
Supplement of Atmos. Chem. Phys., 25, 2667–2694, 2025
https://doi.org/10.5194/acp-25-2667-2025-supplement
© Author(s) 2025. CC BY 4.0 License.

Supplement of

Characterization of brown carbon absorption in different European
environments through source contribution analysis
Hector Navarro-Barboza et al.

Correspondence to: Hector Navarro-Barboza (hector.navarro@bsc.es) and Oriol Jorba (oriol.jorba@bsc.es)

The copyright of individual parts of the supplement might differ from the article licence.



S1 Flowchart of the k optimization process

The optimization process described in Section 2.4 is illustrated in the flowchart shown in Figure S1. The procedure starts
with the tagging of OA per source derived from MONARCH runs, followed by the application of a priori k values imposed
based on Saleh (2020). The subsequent steps include calculating absorption and determining k values for each source with the
SLSQP (Sequential Least Squares Programming) algorithm that minimizes the error with the observed absorption. The process5
concludes with the resulting optimized k values at 370 nm for each component and the calculation of the final OA absorption.
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Figure S1. Steps to derive optimized imaginary refractive index k for total or tagged OA.

S2 Statistical metrics

The model results presented in Section 3 are evaluated using five statistical metrics: Normalized Mean Bias (NMB), Nor-
malized Mean Error (NME), Pearson’s correlation coefficient (r), Fraction of Predictions within a Factor of Two (FAC2) of
observations and Fractional Bias (FB). We followed the performance assessment approach recommended by Emery et al.10
(2017) for photochemical models, particularly for pollutants such as Elemental Carbon (EC) and Organic Carbon (OC), fo-
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cusing on metrics including FB, NME, and NMB. These recommendations are based on the “goal” and “criteria” proposed
by Boylan and Russell (2006), where the “goal” signifies the peak performance expected from a model, and the “criteria”
represent a level of performance that should be achievable by most models. The metrics are defined in Table S1.

Table S1. Statistical metrics used for model performance evaluation. m: model, o: observations.

Metric Equation Goal Criteria
OC EC OC EC

Normalized mean bias (NMB)
∑

(mi−oi)∑
oi

× 100 <±15% <±20% <±50% <±40%

Normalized mean error (NME)
∑

|mi−oi|∑
oi

× 100 < 45% < 50% < 65% < 75%

Fractional bias (FB) 2
N

∑ (mi−oi)
(oi+oi)

<±30%a <±30%a <±60%a <±60%a

Factor two (FAC2) Fraction where 0.5<m/o < 2 – – ≥±50%b ≥±50%b

Pearson correlation coefficient (r)
∑

[(mi−m)×(oi−o)]√∑
(mi−m)2×

∑
(oi+o)2

– – – –

Bias
∑

(mi−oi)
N – – – –

Root mean square error (RMSE)
√

1
N

∑
(mi − oi)2 – – – –

a Recommended FB values for PM by Boylan and Russell (2006).
b Recommended metrics for air quality models by Chang and Hanna (2004) and Soni et al. (2021).

S3 Evaluation of OA Concentrations Across Europe15

Figure S2 presents scatter plots comparing modeled and observed OA concentrations at the 12 stations. The correlation coef-
ficients (r) vary by site, ranging from 0.21 at MSY to 0.77 at PAY, indicating different levels of agreement between the model
and observations. At the KRA and DEM stations, the model tends to overestimate OA concentrations, as indicated by positive
fractional bias (FB) values of 32.17 and 34.57, respectively. Conversely, at the HEL and MSY stations, the model underesti-
mates OA concentrations, with negative FB values of -19.31 and -37.90, respectively. Seasonal variations are evident in the20
scatter plots. Higher concentrations are observed during the DJF (blue) and MAM (orange) seasons, particularly at KRA and
RIG, while lower concentrations are seen during the JJA (green) and SON (red) seasons. This seasonal trend highlights the
importance of considering temporal variations in OA modeling.
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Figure S2. Scatter plots comparing modeled and observed OA concentrations across twelve different locations (HYY, HEL, KRA, SIR, OPE,
RIG, PAY, IPR, MAR, MSY, BCN, DEM). Each plot includes data points color-coded by season: DJF (blue), MAM (orange), JJA (green),
and SON (red). The plots also display the correlation coefficient (r), fractional bias (FB), and the linear regression equation (y) for each
location. The dashed line represents the 1:1 line, indicating perfect agreement between modeled and observed values.

Complementary, Table S2 summarizes the statistical evaluation of the 12 stations (DJF December-January-February; MAM
March-April-May; JJA June-July-August; SON September-October-November). In general, the “criteria” are met in most25
stations and seasons, although some sites fall short of the more stringent “goal”. A key trend observed is that the model
performs most robustly during the spring season (MAM), with many stations reaching the “goal” and “criteria”. In contrast,
the summer (JJA) and winter (DJF) seasons exhibit greater variability.

During winter (DJF), several stations show strong correlations, such as HYY (r = 0.9), but discrepancies arise in metrics
such as FAC2 (e.g., HYY with a low FAC2 = 23.5), indicating a tendency to overestimate OA concentrations during this30
period. This overestimation is likely related to the representation of residential emissions in the model, which are dominant
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during the colder months. In contrast, during the spring season (MAM) shows improved model performance, particularly
at stations such as HEL, were high FAC2 value (93.6%) and strong correlation (r = 0.7) suggest a better balance between
emission sources and atmospheric processes during this period. Fire emissions, which increase in significance during spring,
may contribute to improved accuracy (Urbieta et al., 2015; Turco et al., 2017). Many stations show their best performance35
during MAM, achieving low FB and NME, such as SIR, which demonstrates consistent accuracy across multiple metrics.

Summer (JJA) and autumn (SON) introduce greater variability in model performance. Some stations, such as KRA in
SON, exhibit low correlations (r = 0.3), but others maintain high FAC2 values, like PAY in JJA (100%) and RIG in SON
(100%). This suggests that, while the model effectively captures overall concentrations in some cases, it faces difficulties with
temporal dynamics, particularly the biogenic SOA contributions that become more pronounced during the warmer months.40
The challenges of modeling biogenic SOA during JJA are particularly evident at stations such as HYY and MSY, where the
model underestimates the observed peaks in OA concentrations, driven by SOA formation. Stations like SIR and OPE manage
to meet NME and NMB targets in these seasons, despite challenges in FB, as highlighted in gray in Table S2.

Data availability varies across stations, with notable gaps at HEL and MAR during JJA and SON, which limits the ability
to fully assess model performance at these locations for those periods. Overall, the analysis indicates that while the model45
performs well across seasons, particularly in spring, it faces challenges during summer and winter in fully capturing the
complex processes driving OA concentrations. These limitations are especially evident in modeling residential emissions during
winter and SOA formation in summer.

Table S2. Seasonal statistical evaluation of OA concentrations. Goal achievement (Gray) and criteria benchmarks (Bold) based on Emery
et al. (2017). NMB: Normalized Mean Bias, NME: Normalized Mean Error, and FAC2 expressed as percentages.

Metric r FAC2 FB NME NMB r FAC2 FB NME NMB r FAC2 FB NME NMB r FAC2 FB NME NMB
Season DJF DJF DJF DJF DJF MAM MAM MAM MAM MAM JJA JJA JJA JJA JJA SON SON SON SON SON
STN

HYY 0.94 23.53 84.43 146.11 146.11 0.64 79.17 -9.02 45.37 -8.63 0.84 73.56 -52.56 43.73 -41.62 0.83 72.13 -3.78 39.10 -3.71
HEL 0.65 66.10 45.89 70.61 59.55 0.72 93.59 -3.64 33.46 -3.58 nan nan nan nan nan nan nan nan nan nan
KRA 0.53 73.33 -26.97 44.80 -23.77 0.67 90.48 -20.53 32.72 -18.62 0.55 65.43 -55.38 44.73 -43.37 0.34 74.63 -32.54 41.06 -27.99
SIR 0.61 61.84 28.93 58.73 33.82 0.55 79.27 -3.06 37.00 -3.02 0.63 87.78 -12.93 38.48 -12.14 0.36 66.25 32.90 64.81 39.37
OPE 0.80 70.59 -4.48 45.92 -4.38 0.85 68.42 -52.85 43.28 -41.81 0.57 66.67 -51.30 43.48 -40.83 0.78 85.00 29.82 49.58 35.05
RIG 0.94 40.00 10.77 53.95 11.38 -0.06 71.43 -14.61 50.09 -13.62 0.77 75.00 -24.56 32.22 -21.88 0.61 100.00 3.16 26.98 3.21
PAY 0.84 76.47 -12.39 32.32 -11.67 0.09 85.71 -13.43 28.80 -12.58 0.86 100.00 -32.95 33.78 -28.29 0.51 87.50 -31.94 29.23 -27.54
IPR 0.62 61.54 -50.53 43.89 -40.34 0.33 49.32 17.31 70.19 18.95 0.26 75.28 17.77 45.24 19.50 0.52 71.43 21.84 52.85 24.51
MAR 0.61 80.77 -29.05 37.95 -25.36 0.49 77.78 38.48 63.81 47.64 0.48 96.00 15.29 33.37 16.56 nan nan nan nan nan
MSY 0.66 14.29 95.00 180.93 180.93 0.39 57.14 54.86 86.62 75.59 0.63 86.96 -31.59 29.38 -27.28 0.52 70.00 48.39 69.02 63.84
BCN 0.58 41.82 70.13 112.18 108.01 0.62 80.00 28.34 44.92 33.02 0.80 86.96 -37.33 32.21 -31.46 0.37 75.00 13.24 45.74 14.17
DEM 0.47 83.33 -0.40 36.28 -0.40 0.41 86.21 -38.31 35.59 -32.15 0.38 72.22 -50.43 42.66 -40.27 0.58 83.02 -32.00 30.10 -27.59

S4 OA concentrations and source contribution at BCN and MSY sites using a local bottom-up emission inventory

Figure S3 shows the time series of OA concentrations and source contributions for BCN and MSY sites derived from a50
simulation of the MONARCH model using a local bottom-up emission inventory for Spain (HERMESV3_BU; Guevara et al.,
2020). The simulation was conducted for the months of January and July with a spatial resolution of ∼ 5 km. The main
differences between HERMESv3_BU and CAMS-REG_v4.2 inventories are discussed in Navarro-Barboza et al. (2024). In
contrast to results using the CAMS inventory depicted in Figure 3, results with the HERMESv3_BU inventory closely align
with observational data in BCN and MSY, particularly during winter. The comparison between the two inventories reveals55
marked differences in OA component contributions. For instance, with HERMESv3_BU, the residential component is less
dominant than with CAMS, and the traffic component becomes more significant. A similar pattern is observed in MSY, where
the CAMS inventory results tend to overestimate winter concentrations due to the residential component. These discrepancies
highlight the existing constraints of European-scale emission inventories, although they remain the most reliable information
source at present.60
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(a) (b)

Figure S3. Daily average contributions of OA concentration in BCN (a) and MSY (b) for the year 2018, using the local bottom-up HER-
MESv3 emission inventory. Measurements are expressed in [µ gm−3], with each component distinguished by a specific color: Shipping
(SHIP) in purple, Fires (GFAS) in orange, Residential (RESI) in blue, Traffic (TRAF) in black, Other (OTHR) in brown, and Secondary OA
(SOA) in green. Observational data (OBS) are marked with red dots. Due to the limitations in simulation data availability, only the months
of January and July are depicted.

S5 k optimization results

The results of the performed k optimization process are summarized in Table S3, which presents the mean and standard
deviation (std) of obtained k values across stations, classified by representative environments (Regional - REG, Suburban -
SUB, Urban - URB; see Table 1), and optimization cases 1 through 4 (Table 3). Each case corresponding to unique assumptions
discussed in Sect. 2.5. The mean k and std were analyzed for the five sources of study: GFAS, RESI, SHIP, TRAF, and OTHR.65
The row labeled “ALL” indicates the average values for all stations in Case 4.

Overall, for all settings and cases (1-4), and also for ALL, the highest k was obtained for GFAS compared to the other
sources with the highest k observed for URB sites, whereas similar k within the std were obtained at REG and SUB sites. In
each setting, small differences were observed between Case 1 (GFAS weakly) and Cases 2 and 4 (GFAS moderately) indicating
a robust estimation of GFAS k in-between weakly and moderately absorbing OA. Interestingly, in Case 3 (GFAS strongly) k70
reached the lowest allowed limit (cf. Table 3) with zero std (cf. Table S3) suggesting that GFAS OA cannot be treated as
strongly absorbing.

RESI OA were considered as weakly absorbing (Cases 1 and 4) and moderately absorbing (Cases 2 and 3). Similarly to
GFAS, higher RESI k was obtained for URB sites even if for this source the obtained k were comparable, within the std,
among the three considered settings. This similarity could be associated with the fact that RESI emissions are mostly local,75
thus reducing the differences between the station settings. Moreover, for each setting small differences were observed for RESI
k among the 4 considered Cases suggesting a robust estimation of the RESI k that lied in-between weakly and moderately
absorbing OA. Note that for both GFAS and RESI the optimization process provided k values closer to the upper limit of the
weakly category rather than the upper limit of the category moderately.

Similarly to RESI, SHIP emissions were considered weakly absorbing in Cases 1 and 4, and moderately absorbing in Cases80
2 and 3. Overall, the optimization process provided rather similar k among the four Cases at URB sites with k values that were
higher compared to REG and SUB. At URB sites, the SHIP k lied in-between the categories weakly and moderately with k
values that, as for GFAS and RESI, were closer to the lower limit of the category moderately. At SUB sites, the SHIP k reached
the lowest limit allowed for the category weak (0.005; Cases 1 and 4) and moderately (0.02; Cases 2 and 3) suggesting very
low k of SHIP for this setting. At REG sites, SHIP k was higher than at SUB sites with low variability among Cases 1, 2 and 485
and higher values and much higher std for case 3. Also for REG sites the optimization process suggest that SHIP OA emissions
were more weakly absorbing than moderately absorbing.

TRAF emissions were treated as very weakly absorbing in Cases 1, 2 and 3 and as weakly absorbing in Case 4. Interestingly,
the highest TRAF k were obtained for URB sites whereas much lower k were obtained at REG and SUB sites. At URB sites,
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Cases 1, 2 and 3 provided k values in the upper range of the very weakly category (0.04; cf. Table 3) with very low std90
suggesting that TRAF emissions were weakly absorbing rather than very weakly absorbing. In fact, Case 4 provided a TRAF
k value of 0.06 that lied in-between the lower and upper limit of the category weakly absorbing. At both SUB and REG sites,
the obtained TRAF k values were much lower compared to URB sites. This result is consistent with recent evidence that OA
from traffic in urban sites can be an important source of brown OA (e.g., Ho et al., 2023). Moreover, traffic emissions are not
expected to be primarily local at REG and SUB sites, thus likely contributing to the observed reduced TRAF k in these two95
settings due to physico-chemical OA processes as dilution and photobleaching.

OTHR emissions were treated as very weakly absorbing for all the considered cases (1-4). The optimization process provided
very low k values confirming the very low absorption properties of OA particles emitted by OTHR sources. Note that higher
OTHR k values were obtained at URB sites compared to REG and SUB sites where the obtained k were very close to the lower
k value in the category very weakly (cf. Table 3).100

Table S3. Statistical summary of mean and standard deviation (std) values for the optimization of the imaginary refractive index across the
three settings (REG, SUB, URB) and the four cases (Case 1, Case 2, Case 3, Case 4). Each case corresponds to different assumptions detailed
in Table 3, analyzed across five OA sources: GFAS, RESI, SHIP, TRAF, and OTHR. The row labeled “ALL” represents the averaged values
across all stations for Case 4.

GFAS RESI SHIP TRAF OTHR
Metric mean std mean std mean std mean std mean std

Setting Case

REG

Case 1 0.0619 0.0396 0.0458 0.0469 0.0196 0.0168 0.0093 0.0141 0.0015 0.0009
Case 2 0.0506 0.0434 0.0482 0.0448 0.0210 0.0071 0.0070 0.0139 0.0018 0.0010
Case 3 0.1241 0.0053 0.0476 0.0447 0.0527 0.0536 0.0068 0.0140 0.0014 0.0005
Case 4 0.0615 0.0387 0.0451 0.0462 0.0182 0.0150 0.0122 0.0132 0.0014 0.0008

SUB

Case 1 0.0409 0.0154 0.0409 0.0154 0.0049 0.0000 0.0011 0.0000 0.0014 0.0005
Case 2 0.0403 0.0148 0.0403 0.0148 0.0191 0.0017 0.0011 0.0000 0.0013 0.0003
Case 3 0.1219 0.0000 0.0395 0.0135 0.0181 0.0000 0.0011 0.0000 0.0011 0.0000
Case 4 0.0398 0.0146 0.0398 0.0146 0.0049 0.0000 0.0049 0.0000 0.0012 0.0001

URB

Case 1 0.0924 0.0354 0.0635 0.0535 0.0418 0.0481 0.0354 0.0000 0.0098 0.0109
Case 2 0.0998 0.0238 0.0635 0.0534 0.0445 0.0456 0.0354 0.0000 0.0092 0.0102
Case 3 0.1229 0.0017 0.0634 0.0535 0.0527 0.0599 0.0345 0.0015 0.0091 0.0110
Case 4 0.0934 0.0291 0.0625 0.0551 0.0314 0.0458 0.0579 0.0078 0.0081 0.0105

ALL Case 4 0.0640 0.0342 0.0481 0.0388 0.0182 0.0231 0.0218 0.0229 0.0030 0.0052

S6 Evaluation of absorption results employing different optimized k values

Figure S4 shows a scatter plot of the observed versus modeled OA absorption at each monitoring site. The plot uses results
from Case 4 (all) and Case 5 (all), where k values were obtained using all the monitoring stations combined. To calculate total
absorption, Case 4 uses individual k values tailored to specific OA components: 0.0571 for fires, 0.0403 for RESI, 0.0571 for
SHIP, 0.0049 for TRAF, and 0.0011 for OTHR. Meanwhile, Case 5 applies a single k value of 0.0187 across all sources. The105
key difference between the cases is that Case 4 includes a detailed source apportionment, discerning five different OA sources,
while Case 5 considers the total OA without source differentiation. Complementary, Figure S5 shows similar results to Figure
S4, but using k values optimized for each individual monitoring site (by stn). The statistics and time series for the latter case
are presented in Table S4 and Figure S6, respectively.
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Figure S4. Daily mean observed versus modeled OA absorption for Case 4 (all) and Case 5 (all) scenarios, with the imaginary refractive
index (k) values derived from aggregated data across all monitoring stations. Each panel includes the correlation coefficients (r) and fractional
bias (FB).

7



Figure S5. Similar to Figure S4, but with k derived for each station.
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Table S4. Statistical evaluation of absorption results for Cases 4 and 5 by stn.

Cases Case 4 Case 5
Metric r FB FAC2 r FB FAC2

HYY 0.34 16.65 63.96 0.28 -6.66 58.66
HEL 0.54 11.56 74.79 0.48 20.22 78.08
KRA 0.57 -102.97 48.92 0.51 -103.73 43.17
SIR 0.74 -17.59 71.07 0.62 -44.08 56.75
OPE 0.72 11.80 80.58 0.41 -27.71 56.31
RIG 0.48 -35.53 67.04 0.48 -36.03 67.32
PAY 0.63 -9.77 68.77 0.33 19.11 44.11
IPR 0.72 -28.29 54.40 0.65 -65.44 43.13
MAR 0.55 -15.10 79.32 0.43 -18.21 65.16
MSY 0.54 -11.64 78.63 0.52 -29.95 80.34
BCN 0.57 29.28 77.94 0.57 26.56 80.88
DEM 0.70 -24.71 84.45 0.49 -60.60 62.54
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Figure S6. OA light absorption (370 nm) time series for 12 sites. Observed (Obs) in red and modeled absorption for Case 4 (by stn) (blue
line) and Case 5 (by stn) (green line). k values derived at eact station.
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