Name Country Lat Long Altitude Max. samp. Nobs Nobs Avg. CO2 Avg. 114C Integration
(° E) (° N) (m a.s.l) height CO2 114C (ppm) (‰) time

(m a.g.l) (days)

BIR Birkenes NO 58.39 8.25 219 75 2616 – 421.9± 8.0 – –

CMN Monte Cimone IT 44.19 10.70 2165 8 5832 – 406.3± 6.0 – –

GAT Gartow DE 53.07 11.44 70 341 8784 0 419.5± 10.0 – –

HEL Helgoland DE 54.18 7.88 43 110 1080 – 430.4± 10.1 – –

HPB Hohenpeissenberg DE 47.8 11.02 934 131 8784 17 415.6± 6.8 -4.1± 2.8 13.4± 0.5

HTM Hyltemossa SE 56.1 13.42 115 150 8784 21 417.1± 8.4 -3.2± 3.2 14.0± 1.6

IPR Ispra IT 45.81 8.64 210 100 8784 – 430.0± 15.9 – –

JFJ Jungfraujoch CH 46.55 7.99 3580 5 8784 15 413.1± 3.6 -1.0± 3.5 14.0± 0.0

JUE Jülich DE 50.91 6.41 98 120 8784 – 423.0± 11.2 – –

KIT Karlsruhe DE 49.09 8.42 110 200 8784 21 428.7± 17.5 -14.1± 10.4 6.2± 0.7

KRE Křešín u Pacova CZ 49.57 15.08 534 250 8784 13 422.0± 11.5 -4.1± 3.0 13.2± 0.6

LIN Lindenberg DE 52.17 14.12 73 98 8784 5 426.0± 13.1 -8.6± 6.3 14.0± 0.0

LMP Lampedusa IT 35.52 12.63 45 8 8088 – 414.7± 4.2 – –

LUT Lutjewad NL 53.4 6.35 1 60 8784 – 422.3± 12.2 – –

NOR Norunda SE 60.09 17.48 46 100 8784 19 417.8± 8.2 -0.7± 4.2 13.3± 0.5

OPE
Observatoire pérenne

FR 48.56 5.5 390 120 8784 17 420.2± 9.5 −3.3± 3.5 13.5± 0.5
de l’environnement

OXK Ochsenkopf DE 50.03 11.81 1022 163 8784 0 416.8± 6.4 – –

PAL Pallas FI 67.97 24.12 565 12 8784 17 416.2± 7.7 −1.5± 3.5 12.9± 1.9

PRS Plateau Rosa IT 45.93 7.70 3480 10 0 – – – –

PUI Puijo FI 62.91 27.65 232 84 1248 – 426.6± 4.5 – –

PUY Puy de Dôme FR 45.77 2.97 1465 10 8784 – 414.0± 5.4 – –

RGL Ridge Hill GB 52.0 −2.54 199 90 8784 – 413.4± 6.1 – –

SAC Saclay FR 48.72 2.14 160 100 8784 12 420.5± 10.5 −2.7± 6.4 16.5± 4.3

SMR Hyytiälä FI 61.85 24.29 181 125 8784 – 416.8± 8.5 – –

SSL Schauinsland DE 47.92 7.92 1205 35 0 – – – –

STE Steinkimmen DE 53.04 8.46 29 252 8784 13 421.9± 11.5 −6.7± 4.2 13.5± 1.6

SVB Svartberget SE 64.26 19.77 269 150 8784 13 416.1± 8.0 −0.9± 3.1 15.6± 1.9

TOH Torfhaus DE 51.81 10.54 801 147 8784 – 417.6± 7.8 – –

TRN Trainou FR 47.96 2.11 131 180 8784 11 419.4± 8.6 −4.7± 4.8 14.7± 3.3

UTO Utö – Baltic Sea FI 59.78 21.37 8 57 8784 – 416.2± 8.0 – –

WAO Weybourne GB 52.95 1.12 31 10 8784 – 413.4± 6.1 – –

WES Westerland DE 54.92 8.31 12 14 8784 – 416.2± 2.7 – –

ZSF Zugspitze DE 47.42 10.98 2666 3 0 – – – –
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that minimizes the cost function in Eq. (6) is sought itera-
tively by minimizing the mismatch between the model out-
puts and the observations (Chatterjee and Michalak, 2013;
Rayner et al., 2019; Scholze et al., 2017):

J (x) =
1
2

(
x− xb

)T
B−1

(
x− xb

)
+

1
2

(
Hx− δy

)TR−1 (Hx− δy
)
, (6)

where B is the prior uncertainty covariance matrix, and R is
the observational uncertainty covariance matrix (defined as
a diagonal matrix) controlling the weight of each observa-
tion in the model–data mismatch δy and the target variable
(xb) in the optimization. The iterative procedure searches for
the value of x that minimizes J (x) – that is, the value of
x for which the gradient (∇xJ ) is equal to zero. To reduce
the number of iterations and large matrix multiplications, the
optimization is performed on a preconditioned control vec-
tor ω = B−1/2(x−xb). More information on preconditioning
can be found in Monteil and Scholze (2021).

2.3.1 Construction of the control vector (x)

The control vector x contains the set of parameters adjustable
by the inversion, which are offsets to the different sources
and sinks of CO2 and 114CO2 that we want to estimate.
From Eq. (4), our main interest is to optimize the fossil CO2
flux F ff. However, since through the radiocarbon cycle, we
can separate fossil and biogenic CO2, we also need to op-
timize the fluxes from the biosphere (F bio), as well as the
isotopic disequilibrium F biodis, to reduce the uncertainty of
these two terms, which can have an important impact on
the inversion result. The remaining fluxes (F nuc, F oce, and
F ocedis) are prescribed.

To limit the computational requirements, we do not solve
directly for the high-resolution fluxes (e.g., 0.5°× 0.5° and
1-hourly) used in the transport model but for weekly offsets
for 2500 clusters of grid cells. Appendix B describes the clus-
tering algorithm in more detail, and the script can be found
in lumia/Tools/optimization_tools.py of the LUMIA source
code provided as an asset. In short, it groups contiguous grid
cells, depending on how sensitive the observation network
is to their emissions: grid cells directly upwind of the sam-
pling stations are optimized at the native resolution of 0.5°,
but in parts of the domain not well-sampled by the observa-
tions (e.g., North Africa, Türkiye), the resolution drops down
to 5°× 3.5° (see Fig. 2).

Equation (5b) can be rewritten as

δy =
∑
c

Hxc , (7)

where H is the Jacobian matrix of the observation operator
with dimensions (nobs,npopt×ntopt ), and xc, with dimensions
(npopt × ntopt ), represents the portion of the control vector x

that contains offsets for the optimized categories c. Thus, xc

is built from the relative contribution of each model time step
tmod (1 h) and of each grid cell pmod (0.5°× 0.5°) to each op-
timized time step topt and cluster pmod. Here, ntopt and npopt

represent the number of optimized intervals (weekly) and
grid cell clusters (e.g., 2500 for the biosphere), respectively.

2.3.2 Construction of the prior error covariance matrix
(B)

Our matrix B is constructed such that we first determine the
spatiotemporal structure of the uncertainties, which is then
scaled to match the reported uncertainties. Since we optimize
for offsets, the prior control vector xb contains only zeros (so
Fc = F0

c). The uncertainties in xb are given by the error co-
variance matrix B. We assume no correlation between differ-
ent categories and different tracers. Therefore, sections of B
specific to each tracer or category can be constructed inde-
pendently. We do this in three steps.

1. Construct a vector of variances (diagonals of B), which
contain the spatiotemporal pattern of the uncertainties.

2. Construct the covariances based on spatial and
temporal correlation functions. Specifically, the
covariances are set following cov(xi,xj )=

σxiσxj e
−(d(pi ,pj )/Lh)2

e−|ti−tj |/Lt , with d(pi,pj )
the great circle distance between the center of the clus-
ters (area-weighted average of the center coordinates of
the grid cells in the cluster) and |tj − ti | the temporal
distance between xi and xj . i and j refer to the position
in the control vector with assigned space and time
coordinates; i.e., xi has coordinates (pi , ti), and xj has
coordinates (pj , tj ). Lh and Lt represent the horizontal
and temporal correlation lengths, respectively.

3. Scale the entire (section of the) B matrix by a uniform
scaling factor to match a prescribed category-specific
annual uncertainty value δF c.

The values of the correlation lengths Lh and Lt, as well as
the scaling factors δF c, are provided in Sect. 3.4. For con-
structing the vector of variances (σ 2

x ), two approaches were
used.

– For fossil CO2 emissions F ff, the variance is set to
σ 2
p,t,c = |

∑
i,j,tmod

F c
i,j,tmod

|
2, where σ 2

p,t,c is the vari-
ance corresponding to the control vector elements for
the interval t and spatial cluster p of category c. The
spatial coordinates i and j are the ensemble of grid cells
that are within the cluster p, and the temporal coordi-
nate tmod is the ensemble of 1-hourly model time steps
that are within the (weekly) optimization interval t . For
instance, if the cluster p groups four model grid cells,
the variance σ 2

p,t,c will be calculated over 672 flux com-
ponents (four grid cells, 7 d with 24-hourly time steps).

– For the other fluxes, the procedure is similar, but the
formula is σ 2

p,t,c =

√
|
∑
i,j,tmod

F c
i,j,tmod

|.
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Figure 2. Visual representation of (a) the sensitivity of the observation network to each grid cell (in logarithmic scale) and (b) the optimized
clusters and their variable spatial resolution.

The rationale behind these formulas is to scale the uncer-
tainties to the prior estimate of the fluxes (assuming that very
low prior fluxes should imply low prior uncertainties) but
avoid artificially low errors in instances where negative and
positive fluxes compensate for each other (i.e., NEE in the
spring and autumn). Furthermore, the location of fossil CO2
emissions is relatively better known. Therefore, the formula
used for fossil CO2 emissions concentrates the uncertainties
more at the location of prior emissions than that used for the
other categories. Regardless of the formula used for deter-
mining the variance, it is scaled afterward to match the target
uncertainty reported in Table 2.

3 Observing system simulation experiments
(OSSEs)

To assess the performance of the inversion system, we de-
signed and performed a series of perfect transport observing
system simulation experiments (hereafter called OSSEs). In
OSSEs, the impact of new observing systems, existing sys-
tem configurations, observing strategies, and new data opti-
mization on the quantification of the target variables is evalu-
ated (Hoffman and Atlas, 2016). This is done by generating a
set of simulated observations, called synthetic observations,
from a set of reasonable but arbitrary fluxes, F t

c, considered
“true” fluxes in the OSSE. Then, by using fluxes from differ-
ent models or products as prior fluxes (F c), we investigate
the ability of an inverse modeling system to reconstruct the
true fluxes consistent with the model setup (e.g., prescribed
uncertainties, error structure), making assumptions such as
perfect transport and perfect boundary conditions. Since they
totally neglect the systematic model and representation er-

rors, which should be accounted for in a real inversion, per-
fect transport OSSEs lead to overly optimistic results and
should be interpreted with care. They are, however, well-
suited to our objective here, which is to test the robustness
of our implementation of the dual-tracer inversion. In the fol-
lowing sections, we describe the different datasets, model se-
tups, assumptions, and experiments used in this study.

3.1 True and prior fluxes

We use a set of fluxes commonly used in this kind of in-
verse problem with a high horizontal and temporal resolution
(0.5°× 0.5° and 1 h, respectively) to generate our synthetic
observations. For the CO2 fluxes, we use the EDGARv4.3
emission database (Janssens-Maenhout et al., 2019) dis-
tributed spatially and temporally based on fuel type, cate-
gory, and country-specific emissions, using the COFFEE ap-
proach (Steinbach et al., 2011) (EDGAR in Table 3; see Ger-
big and Koch, 2021b) as F t

ff for the base year 2018. For F t
bio,

we use a simulation of the LPJ-GUESS vegetation model
(Smith et al., 2014) (LPJ-GUESS in Table 3; see Wu, 2023),
and for F t

oce, we use the Jena CarboScope v1.5 product (Rö-
denbeck et al., 2013). We use the terrestrial and ocean dise-
quilibrium and nuclear fluxes from Basu et al. (2020) as our
F t

biodis (BASU in Table 3), F t
ocedis, and F t

nuc, respectively.
As prior fluxes, we use products that follow different

methodologies and schemes, with different spatial and tem-
poral structures than the true fluxes, to make the imple-
mentation more realistic. For F ff, we use a version of
ODIAC (Open-source Data Inventory for Anthropogenic
CO2) (ODIAC in Table 3; see Oda and Maksyutov, 2020)
with a 1 km× 1 km spatial and monthly temporal resolution.
Thus, our prior fossil CO2 fluxes include monthly variabil-
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Table 2. Parameter setup used in all the inversions performed in this study.

Fluxes

Flux Horizontal Temporal Prior Error Optimization Grid
category correlation correlation uncertainty structure interval points

(PgCyr−1) (days)

F ff 200 km 1 month 0.30 log 7 2500
F bio 500 km 1 month 0.37 sqrt 7 2500
F biodis 1000 km 2 months 0.22 sqrt 7 500

Observations

Tracer Type of sampling Prior uncertainty
CO2 Continuous 1 h Weekly moving standard deviation
114CO2 Integrated 2-weekly Constant 0.8 ppm ‰

ity but do not resolve the daily cycle (Oda et al., 2018). We
also prepare a flat-year average version of this product (Fla-
tODIAC in Table 3). For F bio, we use a product from sim-
ulations of the VPRM vegetation model (Mahadevan et al.,
2008; Thompson et al., 2020) (VPRM in Table 3; see Gerbig
and Koch, 2021a). Due to the lack of an alternative prod-
uct for F biodis, we generate our own prior by calculating a
series of randomly perturbed versions of the true flux fol-
lowing their prescribed uncertainties and their horizontal and
temporal correlations (RndBASU in Table 3). This pertur-
bation is done by adding a random perturbation to the con-
trol vector and transforming such a vector to the flux space.
All fluxes are gridded to 0.5°× 0.5° and 1 h resolution by
nearest-neighbor interpolation.

3.2 Observation footprints (FLEXPART)

Similar to Monteil and Scholze (2021), we compute the re-
gional transport (e.g., operator H in Eq. 4) using the FLEX-
PART 10.4 Lagrangian transport model (Pisso et al., 2019).
For each observation, FLEXPART computes a “footprint”,
i.e., a vector containing the sensitivity of the observation
to changes in the surface fluxes. The footprints are pre-
computed and then used throughout the subsequent steps of
the inversion (see Monteil and Scholze, 2021, for further de-
tails). The FLEXPART simulations were driven by ERA5 re-
analysis data at a horizontal resolution of 0.5°× 0.5° and 1-
hourly temporal resolution (Hersbach et al., 2018). The foot-
prints were computed differently for the CO2 and 114CO2
observations. For CO2, we computed a set of footprints for
each observation up to 14 d backward in time, following
the approach from Monteil and Scholze (2021). Integrated
114CO2 observations (Sect. 2.2) quantify the 114C value of
atmospheric CO2 throughout 1 to 3 weeks (see Table 1). We
account for this in FLEXPART by distributing the FLEX-
PART particles released over the whole integration period
of the observations. The simulations are then carried out for
(up to) 14 d backward in time from the start of the integra-

tion period. A Python code was developed to run FLEX-
PART and post-process the footprints being used in LUMIA
(https://github.com/lumia-dev/runflex, last access: 7 January
2025). In Fig. 3, we show an example of an observation foot-
print for CO2 and 114CO2 at the Hyltemossa ICOS station
in southern Sweden. The CO2 footprint (Fig. 3a) shows how
the observation for 26 June 2018 at 13:00 LT is sensitive
to fluxes from the North Atlantic, passing through Norway
and Sweden and finally from Sweden’s east and south coasts
close to the Baltic Sea. The 114CO2 aggregated footprint,
on the other hand, shows more spread sensitivity due to the
long integration time, collecting fluxes from southern Nor-
way, northwestern Europe, and the Baltic.

3.3 Synthetic observations and background mixing
ratios

We generate mixing ratio time series for 1 year for each of
the stations according to the current setup of the ICOS At-
mosphere network as described in Sect. 2.2. For replicating
the most realistic conditions of the sampling frequency, we
use real sampling and integration times (in the case of radio-
carbon) from the stations, taking for each one the sampling
times for 2018. In this way, we account for the sampling gaps
and the differences in integration times commonly produced
due to maintenance and general operational eventualities. For
stations with the number of observations, Nobs, equal to zero
in Table 1, we set fixed sampling and integration times (14 d).
Most of these stations were already in operation in 2018, but
some were not yet labeled as ICOS stations (e.g., Schauins-
land) or had not implemented and or started the tracer mea-
surement (e.g., 114CO2 at Ochsenkopf).

Following Monteil and Scholze (2021), we select the CO2
observation times according to the sampling station’s eleva-
tion to guarantee the model’s best representation. For sam-
pling stations located under 1000 m a.s.l, we select the times
when the boundary layer is most likely well-developed, from
11:00 to 15:00 LT. For the contrary case, we take the times
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Figure 3. Examples of so-called (pre-calculated) footprints for CO2 (a) and 114CO2 (b) at the Hyltemossa ICOS station. The maps show
the sensitivity of the respective atmospheric tracer at the sampling site to the surface fluxes over the regional domain up to 2 weeks before the
observation. Panel (a) displays the sensitivity of CO2 at the indicated sampling time and shows influences by surface fluxes from the North
Atlantic through Scandinavia, while panel (b) demonstrates the dispersed sensitivity of a 14 d integrated114CO2 sample across northwestern
Europe and the Baltic region. The two maps illustrate the distinct spatial integration of the two tracers over time.

around midnight, from 22:00 to 02:00 LT, when the bound-
ary layer is most likely below the sampling intake or, in other
words, is sampling the free troposphere. For our OSSEs, we
use the same transport model (i.e., the pre-computed obser-
vation footprints from FLEXPART) to generate the synthetic
observations and perform the inversions. Therefore, this data
selection is not strictly necessary for this study, but we want
to replicate the conditions of a real inversion. Since we are
using the same background mixing ratio for the synthetic ob-
servations and the simulated prior and posterior observations
(i.e., we are assuming a perfect boundary condition), we sim-
plify the calculation of it by computing a smoothed and de-
trended weekly (for CO2) and monthly (for114CO2) average
of the real observations (ICOS et al., 2023) for each sampling
site. For sampling sites for which there are for some reason
no real observations for the year 2018 in the ICOS database
(e.g., 114CO2 measurements were not yet implemented or
were not yet part of ICOS), we took the observations from
the nearest year available to calculate the background.

We then perform a forward run of the model using the true
fluxes mentioned in Sect. 3.1 to calculate the corresponding
“true” CO2 and 114CO2 mixing ratio time series and add
the background value corresponding to each site, observa-
tion time, and tracer. To weaken the assumption of a perfect
transport and boundary condition, we add a random perturba-
tion to the synthetic observations. This random perturbation
is equal to yso∗

= yso
+ ε× ξ , where y is the synthetic ob-

servation, ε is the observation error (both the instrumental
and representativity errors; see Sect. 3.4 below), and ξ is a
standard normal random vector. In this way, the added per-
turbation is based on the observation error. Figure 4 shows

the synthetic CO2 and 114CO2 observation time series and
the components of each flux at the Hyltemossa station. As
mentioned in Sect. 2.1, we convert all radiocarbon values to
C114C values. For the observation, we do this by applying
the following equation:[
C114C

]
=

[
114CO2

]
× [CO2]

1000
. (8)

In a real setup, this would imply having paired CO2 and
114CO2 observations, and in the case of the integrated sam-
ples, this would mean having an average of CO2 obser-
vations along the integration period of the 114CO2 sam-
ple. However, since we are using synthetic observations, we
transported the CO2 fluxes using the 114CO2 footprints and
stored the values to convert back and forth between 114CO2
and C114C units (‰ and ppm, respectively).

As can be seen from Fig. 4, both F t
oce and F t

ocedis have
virtually no impact on the mixing ratios at the Hyltemossa
station (and all other stations used in our setup; not shown),
and hence we decided not to include these components in the
control vector; i.e., we transport them but do not optimize
them further.

3.4 Experiments and inversion setup

To make the inversions comparable, we keep the same inver-
sion setup for all the experiments. Table 2 summarizes the
main model parameter values. We choose a Gaussian hor-
izontal correlation and an exponential temporal correlation
for the prior flux uncertainties (see Sect. 2.3.1). Since our
main purpose in this study is to demonstrate that our multi-
tracer inversion system is capable of estimating both the fos-
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Figure 4. Synthetic observations of CO2 and 114CO2 at the HTM station over a 1-year period. Panels (a) to (d) display CO2 mixing ratio
variations due to different sources: (a) fossil fuel, (b) biosphere, (c) ocean, and (d) combined synthetic observations with random pertur-
bation (dotted blue line) against the background mixing ratios (dashed red line). Panels (e) to (h) illustrate 114CO2 variations: (e) nuclear
and fossil fuel, (f) biospheric disequilibrium and biosphere, (g) ocean disequilibrium and ocean, and (h) total synthetic observations with
random perturbation (dotted blue line) compared to the background (dashed red line). The solid and dashed blue lines represent the synthetic
observations without and with random noise added, respectively.

sil CO2 emissions and natural CO2 fluxes, we choose prior
uncertainty values that are reasonable and consistent with
other studies. The prior uncertainties are assigned as follows:
for F ff, we use the difference between the annual budgets for
the whole study domain from ODIAC (1.26 PgC yr−1) (Oda
and Maksyutov, 2020) and from an emissions product based
on EDGARv4.3 (1.47 PgC yr−1) (Gerbig and Koch, 2021b)
as a reference to define its uncertainty (Basu et al., 2016).
We use 150 % (0.3 PgC yr−1) of the difference as the base
uncertainty for all the experiments, and we select two extra
values to evaluate the impact of the prescribed uncertainty
on the inversion: 50 % of the difference (0.1 PgC yr−1) and
the exact difference of 0.21 PgC yr−1 (100 %). For F bio we
choose 25 % (0.37 PgC yr−1) of the monthly prior (Monteil
and Scholze, 2021) and 30 % (0.22 PgC yr−1) of the annual
budget for F biodis (Basu et al., 2020). We optimize all the
categories at the same temporal resolution but at a higher
horizontal resolution for F ff and F bio (2500 points) than for
F biodis (500 points). To set up the observation error, which
includes the instrumental and the representativity errors, we
use different methods for the CO2 and the114CO2. For CO2,
where the error of representativity is usually larger than the
instrumental error, we apply a weekly moving standard de-
viation to each observation; i.e., the prior error of each ob-

servation is equal to the standard deviation of the observa-
tions in a time window of ±3.5 d around that observation.
In this way, we account for the changes in the CO2 mixing
ratios according to the local site conditions. For instance, at
a background station such as Jungfraujoch (JFJ) at the top
of the Swiss Alps, the observation error ranges from 0.9 to
29.2 ppm (mean value of 9.3± 4.0 ppm), while at polluted
sites such as Saclay (SAC) just outside Paris, the CO2 mix-
ing ratios change rapidly and the error ranges from 5.9 to
215.5 ppm (mean value of 55.8± 40.7 ppm). For 114CO2,
on the other hand, the instrumental error is larger than the
representativity error, and we use a constant value of 0.8 ppm
in C114C units or 1.91± 0.05 ‰ in 114CO2 units, calcu-
lated using Eq. (8).

We perform one forward run and six inversions, summa-
rized in Table 3. We generate the synthetic observations and
evaluate the impact of F t

oce and F t
ocedis on the total synthetic

observations as described in Sect. 3.3 with the forward run
(SYNTH). Starting with the inversions, we perform two ex-
periments to test the impact of having 114C observations
(ZBASE and ZCO2Only). We use the prior F ff and F bio set
to zero (in both the spatial and temporal domain) with a prior
uncertainty setup based on ODIAC and VPRM, respectively.
The reason for using prior fluxes set to zero is that the flux
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products for both categories can have spatial and temporal
distributions similar to their respective true values, making it
easier for the model to retrieve the true fluxes. Instead, we
set the values to zero but give the model some information
through the prior uncertainty setup. The remaining fluxes are
prescribed and set to their true values. We assimilate both
CO2 and 114C observations for ZBASE and only CO2 ob-
servations for ZCO2Only. In the second set of inversions, we
use a more realistic setup. In the first, BASE, we simulate a
complete and realistic inversion setup, assimilating CO2 and
114C observations and optimizing F ff, F bio, and F biodis. In
the BASE experiments, we change the prescribed prior un-
certainty of F ff (0.1, 0.21 and 0.3 PgC yr−1) to evaluate its
impact on the optimization.

In the final inversion, BASENoBD, we prescribe Fbiodis
(i.e., the true value in this context) instead of optimizing it.
The terrestrial disequilibrium term (Fbiodis) is challenging to
estimate due to the large uncertainties associated with het-
erotrophic respiration fluxes and the age of respired carbon
(Basu et al., 2016). These uncertainties can vary significantly
depending on the vegetation model or methodology used. We
compare the posterior Fff of this experiment with the one of
the BASE experiment (in which Fbiodis is optimized) to eval-
uate the impact of the prior Fbiodis product on the posterior
Fff. By keeping Fbiodis fixed in BASENoBD, we can assess
how much of the error in the posterior Fff of BASE comes
from the additional optimization of Fbiodis.

4 Results

4.1 Impact of F oce and F ocedis

We start by testing the impact of ocean-related fluxes
(F t

oce and F t
ocedis) in the total synthetic observations by

performing a forward simulation (SYNTH in Table 3).
Figure 4 shows the results from this forward simulation
and the contribution of each flux category to the mix-
ing ratios of both tracers for the Hyltemossa (HTM) sta-
tion. The results show that the contribution of the ocean
and ocean disequilibrium fluxes to the total mixing ra-
tio is below the error assigned to the synthetic observa-
tions. For CO2, the average contribution is−0.07± 0.12 ppm
(for an average observation error of 10.0± 5.7 ppm) at
HTM and −0.07± 0.15 ppm (average obs. error 9.8± 9.0
CO2 ppm) at all stations. For 114CO2, the average contri-
bution due to F oce is −0.009± 0.009 ‰ (average obs. er-
ror 1.9± 0.04 ‰) at HTM and −0.007± 0.007 ‰ (average
obs. error 1.9± 0.05 ‰) at all stations. Similarly, the con-
tribution due to F ocedis is 0.016± 0.009 ‰ at HTM and
0.02± 0.017 ‰ at all stations. Due to the low impact of
ocean-related fluxes, we prescribe them in the inversions
along with F nuc and optimize only F ff, F bio, and F biodis.
A summary for each station can be found in Appendix A.

4.2 Impact of adding ∆14CO2 observations

In this section, we present the results from the ZBASE and
ZCO2Only experiments. We start by analyzing the retrieval
of truth fossil CO2 (F t

ff) and biosphere (F t
bio) time series.

We divide the results into the regions shown in Fig. 1, where
northern Europe represents Scandinavia, Finland, and the
Baltic States; western/central Europe represents Benelux,
France, Germany, Switzerland, Liechtenstein, and Austria;
southern Europe represents the Iberian Peninsula, Italy, and
the Balkans (except for Romania and Bulgaria); eastern Eu-
rope represents Poland, Slovakia, Hungary, Romania, and
Bulgaria; and the British Isles represent Ireland and the
United Kingdom. The study domain includes all the land
shown in Fig. 1, even the countries not mentioned in the def-
inition of the regions (countries in gray in Fig. 1).

4.2.1 Retrieval of the monthly and regional time series

In general, there is closer agreement between the posterior
and the truth for the biosphere fluxes (Fbio) than for the fos-
sil CO2 emissions (Fff) in both the ZBASE and ZCO2Only
experiments. This means that the model performs better at
recovering Fbio from the observations compared to Fff, as
shown in Fig. 6 for Fbio and Fig. 5 for Fff. In the study do-
main, the inclusion of 114CO2 observations in the ZBASE
experiment yields better performance than ZCO2Only for
both flux categories. Specifically, the posterior F ff ZBASE
exhibits closer alignment with the truth than ZCO2Only with
a lower RMSE (see Table 4), indicating a better fit of the
seasonality for F ff. Similarly, the posterior biosphere fluxes
more closely follow the true time series than the fossil CO2
emissions in both experiments, with ZBASE outperforming
ZCO2Only in terms of RMSE and bias values.

The regional analysis reflects the influence of the cover-
age by sampling stations on the inversion outcomes. West-
ern/central Europe, benefiting from the highest number of
stations (18 out of 33 stations considered in this study, 10
of them measuring both tracers), shows the best alignment
between the posterior and true time series for F ff, espe-
cially in the ZBASE experiment (Fig. 5b), while ZCO2Only
shows pronounced RMSE and bias values (Table 4). Con-
versely, regions like eastern Europe (one station measuring
both tracers) and the British Isles (two stations measuring
only CO2), despite their lower station coverage, exhibit pos-
terior ZBASE F ff time series that closely approximate the
truth, with eastern Europe showing consistent performance
throughout the year (Fig. 5d and f). However, the poste-
rior ZBASE biosphere fluxes in these regions do not align
as closely with the true values as observed in, e.g., west-
ern/central Europe (Fig. 6d and f). In eastern Europe, the
posterior ZBASE shows big differences from the truth dur-
ing May, June (maximum difference of 0.42 TgC d−1), and
later in September, while ZCO2Only shows a better fit during
these months but a positive bias the rest of the year (Fig. 6d).
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Table 3. Inversions performed in this work.

Simulation F ff F bio F biodis Optimized fluxes Tracers Run

SYNTH EDGAR LPJ-GUESS BASU None CO2, 114CO2 Forward
ZBASE ZEROFossil ZEROBio BASU F ff, F bio CO2, 114CO2 Inversion
ZCO2Only ZEROFossil ZEROBio BASU F ff, F bio CO2 Inversion
BASE0.1 ODIAC VPRM RndBASU F ff, F bio, F biodis CO2, 114CO2 Inversion
BASE0.21 ODIAC VPRM RndBASU F ff, F bio, F biodis CO2, 114CO2 Inversion
BASE(0.3) ODIAC VPRM RndBASU F ff, F bio, F biodis CO2, 114CO2 Inversion
BASENoBD ODIAC VPRM BASU F ff, F bio CO2, 114CO2 Inversion

In contrast, the posterior biosphere flux from the ZCO2Only
experiment shows a better fit to the truth than the ZBASE one
in the British Isles (Table 4).

Lastly, southern Europe and northern Europe show simi-
lar results despite their differences: northern Europe has bet-
ter coverage of sampling stations, and its annual truth fossil
CO2 emissions are lower (an average of 0.20 TgC d−1 against
0.59 TgC d−1). In both regions, the posterior F ff of the two
experiments is far from the truth (Fig. 5c and e), while the
posterior F bio values of both regions and experiments are
close to each other, with northern Europe showing a better
fit to the truth than southern Europe, in which the poste-
rior shows a more pronounced positive bias along the year
(Fig. 6c and e).

4.2.2 Analysis of the spatial error reduction

We set up the ZBASE and ZCO2Only experiments with prior
uncertainties and error structures as in Table 2 based on the
values of ODIAC for F ff and VPRM for F bio. Therefore, the
model had some information about the spatial and tempo-
ral error structure of the prior fluxes. To evaluate the spatial
performance of LUMIA, we first aggregate the hourly val-
ues (both truth and posterior) to the optimization interval of
1 week. After this, we calculate the posterior RMSE of each
experiment and flux category at the grid cell level, and finally,
we calculate the RMSE reduction by subtracting the posterior
RMSE of ZBASE from the posterior RMSE of ZCO2Only as
follows.

RMSEreduction = RMSEapos
ZCO2Only−RMSEapos

ZBASE (9)

Here, positive values of RMSEreduction indicate posterior
RMSEapos

ZBASE values that are lower than RMSEapos
ZCO2Only,

i.e., grid cells where when adding 114C observations
(ZBASE) shows values closer to the truth (better perfor-
mance, lower RMSE) than when only having CO2 observa-
tions (ZCO2Only). For fossil fuel, we find larger prior RMSE
values in western/central Europe, but some grid cells also
show the location of larger cities like in southern England,
Poland, and Spain (Fig. 7a). For the biosphere fluxes, we find
larger prior RMSE values in western/central Europe and the
British Isles (Fig. 7e).

The largest positive RMSE reductions (where ZBASE per-
forms better than ZCO2Only) (Fig. 7d and h) occur around
the sampling stations in western/central Europe and the
British Isles for both flux categories. For fossil CO2, most of
the study domain has positive values (92 %), although a large
number of these values (around 75 %) are close to zero, rep-
resenting the values in southern and northern Europe where
there is a low adjustment of the fluxes when adding 114C
observations (Fig. 7d). For the biosphere fluxes, the poste-
rior RMSE maps (Fig. 7f and g) show the regions that are
poorly constrained due to the absence of observations such
as the southern part of the domain and the Baltic States. De-
spite a lower portion of the study domain (40 %) (Fig. 7h)
showing an improvement in the posterior estimation when
adding 114C observations compared with fossil fuel, this
presents a clearer pattern in areas such as southeastern Eng-
land, the northern part of western/central Europe, Denmark,
and southern Sweden, as well as some areas in eastern Eu-
rope.

4.2.3 Recovery of the annual budget

Next, we assess how accurately the model can estimate the
annual budget for fossil fuel, biosphere (NEE), and total
CO2. Figure 8 shows the annual budget of the study domain,
the sub-regions (right), and some of the largest European
countries by area (left). We include the ODIAC emission data
product and the VPRM product for the biosphere in Fig. 8
as references since we base the prior uncertainty and error
structure on the spatial and temporal distribution of these two
products. As we find in the temporal distribution (Fig. 5), in
the study domain, the posterior fossil CO2 from both exper-
iments does not fit the truth, but ZBASE shows a lower bias
from the truth than ZCO2Only. This result is reflected in the
annual budget, where ZBASE recovers 63 % from F t

ff, while
ZCO2Only recovers only 32 % (Fig. 8a). Likewise, the pos-
terior F bio of ZBASE that closely fits F t

bio recovers 38 %
of the biosphere budget (Fig. 8b), while ZCO2Only, which
shows a larger positive bias in the temporal distribution, re-
turns a positive annual budget, contrary to the negative an-
nual budget of the true biosphere fluxes. This behavior is re-
peated in most of the regions and countries shown in Fig. 8,
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Figure 5. Monthly fossil CO2 truth (dashed lines), prior (solid lines), and posterior fluxes from the ZBASE (dashed–dotted lines) and
ZCO2Only (dotted lines) experiments for (a) the study domain and the five sub-regions defined: (b) western/central Europe, (c) southern
Europe, (d) eastern Europe, (e) northern Europe, and (f) the British Isles.

Table 4. RMSE and bias values for F ff and F bio from the ZBASE and ZCO2Only experiments in all the regions.

Region
Fossil fuel (F ff) Biosphere (F bio)

RMSE (TgC d−1) Bias RMSE (TgC d−1) Bias

Prior ZBASE ZCO2Only Prior ZBASE ZCO2Only Prior ZBASE ZCO2Only Prior ZBASE ZCO2Only

Study domain 4.07 1.51 2.75 −4.03 −1.51 −2.74 4.66 1.12 2.12 1.18 0.74 1.90

Western/
1.26 0.12 0.53 −1.25 −0.06 −0.52 0.97 0.17 0.46 0.15 −0.04 0.43

central Europe

Southern Europe 0.60 0.42 0.51 −0.59 −0.41 −0.50 0.89 0.35 0.41 0.35 0.29 0.35

Eastern Europe 0.55 0.07 0.33 −0.54 −0.02 −0.33 0.61 0.22 0.34 0.15 −0.04 0.26

Northern Europe 0.20 0.19 0.20 −0.20 −0.19 −0.20 0.76 0.21 0.25 0.00 0.16 0.22

British Isles 0.28 0.14 0.15 −0.28 0.07 −0.21 0.30 0.16 0.09 0.02 −0.13 −0.02

where ZCO2Only strongly underestimates the annual fossil
CO2 emissions, with the lowest estimates in southern (15 %)
and northern Europe (2 %) – the latter with a strong under-
estimation from ZBASE as well (9 %) – France (33 %), and
Spain (∼ 0 %), which has a similar situation as northern Eu-
rope (5 % recovery for ZBASE) and returns an annual bio-
sphere budget that compensates for the total CO2 budget that
is close to ZBASE in most of the cases.

Western Europe and eastern Europe show the best pos-
terior F ff ZBASE values of 95 % and 105 % of the truth,
respectively. However, while some countries in these re-
gions with good sampling coverage, such as the Benelux
Union, show good recovery of F t

ff (96 %), some others with
fewer neighboring sampling stations, such as France and

Poland, show results far from the annual fossil CO2 emis-
sions: 71 % and 166 %, respectively. Germany, which has the
best coverage in the study domain, shows some overestima-
tion (111 %). On the other hand, the biosphere annual bud-
get compensates in most cases for the total CO2 budget, re-
turning values that overestimate and underestimate the truth,
where the only regions with closer values are western/central
Europe (126 %) and eastern Europe (128 %) for the ZBASE
experiment (Fig. 8c). Finally, we find better estimates of the
total CO2 budget in most cases for the ZBASE experiment,
with the largest recovery in western/central Europe (91 %),
eastern Europe (96 %), and northern Europe (89 %) (Fig. 8e),
as well as at the country level in Germany (99 %) and France
(94 %) (Fig. 8f).
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Figure 6. Monthly biosphere (NEE) truth (dashed lines), prior (solid lines), and posterior fluxes from the ZBASE (dashed–dotted lines) and
ZCO2Only (dotted lines) experiments for (a) the study domain and the five sub-regions defined: (b) western/central Europe, (c) southern
Europe, (d) eastern Europe, (e) northern Europe, and (f) the British Isles.

Figure 7. Spatial error of fossil CO2 (a–d) and the biosphere (e–h) for the ZBASE and ZCO2Only experiments. Panels (a) and (e) show the
prior RMSE for F ff and F bio, respectively; panels (b) and (f) show the posterior RMSE for ZBASE; panels (c) and (g) show the posterior
RMSE for ZCO2Only; and panels (d) and (h) show the RMSE reduction (see Eq. 9) for fossil CO2 and the biosphere. In panels (d) and (h),
positive values (in blue) show the pixels where ZBASE performs better than ZCO2Only (i.e., adding 114CO2 observations improves the
posterior estimates), and negative values (in red) show where ZCO2Only performs better than ZBASE. Crosses and diamonds represent
stations that only measure CO2 and those that additionally measure 114CO2, respectively.
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4.3 A realistic setup

The most realistic approach we can take to perform OSSEs
is to use a realistic set of prior fluxes that differ substantially
from the true fluxes used to generate the synthetic observa-
tions. In this section, we perform a series of experiments
using the prior F ff, F bio, and F biodis fluxes described in
Sect. 3.1 to evaluate the impact of prescribing different prior
fossil CO2 uncertainty values as well as the impact of the
prior F biodis flux product (RndBASU) in the optimization of
F ff.

4.3.1 Impact of the prior fossil CO2 uncertainty

Figure 9 shows the weekly F ff time series for the three
experiments using different prior uncertainties (BASE0.1,
BASE0.21, and BASE0.3). The EDGAR (F t

ff) and ODIAC
(prior) products have different temporal distributions along
the year, with ODIAC being flatter than EDGAR, but
both with a minimum during summer: for EDGAR in July
(3.13 TgC d−1) and for ODIAC in August (3.05 TgC d−1).
In the study domain (Fig. 9a), the posterior F ff values
for the three experiments are very close to each other and
approach the truth from January to February and later
from August to December. From May to August, there
is an increment in the posterior fluxes that depart from
F t

ff, with the maximum difference in July that we find in
western/central Europe (ranging from 0.10 for BASE0.1 to
0.17 TgC d−1 for BASE0.3) and in eastern Europe (0.08
to 0.26 TgC d−1) (Fig. 9). The posterior time series from
the three experiments have the same RMSE with respect
to the truth, 0.48 TgC d−1, which is lower than the prior
RMSE of 0.65 TgC d−1. The posterior F ff time series in
western/central Europe shows the best results, with the
estimates being close to the truth, except for June and July.
The three experiments show the same performance, re-
ducing the RMSE by 50 % (RMSEprior= 0.26 TgC d−1,
RMSEBASE0.1= 0.13 TgC d−1), but BASE0.21 and
BASE0.3 show values farther from the truth in June
and July. Northern Europe (Fig. 9c), on the other hand,
shows priors that are already very close to the truth, with a
posterior RMSE equal to the truth of 0.07 TgC d−1. Finally,
in eastern Europe, with the lowest sampling coverage, the
three posterior time series degrade the prior estimate.

The difference in the annual budget of EDGAR and
ODIAC for the study domain is 0.21 PgC for the year 2018,
which is as large as the emissions of the country with the
largest emissions in the study domain for the same year, Ger-
many, with 0.23 PgC according to EDGAR and 0.19 PgC ac-
cording to ODIAC (Fig. 10). This difference in the study
domain is nearly recovered by all three experiments, with
a recovery ranging from 30 % for BASE0.1 to 45 % for
BASE0.3. In western/central Europe, the three experiments
recover 96 % of the truth (around 71 % of the difference be-
tween true and prior), similar to Germany, where the recov-

ery ranges from 94 % for BASE0.1 to 97 % for BASE0.3
(68 % to 82 % of the difference). As we find in the time se-
ries (Fig. 9d), the prior annual budget is very close to the
truth in eastern Europe, where the difference is 0.02 PgC, and
in Poland at 0.01 PgC. In both cases, the posterior recovers
the annual budget, with overestimations from BASE0.3 for
the whole sub-region and from BASE0.21 and BASE0.3 in
Poland, which are as big as 120 %. Finally, and as expected
from Fig. 9c and the prior uncertainty for the sub-region,
there is no recovery of the annual budget in northern Europe
further than the prior estimate.

4.3.2 Impact of the terrestrial isotopic disequilibrium
product

The prior F bio and F biodis are very different in magni-
tude from the true values, with differences as large as 13.4
and 7.6 TgC d−1, respectively, during summer for the whole
study domain (Fig. 11d and g). This gap is well-resolved
for F bio in the study domain and western/central Europe
(Fig. 11d and f) and has some underestimation in eastern Eu-
rope between June and September (Fig. 11e). However, for
the posterior F biodis we find some larger differences from the
truth during June and September in the study domain and the
two sub-regions. When we prescribe F biodis (BASENoBD),
the posterior F ff values from June to August in the study do-
main and western/central Europe (Fig. 11a and b) get closer
to F t

ff and after the summer in the study domain. This can
also be seen in an improvement in the RMSE values, with
0.32 TgC d−1 for the study domain and 0.10 TgC d−1 for
western/central Europe. In eastern Europe, the posterior F ff
for BASENoBD experiments does not show a significant im-
provement and, on the contrary, further degrades the prior
estimate during the summer and the autumn.

4.3.3 The observational space

Finally, we analyze the model’s performance in the observa-
tional space at all sampling stations aggregated together, one
polluted station (Saclay, SAC) (Fig. 12), and one background
station (Jungfraujoch, JFJ) (Figs. 12 and 13) for the BASE
experiment. We calculate two performance metrics: the cor-
relation coefficient (R) between the synthetic observations
and the prior and posterior simulated mixing ratios for all the
sites and individually for the two sites selected and the re-
duced chi-square χ2

ν for the overall simulation as a measure
of the improvement upon the initial state and to guarantee
that we are not under- or over-fitting the model (Table 5). We
calculate the reduced chi-square as

χ2
ν =

1
ν

N∑
i=1

(
yso
i − y

b,a
i

εi

)2

, (10)

where yso
i is the synthetic observation i, y

b,a
i is either the

prior (b) or the posterior (a) mixing ratio i, εi is the error of

Atmos. Chem. Phys., 25, 397–424, 2025 https://doi.org/10.5194/acp-25-397-2025



C. Gómez-Ortiz et al.: European CO2–∆14CO2 inversions 413

Figure 8. True, prior, and posterior annual budgets of fossil (a–b), biosphere (c–d), and total CO2 (e–f) for the study domain, the sub-
regions (b, d, f), and some of the largest European countries by area (a, c, e). The white bars show the true annual budgets based on the
EDGAR and LPJ-GUESS flux products. The black bars represent the prior value of 0 PgC. The blue and green bars show the posterior
budgets of ZBASE and ZCO2Only, respectively. The error bars represent the prior and posterior uncertainty calculated with a Monte Carlo
ensemble of 100 members.

Figure 9. Monthly fossil CO2 truth (dashed black lines), prior (solid red lines), and posterior fluxes from the BASE0.1 (dashed–dotted
blue lines), BASE0.21 (dotted blue lines), and BASE0.3 (dashed blue lines) experiments for (a) the study domain and the three sub-regions:
(b) western/central Europe, (c) northern Europe, and (d) eastern Europe (note the different scales on the y axis).
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Figure 10. Total annual fossil CO2 emissions for the study domain, western/central Europe, eastern Europe, northern Europe, Germany,
and Poland. The white bars show the true emissions based on the EDGAR emission database. The red bars show the prior fluxes based on
the ODIAC emission data product. The blue, green, and tan bars show the posterior fossil CO2 emissions for the BASE0.1, BASE0.21, and
BASE0.3 experiments, respectively. The error bars represent the prior and posterior uncertainty calculated with a Monte Carlo ensemble of
100 members.

Figure 11. Monthly time series of F ff (a–c), F bio (d–f), and F biodis (g–i) for the study domain (a, d, g), western/central Europe (b, e, h),
and eastern Europe (c, f, i). The truth is represented by dashed black lines, the prior by solid red lines, posterior fluxes from BASE0.1 by
dashed–dotted blue lines, and BASENoBD by dotted blue lines.

the synthetic observation i, N is the number of observations,
and ν represents the degrees of freedom calculated as ν =
N −p, with p being the number of fitted parameters in the
model. Since p is difficult to calculate due to the different
time and space clusters, we keep the number of observations
as the degrees of freedom (ν =N ).

The histograms in Fig. 12 show the mismatches between
the synthetic observations and the prior and posterior mixing
ratios. For the CO2 mixing ratios at all sites (Fig. 12a), the
histogram shows a distribution centered around zero for both
prior and posterior mismatches, with a standard deviation of
14.2 and 13.4, respectively (see Table 5), indicating system-
atic deviations from the observed values. The posterior mis-

match has a slightly tighter distribution, suggesting a small
improvement in the model after adjustments, as reflected in
the correlation coefficient (Table 5). At Saclay (Fig. 12c), the
mismatch distribution is wider than the aggregate of all sites,
which could suggest greater variability or larger errors at this
particular site. The posterior adjustment has not significantly
tightened the distribution, indicating that the model adjust-
ments did not perform as well at this site as they did on
average across all sites. On the other hand, the distribution
in Jungfraujoch (Fig. 12e) is much tighter than at all sites
and SAC, with the posterior mismatch displaying a slight im-
provement in precision as evidenced by the narrower spread.
However, when comparing the posterior time series with the
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Figure 12. Mismatches between the synthetic observations and the prior (red) and posterior (blue) mixing ratios for all the sampling stations,
Saclay (SAC) and Jungfraujoch (JFJ) for CO2 (a, c, e) and for 114CO2 (b, d, f). All prior and posterior mixing ratios correspond to the
BASE experiment.

Table 5. Performance metrics (correlation coefficient R, standard
deviation, and reduced chi-square χ2

ν ) for all sites, Saclay (SAC),
and Jungfraujoch (JFJ).

Prior Posterior

R σ R σ

All sites
CO2 0.64 14.2 0.68 13.4

114CO2 0.72 6.4 0.99 1.2

SAC
CO2 0.56 31.9 0.59 31.1

114CO2 0.63 6.8 0.99 0.5

JFJ
CO2 0.65 5.5 0.74 4.5

114CO2 0.75 4.2 0.84 1.5

χ2
ν 1.77 1.06

synthetic observations before adding the random perturba-
tion (Fig. 13a and c), there is better agreement between them
than with the prior values, especially during periods of higher
variability (April to July at SAC and April to September at
JFJ).

The 114CO2 synthetic observations are in general better
fitted by the posterior than CO2 at all sites, SAC, and JFJ
(Table 5). In all cases, the prior distribution is displaced to
negative values, indicating that the prior simulated values are
in general higher than the synthetic observations as shown
for the whole period at SAC (Fig. 12d) and from July to
November at JFJ (Fig. 12f). These larger prior mixing ratios
are mainly caused by the prior terrestrial disequilibrium flux
from July to November and by the nuclear production flux

throughout the year, which is significantly larger at Saclay
(Fig. 14). However, the posterior mismatches showed a much
narrower spread around zero at all sites (Fig. 12b), Saclay
(Fig. 12d), and Jungfraujoch (Fig. 12f) that is evident in the
time series at both sites where the posterior closely follows
the synthetic observations, as supported by the correlation
coefficients (Table 5).

The reported χ2
ν values of 1.77 for the prior and 1.06 for

the posterior across all sites and samples suggest a substan-
tial improvement in the model’s performance in adjusting the
prior mixing ratios to the synthetic observations. A χ2

ν of
1.77 for the prior indicates that there were significant dis-
crepancies between the prior and the synthetic observations.
This is consistent with the broader spread of mismatches in
the histograms for both SAC and JFJ sites, as well as the ap-
parent overestimation of 114CO2 content in the time series.
The improvement to a χ2

ν of 1.06 for the posterior indicates
a better fit to the synthetic observations that is likely to be re-
flective of the underlying data patterns while still maintaining
some degree of generalizability without over-fitting the data.

5 Discussion

Under the current sampling strategy and observation net-
work, we demonstrate through OSSEs that adding 114CO2
observations can help us constrain fossil CO2 emissions over
Europe using the LUMIA system. We start with two simula-
tion experiments in which we set the prior fossil CO2 and
biosphere (net ecosystem exchange, NEE) fluxes to zero:
ZBASE and ZCO2Only. Under an OSSE setup, even when
using completely different truth and prior flux products (e.g.,
different spatiotemporal distributions and annual budgets),
due to assumptions such as a perfect transport model and
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Figure 13. Mixing ratio time series of CO2 (a, c) and 114CO2 (b, d) at Saclay (SAC) and Jungfraujoch (JFJ), respectively. All prior and
posterior mixing ratios correspond to the BASE experiment.

Figure 14. Contribution of each category to the prior 114CO2 simulated mixing ratios at Saclay (a) and Jungfraujoch (b).

background mixing ratios, it is easy for the model to retrieve
the true values even without adding 114CO2 observations.
For this reason, we set up these two more challenging exper-
iments to assess the capabilities of the inversion system to
constrain the fossil CO2 emissions and biosphere fluxes us-
ing CO2 and 114CO2. The ZBASE and ZCO2Only experi-
ments show us that in regions with a dense sampling network,
such as western/central Europe, when adding114CO2 obser-
vations, LUMIA is capable of recovering the seasonality of
F ff and F bio, as well as the total annual CO2 budget of the
whole region and some of the larger countries (also in terms
of fossil CO2 emissions) such as Germany and France. On
the other hand, the results in northern Europe, which has rela-

tively good network coverage, are not as good as in western/-
central Europe regarding fossil CO2. Comparing the ranges
of the true fossil CO2 and biosphere fluxes in northern and
western/central Europe, we find that, while F t

bio has a simi-
lar range in both regions, F t

ff differs by 1 order of magnitude.
Using the concept of the signal-to-noise ratio, if we consider
the fossil CO2 to be the signal (the variable in which we are
more interested) and the biosphere to be the noise, this dif-
ference of 1 order of magnitude between them in northern
Europe makes it easier for the model to recover the biosphere
fluxes than the fossil CO2 emissions, even with additional in-
formation about 114CO2. In addition, the prior uncertainty,
which is proportional to the fluxes, is close to zero for the
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fossil fluxes, while it is 2 orders of magnitude larger for the
biosphere, making it more costly for the inversion to con-
strain the fossil CO2 emissions.

The inversions are able to resolve the NEE at the continen-
tal level and in the sub-regions but struggle more with fossil
emissions in some regions with few observations (e.g., south-
ern Europe and the British Isles). This is similar to what was
found by Wang et al. (2018) despite the differences between
their inversion implementation and our LUMIA system. The
main differences lie in the transport model and the inversion
approach. They use a global transport model at a resolution
of 3.75°× 2.5° (Laboratoire de Météorologie Dynamique’s
LMDZv4) and a pre-calculated fossil CO2 tracer (product of
the mass balance), while we use a Lagrangian regional trans-
port model at a higher horizontal resolution (0.5°× 0.5°)
and optimize both the fossil and the natural fluxes using
CO2 and 114CO2 as tracers. Wang et al. (2018) found the
largest error reductions around Germany, Benelux, and east-
ern France, where most sampling stations are located. North-
ern Europe was also poorly constrained in their inversions,
similar to what we find. Wang et al. (2018) attributed the re-
sults in northern Europe to the coarse spatial resolution of the
transport model. But even with a higher-resolution transport
model as employed in LUMIA, we still cannot resolve the
true fossil CO2 emissions in an OSSE setup given the cur-
rent CO2 and 114CO2 observation networks. We think that
a more likely explanation is the difference in the magnitude
of the fossil CO2 emissions in this region against the natural
fluxes. This can be seen by the differences in the seasonal
amplitude of the fluxes. In western/central Europe F bio and
F ff are of a similar order of magnitude (2.81 TgC d−1 for
F bio and 0.6 TgC d−1 for F ff) (see Figs. 5 and 6). In con-
trast, in northern Europe, there is a 10-fold difference in the
seasonal amplitude of the two fluxes: 2.44 TgC d−1 for F bio
and 0.06 TgC d−1 for F ff. In addition, the prior uncertainty
for F ff (0.002 PgC yr−1) in this region is much lower com-
pared to F bio (0.12 PgC yr−1) in northern Europe.

The BASE experiments, in which we use realistic prior
fluxes, show that the posterior fossil CO2 emissions are not
very sensitive to the prescribed prior uncertainty in regions
with a dense sampling network, even when using a low
prior F ff uncertainty in which case it is more difficult for
the inversion algorithm to recover the true fluxes. As we
have observed in previous studies using LUMIA (Monteil
et al., 2020; Monteil and Scholze, 2021), the cost of fitting
the observations dominates the total cost function value. In
this sense, the relative value of the prior uncertainty of F bio
against F ff is going to significantly impact the spatiotem-
poral distribution of flux adjustments, but the total uncer-
tainty of the fluxes is of lesser importance since the model
has enough freedom to adjust the data. In other words, the
error structure and how it is set up for the different flux cate-
gories is going to have more of an impact than the total prior
uncertainty. Both Basu et al. (2016) and Wang et al. (2018)
highlight the importance of a regional horizontal correlation

and error structure for fossil CO2 emissions. In our study,
we use the same horizontal correlation and error structures
originally developed by Monteil et al. (2020) for NEE. We
are aware of the necessity of defining specific structures for
fossil CO2 within LUMIA due to the low improvement in
spatial terms that we find in Fig. 7 when adding114CO2 ob-
servations. However, it is important to mention that given the
sparse observation network, we can expect spatial misattri-
butions (flux corrections that should happen in one place but
are instead made elsewhere), and therefore we should inter-
pret the results aggregated at the scale that is relevant given
the model setup, as we demonstrate through the time series
and annual budget results. Such spatial misattribution is illus-
trated in the spatial RMSE reduction results for the biosphere
fluxes. We can clearly identify the formation of dipoles (clus-
ters of larger RMSE values) in regions with no observations
such as the southern part of the study domain and the Baltic
States, indicating that these areas are underconstrained.

We also find the prior terrestrial disequilibrium product to
have an important impact on the posterior fossil CO2 emis-
sions (Fig. 11). The prior terrestrial isotopic disequilibrium
flux in our experiments is intentionally incorrect with the aim
of showing the impact that it can have in the estimation of
fossil CO2 emissions. As shown in Fig. 11, the maximum dif-
ference between the prior and the true F biodis is of the same
order of magnitude for western/central Europe (2.1 TgC d−1)
and eastern Europe (1.3 TgC d−1) in July. For F ff, however,
the difference between the prior and truth is about 1 order
of magnitude larger for western/central Europe compared
to eastern Europe (0.03 TgC d−1 vs. 0.005 TgC d−1). This
larger difference causes a stronger dilution of the fossil emis-
sions in eastern Europe and therefore essentially lowers the
signal-to-noise ratio of the 114CO2 measurements; added to
the lower network coverage compared to western/central Eu-
rope, it leads to a poorer constraint of the fossil CO2 emis-
sions. As also seen in Fig. 9, this is particularly evident in
eastern Europe during the summer months, where the fos-
sil CO2 signal is further convoluted by the large biospheric
uptake, making it more difficult to accurately constrain fos-
sil emissions in this region. According to Turnbull et al.
(2009), one of the main contributors to atmospheric114CO2
is heterotrophic respiration in natural environments. There-
fore, having a good prior F biodis estimate is crucial in es-
timating posterior F ff. The impact of F biodis and the other
114CO2 flux terms is not negligible; in particular, the emis-
sions from nuclear facilities can have a larger impact than the
terrestrial disequilibrium (Graven and Gruber, 2011), as was
evident when analyzing the individual impacts of the flux cat-
egories, showing that at sampling sites heavily influenced by
emissions from nuclear facilities such as Saclay, these emis-
sions can be as large as the terrestrial isotopic disequilib-
rium fluxes. In this study, we fixed the F nuc term (i.e., we
use the same fluxes for calculating the synthetic observations
and in the inversions), and hence its impact is not consid-
ered here. In previous studies (Wang et al., 2018; Basu et al.,

https://doi.org/10.5194/acp-25-397-2025 Atmos. Chem. Phys., 25, 397–424, 2025



418 C. Gómez-Ortiz et al.: European CO2–∆14CO2 inversions

2016, 2020) the F nuc is usually prescribed and assumed to be
an annual value at each nuclear facility location (Graven and
Gruber, 2011; Zazzeri et al., 2018) due to a lack of knowl-
edge on the temporal distribution of these emissions. This
variability in nuclear emissions has only been studied by
measuring the atmospheric content of 114CO2 in the sur-
rounding areas of single nuclear facilities (Turnbull et al.,
2014; Vogel et al., 2013; Lehmuskoski et al., 2021), but not
yet in a large regional setup, and therefore it needs further
investigation.

The observing system simulation experiment (OSSE)
framework used in this study assumes a perfect realization
of atmospheric transport and mixing processes by employ-
ing the same transport model across the simulations. This
assumption simplifies the complex nature of atmospheric dy-
namics and is a common approach to limit the scope of vari-
ability in such studies. However, it is crucial to acknowl-
edge that this simplification overlooks one of the largest
sources of uncertainty in atmospheric inverse modeling: the
accurate representation of atmospheric transport and mix-
ing processes. The variability and uncertainty in atmospheric
transport can significantly impact the estimation of green-
house gas sources and sinks. As demonstrated by Schuh et
al. (2019), inconsistencies in transport simulations can intro-
duce systematic biases in surface flux estimations, which can
be as substantial as 1.7 PgC yr−1 for large zonal bands. In a
study by Munassar et al. (2023), in which multiple combina-
tions of global and regional models were tested using two
different inversion frameworks (LUMIA and CarboScope-
Regional – CSR), they found that using a different re-
gional transport (FLEXPART and STILT – Stochastic Time-
Inverted Lagrangian Transport) model can cause differences
in the posterior NEE annual budget of 0.51 PgC yr−1. This
highlights the sensitivity of inversion-derived emission esti-
mates to the accuracy of the transport model used and empha-
sizes the critical role that transport uncertainty plays across
global flux inversion systems.

Furthermore, the assumption of perfect boundary condi-
tions in the model presents another significant simplification.
Boundary conditions in atmospheric modeling can greatly
influence the mixing ratio gradients and flux estimates, and
their mischaracterization can propagate errors throughout the
model domain. Coming back to the study by Munassar et al.
(2023), the use of a different global transport model (TM3
and TM5) for the estimation of the boundary condition can
cause discrepancies in the posterior annual budget as large as
0.23 PgC yr−1. Errors in these aspects of the transport model
could lead to skewed emission estimates. Given these consid-
erations, the presented results should be interpreted with cau-
tion, understanding that the true uncertainty in atmospheric
inverse modeling is likely understated in these OSSEs. It un-
derscores the need for more comprehensive approaches that
account for transport model uncertainties, such as employ-
ing ensemble modeling techniques that incorporate multiple
transport models and boundary conditions to better capture

the inherent uncertainties in atmospheric dynamics (Locatelli
et al., 2015; Aleksankina et al., 2018).

6 Conclusions and future perspectives

We have expanded the LUMIA system to be capable of si-
multaneously inverting atmospheric observations of CO2 and
114CO2 to estimate fossil CO2 emissions and net terrestrial
biosphere CO2 fluxes over Europe. We performed the first
observing system simulation experiments to test the perfor-
mance of the 114C-enhanced LUMIA version. In the first
set of experiments, we show the impact of adding 114C ob-
servations in a scenario with prior estimates of F ff and F bio
set to zero. In regions with good sampling network coverage,
assimilating both CO2 and 114C observations allows recov-
ering the seasonality of F ff and F bio and the annual F ff bud-
get, while when assimilating only CO2 observations, the pos-
terior F ff is degraded. In the second set of experiments, we
performed OSSEs using more realistic priors to test the im-
pact of the prescribed F ff uncertainty and the impact of the
prior F biodis product. The prescribed prior uncertainty has
no significant impact on the posterior F ff. On the other hand,
the prior F biodis product can significantly impact the poste-
rior F ff.

The purpose of this study is to describe the multi-tracer,
more specifically CO2 and 114CO2, version of LUMIA and
illustrate its application to estimate both fossil CO2 emis-
sions natural CO2 fluxes simultaneously. Future work should
analyze in more detail the impact of various aspects of our
inversion setup here, such as the assumption of a perfect
transport model, the specification of the boundary conditions,
and different spatiotemporal error structures, on the poste-
rior fossil CO2 emissions and natural CO2 fluxes. Particu-
lar emphasis should be placed on the analysis of the impact
of the prior F biodis product using simulated terrestrial bio-
sphere disequilibrium estimates by, e.g., the LPJ model fol-
lowing the methodology by Scholze et al. (2003) because our
study here illustrated the importance of this flux term in the
CO2 and 114CO2 inversion. In addition, the impact of the
prior F nuc, the sampling strategy, and the network density
of the 114C observations on the capability to estimate fossil
CO2 emissions needs to be evaluated. The current 2-weekly
integrated sampling strategy allows us to get a reasonable
estimate of the annual budget over the whole domain. But
the inversion can recover neither the correct temporal behav-
ior nor the spatial distribution of the fossil CO2 emissions
when using C114C observations provided by the current 2-
weekly integrated sampling strategy. Additionally, convert-
ing 114CO2 values to C114C implies calculating the aver-
age of the CO2 observations during the 2-week integration
period, which can introduce additional errors that we did not
account for in this study. We will evaluate the use of hourly
flask samples under different strategies as described by Levin
et al. (2020), such as a “smart” sampling based on pollu-
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tion episodes of CO2 and CO. This will be in preparation
for the intensive 114CO2 sampling campaign (hourly sam-
ples taken every third day) planned within the EC’s Hori-
zon Europe CORSO (CO2MVS Research on Supplementary
Observations) project (https://corso-project.eu/, last access:
7 January 2025) during 2024 at 10 ICOS stations located in
western Europe.

Appendix A: Summary of ocean and
ocean-disequilibrium-derived synthetic observations

Table A1. Summary of ocean and ocean-disequilibrium-derived synthetic observations across sampling stations used in this study. The
table compares average ocean CO2 and 114C values, ocean disequilibrium (Ocedis) 114C values, and synthetic total CO2 and 114C
observations, along with their random noise variants and associated observation errors. Values are presented as averages across all stations
and for individual sampling stations, including their standard deviations. These data provide insight into the variability of ocean and ocean
disequilibrium contributions relative to total synthetic observations.

Station Ocean Ocean Ocedis Synth. obs. Synth. obs. Obs. error Synth. obs. Synth. obs. Obs. error
CO2 ppm 114C ‰ 114C ‰ CO2 ppm (rnd) CO2 ppm 114C ‰ (rnd) 114C ‰

CO2 ppm 114C ‰

All sites −0.07± 0.15 −0.007± 0.007 0.02± 0.017 414.6± 12.7 414.6± 18.3 9.8± 9.0 0.3± 8.0 0.2± 8.4 1.9± 0.05
GAT −0.07± 0.1 −0.008± 0.007 0.021± 0.014 415.7± 12.7 416.2± 19.2 11.1± 7.2 2.1± 4.2 2.6± 4.8 1.9± 0.05
HPB −0.04± 0.05 −0.005± 0.003 0.016± 0.008 414.0± 11.2 414.5± 16.7 10.4± 6.3 1.0± 6.3 1.5± 6.8 1.9± 0.04
HTM −0.07± 0.12 −0.009± 0.009 0.016± 0.009 415.4± 12.3 415.5± 16.8 10.0± 5.7 1.0± 4.5 0.5± 4.8 1.9± 0.04
JFJ −0.03± 0.04 −0.002± 0.002 0.01± 0.005 409.1± 5.0 409.0± 6.9 4.2± 2.1 5.5± 2.3 5.5± 2.9 2.0± 0.02
KIT −0.06± 0.06 −0.005± 0.004 0.024± 0.012 427.1± 16.9 427.4± 26.9 17.7± 10.0 −5.2± 10.5 −4.7± 11.0 1.9± 0.05
KRE −0.05± 0.06 −0.005± 0.004 0.014± 0.009 415.3± 12.6 415.0± 16.9 10.3± 6.0 −4.0± 4.6 −4.2± 4.9 1.9± 0.05
LIN −0.06± 0.09 −0.007± 0.006 0.017± 0.011 420.9± 16.9 420.2± 25.2 15.2± 11.6 −7.7± 9.4 −8.2± 9.5 1.9± 0.05
NOR −0.07± 0.14 −0.009± 0.009 0.011± 0.01 415.8± 10.7 415.5± 14.4 8.5± 4.8 4.9± 4.3 4.5± 5.1 1.9± 0.03
OPE −0.07± 0.08 −0.006± 0.004 0.034± 0.021 416.7± 14.3 416.5± 21.5 13.3± 9.3 −1.6± 6.8 −1.2± 6.3 1.9± 0.04
OXK −0.06± 0.08 −0.006± 0.004 0.02± 0.013 411.0± 7.3 410.8± 10.5 7.1± 3.0 1.8± 4.8 1.5± 5.8 1.9± 0.03
PAL −0.1± 0.13 −0.011± 0.007 0.005± 0.004 412.3± 8.6 412.3± 10.8 6.0± 3.7 8.7± 4.2 8.9± 5.0 1.9± 0.03
SAC −0.08± 0.1 −0.009± 0.007 0.04± 0.02 425.2± 23.0 425.6± 37.9 23.1± 20.0 −13.1± 8.3 −13.7± 8.8 1.9± 0.03
STE −0.08± 0.12 −0.01± 0.007 0.021± 0.01 413.4± 10.0 413.7± 15.6 9.4± 7.2 0.4± 4.9 −0.4± 6.2 1.9± 0.03
SVB −0.1± 0.16 −0.011± 0.009 0.007± 0.006 412.5± 9.5 412.0± 12.4 7.1± 4.5 5.8± 3.0 5.5± 3.7 1.9± 0.03
TRN −0.08± 0.09 −0.009± 0.007 0.041± 0.026 415.9± 13.7 415.7± 21.0 12.2± 10.7 2.8± 5.4 3.1± 6.1 1.9± 0.04
BIR −0.09± 0.1 – – 410.7± 7.6 410.6± 10.3 6.1± 4.1 – – –
CMN −0.03± 0.05 – – 408.4± 6.7 408.2± 8.8 5.1± 2.6 – – –
HEL −0.15± 0.25 – – 414.1± 9.3 414.2± 16.7 11.1± 6.9 – – –
IPR −0.04± 0.05 – – 428.8± 17.6 428.8± 26.0 16.8± 10.3 – – –
JUE −0.07± 0.08 – – 417.6± 15.3 416.9± 24.8 15.2± 15.5 – – –
LMP −0.01± 0.27 – – 410.5± 4.6 410.3± 6.5 4.5± 1.8 – – –
LUT −0.1± 0.14 – – 416.8± 15.7 416.8± 24.9 14.4± 12.7 – – –
PRS −0.02± 0.04 – – 408.9± 5.0 409.0± 6.7 4.0± 2.0 – – –
PUI −0.07± 0.12 – – 410.9± 6.1 411.0± 8.1 5.1± 2.2 – – –
PUY −0.06± 0.08 – – 409.4± 8.3 409.3± 11.5 6.5± 4.2 – – –
RGL −0.11± 0.13 – – 409.6± 8.3 409.6± 11.1 6.9± 3.9 – – –
SMR −0.07± 0.13 – – 414.2± 10.6 414.2± 13.9 7.9± 4.6 – – –
SSL −0.06± 0.06 – – 410.2± 6.6 410.4± 9.7 6.4± 3.1 – – –
TOH −0.06± 0.09 – – 414.7± 11.7 414.9± 16.4 9.8± 5.6 – – –
UTO −0.24± 0.45 – – 414.2± 9.2 414.3± 14.5 9.4± 5.0 – – –
WAO −0.06± 0.07 – – 419.5± 9.6 420.2± 19.5 14.0± 7.5 – – –
WES −0.08± 0.12 – – 414.1± 10.3 414.2± 18.6 13.0± 6.9 – – –
ZSF −0.03± 0.04 – – 409.1± 5.3 409.2± 7.4 4.7± 2.3 – – –
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Appendix B: Spatial clustering algorithm

The inversion solves for offsets to the prior fluxes at a vari-
able spatial resolution: high (up to 0.25°) in the direct vicin-
ity of observation sites but lower in parts of the domain that
are not well-sampled by the observation network. To achieve
this, the spatial domain of the inversion is divided into a set
of clusters of grid cells, each defined by the following prop-
erties.

– Cells: the list of grid cells included in the cluster.

– Weight: the sum of a property carried by each grid cell.
In our case, this property is the average sensitivity of the
observation network to that grid cell.

– Size: the number of grid cells in the cluster.

– mean_lat and mean_lon: the average (area-weighted)
latitude and longitude of the grid cells in the cluster.

– Area: the total of all the grid cells included in the cluster.

– Type: ocean, land, or mixed.

– Continuity: whether it is possible to “walk” from any
grid cell of the cluster to any other one or whether there
are discontinuities (e.g., a “land” cluster separated into
two parts by ocean grid cells).

The objective of the clustering algorithm is to divide the
domain into a user-defined number of continuous clusters
with roughly equal “weight”. The weight of a single grid
cell is, in our case, defined as the average value of the ad-
joint field in that grid cell for an adjoint simulation driven by
model–data mismatches set proportional to the uncertainty
of each observation. The clustering is performed iteratively
as follows.

1. Initially, one single cluster is formed, comprising all
grid cells of the domain. It is added to a pool of “di-
vidable” clusters.

2. The weight of all clusters in that pool is calculated (i.e.,
the weight of the single initial cluster at the first itera-
tion).

3. The cluster with the largest weight is then split into two
even parts across its longest axis (i.e., in an eastern and
western part, at the first iteration).

4. The resulting two new clusters are checked for continu-
ity. If needed, they are further split into several continu-
ous clusters.

5. If a cluster reaches the minimum size (1 grid cell), it is
moved to a pool of “defined” clusters.

6. If the total number of clusters (dividable plus defined)
is lower than the target number of clusters, then repeat
steps 2 to 6. Otherwise, exit.

Because of how the cluster weights are defined, clusters
away from observation points end up being considerably
larger, but they are in regions where the inversions would
have applied very smooth flux adjustments, so there is no
real drawback to this clustering.
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