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Abstract. The January 2022 Hunga Tonga—Hunga Ha’apai (HT) eruption injected sulfur dioxide and unprece-
dented amounts of water vapour (WV) into the stratosphere. Given the manifold impacts of previous volcanic
eruptions, the full implications of these emissions are a topic of active research. This study explores the dy-
namical implications of the perturbed upper-atmospheric composition using an ensemble simulation with the
Earth system model SOCOLv4. The simulations replicate the observed anomalies in the stratospheric and lower-
mesospheric chemical composition and reveal a novel pathway linking water-rich volcanic eruptions to surface
climate anomalies. We show that in early 2023 the excess WV caused significant negative anomalies in tropical
upper-stratospheric and mesospheric ozone and temperature, forcing an atmospheric circulation response that
particularly affected the Northern Hemisphere polar vortex (PV). The decreased temperature gradient leads to
a weakening of the PV, which propagates downward similarly to sudden stratospheric warmings (SSWs) and
drives surface anomalies via stratosphere—troposphere coupling. These results underscore the potential of HT
to create favorable conditions for SSWs in subsequent winters as long as the near-stratopause cooling effect
of excess WV persists. Our findings highlight the complex interactions between volcanic activity and climate
dynamics and offer crucial insights for future climate modelling and attribution.

Randel et al., 2023). The immediate and subsequent effects

The 15 January 2022 eruption of the Hunga Tonga—Hunga
Ha’apai (HT) volcano was a unique and unprecedented event
in the observational era. It released massive amounts of wa-
ter vapour (WV), far exceeding previous records, and mod-
est amounts of sulfur dioxide (SO») into the stratosphere.
This eruption injected between 140 and 150 Tg of WV and
0.4 Tg of SO», into the stratosphere, reaching mesosphere lev-
els (Millan et al., 2022; Coy et al., 2022; Xu et al., 2022;

of the aerosol and WV plumes have been causing significant
anomalies in atmospheric circulation, composition, and tem-
perature (Coy et al., 2022; Yu et al., 2023; Wilmouth et al.,
2023).

The radiative impacts of volcanic eruptions, particularly
those associated with sulfate aerosols emerging following the
SO; emissions, are well-known and have been widely stud-
ied (Robock, 2000; Marshall et al., 2022). The modulation of
dynamical processes by volcanic eruptions and the potential
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surface impacts, however, are incompletely understood. Typ-
ically, volcanic eruptions cause lower-stratospheric warm-
ing, which strengthens the polar vortex (PV) and may cause
changes in stratosphere—troposphere coupling, resulting in
surface warming over Eurasia and altered weather patterns
across the Northern Hemisphere (NH) (Stenchikov et al.,
2002), although this connection has been questioned re-
cently (Polvani et al., 2019; DallaSanta and Polvani, 2022).
However, in the case of the HT eruption, this pronounced and
canonical tropical lower-stratospheric warming has not been
observed, and its absence is most likely attributable to lower
emissions of SO,.

Instead, the HT eruption has led to significant anomalies in
the stratospheric and lower-mesospheric ozone and tempera-
ture that affected the atmospheric circulation, particularly in
the Southern Hemisphere (SH; Coy et al., 2022; Wang et al.,
2023; Yu et al., 2023; Zhang et al., 2024a). The increased
OH concentrations induced by the excess WV from the HT
eruption led to ozone depletion and temperature anomalies in
the upper stratosphere and lower mesosphere (Santee et al.,
2023; Fleming et al., 2024).

The excess WV due to the HT eruption exerts a forc-
ing around the tropical stratopause. Studies on the influ-
ence of solar variability (Gray et al., 2010; Kuchar et al.,
2015; Mitchell et al., 2015) suggest that such forcing at the
stratopause level can also act as a significant modulator of at-
mospheric dynamics. This raises two main questions: (1) Do
similar modulation effects emerge for the HT eruption? (2) If
s0, do changes in the tropospheric circulation emerge in re-
sponse to the increase in WV, similarly to those emerging
from uniformly doubling WV in the lower stratosphere (Joshi
et al., 2006; Maycock et al., 2013)?

This study explores a novel pathway by which the HT
eruption may have modulated stratospheric and mesospheric
conditions and consequently impacted the surface climate.
Here we use a set of ensemble sensitivity simulations per-
formed with the Earth system model (ESM) SOCOLv4 with
and without the HT forcing to analyse the effects of the HT
eruption, validate these simulations with observational data
for H,O and aerosol, and discuss other variables using avail-
able studies (see Sect. Al in the Appendix). We then assess
the statistical significance of the detected effects and examine
the mechanisms by which the HT eruption could influence
the stratospheric PV in 2023 or 2024, creating more favor-
able conditions for the onset of sudden stratospheric warm-
ing (SSW). Both winter seasons have been accompanied by
record amounts of Rossby waves propagating upward from
the troposphere (Vargin et al., 2024; Newman et al., 2024).
Finally, we conclude with a summary of the results, a dis-
cussion of the general forcing mechanism in the following
winters when the HT forcing would persist, and an outlook
of how these dynamically induced events could be explored
further.
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2 Results

We set the scene by illustrating the evolution of the monthly
and zonal-mean structures of water vapour, ozone, OH, and
temperature for the extended winter of 2022/2023 in Fig. 1.
About 10 months after the eruption, the WV inputs of HT
were distributed across the middle and upper stratosphere
and the mesosphere. In December 2022, the WV plume
(panel a) was mostly localized around 20hPa and 45°S
but already started to disperse into the NH and beyond the
stratopause. This distributed HT WV anomaly affects ozone
globally, as evidenced by the negative anomalies in the lower
mesosphere and positive anomalies in the middle strato-
sphere (panel f). The positive O3 anomaly can be attributed
to increased conversion of NO, into the HNOs3 reservoir (see
Fig. AS) due to the higher abundance of OH (Fleming et al.,
2024) as shown in Fig. 1 and hydrolysis of N,Os on aerosol
surfaces (Kinnison et al., 1994). Under elevated aerosol load-
ing (see Fig. A2), the heterogeneous reactions serve as a sig-
nificant source of chlorine activation and ozone loss in the
lower stratosphere, which may include reaction of HCl with
HOBTr (Zhang et al., 2024b; Evan et al., 2023), with HOBr
being the product of BrONO, hydrolysis (see Fig. A6). In
the lower mesosphere, the negative ozone anomaly is a direct
consequence of the chemical pathway initiated by the excess
OH. Note that the significant OH anomalies, similar to those
of O3 and H>O, at that time do not reach the northern polar
cap. Radiatively induced anomalies in temperature emerge in
our simulations around and above the stratopause, mainly as
a consequence of the reduced absorption of ultraviolet radia-
tion by ozone (see Fig. 4.24 in Brasseur and Solomon, 2005)
as also reported by recent modelling studies (Fleming et al.,
2024; Randel et al., 2024).

The negative mesospheric temperature anomaly emerges
at the beginning of the boreal winter and extends up to 20° N
(see Fig. 1p—t). We discuss further below the subsequent tem-
poral evolution and propagation towards high latitudes. To
illustrate the latitudinal variations, anomalies, and impacts
in detail, we plot in Fig. 2 the evolution of daily temper-
ature profiles during the months January to May in 2023
for northern equatorial latitudes (0-20° N; a) and the north-
ern polar cap (60-90°N; b). Here it becomes obvious that
the negative mesospheric temperature anomaly persisted at
lower latitudes through the whole winter of 2022/2023 (see
Fig. 2a). This is in agreement with the observational esti-
mates from satellites (Fleming et al., 2024) and GPS radio
occultation (Veenus and Das, 2023; Stocker et al., 2024). In
contrast, at higher latitudes, no significant persistent meso-
spheric temperature anomaly is found (see Fig. 2b). This dif-
ference between the low and high latitudes results in a re-
duced meridional temperature gradient in the upper strato-
sphere and the lower mesosphere, which via the thermal wind
relation weakens the polar-night jet.

As a consequence, the weakened winds allow more plan-
etary waves (PWs) to propagate upward into the strato-
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Figure 1. Monthly zonal-mean structure of the water vapour volume mixing ratio (VMR; first row of panels a—e; ppmv), ozone (second row
of panels f—j; %), OH (third row of panels k—0; %), and temperature (fourth row of panels p—-t; K) anomalies, respectively, for the extended
boreal winter of 2022/2023. Anomalies are expressed as the difference between the SOCOLv4 simulations with and without the HT forcing.
The 20 statistical significance from the 7 test is indicated by the dots. The 1o false detection rate (FDR) correction (see Sect. A2) is indicated
by the black solid contour lines. The tropopause pressure level is indicated by the black dashed line.

sphere (Charney and Drazin, 1961), where they break and
dissipate and thereby further weaken the already disturbed
stratospheric PV. The slowdown of the winds and the asso-
ciated increase in polar temperature (see Fig. 2b) emerges
in our simulations as early as February but is fully evi-
dent in March 2023. The stratospheric polar warming con-
nected with the enhanced Brewer—Dobson circulation is di-
rectly coupled to the cooling aloft and the associated weaker
meridional circulation. Furthermore, along with the temper-
ature change, we detected (subsequently) increasing concen-
trations of ozone over the polar cap in March and April (see
Figs. li—j or 13 in Fleming et al., 2024). The temperature
structure across the upper atmosphere displayed in Fig. 2 re-
sembles the transition from a more positive phase to a more
negative phase of the Northern Annular Mode (NAM; see
Sect. A3) in the stratosphere and lower mesosphere, respec-
tively. Figure 2c illustrates how the HT forcing projects onto
NAM (shading). Along with NAM we provide the eddy heat
flux (EHF; green line) at 100 hPa as a proxy for upward prop-
agation of planetary waves (e.g. Newman et al., 2001). The
downward phase propagation of negative NAM anomalies il-
lustrates the role of wave-mean flow interactions (Baldwin
and Dunkerton, 2001), as also indicated by Eliassen—Palm
flux diagnostics (see Fig. A7). Since the EHF response lags
slightly behind NAM, the triggering mechanism appears to

https://doi.org/10.5194/acp-25-3623-2025

be similar to SSWs and how dynamically forced anomalies
in the upper stratosphere and lower mesosphere may be com-
municated downward and thus control PWs (Hitchcock and
Haynes, 2016).

Turning the focus to the lower levels, it becomes appar-
ent that negative NAM anomalies emerge close to the sur-
face (~1000hPa) in April and follow the significant neg-
ative NAM anomalies in the stratosphere in the preceding
months. This time lag suggests that stratospheric anomalies
are triggering some of the changes observed in the tropo-
sphere (Thompson et al., 2005). Geopotential height anoma-
lies (see Fig. A8) again support a downward propagation
of the signal from the stratosphere all the way to the sur-
face. To explore these conditions further, we turn the focus
to the analysis of the monthly sea level pressure (SLP; hPa)
anomaly in April 2023, which is shown in Fig. 3. Here we
identify a positive SLP anomaly at the poles and a negative
SLP anomaly at the mid-latitudes. This pattern is character-
istic of a weaker stratospheric PV and is associated with an
equatorward shift of the tropospheric jet stream. The canon-
ical temperature pattern with a pronounced cold anomaly in
northern Europe (see Fig. 3b) clearly arises for this weak vor-
tex event (Domeisen and Butler, 2020; Kolstad et al., 2022).
Generally, the coupling is independent of the forcing mech-
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Figure 2. Weighted zonally averaged temperature averaged over
0-20° N (a) and 60-90° N (b) together with the Northern Annular
Mode (NAM; shading in panel ¢) and eddy heat flux at 100 hPa
averaged over 45-75°N (EHF in ms~1K; green line in ¢) daily
anomalies for the months January to April in 2023. The anomalies
are expressed as the differences between the SOCOLv4 simulations
with and without HT forcing. The 20 statistical significance from a
t test is indicated by the dots. The 1o FDR correction (see Sect. A2)
is indicated by the black solid contour lines. To highlight the signal
propagation, we mask out insignificant NAM values at 1o.
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Figure 3. Monthly anomaly of sea level pressure (a; SLP; hPa)
and surface air temperature (b; K) in April 2023. Anomalies are
expressed as the differences between the SOCOLV4 simulation with
and without the HT forcing. The 20 statistical significance from the
t test is indicated by the dots. The 1o FDR correction (see Sect. A2)
is indicated by the black solid contour lines.

anism causing these changes in PV and is present across all
the timescales (Kidston et al., 2015).
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3 Discussion and summary

The January 2022 Hunga Tonga—Hunga Ha’apai volcanic
eruption significantly modified the radiative balance, pho-
tochemistry, and dynamics of the stratosphere and lower
mesosphere, as has been extensively documented (Coy et al.,
2022; Sellitto et al., 2022; Jenkins et al., 2023; Santee et al.,
2023). Here we add to the discussion of HT effects by
illustrating for the first time the dynamical stratosphere—
troposphere—surface coupling in the NH following the erup-
tion. We show in a series of ESM sensitivity simulations how
the WV input propagated upward and poleward, thereby im-
pacted the stratospheric PV, and contributed to the emergence
of SSW in the boreal winter of 2022/2023 and subsequent
surface SLP anomalies. Similarly, the HT eruption induced
a marked warming anomaly in the Arctic region, with tem-
peratures rising by up to 2K near the North Pole in early
2022 (Bao et al., 2023).

Our results thereby illustrate how anomalies in OH, nitro-
gen species, and O3, induced in the stratosphere and lower
mesosphere due to excess WV after the HT eruption, in-
fluence upper-atmospheric dynamics via alteration of tem-
perature gradients and thereby lead to the emergence of a
negative NAM anomaly at upper levels during the winter—
spring transition that manifests by April 2023 in SLP. We be-
gin our attribution in the upper stratosphere and lower meso-
sphere, where increased OH concentrations induce a nega-
tive ozone anomaly. As a consequence, our set of sensitiv-
ity simulations illustrates a radiatively induced negative tem-
perature response in equatorial latitudes up to 20° N, which
leads to a reduced horizontal hemispheric temperature gradi-
ent. This alteration of the temperature gradient is associated
with weaker winds via the thermal wind relation. As weaker
winds emerge in the stratosphere (negative NAM anomaly),
we find that the anomaly propagates downward with time, il-
lustrating the role of wave-mean flow interactions, similarly
to during SSWs. This mechanism provides a summary of a
chain of processes which could have contributed to the ob-
served SSW during the winter of 2022/2023. We note that the
causal link in observations cannot be entirely established on
the one hand due to internal stratospheric variability driving
SSWs (Baldwin et al., 2021) and on the other hand the free-
running ocean setup of our simulations. However, all other
things being equal, our results clearly show that HT has pro-
vided favorable conditions for the emergence of late-winter
NH SSWs in 2023.

Two major SSWs were detected during the extended win-
ter of 2023/2024 (see Fig. A9). Our model-projected forcing
during that winter was weaker due to a quicker WV dissipa-
tion from the stratosphere (see Fig. A4). Thus, we do not
detect any significant dynamical responses. While Randel
et al. (2024) observed strong (~ —2 K) lower-mesospheric
cooling after mid-2023, the mechanism suggested and sim-
ulated by SOCOLv4 above should be valid for the winter
of 2024 and the following winters if the lower-mesospheric
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cooling is persistent and strong enough due to the excess WV.
This mechanism establishes a novel pathway by which water-
rich volcanic eruptions can indirectly impact the surface cli-
mate via downward propagation of the dynamical perturba-
tion from the stratosphere and lower mesosphere. Thereby it
adds to the manifestations of stratosphere—troposphere cou-
pling on various timescales.

Future work should vet the proposed mechanism, ide-
ally within multimodel intercomparison projects (Zhu et al.,
2024), and explore whether the HT forcing also contributed
to the disruption of the stratospheric PV during the follow-
ing winters. Given the interhemispheric extent of cooling in
the upper stratosphere and lower mesosphere, which could
similarly affect the persistence of PV in the SH, future stud-
ies could explore the PV response in the SH and its cou-
pling with the troposphere. Furthermore, the stratospheric re-
sponse could be impacted by the phase of the Quasi-Biennial
Oscillation, as recently suggested by Jucker et al. (2024).

Appendix A: Methods

A1 SOCOLv4 simulations

We use a set of ensemble sensitivity simulations performed
with the Earth system model SOCOLv4 (Sukhodolov et al.,
2021), which comprises comprehensive stratospheric chem-
istry and sulfate aerosol microphysics, to assess the impacts
of the HT eruption on stratospheric composition and dy-
namics. SOCOLV4 is used at a T63 horizontal resolution
(1.9° x 1.9°) and a vertical resolution of 47 vertical levels
(up to ~0.01hPa), with the boundary conditions follow-
ing the recommendations of the Coupled Model Intercom-
parison Project Phase 6 (CMIP6; Eyring et al., 2016). The
Quasi-Biennial Oscillation (QBO) is not self-generated with
the employed vertical resolution, and therefore it is nudged
in the model. Since the simulations expand into the future,
instead of the actual QBO observational data, we used the
same data but shifted back by 16 years, allowing us to keep a
QBO phase during the eruption that is consistent with ob-
servations. The SOCOLv4 model is widely used for pro-
cess analyses in stratospheric research and has contributed
to the recent Chemistry-Climate Model Initiative (CCMI;
Morgenstern et al., 2022; Friedel et al., 2023) and the Inter-
active Stratospheric Aerosol Model Intercomparison (ISA-
MIP: Quaglia et al., 2023; Brodowsky et al., 2024).

Our set of simulations comprises an ensemble of transient
simulations with and without HT forcing. We perform a 5-
year spinup prior to the HT eruption, so that by the date of the
event each ensemble member has a different ocean state con-
tributing to the internal variability in the ensemble. In Jan-
uary 2022 we then branch out to two ensembles, one with
and one without the HT forcing. Both ensembles comprise
10 ensemble members. Note that the WV freezing around the
emission region (22-14° S, 182-186° E; 25-30 km within 15
January) was turned off for several days to avoid artifacts and
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mimic the estimated magnitude (~ 150 Tg) of the WV forc-
ing by Millén et al. (2022) and M2-SCREAM (see Fig. Ala;
Wargan et al., 2023). Another way of avoiding freezing arti-
facts would be to broaden the emission region vertically. The
M2-SCREAM WYV anomaly is within the ensemble spread;
however, this spread is quite wide, suggesting that the WV
plume evolution could have been strongly modulated by the
background dynamical conditions. In addition, the modelled
WYV anomaly shows a more pronounced seasonal cycle.

According to the fitted decay, we project the stratospheric
WYV burden to represent an enhanced forcing over the next
few years and only return to pre-HT background values by
2031. The excess stratospheric WV returns to the tropo-
sphere by sedimentation of PSCs within the SH PV and is
transported to the higher latitudes of both hemispheres via
the Brewer—-Dobson circulation (BDC). The combination of
these processes leads to an exponential decay of the WV bur-
den with an estimated e-folding time of ~ 2.5 years based on
the fitted period of 20232025 (see Fig. A1b). Our decay es-
timate is in agreement with Fleming et al. (2024), who used
a free-running 2D model, but it is about half of the estimate
provided by Zhou et al. (2024), who estimated an e-folding
timescale of 4 years using a chemical transport model with
the perpetual ERAS meteorology.

Furthermore, we use data from SWOOSH for the daily
H>O (Davis et al., 2016) and from GloSSAC for the monthly
mean surface area density (SAD; NASA/LARC/SD/ASDC,
2023) to validate the SOCOLv4 anomalies (see Figs. A2 and
A3). Note that we retrieve SAD fields using aerosol extinc-
tion coefficients on all four GloSSAC wavelengths according
to the REMAP method (Jérimann, 2025). The SAD back-
ground in GloSSAC is a bit higher at higher latitudes com-
pared to SOCOLv4 since for GloSSAC we used the 1999-
2004 climatology representative of volcanically quiescent
conditions, while for SOCOLv4 we used the difference be-
tween experiments with and without HT. The aerosol plume
evolves in a similar spatiotemporal manner, i.e. towards the
SH and lower pressure levels. The WV plume extends hori-
zontally, firstly towards the SH PV and then across the Equa-
tor according to the climatology of the residual circulation.
During the boreal winter of 2023, the WV anomaly is spread
across all latitudes from the middle stratosphere upward in
both SWOOSH and SOCOLvV4. The reduction in water in
SOCOLv4 starts to be apparent at the end of 2023, in contrast
to SWOOSH, where the WV anomaly maintains its values.
The globally averaged stratospheric and lower-mesospheric
water vapour in Fig. A4 indicates a slight deficiency of SO-
COLV4 as the anomalous water dissipates more quickly, as
seen in the observations (e.g. the Microwave Limb Sounder
— MLS) or the other models (see WACCM in Figs. 1, 2, and
3 in Randel et al., 2024). Note that our experiment proto-
col differs from WACCM and the other models (Zhu et al.,
2024), which were either nudged to reanalysis or initialized
from the observed sea surface temperatures.

Atmos. Chem. Phys., 25, 3623-3634, 2025
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Figure A2. Seasonal zonal-mean structure of surface area density
(SAD; shading; me cm™3) and water vapour (WV; solid contour
lines: 0.1, 0.5, 1, and 3 ppmv) volume mixing ratios. Anomalies are
expressed as differences between the SOCOLv4 simulations with
and without the HT forcing. The 2o statistical significance from the
t test is indicated by the dots and hatching in the cases of SAD and
WYV, respectively. The tropopause pressure level is visualized by the
purple dashed lines.

The overly strong tropical-to-midlatitude mixing and the
overly fast tropical ascent are common peculiarities for
chemistry-climate models (Dietmiiller et al., 2018). As has
already been reported (Sukhodolov et al., 2021), this could
be addressed in future simulations with higher vertical res-
olution (Brodowsky et al., 2021). Nevertheless, during late
2022 and early 2023 the model is in good agreement with
observations in terms of the WV and aerosol forcing.
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A2 Calculation of anomalies

Throughout our analysis we evaluate significance fields us-
ing the minimum local p values from a Student’s ¢ test with
global test statistics and the FDR methodology (Wilks, 2006)
first described by Benjamini and Hochberg (1995) and later
promoted by Wilks (2016) in the atmospheric sciences. All
the illustrations in Sect. 2 show differences between simu-
lations with and without HT forcing. For the significance
regions we show, in addition to the dots indicating local p
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Figure A4. Monthly global-mean evolution of the temperature
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pressed as differences between the SOCOLv4 simulations with and
without the HT forcing.

values < 0.05, boundaries of p values < 0.32 corrected for
FDR.

A3 Calculation of the Northern Annular Mode

NAM was calculated at each pressure level as the first
empirical orthogonal function (EOF) of the daily, latitude-
weighted, and zonal-mean zonal wind poleward of the
NH (Gerber et al., 2008). The NAM index was defined as the
principal component time series associated with the first EOF
and was standardized. Positive and negative NAM values
correspond to strong and weak PV events, respectively, with
different thresholds used for the SSW identification (Bald-
win and Dunkerton, 2001; Gerber and Polvani, 2009; Jucker,
2016).

A4 Eliassen—Palm flux diagnostics

The response of resolved waves is investigated using the EPF
diagnostics (Andrews and MclIntyre, 1987). EPFs are com-
puted and scaled following Jucker (2021). The EPF conver-
gence serves as an indicator of wave dissipation, and the EPF
divergence (EPFD) indicates sourcing.
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Figure A5. Seasonal zonal-mean structure of the HNO3 volume
mixing ratio (a-l; %). Anomalies are expressed as differences in
the SOCOLV4 simulation with and without the HT forcing. The 20
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lo FDR correction (see Sect. A2) is indicated by the black solid
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Figure A6. Seasonal zonal-mean structure of the HOBr volume
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Figure A9. Daily zonal-mean zonal wind at 10 hPa and 60° N based
on the MERRA?2 dataset (Gelaro et al., 2017). It documents two
major SSWs in the 2023/2024 winter.
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be downloaded from https://csl.noaa.gov/groups/csl8/swoosh/
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that was used to produce all the plots in this study is avail-
able via Zenodo (https://doi.org/10.5281/zenodo.14743768;
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can be arranged by contacting the authors. All the postpro-
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