

Supplement of

Accurate elucidation of oxidation under heavy ozone pollution: a full suite of radical measurements in the chemically complex atmosphere

Renzhi Hu et al.

Correspondence to: Guoxian Zhang (gxzhang@aiofm.ac.cn) and Pinhua Xie (phxie@aiofm.ac.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Supplements

Figures in supplementary material

Fig. S1. The comparison results between different technologies. (a) CO measurements by Thermo 48i and Picarro-G2401. (b) O₃ measurements by Thermo 49i and Ecotech EC9810B.

Fig. S2. Results of an additional atmospheric oxidation observation experiment in the same location and season in 2022. (a) Ozone concentration (b) Concentrations of alkene and isoprene, respectively. (c) The OH concentrations achieved by chemical modulation (OH_{chem}) and wavelength modulation (OH_{wav}).

Fig. S3. The comparison results of (a) ozone and (b) PAN between simulation and observation. The red line represents the observed concentrations, while the blue and green lines represent the simulation results based on the RACM2-LIM1 mechanism for deposition times of 18 and 24 hours, respectively.

Fig. S4. Time series of observed meteorological and chemical parameters during the campaign. The entire ozone pollution is divided into three continuous periods according to pollution level (Semi I, Heavy, and Semi II).

Fig. S5. Diurnal profiles of the observed and modelled OH, HO₂, RO₂ and k_{OH} in different episodes (Semi I, Heavy, and Semi II). The simulation results are output by the RACM2-LIM1 mechanism. The coloured shadows denote the 25 and 75% percentiles. The grey areas denote nighttime.

Fig. S6. Timeseries of the observed and modelled k_{OH} during the observation period.

Fig. S7. Experimental budget for OH, HO₂, RO₂ and total ROx radicals during different periods.

Fig. S8. The relationship between NO and the "observation-to-simulation" ratios for (a) OH, (b) HO₂, and (c) RO₂ concentrations. Boxplot diagrams illustrate the dataset's minimum, 25th percentile, median, 75th percentile, and maximum values. The point styles (circular, square, diamond-shaped) represent the median values for the base model as well as for different mechanisms added to the model within various ranges.

Fig. S9. The observed and modeled HCHO concentration during the TROPSTECT-YRD campaign.

Fig. S10. The relationship between the differences in the simulation of (a) OH, (b) HO₂, and (c) RO₂ radical concentrations by HAM mechanism and the base scenario across the entire photochemical spectrum. An empirical hypothesis is proposed to amplify the concentration of higher-order aldehydes by a factor of about 4, which is the proportion of formaldehyde concentration underestimated by the model. The boxplots represent the 10%, 25%, median, 75%, and 90% of the data, respectively.

Fig. S11. The relationship between NO and (a) P(Ox), (b) P(Ox) (Obs:Mod). Boxplot diagrams are used to

illustrate the minimum, 25th percentile, median, 75th percentile, and maximum values of the observed dataset. The point styles (circular, square, diamond-shaped) represent the median values for the base model as well as for different mechanisms added to the model within various ranges.

Table.S1. Detailed information of supporting measurements.				
Species	Methods	limit of detection	Accuracy (1 σ)	Time resolution
ОН	LIF	$3.3 \times 10^5 \text{ cm}^{-3}$	±13%	60s
HO ₂	LIF	$1.1 \times 10^{6} \text{ cm}^{-3}$	$\pm 17\%$	60s
RO ₂	LIF	$2.6 \times 10^{6} \text{ cm}^{-3}$	±21%	60s
kон	LP-LIF	0.3 s ⁻¹	±20%	180s
Temperature	Met One 083E	-50 to 50 °C	$\pm 0.5\%$	60s
Relative humidity	Met One 083E	0 - 100%	$\pm 2.0\%$	60s
WS	Met One 014A	0.45 - 60 m/s	$\pm 0.11 \text{ m/s}$	1 min
WD	Met One 024A	0-360° (>0.45 m/s)	$\pm 5^{\circ}$	1 min
Pressure	Met One 092	600–1100 hPa	$\pm 0.5\%$	60s
J-values	SR	-	$\pm 10\%$	60s
PM _{2.5}	TEOM	$0.1 \ \mu g/m^3$	$\pm 10\%$	1h
O 3	UV	0.5 ppb	$\pm 10\%$	60s
	UV	0.4 ppb	$\pm 10\%$	60s
NO	CL	50 ppt	$\pm 10\%$	60s
NO ₂	CL	50 ppt	$\pm 10\%$	60s
SO ₂	UV-F	0.1 ppb	$\pm 10\%$	60s
CO	NDIR	50 ppb	$\pm 10\%$	60s
CO	CRDS	15 ppb	$\pm 10\%$	60s
PAN	GC-ECD	50 ppt	$\pm 10\%$	60s
HONO	CEAS	150 ppt	$\pm 15\%$	60s
НСНО	Hantzsch	200 ppt	$\pm 5\%$	60s
NMHCs	GC-MS/FID	5-70 ppt	$\pm 10 - 15\%$	1h

Tables in supplementary material

 Table.S1. Detailed information of supporting measurements.

Table S2. Information table for parts of the VOC monitoring species by online GC-MS/FID.Revised by (Zhu et al., 2021).

Name	Molecular formula	m/z	MIR	Uncertainty	LOD
MTBE	C5H12O	88.15	0.73	3.3%	0.012
Ethane	C_2H_6	30.07	0.28	4.6%	0.013
Propane	C_3H_8	44.10	0.49	0.9%	0.010
n-Butane	$C_{4}H_{10}$	58.12	1.15	0.3%	0.012
Isobutane	$C_{4}H_{10}$	58.12	1.23	0.6%	0.008
Isopentane	$C_{5}H_{12}$	72.15	1.45	0.7%	0.008
n-Pentane	C5H12	72.15	1.31	1.5%	0.008
Cyclohexane	$C_{6}H_{12}$	84.16	1.25	1.5%	0.013
n-Hexane	$C_{6}H_{14}$	86.18	1.24	2.0%	0.006
2-Methylpentane	C ₆ H ₁₄	86.18	1.5	3.8%	0.009
3-Methylpentane	C_6H_{14}	86.18	1.8	1.9%	0.009
Ethylene	C_2H_4	28.05	9	1.5%	0.013
Propene	C_3H_6	42.08	11.66	1.0%	0.010
Acetylene	C_2H_2	26.04	0.95	1.3%	0.018
Chloromethane	CH ₃ Cl	50.49	0.038	9.1%	0.011
Dichloromethane	CH_2Cl_2	84.93	0.041	3.2%	0.001
1,2-Dichloroethane	$C_2H_4Cl_2$	98.96	0.21	3.4%	0.001
1,2-Dichloropropane	$C_3H_6Cl_2$	112.99	0.29	1.1%	0.012
Chloroform	CHCl ₃	119.38	0.022	1.2%	0.007
Freon-11	CCl ₃ F	137.40	/	4.6%	0.010
1,3-Dichlorobenzene	$C_6H_4Cl_2$	147.00	/	9.6%	0.022
Tetrachloromethane	CCl ₄	153.82	0	1.5%	0.003
Freon-113	$C_2Cl_3F_3$	187.38	/	2.7%	0.004

Table.S3. The comprehensive list of model constraints.		
Categories	Species	
Meteorology	Temperature, Relative humidity, Pressure, Jvalues	
Trace gases	O ₃ , NO, NO ₂ , SO ₂ , CO, PAN, HONO	
	methane, ethane, propane, n-butane, isobutane, cyclopentane, n-pentane,	
	isopentane, cyclohexane, methyl cyclopentane, 2,3-dimethyl butane,	
	2,2-dimethyl butane, n-hexane, 2-methyl pentane, 3-methyl pentane, methyl	
Alkanes	cyclohexane, n-heptane, 2-methyl hexane, 2,3-dimethyl pentane, 2,4-dimethyl	
	pentane, 3-methyl hexane, n-octane, 2,3,4-trimethyl pentane, 2-methyl	
	heptane, 3-methyl heptane, 2,2,4-trimethyl pentane, n-nonane, n-decane,	
	n-undecane, n-dodecane	
A 11	ethene, propene, 1,3-butadiene, 1-butene, cis-2-butene, trans-2-butene,	
Alkenes	1-pentene, cis-2-pentene, trans-2-pentene, 1-hexene, styrene	
BVOCs	isoprene	
Alkynes	acetylene	
	benzene, toluene,ethyl benzene, o-xylene, m-xylene, n-propyl benzene,	
A (*	isopropyl benzene, p-ethyl toluene, o-ethyl toluene, m-ethyl toluene,	
Aromatics	1,2,4-trimethyl benzene, 1,3,5-trimethyl benzene, 1,2,3-trimethyl benzene,	
	p-diethyl benzene, m-diethyl benzene	
OVOCs	HCHO, acetaldehyde, MACR, MVK	

Table.S4. Gas-phase kinetics for the monoterpene species in RACM2 mechanism. API and LIM stand for α-pinene and limonene, respectively; APIP and LIMP represents peroxy radicals derived from API and LIM, respectively; ETHP refers to peroxy radicals generated from ethane; KETP denotes peroxy radicals formed from ketones; ALD signifies C₃ and higher aldehydes; KET indicates ketones; OLNN pertains to the NO₃-alkene adduct that reacts to form carbonitrates and HO₂; OLND pertains to the NO₃-alkene adduct that reacts through decomposition; ACT signifies acetone; ORA1 denotes formic acid; ONIT represents organic nitrate; OP2 denotes higher organic peroxides; MO2 signifies methyl peroxy radical; MOH indicates methanol; ROH denotes C3 and higher alcohols; ACO3 represents acetyl peroxy radicals; ORA2 denotes acetic acid and other higher acids.

Reaction	Reaction rate constant (cm ³ s ⁻¹)
$API + OH \rightarrow APIP$	$1.21 \times 10^{-11} \exp(440/T)$
$API + O_3 \rightarrow 0.85 \times OH + 0.1 \times HO_2 + 0.2 \times ETHP + 0.42 \times KETP + 0.14 \times CO + 0.02 \times H_2O_2 + 0.65 \times ALD + 0.53 \times KET$	$5.0 \times 10^{-16} exp(-530/T)$
$API + NO_3 \rightarrow 0.1 \times OLNN + 0.9 \times OLND$	$1.19 \times 10^{-12} \exp(490/T)$
$\begin{array}{r} \text{APIP} + \text{NO} \rightarrow 0.82 \times \text{HO}_2 + 0.82 \times \text{NO}_2 + 0.23 \times \text{HCHO} + 0.43 \times \text{ALD} + \\ 0.44 \times \text{KET} + 0.07 \times \text{ORA1} + 0.18 \times \text{ONIT} \end{array}$	4.0×10^{-12}
$APIP + HO_2 \rightarrow OP2$	$1.5 imes 10^{-11}$
$APIP + MO_2 \rightarrow HO_2 + 0.75 \times HCHO + 0.75 \times ALD + 0.75 \times KET + 0.25 \times MOH + 0.25 \times ROH$	$3.56 \times 10^{-14} \exp(708/T)$
$APIP + ACO_3 \rightarrow 0.5 \times HO_2 + 0.5 \times MO_2 + ALD + KET + ORA2$	$7.4 \times 10^{-13} \exp(765/T)$
$APIP + NO_3 \rightarrow HO_2 + NO_2 + ALD + KET$	$1.2 imes 10^{-12}$
LIM + OH>LIMP	$4.2 \times 10^{-11} \exp(401/T)$
$ \begin{array}{l} LIM + O_{3}> 0.85 \times HO + 0.1 \times HO_{2} + 0.16 \times ETHP + 0.42 \times KETP + \\ 0.02 \times H_{2}O_{2} + 0.14 \times CO + 0.46 \times OLT + 0.04 \times HCHO + 0.79 \times MACR + \\ 0.01 \times ORA1 + 0.07 \times ORA2 \end{array} $	2.95 × 10 ⁻¹⁵ exp(-783/T)
LIM + NO ₃ >0.71 × OLNN+0.29 × OLND	1.22×10^{-11}
$eq:LIMP+NO>HO_2+NO_2+0.05\times OLI+0.43\times HCHO+0.68\times UALD+0.07\times ORA1$	4.0×10^{-12}
$LIMP + HO_{2} -> OP_{2}$	$1.5 imes 10^{-11}$

$LIMP + MO_{2}> HO_{2} + 0.192 \times OLI + 1.04 \times HCHO + 0.308 \times MACR + 0.25 \times MOH + 0.25 \times ROH$	$3.56 \times 10^{-14} \exp(708/T)$
$LIMP + ACO_{3}> 0.5 \times HO_{2} + 0.5 \times MO_{2} + 0.192 \times OLI + 0.385 \times HCHO + 0.308 \times MACR + 0.5 \times ORA2$	$7.4 \times 10^{-13} \exp(765/T)$
$LIMP + NO_{3}> HO_{2} + NO_{2} + 0.385 \times OLI + 0.385 \times HCHO + 0.615 \times MACR$	1.2×10^{-12}

Table.S5. The reactions and reaction rate constants of the higher aldehyde autoxidation mechanism. Revised by (Yang et al., 2024). ACO₃ and HKET denote acetyl peroxy radicals and hydroxy ketone, respectively. j(MACR) represents the photolysis rate constant of methacrolein (MACR). Ten times MACR photolysis frequency order of about 10⁴ s⁻¹, which is the base case setup of HPC photolysis rate used in the HAM.

Reaction	Reaction rate constant	
$R(CO)O_2 \rightarrow \cdot OOR(CO)OOH$	0.321 s ⁻¹	
\cdot OOR(CO)OOH + NO \rightarrow \cdot OR(CO)OOH + NO ₂	$8.7 imes 10^{-12} m cm^3 s^{-1}$	
$\cdot OR(CO)OOH \rightarrow HOR(CO)OO \cdot$	$1.15 \times 10^{6} \text{ s}^{-1}$	
$HOR(CO)OO \rightarrow HOR(CO)OOH$	0.9 s ⁻¹	
$HOR(CO)OOH \rightarrow HO_2 + HPC$	$10^4 \mathrm{s}^{-1}$	
$HPC + hv \rightarrow OH + ACO_3 + HKET$	$10 \times j(MACR)$	

References

Yang, X., Wang, H., Lu, K., Ma, X., Tan, Z., Long, B., Chen, X., Li, C., Zhai, T., Li, Y., Qu, K., Xia, Y., Zhang, Y., Li, X., Chen, S., Dong, H., Zeng, L., and Zhang, Y.: Reactive aldehyde chemistry explains the missing source of hydroxyl radicals, Nat Commun, 15, 1648, 10.1038/s41467-024-45885-w, 2024. Zhu, B., Huang, X.-F., Xia, S.-Y., Lin, L.-L., Cheng, Y., and He, L.-Y.: Biomass-burning emissions could significantly enhance the atmospheric oxidizing capacity in continental air pollution, Environ. Pollut., 285, 10.1016/j.envpol.2021.117523, 2021.