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Abstract. In recent years, the intensification of global climate change and environmental pollution has led to a
marked increase in pollen-induced allergic diseases. This study leverages 16 years of continuous pollen monitor-
ing data, alongside meteorological factors and plant functional type data, to construct a pollen emissions model
using phenology and random forests (RFs). This model is then employed to simulate the emission characteristics
of three primary types of autumn pollen (Artemisia, chenopods and total pollen concentration), elucidating the
emission patterns throughout the seasonal cycle in Beijing. Phenology and RFs precisely simulate the start and
end day of year of pollen, as well as the annual pollen production. There are significant spatiotemporal differ-
ences among the three types of pollen. On average, pollen dispersal begins around 10 August, peaks around
30 August and concludes by 25 September, with a dispersal period lasting approximately 45 d. Furthermore,
the relationship between pollen emissions and meteorological factors is investigated, revealing that temperature,
relative humidity (RH) and sunshine hours (SSHs) significantly influence annual pollen emissions. Specifically,
temperature and RH exhibit a strong positive correlation with annual pollen emissions, while SSHs show a
negative correlation. Different pollen types display varied responses to meteorological factors. Finally, the con-
structed pollen emissions model is integrated into the ICTP Regional Climate Model (RegCM) and validated
using pollen observation data, confirming its reliability in predicting pollen concentrations. This study not only
enhances the understanding of pollen release mechanisms but also provides scientific evidence for the selection
and planting of urban greening plants.

1 Introduction

Pollen consists of microscopic particles, typically ranging
from 5 to 100 µm in diameter, released by plants to trans-
fer male genetic material for reproduction. These particles,
significant allergens, disperse into the atmosphere via wind,
contributing to atmospheric particulate matter, interacting
with clouds and radiation, and playing a pivotal role in plant
fertilization and gene dissemination (Damialis et al., 2011;
Lei et al., 2023). Additionally, pollen is linked to allergic
diseases such as allergic rhinitis and asthma and may even

elevate the risk of gastrointestinal and neurological disor-
ders (Guzman et al., 2007; Krishna et al., 2020; Chen et al.,
2020; Stas et al., 2021). In China, the incidence of pollen al-
lergies has surged from 5 % to 17.8 % and continues to rise
rapidly (Lou et al., 2017). Pollen-induced respiratory allergic
symptoms, such as allergic rhinitis (AR), affect up to 30 %
of the global population, particularly children under 18 (Mir
et al., 2012; Wang et al., 2016; Zhang and Steiner, 2022;
Zhao et al., 2023). It is generally believed that these res-
piratory allergic diseases are more prevalent in developed
countries (Emanuel, 1988; Ibrahim et al., 2021). However,
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the International Study of Asthma and Allergies in Child-
hood (ISAAC) global reports indicate that these diseases are
equally or even more prevalent in some developing countries
compared to developed ones (Asher et al., 2006; Mallol et al.,
2013). Children, as a vulnerable population, are particularly
susceptible to AR and its complications (Cingi et al., 2017).
Without effective early intervention, allergic symptoms in
children can persist throughout their lives, imposing a sub-
stantial economic burden on families and healthcare systems
(Ahmed et al., 2018) and potentially posing a life-threatening
risk (Schmidt, 2016). In China, a densely populated devel-
oping country, the proportion of pediatric allergic diseases
within the spectrum of childhood illnesses is increasing an-
nually, leading to significant economic and health losses due
to medical expenses, impacts on human life, and premature
death (National Cooperative Group on Childhood Asthma,
1993; Chen and National Cooperative Group on Childhood
Asthma, 2003; National Cooperative Group on Childhood
Asthma et al., 2013). Furthermore, since pollen release is
closely linked to environmental factors, climate change may
influence pollen release, thereby affecting the incidence of
allergic diseases (Wang et al., 2018; Bishan et al., 2020). In
recent decades, the pollen season has exhibited a trend of be-
coming longer and more intense, which may exacerbate the
conditions of allergic rhinitis and asthma (D’Amato et al.,
2016; Lake et al., 2017; Aerts et al., 2020; Kurganskiy et al.,
2021).

With the improvement in living standards and height-
ened health awareness, airborne pollen diseases, such as
hay fever, have garnered widespread attention. As a typi-
cal seasonal epidemic (Yin et al., 2005; Lei et al., 2023),
hay fever significantly impacts global health. Existing stud-
ies have demonstrated that the incidence of airborne pollen
diseases is closely associated with the concentration of air-
borne allergenic pollen, particularly during peak pollen sea-
sons (Frei and Gassner, 2008; Bastl et al., 2018; Kurganskiy
et al., 2021). Due to the regional nature of airborne pollen, the
types and concentrations of pollen vary geographically. Al-
though the annual variation trend of total pollen amount gen-
erally exhibits a similar bimodal pattern, increasing annual
climatic variability amidst global warming has led to signif-
icant changes in the pollen seasons of various plants, with
discrepancies of more than 20 d in some years. This variabil-
ity poses practical challenges for conducting pollen moni-
toring research and providing public meteorological services
(He et al., 2001; Gu and Liao, 2003; Bai et al., 2009; Lei
et al., 2023). Therefore, studying pollen concentration and
distribution is crucial for understanding the pathogenesis of
airborne pollen diseases, conducting effective pollen moni-
toring research and delivering accurate public meteorological
services.

However, compared to regions such as Europe and the
United States, China faces significant challenges in pollen
monitoring due to fewer monitoring stations, shorter moni-
toring histories and a lower prevalence of automated facili-

ties. These limitations have resulted in China’s pollen sim-
ulation research remaining primarily at the level of simple
statistical methods, focusing only on basic statistical studies
of the impact of meteorological conditions on pollen concen-
tration. In contrast, numerical models are rarely employed
for regional simulation of pollen concentration. This situa-
tion reflects the relative lag in China’s pollen monitoring and
research system, hindering a deeper understanding of pollen
dispersion patterns and the scientific study of related health
issues (Wu et al., 2011; Meng et al., 2016; Guan et al., 2021;
Gao et al., 2022).

Although numerical models play a crucial role in simu-
lating pollen concentration, they require a clear understand-
ing of pollen emissions. Numerical models are broad math-
ematical frameworks used to simulate various physical pro-
cesses through numerical approximations, including atmo-
spheric dynamics and climate systems. In contrast, a pollen
emissions model specifically estimates the release and distri-
bution of pollen into the atmosphere, taking into account fac-
tors such as pollen phenology, vegetation types and environ-
mental conditions. Pollen emissions are influenced not only
by meteorological factors but also by vegetation types, land
use changes and human activities (Sofiev et al., 2006; Woz-
niak and Steiner, 2017; Zhang and Steiner, 2022; He et al.,
2023; Lei et al., 2023). Particularly in the context of accel-
erated urbanization, the selection and layout of urban green-
ing plants have a significant impact on pollen emissions. The
complex interactions of these factors pose significant chal-
lenges to accurately simulating pollen emissions.

Since 2004, various pollen prediction models have been
developed to enhance the accuracy of pollen emission es-
timates. Helbig et al. (2004) introduced a parameteriza-
tion method for calculating pollen release and resuspen-
sion fluxes, implemented in the KAMM/DRAIS mesoscale
model, although it relied on assumptions due to limited
observational data. Subsequently, Sofiev et al. (2006) an-
alyzed the feasibility of large-scale atmospheric migration
of allergenic pollen, validating existing dispersion models
and providing key parameterizations for dry and wet de-
position, which were applied in Finland’s SILAM (System
for Integrated modeLling of Atmospheric coMposition) sys-
tem. However, this direct simulation of pollen concentra-
tion based on numerical models has significant complexity
and uncertainty. Wozniak and Steiner (2017) developed the
Pollen Emission Prediction Model (PECM1.0), which sim-
ulates seasonal pollen counts based on geography, vegeta-
tion and meteorology. The model establishes empirical rela-
tionships between historical average temperatures and pollen
season timings for four vegetation types. It captures up to
57 % of seasonal variations, allowing for analysis of climate
change impacts on wind-driven pollen emissions. Building
on this, Zhang and Steiner (2022) introduced PECM2.0,
which incorporates precipitation and CO2 factors while re-
fining the linear relationship between annual pollen produc-
tion and temperature, ultimately predicting the temperature
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effects by the end of the century. However, the linear rela-
tionships based on historical temperatures have significant
uncertainties, limiting their applicability for regional studies.
Therefore, the challenge of constructing a pollen emissions
model that is better suited for regional scales and has broader
applicability warrants careful consideration and further re-
search. Such advancements could significantly enhance our
understanding of pollen dynamics and improve the accuracy
of related health risk assessments.

Given the importance of accurately modeling pollen emis-
sions, validation of numerical models for pollen emissions
is necessary. These models not only provide a framework
for simulating atmospheric processes but also allow for a
more nuanced understanding of how various factors influ-
ence pollen dynamics. RegCM (Regional Climate Model) is
the pioneering regional climate model system used for cli-
mate downscaling, originating in the late 1980s and early
1990s at the National Center for Atmospheric Research
(NCAR) in the United States. It has since undergone sev-
eral development iterations and is currently maintained at the
International Centre for Theoretical Physics (ICTP) in Italy.
This open-source system is widely utilized by numerous re-
search teams, forming an extensive network for regional cli-
mate research. The model can be applied globally and is
evolving into a fully coupled regional earth system model,
incorporating ocean, lake, aerosol, desert dust, chemistry, hy-
drology and land surface processes. The version used in this
study is RegCM4.7.1.

Therefore, this study constructs a pollen emissions model
for the Beijing area, leveraging pollen concentration and me-
teorological monitoring data, combined with pollen phenol-
ogy and the random forest (RF) algorithm. It conducts a sim-
ulation study on the emission phenology of three types of
pollen in Beijing (Artemisia, chenopods and total pollen con-
centration) to calculate the pollen emissions potential. The
study also investigates the seasonal and spatiotemporal dis-
tribution characteristics of pollen in Beijing and its potential
correlations with meteorological factors and climatic condi-
tions. Additionally, the constructed pollen emissions param-
eterization method is applied to RegCM and evaluated for ac-
curacy using 15 years of pollen observation data. This com-
prehensive study will enhance the understanding of pollen
sources, provide innovative guidance for the selection and
planting of greening plants, and promote sustainable devel-
opment in ecological protection and urban planning.

2 Methodology

2.1 Model description

2.1.1 Parameterization method for pollen emissions

This study’s pollen emissions potential integrates geographi-
cal parameters, vegetation types and meteorological data and
incorporates autumn pollen phenology and RFs to enhance

the simulation of pollen phenology (Wozniak and Steiner,
2017; Zhang and Steiner, 2022). This approach is used to
predict pollen concentration and distribution within the sea-
sonal cycle. The specific calculation formula is as follows:

Ei(t)= fi ·pannual,i · e
−

(t−µ)2

2δ2 . (1)

In the formula, Ei(t) represents the pollen emissions poten-
tial for pollen type i on day t of the year (DOY), t represents a
specific day of the year and i represents the ith type of pollen.
fi represents the vegetation land cover fraction, which is the
percentage (%) of different vegetation types within a unit
area. Pannual,i represents the production factor of the ith veg-
etation type, which is the number of pollen grains released
during the pollen season, measured in grains per m2 per year.
In this study, Pannual,i is calculated based on the RF algo-

rithm (Sect. 2.1.3). e−
(t−µ)2

2δ2 represents the phenological evo-
lution of pollen emissions, controlling the pollen release pro-
cess. The formula indicates that pollen emissions during the
pollen season follow a Gaussian distribution, whereµ (and δ)
are the mean and standard deviation of the Gaussian distribu-
tion. These parameters are calculated from sDOY (start day
of year) and eDOY (end day of year) of the pollen season, as
follows:

µ=
sDOY+ eDOY

2
(2)

δ =
eDOY− sDOY

a
. (3)

In this context, sDOY and eDOY are optimized using autumn
pollen phenology (Sect. 2.1.2). The parameter a represents
a fitting parameter that explains the conversion between the
empirical phenological dates based on pollen count thresh-
olds and the equivalent width of the emission curve. In this
study, the value of a is set to 4.

This equation can be applied to a specific type of pollen
or to the calculation of pollen concentration over the entire
pollen season, depending mainly on the land cover type. The
emission can be calculated offline using this equation or ap-
plied in online calculations.

2.1.2 Autumn pollen phenology model

In this study, we used three different calculation meth-
ods (Rs1, Rs2, Rssig) for the autumn phenology model to sim-
ulate sDOY and eDOY of autumn pollen (Meier and Bigler,
2023). Each model is related to temperature and sunshine
hours (SSHs). The specific calculation formulas are as fol-
lows:

Rs1 ={
(Tbase− Ti)x × (Li/Lbase)y, Ti < Tbase ∧Li < Lbase
0 Ti ≥ Tbase ∨Li ≥ Lbase

(4)
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Rs2 ={
(Tbase− Ti )x × (1−Li/Lbase)y , Ti < Tbase ∧Li < Lbase
0 Ti ≥ Tbase ∨Li ≥ Lbase

(5)

Rssig =
1

1+ ea(Ti×Li−b) (6)

tn∑
t0

Rsi ≥ Y. (7)

In the above equations, Rs1, Rs2 and Rssig represent three
different autumn phenology model categories. Ti and Li rep-
resent the temperature and SSHs on a given day, respec-
tively, while Tbase and Lbase represent the thresholds for tem-
perature and SSHs, respectively. In the Rs1 and Rs2 mod-
els, when the temperature and SSHs are below the thresh-
old or the date exceeds a fixed DOY, Rs starts accumulat-
ing. In the Rssig model, temperature and SSHs accumulate
inversely in an exponential form. The day tn, when the cu-
mulative amount exceeds the threshold Y , represents the fi-
nal simulated pollen start/end date. t0 represents the start
day of accumulation, which is the first day when Ti < Tbase
and Li < Lbase. The parameters that need to be adjusted
are Y , Tbase, Lbase, x, y and start_day. In this study, the sim-
ulated annealing (SA) algorithm is used for parameter ad-
justment. The principle of the SA is to simulate the random
optimization process of the annealing process in solid-state
physics, which can accept non-optimal solutions with a cer-
tain probability to avoid falling into local optima and eventu-
ally achieve the global optimum.

2.1.3 Random forests

Random forest (RF) is an ensemble learning algorithm in-
troduced by Breiman (2001) for classification and regres-
sion tasks. This algorithm enhances model prediction per-
formance and robustness by constructing multiple decision
trees and combining their outputs. The core principle in-
volves drawing multiple sample sets with replacement from
the original training set, training a decision tree for each sam-
ple set and randomly selecting a subset of features at each
node split to reduce correlation between the trees. Ultimately,
RF generates the final prediction by averaging (for regres-
sion) or voting (for classification) the outputs of these trees.
The advantages of this method include high prediction ac-
curacy, strong resistance to overfitting, suitability for high-
dimensional data and efficient training processes. The RF al-
gorithm has been widely applied across various fields (Virro
et al., 2022; Li et al., 2023; Chen et al., 2024; Valipour Shok-
ouhi et al., 2024).

In this study, the RF algorithm is employed to simulate an-
nual pollen production. Each pollen dataset is divided into
training and testing sets in a 4 : 1 ratio, with the training
set used for model training and the testing set for accuracy
validation. Additionally, a grid search with cross-validation
is applied to optimize the hyperparameters of each estima-

tor. Key parameters for RF adjustment include n_estimators,
max_depth, min_samples_split and min_samples_leaf. Hy-
perparameter optimization is a crucial step in enhancing
model performance.

2.1.4 Implementation of pollen emissions in RegCM

In this model, a pollen emissions model based on phenology
and RF calculates the emission potential of different types of
pollen offline, and this is then incorporated into the RegCM
model. The calculation of pollen concentration in this model
follows the method of Sofiev et al. (2013), with the formula
as follows:

Epollen,i(t)= Ei(t) · fw · fr · fh (8)

fw = 1.5− exp(− (u10+ uconv)/5)

fr =


1,pr< prlow

prhigh−pr
prhigh−prlow

,prlow < pr< prhigh

0,pr> prhigh

fh =


1, rh< rhlow

rhhigh−rh
rhhigh−rhlow

, rhlow < rh< rhhigh

0, rh> rhhigh

,

(9)

where fw, fr and fh represent the wind, precipitation and rel-
ative humidity (RH) factors, respectively, influencing pollen
emissions concentration. fw is exponentially related to the
10 m wind speed u10 and vertical turbulent wind speed uconv.
pr and rh represent precipitation and RH. When precipita-
tion is below the threshold prlow, the precipitation factor is 1.
When precipitation exceeds the threshold prhigh, the factor
is 0. When precipitation is between these thresholds, the
factor is calculated as the ratio of the difference between
the high threshold and precipitation to the difference be-
tween the thresholds, with default values prlow = 10−5 mm
and prhigh = 0.5 mm. Similarly, the RH factor is related
to RH and its thresholds, with default values rhlow = 50 %
and rhhigh = 80 %. These factors explain the impact of wind,
precipitation and humidity on pollen emissions. Given the
significant influence of precipitation and RH on pollen emis-
sions, this study adjusts prhigh and rhhigh values to 1 mm and
90 %, respectively. Higher thresholds can prevent excessive
suppression of pollen emissions under frequent precipitation
and high humidity conditions, thus more accurately simulat-
ing actual pollen concentration changes and better adapting
the model to different climatic conditions.

Moreover, RegCM includes the pollen tracer transport
equation (Solmon et al., 2006), as follows:

∂χ

∂t
= V ·∇χ+FH+FV+TC+S−RWls−RWc−Dd, (10)

where χ represents the tracer; FH and FV represent horizon-
tal and vertical diffusion; TC represents convective transport,
RWls and RWc represent large-scale and convective precip-
itation wet removal processes, respectively; and Dd repre-
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Table 1. Explanation of effective sample years for pollen monitor-
ing stations in Beijing (2006–2021).

Station Effective sample years/year

Artemisia Chenopods TotalPC

CP 16 16 16
CY 13 13 13
FT 10 8 15
HD 0 0 8
SJS 11 11 16
SY 12 9 16

Total 62 57 84

sents dry removal processes. This transport equation compre-
hensively considers various physical processes and removal
mechanisms of pollen in the atmosphere, allowing the sim-
ulation of the entire process from pollen release to atmo-
spheric dispersion and deposition. This provides a founda-
tion for fully describing the spatial distribution and temporal
evolution of pollen in the atmosphere, which is crucial for
studying pollen dispersion in the air, determining the spa-
tial distribution of pollen concentration and predicting future
changes in pollen concentration.

2.2 Data

2.2.1 Observed pollen concentrations

The daily pollen concentration data were collected from
six monitoring stations in Beijing: Changping (CP),
Chaoyang (CY), Fengtai (FT), Haidian (HD), Shijing-
shan (SJS) and Shunyi (SY), as shown in Fig. 1. The monitor-
ing period spanned April to October each year from 2006 to
2021, covering the main pollen season in Beijing. The gravi-
tational settling method (unit: 103 grains per m2 per day) was
used for monitoring. The pollen concentration data included
total pollen concentration (the sum of pollen concentrations
from all taxa, abbreviated as TotalPC) and the concentrations
of pollen from 10 common allergenic plants. These species
included trees such as pine, poplar, birch, cypress, ash and
elm, as well as weeds like Artemisia, chenopods, Humulus
and Amaranthus. Although autumn pollen concentrations are
lower compared to spring, autumn weed pollen has a higher
allergenic potential (Zhao et al., 2023). Therefore, this study
focuses on the analysis of autumn weed pollen. Due to signif-
icant data gaps in the pollen concentration of specific species,
we only selected the data that were more complete and of
higher allergenic potential, specifically Artemisia, chenopods
and TotalPC. Table 1 provides basic information, such as the
number of effective sample years for these three types of
pollen across the six stations.

To prevent anomalies in the data, we excluded outliers in
the pollen concentration data for each species and any data

Figure 1. Distribution map of geopotential height, pollen observa-
tion stations (triangle) and meteorological monitoring stations (cir-
cle) in the Beijing area.

points where the concentration exceeded the 99th percentile.
Furthermore, we applied a 5 d moving average to the pollen
monitoring data to smooth it. This approach not only elim-
inates noise from the data (Li et al., 2019, 2022) but also
mitigates the influence of daily meteorological changes and
advection diffusion on daily pollen emissions. (To further an-
alyze the impact of key factors such as meteorological fac-
tors and advection diffusion on daily pollen emissions, we
used RegCM in Sect. 3.3. This model accurately reflects the
effects of daily meteorological factors such as temperature,
precipitation, humidity and wind speed on pollen emissions
while also describing key physical processes such as advec-
tion diffusion, convective transport, and dry and wet deposi-
tion, thus providing a comprehensive analysis of the behavior
of pollen in the atmosphere.) This smoothing process allows
us to more clearly explore the daily variation trends of pollen.

Additionally, to better simulate the temporal and spatial
distribution of pollen during the autumn pollen period, we
defined the autumn pollen period based on observed pollen
concentration data as DOY 215<DOY< 280. Subsequently,
we determined the sDOY and eDOY for the autumn pollen
period for each station and year by identifying the day of year
at which the cumulative pollen concentration reached 5 %
(start) and 95 % (end) of the total for that period (Khwarahm
et al., 2017; Li et al., 2019, 2022).

To better simulate sDOY and eDOY for pollen, this study
first applied the Gaussian model to the autumn pollen data of
each station and year. The Gaussian model was chosen for
its effectiveness in capturing peaks in time series data, which
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are often reflected in pollen concentration data. Taking the
CP station as an example, Gaussian fitting distribution was
performed on the autumn Artemisia, chenopods and TotalPC
for 2006–2021 (Figs. S1–S3 in the Supplement). The results
indicated that the autumn pollen concentration exhibited a
significant Gaussian distribution, confirming that the Gaus-
sian model could aptly fit the time series changes of autumn
pollen. Therefore, by Gaussian fitting the pollen concentra-
tions of each station, the autumn pollen sDOY and eDOY un-
der the Gaussian model simulation were further determined.
Comparing the sDOY and eDOY derived from observed
pollen concentration data with those obtained via Gaussian
model simulation (Fig. S4), we found a high correlation co-
efficient (R) and a low root mean square error (RMSE) be-
tween the two. Thus, the sDOY and eDOY obtained from
Gaussian model simulation were utilized to study the autumn
pollen phenology.

2.2.2 Meteorological observation and land cover data

The meteorological data for this study were sourced from
the Daily Surface Climate Dataset for China, encompass-
ing observations from all benchmark and basic meteorolog-
ical stations in China. Specifically, we utilized data from
66 valid meteorological stations in Beijing and its sur-
rounding areas (39–41.5° N, 115–118° E) covering the pe-
riod from 2006 to 2020 (Fig. 1). This dataset includes me-
teorological observations corresponding to the pollen mon-
itoring stations (our meteorological data extend only up
to 2020). The variables incorporated in this study com-
prise average temperature (TEM_Avg), maximum tempera-
ture (TEM_Max), minimum temperature (TEM_Min), sun-
shine hours (SSHs), station altitude (Alti), average pres-
sure (PRS_Avg), maximum pressure (PRS_Max), minimum
pressure (PRS_Min), maximum wind speed (WIN_S_Max),
extreme wind speed (WIN_S_Inst_Max), average 2 min
wind speed (WIN_S_2mi_Avg), ground surface tempera-
ture (GST_Avg_Xcm, X = 5, 10, 15, 20, 40, 80, 160,
320 cm), average ground surface temperature (GST_Avg),
minimum ground surface temperature (GST_Min), max-
imum ground surface temperature (GST_Max), average
relative humidity (RHU_Avg), minimum relative humid-
ity (RHU_Min), average vapor pressure (VAP_Avg), precipi-
tation from 20:00 to 20:00 LT (PRE_Time_2020) and precip-
itation from 08:00 to 08:00 LT (PRE_Time_0808). The first
four meteorological factors were utilized to simulate the au-
tumn phenology model of pollen, predicting various pollen
sDOY and eDOY. All meteorological factors served as train-
ing datasets for the RF algorithm to simulate annual pollen
production.

For land use data, this study employed the Community
Land Model 4 (CLM4) dataset (Oleson et al., 2010), which
includes 25 plant functional types such as needleleaf forests,
broadleaf forests, shrubs, grasses (C3 and C4) and crops, with
a spatial resolution of 0.05°. As Artemisia and chenopods

primarily fall under the C3 plant category (Yorimitsu et
al., 2019; Septembre-Malaterre et al., 2020; Qiao et al.,
2023), the simulation of pollen utilization for Artemisia and
chenopods used plant functional C3 grass, while the TotalPC
simulation incorporated both C3 and C4 grasses. The distri-
bution of these two plant functional types in Beijing is illus-
trated in Fig. 2.

3 Results and discussion

3.1 Pollen phenology simulation

In this study, we analyzed the phenological changes of three
types of pollen – Artemisia, chenopods and TotalPC – during
the autumn season based on three different autumn pollen
phenology calculation methods (Rs1, Rs2 and Rssig). Specif-
ically, we examined the seasonal phenological simulations of
these pollen concentrations under three different temperature
conditions (TEM_Avg, TEM_Max and TEM_Min) (Mo et
al., 2023), with a primary focus on sDOY and eDOY. Addi-
tionally, the annual pollen production (Pannual) was simulated
using the RF algorithm.

3.1.1 Simulation of sDOY and eDOY based on autumn
phenology model

Table 2 presents the statistical indicators for simulating the
phenology of Artemisia using different phenological meth-
ods and temperature conditions. For simulating the sDOY for
Artemisia, the Rs1, Rs2 and Rssig methods demonstrated high
accuracy when TEM_Avg and TEM_Min were employed as
temperature conditions. The R values for both the training
and testing sets exceeded 0.45, with some R values in the
testing set surpassing 0.7, and the RMSE values were rel-
atively low. This indicates that these three methods effec-
tively capture the phenological characteristics of Artemisia
at the onset of autumn. Notably, the Rssig method, when us-
ing TEM_Avg as the condition, achieved R values of 0.53
and 0.80 for the training and testing sets, respectively, with
RMSE values of 6.61 and 4.86 d, showing the best simula-
tion performance. However, when TEM_Max was used as
the temperature condition, the simulation performance of all
three methods declined. The R value of the Rs1 method fell
below 0.2, and the RMSE values were high, exceeding 8 d.
Comparatively, the Rssig method performed slightly better
but still yielded inferior results compared to TEM_Avg and
TEM_Min, indicating lower model stability when predict-
ing Artemisia sDOY with TEM_Max. For the simulation of
Artemisia eDOY, the performance of the three methods was
relatively close, with R values in the training and testing sets
generally ranging from 0.3 to 0.5 and similar RMSE val-
ues. Among them, the Rs1 method performed better when
TEM_Min and TEM_Avg were used as temperature condi-
tions, with R values of 0.66 and 0.51 in the testing set and
RMSE values of 3.32 d and 3.9 d, respectively. Compared to
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Figure 2. The distribution of plant functional type C3 (a) and GRASS (b) in the Beijing area.

the Rs1 method, the Rs2 and Rssig methods were relatively
weaker in predicting eDOY, indicating that the Rs1 method
better captures the phenological trends of Artemisia at the
end of autumn. Additionally, when comparing the simula-
tion results of sDOY and eDOY, sDOY generally had higher
R values, but eDOY had lower overall RMSE values.

The statistical indicators for simulating the phenology of
chenopods under different phenological methods and tem-
perature conditions are shown in Table S1 in the Supple-
ment. For the simulation of the sDOY for chenopods, the
Rs1 and Rs2 methods demonstrated high accuracy when us-
ing TEM_Min and TEM_Avg as temperature conditions.
The R values for both the training and testing sets were
around 0.5, and the RMSE values were relatively low. It
is clear that using TEM_Avg as the temperature condition
yields higher R values and a lower RMSE (in the case of the
Rs1 method) compared to TEM_Min, indicating that these
two methods effectively capture the phenological changes of
chenopods at the onset of autumn when using TEM_Avg as
the temperature condition. However, when TEM_Max was
used as the temperature condition, the simulation perfor-
mance of all three methods declined, particularly for Rs1,
which had an R value of−0.1 and an RMSE greater than 9 d
in the testing set. The Rssig method, when using TEM_Avg,
achieved anR value of 0.51 in the training set but only 0.28 in
the testing set, with a high RMSE of 5.32 d, indicating poor
model stability in this scenario. In contrast to TotalPC and
Artemisia, the simulation of the eDOY for chenopods was
not satisfactory for any of the three methods. The R values
for both the training and testing sets were all below 0.42.
Particularly when using TEM_Max as the temperature con-
dition, the simulation performance of all three methods was
poor, with the testing set R value reaching only 0.1. This in-
dicates that the models have limited ability to capture the end
of the autumn season for chenopods.

Table S2 shows the phenological simulation statistical in-
dicators of TotalPC under different phenological methods
and temperature conditions. From the data in the table, it can
be seen that for the simulation of the sDOY of TotalPC, all
three phenological methods (Rs1, Rs2, and Rssig) performed
with high accuracy (R > 0.5) and a relatively low RMSE
when using TEM_Min. This indicates that these three meth-
ods, when using TEM_Min, can effectively capture the trend
of the sDOY of TotalPC during the autumn season. Mean-
while, the Rs1 method also showed good simulation perfor-
mance when using TEM_Avg as the temperature condition,
with R reaching 0.54 for both the training and testing sets.
The Rssig method, using TEM_Avg, had good simulation
performance in the training set, but the R in the testing set
only reached 0.38. Compared to TEM_Min and TEM_Avg,
the Rs2 and Rssig methods showed slightly inferior simula-
tion performance when using TEM_Max as the temperature
condition. Surprisingly, the Rs1 method’s simulation of the
sDOY showed a negative correlation when using TEM_Max,
indicating the worst performance. For the simulation of the
eDOY of TotalPC, the overall simulation performance was
worse in terms of R compared to sDOY, but the RMSE val-
ues were generally better. Specifically, using TEM_Avg as
the temperature condition, the Rs2 and Rssig methods showed
relatively good simulation performance and a lower RMSE.
However, the Rs2 method performed much worse on the test-
ing set compared to the training set, with the R on the testing
set being only 0.32.

Overall, different pollen types exhibit varying sensitiv-
ity to different phenological models and temperature con-
ditions. TEM_Avg is generally the best temperature condi-
tion for predicting the sDOY of the three pollen types, pro-
viding higher R values and a lower RMSE. This suggests
that TEM_Avg can effectively predict the start of the au-
tumn pollen season. At the same time, TEM_Min also per-
forms well in predicting the sDOY of TotalPC and Artemisia,
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Table 2. Statistical indicators of Artemisia phenology under different phenological methods and temperature conditions (unit of RMSE:
day).

Artemisia Rs1 (R) Rs2 (R) Rssig (R) Rs1 (RMSE) Rs2 (RMSE) Rssig (RMSE)

Train Test Train Test Train Test Train Test Train Test Train Test

sDOY
TEM_Min 0.47 0.66a 0.52b 0.77a 0.45 0.59a 6.61 5.93 6.29 4.99 6.63 6.57
TEM_Avg 0.45 0.63a 0.50 0.71a 0.53b 0.80a 6.67 6.18 6.78 5.44 6.61 4.86
TEM_Max 0.16 0.17 0.44 0.47 0.45 0.58a 8.87 9.58 8.21 7.51 6.52 6.32

eDOY
TEM_Min 0.38 0.66a 0.38 0.44 0.36 0.37 4.19 3.32 4.19 3.97 4.02 4.07
TEM_Avg 0.46 0.51b 0.38 0.29 0.44 0.44 3.92 3.9 4.16 4.23 3.85 4.07
TEM_Max 0.31 0.43 0.05 0.07 0.33 0.27 5.59 4.65 6.84 6.47 3.98 4.32

Note that bold represents the best model performance. a Significance levels at P < 0.001. b Significance levels at P < 0.005.

whereas TEM_Max generally shows the poorest prediction
performance. For predicting eDOY, different pollen types
show different sensitivities to temperature conditions, but
overall, the models perform worse for eDOY compared to
sDOY, especially in the simulation of chenopods.

Based on the above discussion, we selected the most suit-
able phenological and temperature conditions for the three
types of pollen (bold parts in Tables 2, S1 and S2), simu-
lated their sDOY and eDOY, and generated line and scat-
ter plots (Fig. 3). According to the line plots in Fig. 3 (top),
the predicted results for Artemisia are the closest to the ac-
tual observed results. The predictions for TotalPC follow,
while the predictions for chenopods show some deviation,
particularly in eDOY, indicating the need for a more suit-
able phenological model to accurately simulate the phenol-
ogy of chenopods. The scatter plots in Fig. 3 (bottom) il-
lustrate that for sDOY predictions, Artemisia exhibited the
strongest correlation between predicted and observed pollen
phenology, with an R value of 0.69 and an RMSE of 5.77 d.
In contrast, chenopods had the lowest correlation, with an
R value of 0.49 and an RMSE of 4.98 d. It can also be ob-
served that higherR values are associated with a higher over-
all RMSE, possibly due to the models being more sensitive
to noise or outliers in the data, which increases the overall er-
ror. For high-correlation predictions like those for Artemisia,
the model may be more affected by random fluctuations in
the data, leading to increased error. Additionally, different
pollen types may exhibit varying characteristics or response
patterns in phenological models, resulting in a non-linear or
inconsistent relationship between correlation and error. For
eDOY predictions, the correlation between predicted and ob-
served is highest for Artemisia, with an R value of 0.53 and
an RMSE of 3.77 d. Chenopods have the lowest correlation
for eDOY predictions, with an R value of only 0.26 and
an RMSE of 4.57 d. The poorer performance in simulating
eDOY for chenopods may be due to lower data quality com-
pared to Artemisia and TotalPC, as well as the smallest sam-
ple size, resulting in insufficient information and samples for
the model to learn and predict accurately.

Table 3. Statistics on the proportion of errors between simulation
and observation of three different types of pollen sDOY and eDOY
within 5 and 3 d.

DOY Artemisia Chenopods TotalPC
(%) (%) (%)

< 5D
sDOY 68.97 73.21 71.83
eDOY 86.44 76.79 82.61

< 3D
sDOY 48.28 44.64 53.52
eDOY 64.41 55.36 68.12

Additionally, Table 3 shows the proportion of simulations
with errors less than 5 and 3 d for sDOY and eDOY across the
three pollen types. It can be seen that the proportion of eDOY
simulations with errors less than 5 and 3 d is higher than that
for sDOY, indicating that eDOY simulations generally have
better accuracy in terms of error. Specifically, for chenopod
eDOY simulations, although the R value is poor, 76.79 % of
simulations have errors less than 5 d, and 55.36 % have er-
rors less than 3 d, meaning that more than half of the eDOY
simulations have errors within 3 d. This performance is com-
parable to the other two pollen types (64.41 % and 68.12 %,
respectively). Compared to Mo et al. (2023), who simulated
the spring start pollen season (SPS) using 17 phenological
models, this study has slightly lower R values but a much
lower RMSE (around 11 d in their study). Li et al. (2022)
used satellite data to simulate the SPS for birch, oak and
poplar, achieving RMSE values between 4.26 and 8.77 d.
Furthermore, this study’s process-based phenological models
for sDOY and eDOY show smaller errors and higher corre-
lations compared to empirical linear models based solely on
temperature used by Wozniak and Steiner (2017) and Zhang
and Steiner (2022).

Therefore, from an error analysis perspective, the simula-
tion performance of chenopod eDOY maintains a relatively
low error while also demonstrating some stability, indicating
that the autumn phenological model can accurately capture
the seasonal variation trend of chenopods. This makes the
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Figure 3. Comparison of pollen sDOY and eDOY in autumn phenology: simulation vs. observation. Line plots of three different pollen
sDOY and eDOY (a–c) and scatter plot comparison of the same (d–f). Specific comparisons for Artemisia (a, d), chenopods (b, e) and
TotalPC (c, f). The horizontal axis of (a)–(c) represents the sequential distribution of effective sample counts for the three types of pollen.

simulation results reliable. Overall, the autumn phenological
models provide good simulation performance for the phenol-
ogy of the three pollen types, laying a solid foundation for
further analysis of pollen temporal characteristics.

Based on the temperature and SSH observational station
data from the Beijing area, we interpolated the station data
into a grid dataset with a horizontal resolution of 0.1°. Using
the selected autumn phenological models, we then performed
gridded simulations of the sDOY and eDOY for three pollen
types. This approach enabled us to map the regional distribu-
tion of autumn pollen sDOY and eDOY in Beijing from 2006
to 2020, thereby laying the groundwork for further simula-
tions of autumn pollen emissions potential.

3.1.2 Simulation of annual pollen production based
on RF

The simulation of annual pollen production (Pannual, refer-
ring to the cumulative pollen concentration during each au-
tumn pollen season) was conducted using the RF algorithm.
The training data comprised all station-observed pollen data
from Table 1 and the corresponding meteorological observa-
tion data from Sect. 2.2.2. Four-fifths of the station data were
randomly selected as the training set to train the RF algo-
rithm, while the remaining one-fifth was used as the test set to
validate the accuracy of the RF’s Pannual simulation. Figure 4
presents the scatter plots of observed versus simulated Pannual

for three different pollen types (Artemisia, chenopods and
TotalPC) based on the RF in the test set. The R values be-
tween simulated and observed values for the three pollen
types were all above 0.5, with chenopods reaching 0.65. The
calculated RMSE was around 0.2× 106 grains per m2 per
year (with TotalPC having an RMSE of 2.12× 106 grains
per m2 per year). This indicates that the prediction perfor-
mance of the RF varies among different pollen types, with
the best performance for chenopods and the poorest for
TotalPC annual production. Compared to the temperature-
based empirical linear models for Pannual by Zhang and
Steiner (2022), the machine-learning-algorithm-based simu-
lations in this study have smaller errors and higher correla-
tions. Overall, the RF effectively simulates Pannual.

Based on meteorological observation data from stations in
and around Beijing, the station data were interpolated into
a gridded dataset with a horizontal resolution of 0.1°. Sub-
sequently, all station data for each pollen type were used as
the training set, with 12 stations in the gridded dataset cycli-
cally selected as the test set for gridded simulations. This ulti-
mately resulted in the spatial distribution of Pannual in Beijing
from 2006 to 2020, laying the foundation for further simula-
tion of autumn pollen emissions potential.
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Figure 4. Scatter plots of simulated and observed annual pollen (Pannual) based on RF. Comparisons for Artemisia (a), chenopods (b) and
TotalPC (c).

3.2 Simulation of pollen emissions in the Beijing area

Based on the simulation results of autumn pollen phenol-
ogy (sDOY, eDOY and Pannual) from Sect. 3.1 and the
pollen emissions potential parameterization method from
Sect. 2.1.1, this study calculated the pollen emissions po-
tential in the Beijing area. Figures 5, S5 and S6 present a
comparison between the observed and simulated average site
values of Artemisia, chenopods and TotalPC in Beijing from
2006 to 2020. In these figures, blue dots represent the actual
daily observed pollen counts, and red lines represent the sim-
ulated pollen emissions. To assess the consistency between
the simulated and observed data, we calculated R and RMSE
values. As illustrated in the figures, the simulated data closely
match the actual observations in most years, with correlation
coefficients around 0.9. Specifically, the Artemisia emissions
in 2010; chenopod emissions in 2016; and TotalPC emissions
in 2007, 2009, 2018 and 2019 show R values as high as 0.98
and relatively low RMSE levels, demonstrating the high ac-
curacy of this study in simulating pollen emissions potential.

Additionally, the simulation results for sDOY and eDOY
were also satisfactory, though there were slight advances in
the start of the pollen season in certain years, such as 2017
and 2018 for Artemisia and chenopods. While the peak
pollen emissions simulations were highly accurate in most
years, there were instances of overestimation and underes-
timation in some years. For example, the peak emissions
of Artemisia in 2008, 2009 and 2020; chenopods in 2007;
and TotalPC in 2013 and 2020 were significantly underesti-
mated. Conversely, the peak simulations of TotalPC in 2011
and 2012 were slightly overestimated. This indicates that, de-
spite the high accuracy of the annual pollen production simu-
lations based on the RF, there is still room for improvement.

Overall, this study achieved significant results in simulat-
ing pollen emissions, demonstrating the potential application
of autumn phenological models and the RF algorithm in sim-
ulating pollen emissions. However, to further enhance the ac-
curacy of these simulations, future research needs to investi-

gate and address the instances of overestimation and under-
estimation in greater detail.

To further investigate the spatial distribution of annual
pollen production, we simulated the spatial distribution of
annual Artemisia, chenopods and TotalPC production in
Beijing from 2006 to 2020 (Figs. 6, S7 and S8). The re-
sults reveal significant spatial and temporal variations in an-
nual pollen production. Spatially, Artemisia production is
predominantly concentrated in the southeastern, northeast-
ern and certain northwestern regions of Beijing, with oc-
casional occurrences in the central urban area during spe-
cific years (2008 and 2013). Chenopod production is high-
est in the southern part of Beijing and lowest in the north-
ern parts and surrounding areas. Notably, from 2006 to 2008,
the southern region exhibited high concentrations of cheno-
pod production. TotalPC is mainly distributed in the south-
eastern plains of Beijing, forming a strip-like pattern, while
lower production is observed in the northwestern mountain-
ous areas, indicating a possible influence of geographical lo-
cation on TotalPC distribution. Temporally, the annual pro-
duction of these three pollen types demonstrates distinct in-
terannual variations. Artemisia shows little change in both
distribution area and production concentration over time. In
contrast, chenopods and TotalPC exhibit a general declining
trend, reaching their lowest levels between 2016 and 2018,
which may be attributed to recent climatic changes, vegeta-
tion shifts and human activities in the Beijing area.

The simulation results for annual pollen production of
Artemisia, chenopods and TotalPC in Beijing from 2006
to 2020, based on autumn phenology and the RF pollen emis-
sions model, indicate pronounced spatial differences and
temporal variation characteristics. Analyzing the spatial dis-
tribution and temporal variation of annual pollen production
in Beijing enhances our understanding of the spatiotemporal
patterns of pollen in the region, providing crucial insights for
the control and mitigation of pollen allergies.

To more intuitively reflect the temporal variation trends in
the annual production of three types of pollen, we further an-
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Figure 5. Time series of observation and simulation of average Artemisia emissions at stations in Beijing from 2006 to 2020. The solid red
line represents the simulation of pollen emissions model, while blue dots depict observations.

alyzed the interannual variation of the regional average cu-
mulative concentration of these pollen types during the au-
tumn pollen season in Beijing from 2006 to 2020 (Fig. 7).
The annual production of Artemisia, chenopods and To-
talPC in Beijing averages between 0.8–1.6, 0.5–1.4 and 6.5–
9 grains per m2 per year, respectively. The annual production
of Artemisia and chenopods is notably similar. Over time, the
regional annual production of these pollen types in Beijing
exhibits significant fluctuations. Nonetheless, Artemisia re-
mains relatively stable, whereas chenopods and TotalPC pro-
duction demonstrates a discernible declining trend, particu-
larly in TotalPC. The annual production of all three pollen
types reached a local nadir in 2012. Following a surge in
2013, production steadily declined from 2014 to 2017, reach-
ing the lowest levels observed in nearly 15 years (with To-
talPC being the lowest in 2018). Subsequently, from 2018
to 2020, an increasing trend was observed. Overall, the an-
nual pollen production in Beijing appears to follow a minor
cyclical pattern, intimately linked to the impacts of climate
change. Building on this analysis, it suggests that interannual
variations in pollen production may be influenced by multi-
ple climate-related factors, such as temperature, precipitation
and SSHs. These climatic elements can influence the phenol-

ogy and growth cycles of pollen-producing plants, thereby
affecting their annual production levels. For example, higher
temperatures may lead to earlier flowering times, potentially
shifting the timing and duration of pollen release. Variations
in precipitation impact soil moisture, which can affect plant
health and, consequently, pollen output. The observed trends
in Beijing’s pollen production, including the declining pat-
terns in chenopods and TotalPC, could correspond to climate
shifts that are less favorable for these species. Thus, these
fluctuations in pollen production underscore the sensitivity
of pollen phenology to both local and broader climate varia-
tions.

To further explore the meteorological factors influencing
average annual pollen production in Beijing, we selected
six meteorological variables during the autumn pollen sea-
son from 2006 to 2020 for temporal and regional aver-
age calculations. These factors include maximum temper-
ature (TEM_Max), average temperature (TEM_Avg), min-
imum temperature (TEM_Min), average relative humid-
ity (RHU_Avg), sunshine hours (SSHs) and precipitation
time (PRE_Time_0808). The annual variations of these me-
teorological factors were analyzed, and their correlations
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Figure 6. Distribution of Artemisia in Beijing from 2006 to 2020 based on pollen emissions model.

Figure 7. Time series variation chart of regional average annual production of three types of pollen in Beijing from 2006 to 2020. Due to the
different magnitudes of pollen concentrations, the left y axis represents the concentrations of Artemisia and chenopods, while the right y axis
represents TotalPC. Plotting the time series distributions of the three pollen concentrations on a single graph allows for a clearer observation
of the trends in their variations over time.

with annual pollen production variations were calculated
(Fig. 8).

The trends in annual variations of each meteorological fac-
tor and the calculated correlations reveal that for Artemisia,
TEM_Min and RHU_Avg have a significant positive correla-

tion with its production, especially RHU_Avg, which shows
a correlation of 0.79. This indicates that an increase in rel-
ative humidity promotes Artemisia production. Conversely,
SSHs have a correlation of −0.8 with Artemisia, indicating
that longer sunshine hours inhibit its production. Meanwhile,
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Figure 8. Time series variation chart of average values of different meteorological factors in Beijing from 2006 to 2020. (The correlation
coefficient between the average meteorological factors and the regional average annual production of three types of pollen is calculated in
the figure.)

TEM_Avg and PRE_Time_0808 have minor promoting ef-
fects on Artemisia production, while TEM_Max has a slight
inhibitory effect. For chenopods, TEM_Min is the most sig-
nificant promoting factor, while SSHs have an inhibitory ef-
fect, although its negative correlation is lower than that for
Artemisia, indicating a limited inhibitory effect on cheno-
pod production. For TotalPC, similar to Artemisia, increases
in TEM_Min and RHU_Avg promote production, while in-
creases in SSHs and TEM_Max inhibit production. Notably,
the three types of pollen reached local minimum concentra-
tions in 2012, 2017 and 2018, when TEM_Min and SSHs
respectively reached local minimum and maximum values,
further demonstrating the promoting effect of TEM_Min and
the inhibitory effect of SSHs on annual average pollen con-
centration. Rahman et al. (2020) and Lei et al. (2023) indi-
cated that temperature is the main factor affecting the inter-
annual variation of pollen and is positively correlated with
pollen production. Our findings are largely consistent with
these conclusions, although they did not consider the effect
of SSHs on interannual changes in pollen concentration. In
summary, the annual production of pollen in Beijing is sig-
nificantly influenced by meteorological conditions, particu-
larly temperature, relative humidity and sunshine hours. Dif-

ferent meteorological factors exhibit distinct promoting and
inhibiting effects on pollen production.

Figures 9, S9 and S10 illustrate the spatial distribution of
the average concentrations of Artemisia, chenopods and To-
talPC during the autumn pollen season in Beijing from 2006
to 2020. During this period, the concentration of all three
pollen types initially increases and then decreases. The
pollen season begins around 10 August each year and con-
cludes around 25 September. The peak concentrations for
Artemisia and chenopod pollen occur around 30 August,
while the peak concentration for TotalPC is observed around
5 September. The entire pollen season lasts approximately
45 d.

Regarding the average pollen concentration distribution,
Artemisia is primarily concentrated in the southwest, north-
east and parts of the northwest of Beijing, with lower concen-
trations in the southeast. In contrast, chenopods and TotalPC
are mainly distributed in the southeastern plains. The max-
imum average concentrations for Artemisia, chenopods and
TotalPC reach 81.1×103, 42.0×103 and 351.8×103 grains
per m2 per day, respectively.
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Figure 9. Temporal and spatial distribution of Artemisia in Beijing (average from 2006 to 2020).

3.3 Simulation of pollen emissions in a regional climate
model

To evaluate the pollen emissions model based on autumn
pollen phenology and RF, this study integrates the offline
calculated pollen emissions into the regional climate model
RegCM. By comparing the simulated atmospheric pollen
concentrations with data from ground-based pollen monitor-
ing stations, we assess the performance of this pollen emis-
sions potential model.

3.3.1 Evaluation of pollen simulation accuracy in
RegCM

Figures 10, S11 and S12 depict the time series distribution of
the concentrations of three pollen types simulated by RegCM
compared to observed concentrations from 2006 to 2020.
The RegCM successfully captures the temporal variation
trends of pollen concentrations during the autumn pollen
season, generally showing an initial increase followed by a
decrease. Daily pollen concentrations fluctuate significantly
due to meteorological factors such as temperature, precipita-
tion and RH, as well as key physical processes like advection,
convection, and dry and wet deposition. Overall, the simu-
lated pollen concentrations by RegCM align well with the
observed trends, though some discrepancies remain.

In the simulation of Artemisia (Fig. 10), the sDOY and
pollen production vary annually due to meteorological con-
ditions and key physical processes. The annual peak pollen
concentrations generally range from 20–70× 103 grains
per m2 per day, while in 2019–2020, observed pollen con-
centrations exceeded 100× 103 grains per m2 per day, with
notable spikes and drops likely due to abrupt meteorologi-
cal changes or possible issues with the quality of observation
data. The RegCM accurately simulates the sDOY and eDOY,

displaying a similar frequency to observations. For peak
pollen simulations, years such as 2006, 2007, 2010, 2012,
2015 and 2016 show good performance, with R above 0.7,
particularly in 2006 and 2016, where R exceeds 0.85 and the
RMSE is only 4× 103 grains per m2 per day. However, for
other years, peak simulations are underestimated to varying
degrees. For 2011, although the trend is consistent, the ob-
served peak is near 50×103 grains per m2 per day, while the
simulated peak is only 12× 103 grains per m2 per day, indi-
cating a significant underestimation. This underestimation is
also noticeable in 2008, 2013 and 2017–2020. In 2019, al-
though the peak concentrations align, the trend correlation
is low (R = 0.49), and the RMSE is high. The variability in
observation station data quality and quantity could influence
these results, with some years having fewer than six effective
stations (minimum of two), impacting the average and peak
values. Box plots (Fig. 11) reveal that Artemisia concentra-
tions in 2019–2020 are more dispersed, suggesting possible
anomalies in observation data. Overall, the R for RegCM
simulations ranges from 0.69 to 0.86 (except 2019), with an
RMSE between 3.05–15.38× 103 grains per m2 per day.

For chenopod simulations (Fig. S11), the overall perfor-
mance is similar to Artemisia. The annual peak concentra-
tions are generally lower, around 20–50× 103 grains per m2

per day, except for 2007, which reaches 120× 103 grains
per m2 per day. The years 2006, 2008–2009, 2012–2013,
2015 and 2019 show good simulation performance, accu-
rately reflecting peak concentrations, particularly in 2016
(R = 0.84, RMSE= 3.11×103 grains per m2 per day). How-
ever, 2007, 2010, 2017–2018 and 2020 exhibit underesti-
mation, with the exceptionally high observed concentrations
in 2007 likely causing the model’s underestimation. Fig-
ure 11 indicates increasing peak concentrations in recent
years (2017–2020) for both Artemisia and chenopods, with
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Figure 10. Time series distribution of Artemisia under the RegCM simulation compared to observations (averaged across effective pollen
monitoring sites). The solid red line represents model simulations, while blue dots depict observations.

room for improvement in peak simulations by RegCM. De-
spite the lower concentrations compared to spring pollen,
autumn pollen significantly impacts pollen-induced diseases
(pollinosis), prompting more attention and efforts in pollen
management, which contributes to the decreasing trend in
monitored pollen concentrations.

TotalPC generally exhibits higher concentration levels
compared to Artemisia and chenopods (Fig. S12). Annual
peak TotalPC can reach 150–500× 103 grains per m2 per
day, with the highest observed concentration in 2020 at 745×
103 grains per m2 per day. Due to the higher quality and com-
pleteness of TotalPC monitoring data, the simulation results
are more accurate, withR generally above 0.76 (except 2015,
R = 0.64). Over 60 % of the years have R above 0.8, with
fewer years showing significant underestimation of peak con-
centrations (e.g., 2013). This highlights the critical role of
high-quality pollen monitoring data for accurate simulations.
High-quality data enable the precise capture of pollen con-
centration trends and peaks, providing robust support for re-
gional pollen phenology research.

In summary, RegCM demonstrates high accuracy in simu-
lating the concentrations of the three pollen types, especially
TotalPC. Accurate simulations of pollen concentrations and

peaks enhance the effectiveness of pollen emissions models,
improve health risk warnings, and provide a scientific basis
for urban planning and environmental management.

4 Conclusion

This study utilized years of autumn pollen concentration data
from Beijing, alongside meteorological and land use data,
to develop an autumn pollen emissions model using autumn
phenology and the RF algorithm. We conducted an in-depth
analysis of the spatiotemporal distribution characteristics of
Artemisia, chenopods and TotalPC in Beijing and exam-
ined their relationships with meteorological factors. Finally,
we validated the accuracy and reliability of the constructed
pollen emissions model using RegCM. Through a series of
simulations and validations, several significant conclusions
and findings were obtained.

1. Construction of the pollen emissions model. By incor-
porating phenology and the RF algorithm, we calculated
autumn pollen emissions, thereby avoiding the poor
simulation results of sDOY, eDOY and annual pollen
production based solely on temperature linear simula-
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Figure 11. Box plot statistics of pollen concentration under the RegCM simulation compared to observed values. Each subplot features box
plots denoted by dashed red lines: on the left side representing Artemisia and chenopod concentrations with values referenced on the left
y axis and on the right side depicting TotalPC with values referenced on the right y axis. In each box plot, from bottom to top, the box
and whiskers indicate the minimum, lower quartile, median, upper quartile and maximum values (extending up to 1.5 times the interquartile
range, IQR). Black circles denote outliers exceeding 1.5 times IQR. Orange numbers annotated in the subplot indicate the maximum values
unseen within the box, while black numbers denote unseen outliers.

tions. The study demonstrates that using a phenology
model for sDOY and eDOY simulations captures the
temporal variations of pollen release more accurately,
effectively reducing simulation errors. The RF algo-
rithm excels in handling multivariate and nonlinear re-
lationships, significantly improving the simulation ac-
curacy of the pollen emissions model. The optimized
annual pollen production simulations better reflect sea-
sonal changes in pollen, showcasing the applicability
and reliability of the RF algorithm in processing me-
teorological and environmental data.

2. Spatiotemporal distribution characteristics of pollen
concentration. The study found significant spatial and
temporal variations in pollen concentration in Beijing.
The autumn pollen peak occurs between DOY 215–280,
with considerable differences in peak times and concen-
trations among monitoring stations. These differences
are closely related to the vegetation types, topographi-
cal features and local climatic conditions around each
station. Optimized simulations of pollen concentration

data further reveal the spatiotemporal variation patterns
of pollen concentrations.

3. Impact of meteorological factors on annual pollen emis-
sions. Meteorological factors significantly influence
pollen concentrations. The study reveals that tempera-
ture, RH and SSHs are crucial factors affecting annual
pollen emissions in Beijing. There is a positive corre-
lation between temperature and RH with annual pollen
emissions, while SSHs have a negative correlation. The
response of different pollen types to meteorological fac-
tors varies due to their distinct biological characteris-
tics and ecological environments. This comprehensive
analysis provides a scientific basis for predicting future
changes in pollen concentrations.

4. Validation of pollen emissions models using RegCM.
The RegCM accurately reflects the daily impact of me-
teorological factors on pollen emissions. Key physical
processes, such as advection, convection, and wet and
dry deposition, play essential roles in simulating the
atmospheric dispersion and deposition of pollen. This
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study validated the accuracy and reliability of the opti-
mized emission potential models for three pollen types
using RegCM, effectively describing the daily varia-
tions in pollen concentrations influenced by meteoro-
logical factors and key physical processes. Furthermore,
the pollen emissions model developed in this study can
be applied to other regions, offering potential for wider
application. These comprehensive results provide es-
sential scientific support for pollen monitoring, allergy
prevention and the selection of urban greening plants.
Future research can extend these methods and find-
ings to larger-scale pollen emissions simulations and
forecasts, enhancing responses to pollen-related public
health issues.

5. Limitations and future prospects. Despite significant
progress in constructing the pollen emissions model and
analyzing the spatiotemporal distribution of pollen con-
centrations, some limitations persist. For broader appli-
cation, more extensive observation stations are needed
to verify the model’s accuracy, considering the limited
spatiotemporal resolution of current pollen concentra-
tion data. Simulating specific species’ pollen concen-
trations requires detailed plant functional type distribu-
tions, which significantly impact the spatial distribution
of pollen emissions potential. The current research uti-
lizes static plant functional type data, but dynamic data
would better reflect the impact of land use changes on
pollen climates over various temporal and spatial scales.
Additionally, the complex relationship between meteo-
rological factors and pollen concentrations suggests that
future research could introduce more environmental and
meteorological variables and apply advanced machine
learning algorithms to enhance the model’s predictive
capability.

In conclusion, this study successfully constructed a pollen
emissions potential model, systematically analyzed the spa-
tiotemporal distribution of different pollen types in autumn
in Beijing and explored their relationship with meteorolog-
ical factors. The model’s accuracy and stability were vali-
dated using RegCM, yielding notable research results. Fu-
ture research can further validate and extend this approach
on a larger scale and with higher resolution, providing com-
prehensive scientific support for ecological environment pro-
tection and public health.
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