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Abstract. Aerosol acidity (or pH) plays a crucial role in atmospheric chemistry, influencing the interaction of
air pollutants with ecosystems and climate. Aerosol pH shows large temporal variations, while the driving factors
of chemical profiles versus meteorological conditions are not fully understood due to their intrinsic complexity.
Here, we propose a new framework to quantify factor importance, which incorporated an interpretive structural
modeling (ISM) approach and time series analysis. In particular, a hierarchical influencing factor relationship is
established based on the multiphase buffer theory with ISM. A long-term (2018–2023) observation dataset in
Changzhou, China, is analyzed with this framework. We found the pH temporal variation is dominated by the
seasonal and random variations, while the long-term pH trend varies little despite the large emission changes.
This is an overall effect of decreasing PM2.5, increasing temperature and increased alkali-to-acid ratios. Tem-
perature is the controlling factor of pH seasonal variations, through influencing the multiphase effective acid
dissociation constant K∗a , non-ideality cni and gas–particle partitioning. Random variations are dominated by
the aerosol water contents through K∗a and chemical profiles through cni. This framework provides quantitative
understanding of the driving factors of aerosol acidity at different levels, which is important in acidity-related
process studies and policy-making.

1 Introduction

Aerosol acidity strongly influences particle mass and chem-
ical constituents by regulating thermodynamic and chemical
kinetic processes (Cheng et al., 2016; Pye et al., 2020; Su
et al., 2020; Tilgner et al., 2021; Zheng et al., 2020). It is
therefore an important parameter in the atmosphere for as-
sessing the impact of atmospheric aerosols on human health,
ecosystems and climate (Nenes et al., 2021; Pye et al., 2020).
Current direct measurement methods of aerosol pH (Ault,
2020) are not yet applied in ambient observations due to lim-

itations such as slow measurement speeds (Lei et al., 2020)
or the targeting of single particles (Craig et al., 2017). There-
fore, thermodynamic models are widely adopted to estimate
aerosol acidity and investigate its influencing factors (Clegg
et al., 2001; Fountoukis and Nenes, 2007; Tao and Murphy,
2019; Zaveri et al., 2008; Zuend et al., 2008).

Driving factors of aerosol pH, especially the relative im-
portance of chemical profiles versus meteorological condi-
tions, have been widely investigated but still not fully un-
derstood. For example, based on long-term observations at
six Canadian sites, Tao and Murphy (2019) found that tem-
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perature largely regulates the aerosol pH in summer, while
the chemical profiles may also play a role in winter. Ding
et al. (2019) employed controlled variable tests with the ther-
modynamic model and concluded that in the North China
Plain, sulfate, total ammonia and temperature are the com-
mon drivers of pH variations, while total nitrate barely in-
fluences the pH. In comparison, Zhou et al. (2022) demon-
strated that in the Yangtze River Delta region, non-volatile
cations (NVCs; including Na+, Ca2+, K+ and Mg2+) and
sulfate are crucial for annual pH trends, while the seasonal
and diurnal variations are determined by meteorological con-
ditions of temperature and RH. Nevertheless, an in-depth in-
vestigation into the underlying mechanisms and quantitative
attributions of how the meteorology or chemical composi-
tions would influence the aerosol pH is still lacking.

Following the Air Pollution Prevention and Control Ac-
tion Plan in 2013, the Chinese government introduced the
Three-Year Action Plan to Fight Air Pollution (hereinafter
referred to as the Action Plan) in 2018. With the implemen-
tation of the Action Plan, both the PM2.5 concentration and
its chemical components changed considerably (Bae et al.,
2023; Nah et al., 2023; Zhang et al., 2022), which in turn
affects aerosol pH. Variation in pH influences the formation
of PM2.5 via affecting the gas–particle partitioning of semi-
volatile species (e.g., HNO3) and chemical kinetics, thereby
feeding back into the air quality, climate and human health
(Cheng et al., 2016; Li et al., 2017; Pye et al., 2020; Su et al.,
2020).

The recently proposed multiphase buffer theory offers a
new quantitative insight into the aforementioned issue, which
shows how and why the chemical profiles and meteorologi-
cal parameters would influence the aerosol acidity (Zheng
et al., 2020, 2022a, 2024b). Here, we established a hierarchi-
cal influencing factor relationship of aerosol pH based on the
multiphase buffer theory with an interpretive structural mod-
eling (ISM) approach. Combining this model with time series
analysis, we proposed a novel hierarchical quantitative anal-
ysis framework, which can not only quantify the contribution
of different influencing factors, but also reveal the underly-
ing mechanisms and dominant pathways of the influences.
Compared with previous studies, this framework can provide
a more systematic, in-depth and quantitative understanding
of how the meteorology or chemical profiles would affect
aerosol pH over different timescales of interest. Applying
this framework to the long-term observations in Changzhou,
China, distinct driving factors and underlying mechanisms
were quantified for different time series components, and fu-
ture implications were also discussed.

2 Methods

2.1 Ambient measurements and aerosol acidity
prediction

Long-term observations of aerosol chemical components and
precursor gases are conducted at an urban site of Changzhou
Environmental Monitoring Center (31.76° N, 119.96° E),
which is located in Changzhou, an important city in the cen-
ter of the Yangtze River Delta (YRD) region. Further details
regarding the sampling site and instrument information are
described elsewhere (Li et al., 2023; Yi et al., 2022). Briefly,
the PM2.5 is measured by the Continuous Particulate Matter
Monitor (BAM 1020, Met One Inc., US) using β-ray technol-
ogy, and the meteorological parameters are obtained from a
meteorological monitor (WXT520, VAISALA Inc., FL). The
water-soluble inorganic ions and the gas species, including
NH3, HNO3, and HCl, are measured by a MARGA ion on-
line analyzer (ADI2080, Metrohm Inc., CHN). Here the data
from 2018 to 2023 are analyzed.

The thermodynamic model ISORROPIA v2.3 (Fountoukis
and Nenes, 2007) is employed to predict the aerosol wa-
ter content (AWC) and aerosol acidity, which is defined
as the free molality of protons (Fountoukis and Nenes,
2007; Pye et al., 2020). Input parameters include SO2−

4 ,
total nitrate (gas HNO3+ particle NO−3 ), total ammonia
(gas NH3+ particle NH+4 ), total chloride (gas HCl+ particle
Cl−), NVCs, and meteorological parameters like the temper-
ature T and relative humidity RH. The ISORROPIA model is
run in the forward mode and a metastable state (Zheng et al.,
2022b).

The ISORROPIA-predicted concentrations of NH3, NH+4
and NO−3 agreed well with measurements (R2 all above 0.95
and slopes all close to 1.0; Fig. S1 in the Supplement).
This demonstrates that thermodynamic analysis accurately
reflects the aerosol state. However, the predicted HNO3 con-
centration does not correlate well with the observed concen-
trations, as has been observed in many other studies (Ding
et al., 2019; Zhou et al., 2022). This discrepancy may be at-
tributed to two factors: (1) the high measurement uncertainty
of gas-phase HNO3 due to its low concentration and viscous
properties, which may cause its adsorption on the MARGA
units’ inlet and tubing (Rumsey et al., 2014); and (2) the
calculation accuracy of ISORROPIA thermodynamic equi-
librium model, particularly in predicting activity coefficients
(Zheng et al., 2022a). The influence of this discrepancy on
the results in this study is tested to be small, but its influence
under other scenarios needs to be examined in future studies.

2.2 Time series analysis

Time series analysis is a statistical method of analyzing a
sequence of data points over an interval of time, which is
particularly useful for understanding the structure and pat-
tern of temporal data and is widely applied in atmospheric
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studies (Hammer et al., 2020; Kang et al., 2020; Shumway
and Stoffer, 2017). Here, we performed time series analy-
sis of pH and its potential influencing factors by decom-
posing them into four components: long-term trends, sea-
sonal variations, diurnal cycles and random residuals. Lin-
ear fitting (y = a× t + b, where t is defined as time here-
inafter) is adopted to predict the long-term trends (Kang
et al., 2020; Mudelsee, 2019), and one-term Fourier curve
fitting (y = a0+a1×cos(ωt)+b1×sin(ωt)) is adopted to fit
the seasonal and diurnal cycles (Bloomfield, 2004; Singh et
al., 2017). Here, we fixed the cycle period of Fourier curve as
1 year and 1 d in fitting the seasonal and diurnal variations,
respectively. The random residuals were obtained from the
difference between the actual observed values and the sum
of the predicted values of fitting functions in the long-term
trend, seasonal variations and diurnal cycles. See more de-
tails in Sects. S1 and S2 in the Supplement.

2.3 Variation contribution quantification

To quantify the contribution of a direct influencing factor to
the variations of a certain term, the one-at-a-time sensitivity
analysis method is adopted (Yu et al., 2019). Briefly, assume
variable Y is a function of n influencing factors of x1 to xn,
i.e., Y = f (x1, · · ·,xn). The variation in Y due to factor xi ,
∂Y
∂xi

, is estimated as

∂Y

∂xi
= f (x1, · · ·,xi, · · ·,xn)− f (x1, · · ·,xn), (1)

where xi is the actual value of factor xi , and xi is the average
of factor xi . See more details in Sect. S3.

3 Establishing the new hierarchical quantitative
analysis framework

3.1 Interpretive structural modeling (ISM) based on
multiphase buffer theory

The recently proposed multiphase buffer theory reveals that
most continental regions are within the ammonia-buffered
regime, where the pH variations can be decomposed into
(Zheng et al., 2020, 2022a)

pH= pK∗a + cni+Xgp, (2a)

where

K∗a =Ka,NH3

ρw

HNH3RTAWC
(2b)

cni = log
γH+

γNH+4

(2c)

Xgp = log
[NH3(g)]
[NH+4 (aq)]

. (2d)

Here, K∗a is the effective acid dissociation constant of NH3
under ideal conditions in multiphase systems, cni is the non-
ideality correction factor and Xgp represents the gas–particle

partitioning of NH3. Ka,NH3 is the acid dissociation constant
of NH3 in bulk aqueous phase, ρw is the water density,HNH3

is Henry’s law constant of NH3, R is the gas constant, T is
temperature in K and γX is the activity coefficient of X.

Each term of the top-level pH decompositions (Eq. 2a) fur-
ther depends on many other influencing factors, making the
overall picture complicated. To illustrate the interconnections
among these multiple driving factors, we applied the inter-
pretive structural modeling (ISM) approach, which is widely
used to identify and analyze the relationships between fac-
tors in complex systems (Sushil, 2012; Thakkar, 2021). With
this method, a hierarchical relationship among influencing
factors of aerosol pH can be established based on the mul-
tiphase buffer theory, as illustrated in Fig. 1. Take pK∗a for
illustration here; other direct drivers of cni and Xgp are elab-
orated in Sect. S4 (Zheng et al., 2022a, 2024b). pK∗a makes
a direct impact on pH (top-level influencing factor), and its
variation is determined by the temperature and AWC. The
AWC further depends mainly on PM2.5 concentrations and
RH and minorly on the chemical profiles (middle level). Fun-
damentally, these influencing factors are caused by variations
in synoptic conditions and emissions (bottom level).

3.2 ISM coupled with time series analysis

With the above ISM approach, a quantitative analysis of each
factor following the influencing lines can be achieved. In
addition, when coupled with time series analysis, it can be
applied to illustrate the driving factor of each time series
component. Briefly, we can decompose each input parame-
ter in ISORROPIA v2.3 into the four time series components
(Sects. 2.1 and 2.2) and then apply each component to ex-
plain upper-level factors of corresponding component. For
example, the seasonal variations in Y due to seasonal varia-
tions of factor xi , ∂Y

∂xi

∣∣∣
seas

, is estimated as

∂Y

∂xi

∣∣∣∣
seas
= f (x1, · · ·,xi,seas+ xi, · · ·,xn)− f (x1, · · ·,xn), (3)

where xi,seas is the decomposed seasonal variation in xi . See
more details in Sect. S2.

4 Driving factor analysis of long-term data in
Changzhou

Here we applied the new framework (Sect. 3) to analyze the
long-term data in Changzhou. From 2018 to 2023, around
90 % periods are within the ammonia-buffered regime, while
the rest are due to low RH (< 30%) and aerosols not in a fully
deliquescent state. Thus, the drivers of pH can be explained
with the above framework.

The top-level ISM decomposition shows that the pH vari-
ations are mainly driven by the pK∗a (∼ 52%) and cni
(∼ 36%), while the Xgp varies to a lesser extent (∼ 12%,
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Figure 1. Hierarchical relationship among influencing factors of aerosol pH based on the multiphase buffer theory as established with the
interpretive structural modeling approach.

Figure 2. Major components of pH variations. (a) Decomposition into the pK∗a , Xgp and cni based on the multiphase buffer theory. (b) De-
composition into long-term trends (left axis), seasonal variations, diurnal cycles and residuals (right axis) through time series analysis.

Figs. 2a and S2). In comparison, the time-series decomposi-
tion indicates that the pH variation is predominantly driven
by seasonal variations and random residuals, while the long-
term trend and diurnal cycle play minor roles on the varia-
tions (Fig. 2b). In the following we have analyzed the driving
factors of each time series component.

4.1 Long-term trends

The long-term pH trends in Changzhou show a slight de-
creasing trend of−0.05yr−1 (Fig. 2b). The top-level ISM de-
composition reveals that this is due to the competing trends
of pK∗a and cni with Xgp: while pK∗a and cni decreased by

−0.12 and −0.14yr−1, respectively, the Xgp increased by
0.21 yr−1 (Fig. 3a).

A further delve into the middle-level factors in the ISM
approach reveals that the pK∗a decrease is due to the com-
bined effect of decreasing AWC and increasing tempera-
ture (Fig. 3b). The temperature increased by 0.74 Kyr−1

(Fig. S3), corresponding to a pK∗a of −0.05yr−1. In com-
parison, the AWC exhibited a decrease of−1.57µgm−3 yr−1

(Fig. S3), corresponding to a pK∗a of −0.07yr−1. The AWC
decrease is primarily attributed to the PM2.5 decrease (around
−1.6µgm−3 yr−1), while the long-term RH shows minimal
variation (Fig. 3c). As for cni, its decreasing trend is mainly
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Figure 3. Influencing factors of long-term pH variation at different levels. (a) The first-level decomposition into pK∗a , Xgp and cni.
(b–e) Further investigation of the influencing factors of (b) pK∗a due to the T and AWC; (c) the AWC due to RH and PM2.5; (d) cni
due to RH, T and fNO−3

; and (e) Xgp due to Ct/At and T .

attributed to increased temperature, corresponding to cni of
−0.13yr−1 (Fig. 3d). RH and the fraction of NO−3 in particle-
phase anions (fNO−3

) cause negligible effects on cni because
they were nearly constant (Fig. S3). In terms of Xgp, its in-
crease is due to the increase in both relative abundance of al-
kaline to acidic substances (Ct/At) and temperature (Fig. 3e),
contributing to the Xgp increases of 0.16 and 0.05 yr−1, re-
spectively. Here the temperature influences Xgp through the
gas–particle partitioning volatility of semi-volatile species
like ammonium nitrate. The increase in Ct/At is further due
to a much larger decrease in At (sulfate, total nitrate, to-
tal chloride, etc.) than Ct (total ammonia and NVCs, etc.)
(Fig. S3).

Overall, we see that the long-term pH trend shows only a
slight decrease despite considerable emission changes during
this period, which is a combined effect of decreased PM2.5
while increased temperature and Ct/At.

4.2 Seasonal variations

Influencing factors of seasonal variation pH are analyzed in
similar ways with the long-term trends (Fig. 4). Overall, the
pH is higher in winter and spring than summer and autumn,

with the amplitude of seasonal variations being 0.81 or the
variation range being 1.62. The extent of variation is quan-
tified by variation range hereinafter, which is the difference
between the highest and lowest values for a given variable
and for a given time series component. This cycle is consis-
tent with pK∗a and cni, while it is in reverse phase with Xgp.

The middle-level ISM decomposition demonstrates that
the seasonal variation in pK∗a is mainly driven by the tem-
perature (Fig. 4b). The variation in temperature is 23.26 K
(Fig. S4), which corresponds to a pK∗a variation of 1.20. In
comparison, the AWC varies to a lesser extent seasonally
(Fig. S4), causing a relatively minor variation of 0.42 in pK∗a .
Seasonal variation in the AWC is further primarily attributed
to the variation in PM2.5 levels (approximately 25.4 µgm−3),
as the seasonal RH varied little (Figs. 4c and S4). As for
Xgp, its seasonal variation is influenced by both temperature
and Ct/At, which correspond to variations in Xgp of −0.98
and −0.91, respectively (Fig. 4d). Higher temperature and
Ct/At during summer facilitate more NHx remaining in the
gas phase than winter (Fig. S4). Regarding cni, its seasonal
variation is attributable to the combined effects of tempera-
ture and fNO−3

(Fig. 4e), leading to variations in cni of 1.25
and 0.54, respectively. Again, the influence of RH is negligi-
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Figure 4. Influencing factors of the seasonal variations of aerosol pH. (a) The first-level decomposition into pK∗a , Xgp and cni. (b–f) Further
investigation of the influencing factors of (b) pK∗a due to the T and AWC, (c) the AWC due to RH and PM2.5, (d) Xgp due to Ct/At and T ,
(e) cni due to RH, T and fNO−3

, and (f) fNO−3
due to T and chemical profiles.

ble due to its little variation (Fig. 4e). The seasonal variation
of fNO−3

is governed by significant variations of temperature
(Fig. 4f). Temperature in winter is low enough and causes
the vast majority of total nitrate to partition into the particle
phase, leading to minor variation in fNO−3

with temperature
variations (Fig. S5). Conversely, higher temperatures in sum-
mer result in more total nitrate existing as HNO3, and fNO−3
is sensitive to temperature variations.

Overall, we see that the large seasonal variation in pH is
mainly driven by the temperature as it plays a dominant role
in pK∗a , cni and Xgp (74 %, 89 % and 52 %, respectively).
In comparison, the net influence of chemical profiles is rel-
atively smaller, contributing 48 % and 10 % to Xgp and cni,
respectively. That is, the seasonal variation in pH is largely
driven by the meteorology (especially temperature) rather
than emissions.

4.3 Diurnal cycles

Diurnal cycles of pH are higher at nighttime than daytime,
with a variation range of 0.65. Similar to the seasonal vari-
ations, the diurnal cycle is also consistent with pK∗a and cni
trend, while it is in a reverse trend with Xgp (Fig. S6a), with
their contribution to pH being 0.70, 0.58 and −0.63, respec-
tively.

The major driving factor of diurnal cycles in pK∗a is dif-
ferent to that of seasonal variations. First, the diurnal cycle
of pK∗a is driven by both the AWC (0.45) and temperature
(0.25) (Fig. S6b), in contrast to the dominance of temper-
ature in seasonal variations (Sect. 4.2). This is mainly due
to the much smaller temperature variation range diurnally
(4.87 K; Fig. S7) than seasonally (23.26 K). In addition, di-
urnal variation in the AWC is primarily influenced by RH
(Fig. S6c) due to the larger RH diurnal variations (16 % ver-
sus 3 % in seasonal variations; Figs. S7 and S4), in contrast
with the PM2.5 dominance in seasonal variations. In terms of
Xgp, its dominant driving factor of diurnal cycles is Ct/At, in
contrast with the dominance of temperature in seasonal varia-
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Figure 5. Influencing factors of the random residual of aerosol pH. (a) cni due to T , RH and fNO−3
; (b) fNO−3

due to T and chemical profiles;

(c) pK∗a due to the T and AWC; and (d) the AWC due to RH and PM2.5.

tions (Fig. S6d). Diurnal cycles of cni are due to the combined
effects of temperature and fNO−3

(Fig. S6e), where fNO−3
is

further mainly driven by chemical profiles (Fig. S6f).

4.4 Residual

The random residual of aerosol pH is another major contrib-
utor to pH temporal variations, which is comparable with the
seasonal variations. Distinct from all the three components
above, the largest top-level contributor to random residuals
turns out to be cni (82 %), even exceeding that of pK∗a (42 %),
while Xgp causes a net negative effect (−24%; Fig. S8).
Moreover, random fluctuations in cni are almost entirely due
to variations in fNO−3

(∼ 95%; Fig. 5a), which are primarily
driven by chemical profiles (∼ 93%; Fig. 5b). The pK∗a ran-
dom fluctuations are mainly caused by the AWC (∼ 79%),
which is further attributed mainly (∼ 60%) to PM2.5 varia-
tions (Fig. 5c and d). Random variations of Xgp are domi-
nated by the chemical profiles, similar to diurnal cycles and
long-term trend (Fig. S9). Overall, PM2.5 and chemical pro-
files are the major influencing factors for the random residual
of pH, underscoring the prominence of emissions over mete-
orology.

5 Overall contributions and implications

Figure 6 shows the distinct major influencing factors of
aerosol pH in the four time series components, where the
factors contributing less than |10%| are not shown. Overall,
pK∗a is the dominant influencing factor of pH variations, be-
ing the major contributor in all components and playing a
pivotal role in seasonal and diurnal cycles (Fig. 6). cni is an-
other dominant factor for pH variations, especially in random
fluctuations. Xgp shows a reverse trend with pH in all com-
ponents. As seasonal and random variations largely regulate
the pH temporal variations, pK∗a and cni contribute more to
pH than Xgp.

Deeper-level driver analysis show that meteorology plays
a more important role than chemical profiles in explaining
the pH temporal variations (57 % versus 22 %; Fig. S10).
Temperature is the major contributor, which explains sea-
sonal variations in pK∗a , cni andXgp of 74 %, 89 % and 52 %,
respectively, and it is also important in diurnal cycles and
long-term trends. RH plays an important role in diurnal cy-
cles, accounting for 70 % of the AWC diurnal variations and
thus indirectly exerting an important effect on pK∗a (∼ 46%).
In comparison, chemical profiles are essential for explaining
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Figure 6. Hierarchical relationship among major influencing factors of aerosol pH variations for the 4 time series components, respectively.
Here, the percentage variations are derived by the variations due to factor X to overall variations. For example, the contribution of pK∗a
variations to seasonal variations of pH is derived by

1pK∗a,seas
1pHseas

×100%, where the overall pH variations 1pHseas =1pK∗a,seas+1cni,seas+

1Xgp,seas. Factors contributing less than |10%| are not shown.

long-term trends in Xgp, and they also provide a pivotal role
in random fluctuations and diurnal cycles for cni. The PM2.5
concentration is an overall effect of meteorology and emis-
sions. PM2.5 is the dominant contributor to the AWC in all
components except diurnal cycles, exerting an indirect influ-
ence on pK∗a . Overall, temperature is critical in explaining
pH variations (48 %; Fig. S10), followed by chemical pro-
files, PM2.5 concentrations and RH (22 %, 21 % and 9 %, re-
spectively).

The quantitative framework we proposed here can pro-
vide a clear understanding of the drivers of aerosol acidity
temporal variations, with information on both quantitative
contributions and the underlying mechanisms. Our findings
suggest that the relative importance of synoptic conditions
versus emissions in aerosol acidity variations differed much
with the timescale of concern and are is due to different ma-
jor mechanisms. In Changzhou, synoptic conditions are more
important for seasonal variations and diurnal cycles of pH,
while emissions cause a greater effect on pH random fluctua-
tions. For the long-term trends, both emissions and synoptic
conditions are important. These findings generally agree with
previous studies in the YRD region. For example, two previ-
ous studies on aerosol acidity in Shanghai (Lv et al., 2024;
Zhou et al., 2022) also found that synoptic conditions played
important role in seasonal and diurnal variations of aerosol

pH, while for long-term pH trends, the primary drivers were
attributed to emissions in acidic anions and NVCs. Regard-
less, our analysis here provided more systematic insight and
theoretically explanations into the underlying mechanisms of
each influencing factor compared with previous studies. In
other places, this framework still applies, while the conclu-
sions may vary. This quantitative understanding of the driv-
ing factors of aerosol acidity is important in acidity-relevant
process studies and policy-making, such as nitrate control
(Guo et al., 2017), sulfate formation (Cheng et al., 2016;
Zheng et al., 2024a) and nitrogen depositions (Nenes et al.,
2021).

Data availability. The dataset of aerosol chemical components
and precursor gases is based on the Changzhou Air Quality Au-
tomatic Monitoring Station Data Platform by the Changzhou Eco-
logical Environment Bureau (2024, http://192.168.100.25/czems/
MainFrame.aspx).

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/acp-25-3919-2025-supplement.
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