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Abstract. The hydroxyl radical (OH) is the main oxidant in the troposphere and controls the lifetime of many
atmospheric pollutants, including methane. Global annual-mean tropospheric OH concentrations ([OH]) have
been inferred since the late 1970s using the methyl chloroform (MCF) proxy. However, concentrations of MCF
are now approaching the detection limit, and a replacement proxy is urgently needed. Previous inversions of
GOSAT (Greenhouse Gases Observing Satellite) satellite measurements of methane in the shortwave infrared
(SWIR) have shown success in quantifying [OH] independently of methane emissions, and observing system
simulations have suggested that satellite measurements in the thermal infrared (TIR) may provide additional
constraints on OH. Here we combine SWIR and TIR satellite observations from the GOSAT and AIRS instru-
ments, respectively, in a 3-year (2013–2015) analytical Bayesian inversion optimizing both methane emissions
and OH concentrations. We examine how much information can be obtained about the interannual, seasonal, and
latitudinal features of the OH distribution. We use information from MCF data and the ACCMIP ensemble of
global atmospheric chemistry models to construct a full prior error covariance matrix for OH concentrations for
use in the inversion. This is essential to avoid an overfitting of the observations. Our results show that GOSAT
alone is sufficient to quantify [OH] and its interannual variability independently of methane emissions and that
AIRS adds little information. The ability to constrain the latitudinal variability of OH is limited by strong er-
ror correlations. There is no information on OH at midlatitudes, but there is some information on the NH/SH
interhemispheric ratio, showing this ratio to be lower than currently simulated in models. There is also some
information on the seasonal variation in OH concentrations, although it mainly confirms the variation simulated
by the models.
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1 Introduction

The hydroxyl radical (OH) is the main oxidant in the tro-
posphere. It determines the lifetimes of most atmospheric
species removed by oxidation such as methane (a major
greenhouse gas), non-methane volatile organic compounds
(NMVOCs, important for air quality), and hydrogenated
halocarbons (contributing to stratospheric ozone loss). The
global OH concentration and its trend have been monitored
indirectly since the 1980s by measuring the concentration
of methyl chloroform (MCF), an industrial solvent removed
from the atmosphere by reaction with OH (Lovelock, 1977;
Prinn et al., 1987; Krol et al., 1998; Bousquet et al., 2005;
Patra et al., 2021). MCF was banned in the 1990s because of
its contribution to stratospheric ozone depletion, and its con-
centration is now approaching the detection limit where it
loses its value as a proxy for OH (Liang et al., 2017). An ob-
servation system simulation experiment (OSSE) previously
suggested that a combination of thermal infrared (TIR) and
shortwave infrared (SWIR) satellite observations of atmo-
spheric methane could provide a continued proxy for global
OH going forward (Zhang et al., 2018). Here we evaluate
this idea with a joint inversion of AIRS and GOSAT satel-
lite measurements for 2013–2015, examining the capability
of the observations to quantify global OH concentrations and
interannual, seasonal, and latitudinal variations.

The OH concentration is controlled by complex photo-
chemistry (Levy, 1971; Logan et al., 1981; Lelieveld et al.,
2016). The primary source is UV-B photolysis of ozone in
the presence of water vapor. The main sinks are reactions
with carbon monoxide (CO), methane, and NMVOCs, re-
sulting in a lifetime of ∼ 1 s and producing peroxy radi-
cals that can be recycled to OH by reaction with nitric ox-
ide (NO). The global-mean tropospheric OH concentration
is commonly expressed as the lifetime of methane against
oxidation by tropospheric OH, τOH

CH4
. From the methyl chlo-

roform proxy, one infers a tropospheric lifetime of methane
of τOH

CH4
= 11.2± 1.3 years for 2000 (Prather et al., 2012).

Atmospheric chemistry models find a methane lifetime of
τOH

CH4
= 9.7± 1.5 years, implying that OH in the models is

too high (Naik et al., 2013).
Although models are generally consistent in their simu-

lations of global-mean OH concentrations, there are large
disagreements in the regional distributions of OH concentra-
tions driven by NOx and NMVOC distributions (Naik et al.,
2013; Zhao et al., 2020), chemical mechanisms (Murray et
al., 2021), clouds (Liu et al., 2006; Voulgarakis et al., 2009),
UV radiation fluxes (Nicely et al., 2020), and other meteoro-
logical variables (He et al., 2021). Models consistently sim-
ulate higher OH in the Northern Hemisphere (NH) than the
Southern Hemisphere (SH) (Naik et al., 2013; Stevenson et
al., 2020). MCF observations, by contrast, suggest no inter-
hemispheric gradient (Patra et al., 2014) or slightly higher
OH in the SH (Montzka et al., 2000). Models may have ex-

cessive OH in the Northern Hemisphere because of underes-
timated CO (Naik et al., 2013).

Understanding year-to-year variability and decadal-scale
trends in OH concentrations is important for attributing the
cause of methane fluctuations (Turner et al., 2017), includ-
ing the recent acceleration of the methane trend (Laughner et
al., 2021; Qu et al., 2022; Stevenson et al., 2022). Methane
is emitted from a range of poorly quantified sources, includ-
ing wetlands, livestock, waste, fuel exploitation, rice paddies,
and open fires (Saunois et al., 2020). These sources could be
responsible for methane interannual variability and trends,
but OH concentrations could also be responsible (Turner et
al., 2017). The El Niño–Southern Oscillation (ENSO) drives
interannual variability in model OH due to its influence on
lightning (Murray et al., 2013; Turner et al., 2018; Ander-
son et al., 2021), water vapor (Turner et al., 2018; Anderson
et al., 2021), and CO emitted from biomass burning (Zhao
et al., 2020). Models and measurements show a 5 % range
of interannual variability of OH over the last 30 years, al-
beit with no temporal correlation between the two (Szopa et
al., 2021). Models find increasing OH from 1980 to present
driven by increases in anthropogenic NOx emissions (Naik et
al., 2013; Gaubert et al., 2017; Zhao et al., 2019; Stevenson
et al., 2020). By contrast, MCF observations indicate OH in-
creasing from 1980 to 2005 but then flat or decreasing after
2005 (Rigby et al., 2017; Turner et al., 2017; Nicely et al.,
2018; Stevenson et al., 2020).

Many studies have used satellite observations of methane
to infer methane emissions using specified OH concentra-
tions to optimize methane sources (Turner et al., 2015), while
others have attempted to optimize both methane sources and
OH concentrations by exploiting differences in spatial and
seasonal impacts on methane concentrations (Maasakkers et
al., 2019; Zhang et al., 2021) (Maasakkers et al., 2016; Zhang
et al., 2021) or by including complementary information in
the inversion from observations of MCF (Cressot et al., 2014,
2016) or formaldehyde and CO (Yin et al., 2021). Inversions
of GOSAT (SWIR) satellite observations of methane alone
can constrain global-mean OH about as well as MCF and in-
fer a flat interhemispheric gradient, although posterior errors
may be too optimistic (Maasakkers et al., 2019; Lu et al.,
2021; Zhang et al., 2021). Zhang et al. (2018) proposed that
TIR satellite observations of methane, which have sensitiv-
ity to the free troposphere and broader coverage over oceans
and at night, may reduce error correlation between OH and
methane emissions.

Satellite-based observations of methane in the TIR have
been made continuously since 2002 by several instruments:
AIRS (2002–present), TES (2004–2011), IASI (2007–
present), CrIS (2011–present), and GOSAT-2 (2018–present)
(Jacob et al., 2016). TIR observations have received little at-
tention in inverse studies because they are not sensitive to
methane near the surface (Wecht et al., 2012). Direct appli-
cations of TIR satellite observations have mostly focused on
processes affecting the free troposphere, such as detecting
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stratospheric intrusions (Xiong et al., 2013), methane emis-
sions from large wildfires (Xiong et al., 2010; Ribeiro et al.,
2018), interannual variations in mid-troposphere methane in
response to ENSO (Corbett et al., 2017), seasonal fluctua-
tions in methane in response to fossil fuel and rice paddy
emissions in China (Zhang et al., 2011), and differences
in seasonality compared to surface observations (Zhou et
al., 2023). The combination of SWIR and TIR observations
has been used to develop lower troposphere methane prod-
ucts including those using GOSAT+AIRS (Worden et al.,
2015), GOSAT+ IASI (Schneider et al., 2022), and GOSAT-
2 (Kuze et al., 2022; Suto, 2022).

Here we combine TIR observations from AIRS with
SWIR observations from GOSAT in a 3-year 2013–2015 in-
version optimizing both methane emissions and OH concen-
trations. We use an analytical solution that provides formal
characterization of posterior error statistics (including error
correlations) and information content as part of the inversion.
We place particular focus on the ability of the inversion to
quantify global-mean OH concentrations, interannual vari-
ability, and latitudinal and seasonal variations. This involves
careful characterization of prior error covariances using OH
concentrations from the ACCMIP model ensemble (Naik et
al., 2013).

2 Data and methods

We use 3 years (2013–2015) of satellite observations from
GOSAT and AIRS (Sect. 2.1) to optimize a state vector of
OH distributions and annual methane emissions. The ob-
servations are assembled in an observation vector y with
total dimension m. The state vector x comprises n ele-
ments describing annual gridded non-wetland methane emis-
sions, monthly subcontinental wetland methane emissions,
and mean OH concentrations for individual years in differ-
ent latitudinal bands and seasons (Sect. 2.2). Optimization
is done by Bayesian inference using a prior estimate xA
for the state vector and error covariances for that prior esti-
mate (SA) and for the observations (SO) (Sect. 2.3), together
with the GEOS-Chem chemical transport model y=F(x),
expressing the sensitivity of the observations to the state vec-
tor (Sect. 2.4). We use an analytical solution for minimiza-
tion of the Bayesian cost function J (x) to yield the optimal
value (posterior estimate) x̂ of the state vector, the posterior
error covariance matrix Ŝ, and metrics of information con-
tent (Sect. 2.5). The subsections below describe these differ-
ent elements of the inversion, with the exception of the prior
error covariance matrix of OH concentrations, which will be
presented in a dedicated Sect. 3. Throughout this paper, we
refer to “OH concentrations” ([OH]) for a given domain as
the mass-weighted average tropospheric OH number density
for that domain and the global annual-mean tropospheric OH
concentrations as [OH].

2.1 Satellite data

GOSAT (Greenhouse Gases Observing Satellite), launched
in 2009, detects methane by solar backscatter in the SWIR
using the TANSO-FTS (Thermal and Near Infrared Sen-
sor for Carbon Observation – Fourier Transform Spectrom-
eter) instrument. In its default operating mode, GOSAT pro-
vides 10.5 km diameter nadir observations of radiance sepa-
rated by about 250 km along-track and cross-track on a sun-
synchronous orbit with an equatorial overpass at about 13:00
local solar time (LST). We use the University of Leices-
ter CO2 proxy methane retrieval v9.0 (Parker and Boesch,
2020), which uses the GOSAT observations in the 1.65 µm
band to retrieve methane as a column-averaged dry-air mix-
ing ratio XCH4 with a vertical sensitivity profile (column av-
eraging kernel) of near unity in the troposphere.

AIRS (Atmospheric Infrared Sounder), launched in 2002,
detects methane by observing TIR radiation emitted by the
Earth. AIRS provides 15 km diameter nadir observations
across a 1250 km swath with equatorial overpasses at about
01:30 and 13:30 LST, resulting in global coverage twice per
day. We use the optimal estimation MUSES-AIRS retrieval
of methane in the 8 and 12 µm bands, which provides 26-
level profiles of the dry-air methane mixing ratio (Kulawik
et al., 2021). The AIRS instrument has less than 2 degrees
of freedom for the signal per measurement and little sen-
sitivity to the lower troposphere. We therefore convert the
vertical profiles to a column-averaged dry-air mixing ratio
XCH4 above 600 hPa, with column averaging kernels featur-
ing maximum sensitivity to the upper troposphere. See Wor-
den et al. (2015) for typical GOSAT and AIRS column aver-
aging kernels.

For both AIRS and GOSAT, we remove measurements
flagged for low-quality, negative values and surface pressures
differing by more than 50 hPa from the local GEOS-Chem
surface pressure that would indicate unresolved topography.
We do not use GOSAT sunglint measurements because of
their sparsity and seasonal sampling bias (Maasakkers et al.,
2019). We also exclude measurements poleward of 60° due to
model stratospheric bias in interpreting methane column ob-
servations in the polar vortex (Turner et al., 2015; Stanevich
et al., 2020; Zhang et al., 2021). We include both daytime
and nighttime measurements for AIRS, as we find no signifi-
cant biases between them. This results in 600 000 successful
retrievals for GOSAT and 2.5 million for AIRS.

In order to compare satellite retrievals to the GEOS-
Chem simulations, we produce a model column sampled
in the same manner as the satellite data. For each AIRS
and GOSAT observation, we select the coincident GEOS-
Chem grid cell and interpolate the GEOS-Chem methane
mixing ratio profile, which is on 47 vertical levels, to the
AIRS profile (26 vertical levels) and the GOSAT profile
(20 vertical levels) using a mass-conserving interpolation
algorithm described in Keppens et al. (2019) and by the
General Observation Operator for Python (GOOPy) v0.1.0
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(https://doi.org/10.5281/zenodo.14834528, Penn and Nesser,
2025). We call these interpolated profiles cm. We then trans-
late these profiles to column-averaged dry-air mixing ratios
using the column averaging kernel a. The column averag-
ing kernel is based on mixing ratio and does not include dif-
ferent pressure weights for each level (Boesch et al., 2011),
so we apply the pressure weighting function (h) provided in
the GOSAT and AIRS data products. For an individual satel-
lite XCH4 observation y, we derive the corresponding model
value ym using

ym = hT ((I−A)ca +Acm) , (1)

where I is the identity matrix, A is the diagonal averaging
kernel matrix with the elements of a as diagonal elements,
and ca is the prior profile provided by the GOSAT and AIRS
products, which come from the MACC-II methane inversion
and TOMCAT stratospheric chemistry model for GOSAT
and from the MOZART atmospheric chemistry model for
AIRS.

Figure 1 shows satellite observations from 2013 for
GOSAT and AIRS compared to a 2013 GEOS-Chem sim-
ulation driven by GOSAT-optimized emissions from Lu et
al. (2021). As expected, GOSAT is globally unbiased rela-
tive to this GEOS-Chem simulation (−2± 12 ppb), but AIRS
is biased low (−19 ppb± 24 ppb), and thus we apply a cor-
rection of +19 ppb to the AIRS data to ensure consistency
with GOSAT. Although errors in the GEOS-Chem vertical
profiles of methane mixing ratios would affect this intercom-
parison platform, we see in Fig. 1 that the AIRS bias extends
over background regions where the vertical profile would be
uniform. Figure 1 shows additional latitudinal differences be-
tween AIRS and GOSAT, but these may provide information
for the inversion, and we have no rationale to remove them.

2.2 State vector and prior estimates

We optimize a state vector including annual gridded non-
wetland emissions, monthly subcontinental wetland emis-
sions, and OH distributions. Separate characterization of
wetland and non-wetland emissions is done on the basis
of assumed subcontinental spatial coherence and season-
ality of the prior wetland emission estimates (Maasakkers
et al., 2019; Zhang et al., 2021). Non-wetland emissions
consist of 1009 total 4°× 5° grid cells over land for each
year (1009× 3= 3027 elements). Wetland emissions are op-
timized for each month and in 14 subcontinental regions fol-
lowing Bloom et al. (2017) (12× 14× 3= 504 elements).
OH concentrations are optimized for each season and year
in four latitude bands of 30° each from 60° S to 60° N
(4× 4× 3= 48 elements). This results in n= 3579 total state
vector elements.

We define K= ∂y/∂x as the m× n Jacobian matrix de-
scribing the dependence of satellite observations on the state
vector as simulated by GEOS-Chem. We calculate the Jaco-
bian by perturbing each element of the state vector by 50 %

(for emissions) and 20 % (for [OH]), resulting in n+ 1=
3580 forward model runs. This calculation is insensitive to
the magnitudes of the perturbations because the forward
model is strictly linear in the relationship of concentrations to
emissions, and the assumption of linearity is also acceptable
for the relationship to OH concentrations in a 3-year simula-
tion. Thus, K fully defines GEOS-Chem for the purpose of
the inversion.

The state vector elements are optimized in the inver-
sion as scaling factors relative to prior estimates. We use
the same prior estimates as Lu et al. (2021). Default prior
anthropogenic emissions are from the EDGAR inventory
v4.3.2 (Crippa et al., 2018) and are superseded for the US
by the gridded EPA inventory of Maasakkers et al. (2016)
and globally for oil, gas, and coal by the GFEI inven-
tory of Scarpelli et al. (2020). Prior anthropogenic emis-
sions are assumed to be constant, with the exception of ma-
nure and rice for which we apply seasonal scaling factors
(Maasakkers et al., 2016; Zhang et al., 2016). Prior wet-
land emissions are from WetCHARTS v1.0 with 0.5°× 0.5°
spatial resolution and monthly temporal resolution, spatially
aggregated into 14 subcontinental regions for use in inver-
sions (Bloom et al., 2017). Additional prior emissions in-
clude the GFED inventory for fires at daily resolution (Ran-
derson et al., 2017) and geologic sources from Etiope et
al. (2019) scaled to the global total from Hmiel et al. (2020).
Prior tropospheric OH concentrations (Fig. 2) are archived
monthly mean values from an older (version 5) GEOS-
Chem simulation on the 4°× 5° grid (Wecht et al., 2014).
The mass-weighted annual-mean tropospheric OH concen-
tration is [OH] = 11.2 × 105 molec. cm−3, consistent with
the MCF-derived estimate from 2000 of [OH] = 10.8+0.77

−0.85×

105 molec. cm−3 (Prinn et al., 2005). More recent versions of
GEOS-Chem overestimate [OH] (Shah et al., 2023), as also
seen in other current models (Stevenson et al., 2020).

2.3 Error estimates

The inversion requires specification of both observing sys-
tem and prior error covariance matrices. The observing sys-
tem error includes contributions from the measurement and
from the forward model. We use the residual error method
described in Heald et al. (2004) to derive it. We first split
the observations into monthly 4°× 5° grid cell subsets and
compare observations within each subset to the GEOS-Chem
simulation F(x) using prior values. We then assume that the
model bias (b = F(xA)− y) within each subset is due to er-
ror in the prior estimates and that the residual represents the
observing system error. In this manner we find mean observ-
ing system error standard deviations of 12 ppb for GOSAT
and 22 ppb for AIRS, mostly attributed to the retrieval er-
ror, with reported error standard deviations averaging 10 ppb
for GOSAT and 16 ppb for AIRS. Our observing system er-
ror standard deviation for GOSAT is consistent with previous
estimates (e.g., Lu et al., 2021; Qu et al., 2021; Zhang et al.,
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Figure 1. GOSAT and AIRS observations of annual-mean methane dry-column mixing ratio (XCH4 ) in 2013, binned by 4°× 5° grid cells.
GOSAT sunglint and observations poleward of 60° are not included. The bottom panels compare these observations with a GEOS-Chem
simulation driven by 2013 posterior emissions from an inversion of GOSAT observations (Lu et al., 2021). A +19 ppb global bias correction
is applied to AIRS on the basis of this comparison. Means and standard deviations of the differences between the satellite observations and
GEOS-Chem are given inset.

Figure 2. Mass-weighted tropospheric OH concentrations in GEOS-Chem (tropospheric columns) used as prior estimates for the inversions.
Monthly mean values for January and July are shown.

2021). We construct the observing system error covariance
matrix assuming no error correlation between individual ob-
servations (diagonal matrix).

Prior error standard deviations for non-wetland emissions
are assumed to be 50 % of emissions for each 4°× 5° grid
cell with no error covariance between grid cells, as in pre-
vious studies (Maasakkers et al., 2019; Zhang et al., 2021).
The effect of this prior error is reflected in the averaging
kernel sensitivities. For wetland emissions, we calculate the
full prior error covariance matrix between all 14 regions and
36 months from the WetCHARTs model ensemble following
Bloom et al. (2017) and then shrink the off-diagonal terms
following Schäfer and Strimmer (2005) to ensure that the
matrix is positive-definite. Prior error estimates for the OH
elements of the state vector are derived in Sect. 3.

2.4 Forward model

We use the GEOS-Chem version 12.7.1 CH4 simula-
tion (https://doi.org/10.5281/zenodo.3676008, Developers of
GEOS-Chem, 2020) on a 4°× 5° grid with 47 vertical layers
as forward model for the inversion. Atmospheric transport
is driven by the Modern-Era Retrospective Analysis for Re-
search and Applications, version 2 (MERRA-2), assimilated
meteorological fields for 2013–2015 from the NASA Global
Modeling and Assimilation Office. In addition to the tropo-
spheric OH fields optimized in the inversion (Sect. 2.2), mi-
nor methane sinks in GEOS-Chem include stratospheric loss
prescribed with 2-D oxidant fields (Murray et al., 2013), ox-
idation by tropospheric Cl following Wang et al. (2019), and
soil uptake from the MeMo inventory (Murguia-Flores et al.,
2018). Initial conditions for 1 January 2013 come from the
GOSAT-optimized posterior simulation of Lu et al. (2021)
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and are globally unbiased with respect to GOSAT and ad-
justed AIRS observations as described in Sect. 2.1.

2.5 Inversion

We perform three inversions: “GOSAT-only”, which is op-
timized with GOSAT observations; “AIRS-only”, which is
optimized with AIRS observations; and “GOSAT+AIRS”,
which is optimized with both. The equations below are for
the inversion using both GOSAT and AIRS observations. Be-
cause we assume no error correlations between the instru-
ments, an inversion with only one instrument can be derived
by removing all terms pertaining to the other instrument.

We minimize a Bayesian cost function that accounts for
the distance from the prior estimate (xA) and the satellite ob-
servations (y) that is weighted by the inverse of the prior (SA)
and observing system (SO) error covariance matrices and in-
cludes an additional regularization factor (γ ). Observing sys-
tem components from GOSAT and AIRS are denoted by sub-
scripts. Assuming normal errors and no correlation between
GOSAT and AIRS errors, the cost function is given by

J (x)= (x− xA)T S−1
A (x− xA)

+ γGOSAT
(
yGOSAT−KGOSATx

)T S−1
O,GOSAT(

yGOSAT−KGOSATx
)
+ γAIRS

(
yAIRS−KAIRSx

)T
S−1

O,AIRS(yAIRS−KAIRSx) . (2)

We can then solve min(J (x)) analytically by setting
∂J/∂x = 0 and obtain the posterior solution x̂ (Rodgers,
2000):

x̂ = xA+GGOSAT
(
yGOSAT−KGOSATxA

)
+GAIRS

(
yAIRS−KAIRSxA

)
, (3)

where x̂ is the posterior estimate for the state vector and
GAIRS and GGOSAT are the gain matrices:

GAIRS = SAKT
AIRS

(
KAIRSSAKT

AIRS+
1

γAIRS
SO,AIRS

)−1

GGOSAT = SAKT
GOSAT(

KGOSATSAKT
GOSAT+

1
γGOSAT

SO,GOSAT

)−1

. (4)

The analytical solution also yields a closed-form expres-
sion for the posterior error covariance matrix Ŝ characteriz-
ing the normal error in x̂:

Ŝ=
(
γGOSATKT

GOSATS−1
O,GOSATKGOSAT

+γAIRSKT
AIRSS−1

O,AIRSKAIRS+S−1
A

)−1
. (5)

We can also derive the averaging kernel matrix ∂x̂/∂x that
describes the sensitivity of the posterior estimate to the true
state:

A= In− ŜS−1
A . (6)

The trace of the averaging kernel gives us the degrees of
freedom for signal (DOFS), which describes the number of
pieces of independent information derived from the inver-
sion.

For some of our applications, we will aggregate state vec-
tor elements into a reduced state vector xred using a summa-
tion matrix W:

x̂red =Wx̂, (7)

and we derive the corresponding averaging kernel (Ared) and
posterior error covariance (Ŝred) for the aggregated solution:

Ared =WAW∗, (8)

Ŝred =WŜWT , (9)

where W∗ is the Moore–Penrose pseudoinverse of W.
The regularization factor γ is intended to avoid overfitting

to observations caused by not accounting for error covari-
ance in the observing system (matrix SO). We determine the
appropriate value for γ using the technique described in Lu
et al. (2021). The sum of prior terms in the posterior value of
the cost function, JA

(
x̂
)
=
(
x̂− xA

)T S−1
A
(
x̂− xA

)
,should

follow a chi-squared distribution with the expected value
JA
(
x̂
)
= n, and we adjust γ to achieve this. We determine

γGOSAT and γAIRS separately using GOSAT-only and AIRS-
only inversions. In this manner we find γGOSAT = 0.2 and
γAIRS = 0.1. To provide equal weight to [OH] and methane
emissions in the cost function, we follow Maasakkers et
al. (2019) and scale the OH prior error covariance matrix
SA,OH by the ratio of the number of emission state vector
elements to OH state vector elements, or 3531 / 48, before
inserting them into the full prior error matrix SA.

3 Construction of prior error covariance matrix for
OH concentrations

GOSAT observations of methane have been used in inver-
sions to infer the global-mean tropospheric OH concentra-
tion, its interannual variability, and its interhemispheric dif-
ference (Maasakkers et al., 2019; Qu et al., 2021, 2024;
Zhang et al., 2021). Here we explore how much information
satellite observations can actually provide on OH concentra-
tions by including in the state vector the OH concentrations
in individual years (2013–2015), four latitudinal bands, and
four seasons, for a total of 48 state vector elements (Sect. 2.2)
for which we can diagnose posterior error correlations and
information content. This requires accounting for prior error
correlations between these different elements, as represented
in a 48× 48 matrix SA,OH.

We construct the prior error covariance matrix for OH in
the following manner. First, we specify the error statistics for
global annual-mean mass-weighted tropospheric OH con-
centrations, [OH]. This includes a systematic error of 10 %
within the MCF constraint (Prinn et al., 2005) and an inter-
annual variability error that we estimate to be 5 % on the
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basis of interannual variability of model and MCF-derived
[OH] reported by Holmes et al. (2013). Thus, the prior error
covariance matrix for [OH] in our 3 simulation years (2013–
2015), in units of fractional error variances and covariances,
is given by a 3× 3 matrix SA,OH = (σ 2

ij ):

SA,OH

=

 0.052
+ 0.12 0.12 0.12

0.12 0.052
+ 0.12 0.12

0.12 0.12 0.052
+ 0.12

, (10)

where the off-diagonal terms enforce the assumption of a
10 % systematic error (perfectly correlated across all years).
The OH interannual variability is assumed not to be corre-
lated across years.

Prior error correlations between OH concentrations in dif-
ferent latitudinal bands and seasons should account for our
current knowledge of the OH distribution. For this purpose
we use monthly mean output for 1 year from the ensemble
of 11 independent ACCMIP global atmospheric chemistry
models reported in Naik et al. (2013). All ACCMIP models
include the same anthropogenic emissions of NOx , CO, and
NMVOCs. They have different natural emissions, chemical
mechanisms, and meteorology. Global distributions of OH
concentrations in each ACCMIP model were presented pre-
viously in Zhang et al. (2018). For each ACCMIP model, we
calculate the mass-weighted integral of OH concentrations
vertically up to 200 hPa for each 30° latitude band for each
season. We then compute the variances and covariances be-
tween each latitude band and season across the ensemble of
ACCMIP models. The resulting 16× 16 covariance matrix
for the ACCMIP models SA,AM is taken as the error covari-
ance matrix in the spatial and seasonal distribution of OH for
the inversion, with error standard deviations represented by a
diagonal matrix D.

Figure 3 shows the spatial and seasonal error correlation
matrix RA,AM and the error standard deviations D calculated
directly from the ACCMIP ensemble, such that SA,AM =

DRA,AMD. We find strong error correlations in the tropics
for all seasons, indicating a commonality of effects driving
[OH] differences between models. Error correlations are also
strong between midlatitude summer and the tropics, likely
for the same reasons. Midlatitude OH concentrations in other
seasons show much weaker error correlations, implying that
they are driven by different photochemistry and emissions, as
might be expected. Northern and southern midlatitudes are
highly correlated in their respective winters.

We replicate the 16× 16 spatial and seasonal OH error co-
variance matrix SA,AM constructed from the ACCMIP data
to create a 48× 48 error covariance matrix for the 3 years of
our analysis, resulting in the following block matrix: SA,AM SA,AM SA,AM

SA,AM SA,AM SA,AM
SA,AM SA,AM SA,AM

 . (11)

This matrix is low-rank because it was constructed with
information from only 11 models to estimate 48 state vector
elements. We use the method of Schäfer and Strimmer (2005)
to shrink the off-diagonal errors and produce a matrix that is
positive-definite and invertible. Schäfer and Strimmer (2005)
show that their method produces a more accurate estimate of
the true error covariance matrix (where accuracy is defined
by comparison of the true and estimated eigenvalues). After
off-diagonal shrinkage, matrices along the diagonal of the
block matrix differ from those from off the diagonal. We refer
to the resulting 16× 16 covariance matrices of spatial and
seasonal errors within years as SA,AM

′′ and between years as
SA,AM

′. Additionally, we refer to the error variances of the
global-mean [OH] for 1 year inferred from these matrices as
σ 2

AM
′′ and σ 2

AM
′, respectively.

We can then construct SA,OH from the regularized AC-
CMIP covariance matrices SA,AM′′ and SA,AM′ scaled by the
annual-mean error variances inferred from the MCF observa-
tions σ 2

ij (Eq. 10) and the spatial and seasonal error variances

inferred from the ACCMIP model σ 2
AM
′′ and σ 2

AM
′. We can

formulate SA,OH as a block matrix, where each block is an
appropriately scaled ACCMIP covariance matrix for 1 year,
as follows:

SA,OH

=


σ 2

11

σ 2
AM
′′ SA,AM

′′ σ 2
12

σ 2
AM
′ SA,AM

′ σ 2
13

σ 2
AM
′ SA,AM

′

σ 2
21

σ 2
AM
′ SA,AM

′ σ 2
22

σ 2
AM
′′ SA,AM

′′ σ 2
23

σ 2
AM
′ SA,AM

′

σ 2
31

σ 2
AM
′ SA,AM

′ σ 2
32

σ 2
AM
′ SA,AM

′ σ 2
33

σ 2
AM
′′ SA,AM

′′

. (12)

This enforces error variances and covariances for annual
global-mean OH concentrations identical to the values σ 2

ij

from Eq. (10).
We refer to Eq. (12) as the full-correlation error covari-

ance matrix. We will also test the effect of simpler OH cor-
relation assumptions on inversion results while keeping the
state vector the same. First is a no-correlation diagonal error
covariance matrix that assumes no error correlation between
years, seasons, or latitude bands. Second is a correlated-years
error covariance matrix that includes error correlations be-
tween years but with no spatial or seasonal structure. We
scale the correlated-years error covariance matrix such that
the error (co)variances for [OH] are identical to SA,OH in
Eq. (10). We cannot do the same for the no-correlation error
covariance matrix because it is diagonal; however, we scale
it such that the error variance of the 3-year average is identi-
cal to that represented by SA,OH. The variance of the 3-year
average is therefore identical for all three error covariance
matrices.
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Figure 3. Error correlations for model OH concentrations in different latitude bands and seasons (denoted as RA,AM in the text). Pearson’s
error correlation coefficients are calculated for the ensemble of 11 different ACCMIP models. The mean and standard deviation of the
ACCMIP ensemble for each latitude and season is inset above.

4 Results and discussion

4.1 Quantifying emissions

Figure 4 compares the global-mean dry-column mixing ratio
(XCH4 ) simulated by GEOS-Chem and observed by GOSAT
and AIRS. The prior simulation shows an increasing nega-
tive bias with time because of an incorrect balance between
methane sources and sinks. All inversions (posterior solu-
tions) are successful in correcting this bias, including its sea-
sonality.

The inversions optimize both methane emissions and OH
concentrations. Figure 5 shows the prior non-wetland emis-
sions and 2013–2015 posterior-to-prior correction factors for
all three inversions, as well as the averaging kernel sensi-
tivities. The GOSAT-only inversion (Fig. 5b) shows upward
corrections to the southern United States, Brazil, and eastern
Africa and downward corrections to East Asia and parts of
Russia, consistent with Zhang et al. (2021), who used simi-
lar prior estimates. The AIRS-only inversion shows generally
similar results but weaker averaging kernel sensitivities. Re-
sults from the AIRS-only inversion are consistent with those
of the GOSAT-only inversion, with the exception of strong
upward corrections over Brazil, Argentina, and India, which
together cause much higher global methane emissions in the
AIRS-only solution than the two solutions constrained by

GOSAT observations. The greater power of the GOSAT data
to constrain emissions on the 4°× 5° grid is measured by the
DOFS (144 for GOSAT, 33 for AIRS). Adding AIRS obser-
vations to GOSAT increases the DOFS by only 4 %, indicat-
ing that the information on emissions from these two sensors
has extensive overlap. The GOSAT+A IRS inversion results
largely follow those of the GOSAT-only inversion, but the
global posterior emission estimate is lower than in either the
GOSAT-only or AIRS-only inversions because of selected re-
gions where AIRS has influence, such as to decrease emis-
sions in China.

Our finding that AIRS does not add much information for
optimizing methane emissions beyond GOSAT alone is not
inconsistent with a previous finding by Worden et al. (2015)
that TIR information from the TES satellite instrument im-
proves the retrieval of lower tropospheric methane compared
to a GOSAT-only retrieval. In our inversion, the GEOS-Chem
forward model effectively provides the information to sepa-
rate lower tropospheric methane from higher altitudes. An
implication is that TIR observations are not necessary for en-
forcing that separation beyond the information from GEOS-
Chem.

We find small (< 10 Tg a−1) changes from year to year
for methane emissions in all solutions, and most of these
changes are attributed to non-wetland emissions. This is con-
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Figure 4. Difference between the global-mean dry-column mixing ratio (XCH4 ) simulated by GEOS-Chem and observed by GOSAT (a) and
AIRS (b). Monthly mean results are shown for the 2013–2015 inversion period. The GEOS-Chem simulation is driven by either prior or
posterior values for emissions and OH concentrations. Posterior values are from inversions using either GOSAT or AIRS observations or
both. The 19 ppb correction applied to AIRS observations is to remove the bias with GOSAT (Sect. 2.1).

Figure 5. Optimized global distributions of 2013–2015 non-wetland methane emissions using GOSAT, AIRS, and GOSAT+AIRS observa-
tions. Prior emissions are shown in (a). The average posterior-to-prior ratios from 2013–2015 for inversions with each set of observations are
shown in (b)–(d). Total emissions are inset in (a)–(d) with their error standard deviations. Averaging kernel sensitivities (diagonal elements
of the averaging kernel matrix) averaged over 2013–2015 are shown in (e)–(g). The averaging kernel sensitivities represent the ability of the
inversion to constrain the posterior solution independently of the prior estimate (1= fully, 0= not at all). The degrees of freedom for signal
(DOFS) for the 1009 total 4°× 5° grid cells averaged over 3 years are inset.
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sistent with the solutions in Yin et al. (2021), who find global
methane emission changes over 2013–2015 on the order of
1 %–2 %.

Figure 6 shows inversion results for the seasonality of
wetland emissions in the 14 subcontinental regions of the
WetCHARTs inventory used as a prior estimate. The season-
ality and magnitude of the GOSAT and GOSAT+AIRS pos-
terior estimates are consistent with Zhang et al. (2021), who
used a similar wetland state vector but with more years of
GOSAT data. Our posterior produces negative emissions in
eastern Canada in the spring, and this feature is also present
in the solution of Zhang et al. (2021). They attribute these
negative emissions to potential soil sinks in the region. Re-
markably, the AIRS-only inversion shows the same feature.
Even though the prior simulation is biased low (Fig. 4), the
posterior global sum of non-wetland and wetland emissions
in the GOSAT and GOSAT+AIRS inversions is lower than
the prior estimate. This is because of a compensating de-
crease in [OH], as analyzed below.

4.2 Quantifying global-mean OH concentrations
independently of emissions

We now turn our attention to the ability of the satellite ob-
servations to constrain the global annual-mean OH concen-
tration,

[
OH

]
, independently of emissions and for individ-

ual years. Let E denote the global annual-mean methane
emission rate. The annual rate of change in atmospheric
methane mass, 1m/1t , is given by

1m

1t
= E− k

[
OH

]
m−L, (13)

where k is the rate constant for oxidation of methane by tro-
pospheric OH with a suitable temperature kernel (Prather and
Spivakovsky, 1990) and L is the sum of other minor sinks
with L� k[OH]m. Considering that 1m/1t is set by the
observations used in the inversion and that L is minor and
not optimized, we see that corrections toE and [OH] are nec-
essarily correlated. In order to constrain

[
OH

]
, we need in-

dependent information on emissions. The lower-atmosphere
gradients over land observed by GOSAT can provide that in-
formation, as pointed out by Zhang et al. (2021) and shown
in Sect. 4.1, but the AIRS TIR measurements cannot, and this
is reflected in the low DOFS of Figs. 5 and 6.

Figure 7 shows the corrections to E and [OH] for individ-
ual years from the inversions. The inversions apply a system-
atic correction to [OH] in all 3 years, reflecting bias in the
prior [OH] and a smaller interannual variability. The AIRS-
only inversion has excessive [OH], despite its high DOFS
for OH, to offset its poorly constrained and excessive global
emission (Fig. 5). Figure 7b shows the rows of the reduced
averaging kernel matrix summing emissions globally (Eq. 8)
and diagnoses the ability of the inversion to separately cor-
rect [OH] and E in individual years. We find that the averag-
ing kernels for [OH] in individual years are strongly peaked,

with no significant aliasing from emissions and only minor
aliasing with [OH] for other years. We conclude that [OH]
can be optimized for individual years and independently of
emissions. Some smoothing of the inverse solution to [OH]
across years is to be expected in view of the long lifetime of
methane, but we are still able to capture individual years and
thus interannual variability of [OH]. AIRS alone is able to
separate [OH] from emissions, but as mentioned above the
bias in its optimization of emissions propagates to a bias
in its optimization of [OH]. GOSAT+AIRS provides only
slightly more information than GOSAT alone. A similar aver-
aging kernel analysis by Maasakkers et al. (2019) for 2010–
2015 GOSAT observations found that the observations could
constrain the average [OH] over all years but not the interan-
nual variability. In that study the emission trend was imposed
to be linear, which would strongly detract from the ability to
independently constrain interannual variability of [OH].

Our finding that AIRS provides little information on [OH]
beyond that provided by GOSAT contrasts with the Zhang
et al. (2018) OSSE that found TIR methane observations to
add significant information on emissions and [OH] relative
to SWIR alone. That OSSE may have found a greater benefit
from TIR because they assumed the SWIR and TIR synthetic
observations to be perfectly consistent, while there are likely
inconsistencies between the GOSAT and AIRS observations
beyond our global correction (Fig. 1) that translate into the
differences between GOSAT-only and AIRS-only inversion
results. Zhang et al. (2018) also gave the same weight to
SWIR and TIR observations, whereas we find that the weight
for AIRS observations should be half of that for GOSAT
based on optimization of the γ coefficients (Sect. 2.5). Be-
yond this, comparison of our results with Zhang et al. (2018)
is difficult because they emulated different satellite instru-
ments (TROPOMI for SWIR and CrIS for TIR) and did not
report their assumed observational error variances.

4.3 Resolving spatial and seasonal patterns in OH
concentrations

We now investigate the ability of the methane observations
to constrain the spatial and seasonal variations in OH con-
centrations. Figure 8 shows the corrections to OH concen-
trations from the inversion as a function of latitude and the
corresponding rows of the averaging kernel matrix. We find
that GOSAT and GOSAT+AIRS provide only weak con-
straints on the OH latitudinal distribution because prior errors
from the ACCMIP ensemble are highly correlated (Fig. 3).
We are unable to resolve the midlatitudes, where averaging
kernel rows show higher sensitivity to the adjacent tropi-
cal latitude band and almost no sensitivity to the midlati-
tudes themselves. There is some information on the inter-
hemispheric ratio of OH concentrations, with the inversion
decreasing the NH/SH ratio from 1.11± 0.08 in the prior
estimate to 1.01± 0.02 (for GOSAT) and 1.04± 0.01 (for
GOSAT+AIRS). This is consistent with previous inversions
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Figure 6. Monthly mean 2013–2015 wetland emissions for the 14 WetCHARTs subcontinental regions as defined by Bloom et al. (2017).
Prior emission estimates from the mean of the WetCHARTs inventory ensemble are compared to posterior emissions from the GOSAT,
AIRS, and GOSAT+AIRS inversions. The degrees of freedom (DOFS) for signal aggregated to 14 regions× 12 months= 168 state vector
elements are also given.

Figure 7. Ability of inversions of GOSAT, AIRS, and GOSAT+AIRS methane observations to quantify global annual-mean tropospheric
[OH] for individual years and independently of emissions. (a) The 2013–2015 percentage corrections to the [OH] prior estimate. Posterior
error standard deviations are shown as error bars. DOFS are shown in the inset (DOFS = 3 would imply perfect separate quantification
of
[
OH

]
in individual years). (b) Rows of the reduced averaging kernel matrix describing the ability of the observing system to separately

quantify emissions (E) and
[
OH

]
for the individual years. A perfect observing system would have an averaging kernel sensitivity of 1 for the

reduced state vector element of interest (perfect characterization) and 0 for other elements (no sensitivity of the solution to other elements).
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Figure 8. Ability of inversions of GOSAT, AIRS, and GOSAT+AIRS methane observations to resolve the latitudinal variability of OH con-
centrations. (a) Latitudinal distribution of mass-weighted tropospheric [OH] in the prior estimate (prior error standard deviation is shown with
shading) and in the posterior estimates. The NH/SH interhemispheric ratio and its error standard deviation are inset. (b) Rows of the reduced
averaging kernel matrix describing the ability of the observing system to separately quantify [OH] in different latitudinal bands. A perfect
observing system would have an averaging kernel sensitivity of 1 for the reduced state vector element of interest (perfect characterization)
and 0 for other elements (no error correlation).

of methane observations showing downward corrections in
the NH/SH ratio (Zhang et al., 2021) and independent ev-
idence from MCF observations that current model NH/SH
ratios are too high (Naik et al., 2013; Patra et al., 2014). Nev-
ertheless, we see from the averaging kernels that there is sig-
nificant aliasing of the information between the northern and
southern tropics because errors are highly correlated across
models (Fig. 3). It could be that the ensemble of ACCMIP
models exaggerates the error correlation on account of us-
ing the same anthropogenic emissions, but OH in the tropics
is more sensitive to lightning, fires, and clouds, which vary
across the models.

The seasonal cycle for [OH] is shown in Fig. 9. We find
from the averaging kernel matrix that the inversion provides
significant information on the seasonality of [OH] in the two
hemispheres, despite the smearing across latitudinal bands
found in Fig. 8. There is some aliasing between adjacent sea-
sons, but winter and summer are well separated; however,
this is mainly the case for the tropics since there is little in-
formation from midlatitudes (Fig. 8). The GOSAT+AIRS
inversion increases the amplitude of the seasonal cycle in
both hemispheres. The posterior seasonal patterns from the
GOSAT and GOSAT+AIRS inversions do not differ signif-
icantly from the prior estimates and thus support the prior
estimates.

We have found that the ability of the inversion to optimize
spatial and temporal features of the OH distribution is limited
by prior error correlations from the independent knowledge
expressed by the ACCMIP models. We now examine the ef-
fect of these prior error correlations in sensitivity simula-
tions for GOSAT-only inversions in which we either assume
no error correlations between OH state vector elements (no-

Figure 9. The same as Fig. 8 but for the seasonality of OH concen-
trations in each hemisphere.

correlation inversion) or error correlations only for the in-
terannual variability of [OH] (correlated-years inversion), as
described by Eq. (10). Aggregated errors in [OH] are scaled
to be the same in all inversions, as described in Sect. 3. Fig-
ure 10 shows the results for the GOSAT-only inversion. Con-
straints on [OH] are similar across all inversions, as would
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Figure 10. Sensitivity of [OH] inversion results to the prior error correlations imposed for interannual, seasonal, and latitudinal variability.
Results are shown for the 2013–2015 GOSAT-only inversion, for our base inversion with full error correlations from the ACCMIP ensemble
(same results as in Figs. 7–9), and for inversions with no [OH] error correlations or with [OH] error correlations for individual years only.
Panels show (a) annual-mean [OH] for individual years, (b) 2013–2015 latitudinal distribution, and (c, d) 2013–2015 seasonal variations
for the Northern Hemisphere and Southern Hemisphere. Prior error standard deviations are shown with shading. The correlated-years and
no-correlation inversions show the same latitudinal and seasonal variations in [OH].

be expected since our base full-correlation inversion can ef-
fectively constrain that quantity for individual years. The in-
versions without error correlations show larger perturbations
in the latitudinal distribution of [OH], with higher values
at midlatitudes, lower values in the tropics, and a greater
shift to the Southern Hemisphere. The spatial error corre-
lations imposed by the ACCMIP models (Fig. 3) suppress
these changes in the base inversion. To the extent that the
ACCMIP ensemble fairly represents error correlations in the
OH distribution, ignoring that prior information would result
in overfit to observations. The seasonality in each hemisphere
is better constrained by the observing system because there is
more contrast between summer and winter, with the northern
and southern tropics being opposites in the seasonal phase.
However, we find that ignoring seasonal error correlations
in the no-correlation and correlated-years inversions results
in opposite corrections to OH concentrations in spring and
summer of the Northern Hemisphere that are in fact highly
correlated in the ACCMIP models (Fig. 3).

5 Conclusions

We examined the ability of satellite observations of atmo-
spheric methane to quantify different features of the tropo-
spheric OH distribution including global multi-year mean,
interannual variability in the global mean, interhemispheric
ratio, intra-hemispheric latitudinal variation, and seasonality.
The work was motivated by the need to find a replacement
proxy for tropospheric OH as methyl chloroform (MCF) con-
centrations fall below detectable levels and to explore how
much information can be extracted from the satellite obser-
vations.

For this purpose we used a 3-year (2013–2015) analyti-
cal inversion of GOSAT (SWIR) and AIRS (TIR) satellite
observations. SWIR observations have near-unit sensitivity
for the whole atmospheric column but are limited to daytime
and (mainly) land. TIR observations are sensitive mainly to
the middle and upper troposphere but include nighttime and
oceans.

Several previous inversions investigated the ability of
satellite observations of methane to quantify the OH distribu-
tion but did not properly account for prior error correlations
in that distribution. Here we provide detailed accounting of
this error correlation, including for global-mean OH and in-
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terannual variability using MCF and for spatial and seasonal
variations using the ACCMIP ensemble of 11 global atmo-
spheric chemistry models. We find strong prior error correla-
tions between latitude bands and seasons.

Optimizing OH concentrations from satellite observations
of methane requires independent information on emissions,
and the SWIR observations are essential for that purpose.
We find that a GOSAT-only inversion can effectively con-
strain global-mean OH and its interannual variability inde-
pendently of emissions, thus providing information compara-
ble to MCF. Adding AIRS observations to the inversion does
not significantly improve the constraint. Retrievals combin-
ing SWIR and TIR information from the same instrument,
such as GOSAT-2 (Kuze et al., 2022; Suto, 2022), could pos-
sibly improve the constraint by being internally consistent.
This would need to be examined in future work. We con-
ducted the inversion for only 3 years (2013–2015) to demon-
strate the capability for constraining OH interannual variabil-
ity. Qu et al. (2024) recently conducted an inversion of the
full GOSAT record from 2011 to 2022 to quantify the OH
interannual variability over that 13-year period.

The ability of the inversion to resolve the latitudinal vari-
ability of OH is very limited because of strong error correla-
tion across latitudes in the ACCMIP ensemble. Not account-
ing for this error correlation would result in an overfit to ob-
servations. In particular, there is no information on OH at
midlatitudes in particular. The inversion provides some infor-
mation on the interhemispheric OH ratio, and this is impor-
tant for interpreting the corresponding gradient in methane
observations (East et al., 2024). There is also some informa-
tion on seasonality of OH concentrations, and the inversion
confirms the prior seasonality from the ACCMIP models.

Acquiring finer regional-scale information on OH is of
great interest, but the long lifetime of methane likely lim-
its the information that it can provide to the global scale,
even with improved satellite instruments. Satellite observa-
tions of shorter-lived species driving OH chemistry includ-
ing H2O, O3, CO, NO2, and HCHO provide fine-scale infor-
mation on OH through chemical data assimilation (Miyazaki
et al., 2020), but the results may be biased by errors in the
chemical mechanisms (Travis et al., 2020; Shah et al., 2023).
The global-scale information on OH concentrations available
from methane observations can be used for independent eval-
uation of such data assimilation products.
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