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Introduction  8 

This supporting information collects the parameter values derived from fits of Equations 3 and 4 to all ODV time 9 
series analyzed in this work in Tables S1 to S5. Figures S1 to S6 illustrate some of these fits and provide additional 10 
data presentations. Text S1 discusses the uncertainty of observation-based and chemical transport model results, and 11 
Text S2 to S6 discuss additional issues that may affect the accuracy of the observation-based model.   12 



 

 2 

Table S1. Parameter values (with 95% confidence limits) derived from fits of Equation 1 to time series of ODVs time 13 
series from the isolated rural CASTNET sites. 14 

Site     a b c yearmax RMSD 
(ppb) (ppb yr-1) (ppb yr-2) (ppb) 

Glacier NP 54.9 ± 1.1  0.09 ± 0.16 -0.010 ± 0.011 2004 ± 9 1.2 
Yellowstone NP 65.9 ± 2.9 -0.31 ± 0.67 +0.007 ± 0.032 --- 1.7 
Craters of the Moon NM 62.5 ± 3.8  0.16 ± 0.67 -0.009 ± 0.038   2009 ± 51 2.4 
Lassen Volcanic NP 72.4 ± 2.7 -0.05 ± 0.35 -0.016 ± 0.025 1999 ± 11 3.1 
Great Basin NP 71.5 ± 2.1  0.14 ± 0.51 -0.020 ± 0.028 2004 ± 13 2.0 
Canyonlands NP 70.3 ± 2.0  0.17 ± 0.46 -0.024 ± 0.024 2003 ± 10 1.7 
Grand Canyon NP 72.5 ± 1.3  0.07 ± 0.21 -0.026 ± 0.014 2001 ± 4 1.4 
Chiricahua NM 70.1 ± 1.7  0.19 ± 0.29 -0.020 ± 0.018 2005 ± 8 1.8 
All sites 67.7 ± 1.9  0.09 ± 0.33 -0.018 ± 0.020 2003 ± 10 5.9 
All sites - normalized 71.3 ± 0.8  0.07 ± 0.13 -0.015 ± 0.008 2002 ± 4 2.4 

 15 

  16 
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Table S2. Parameter values from fits of Equation 3 to time series of percentiles of maximum MDA8 ozone 17 
concentration distributions in the CA air basins and calculated from the ozone sondes launched from Trinidad Head 18 
CA. The 98th percentile is not included in Figure 2 of the paper, but is included here as it approximates the ODV. 19 
RMSD gives the root-mean-square deviations between the observed ozone concentrations and the derived fits. 20 

Data set a (ppb) A (ppb) RMSD (ppb) 
Maximum 

San Diego AB 52.6 ± 13.4  58.6 ± 9.7 16.8 
SoCAB 66.6 ± 13.4  95.8 ± 9.7 16.7 
SFB AB 75.5 ± 9.6  25.1 ± 6.9 11.9 
North Coast AB 65.4 ± 7.7  4.6 ± 6.0 12.0 
Ozone sondes 76.5 --- --- 

98th percentile 
San Diego AB 58.6 ± 5.7  41.0 ± 4.1 7.1 
SoCAB 60.8 ± 8.9  87.7 ± 6.4 11.1 
SFB AB 70.2 ± 6.5  21.1 ± 4.7 8.0 
North Coast AB 58.1 ± 5.7  4.3 ± 4.5 8.9 
Ozone sondes 76.5 --- --- 

90th percentile 
San Diego AB 54.2 ± 3.5  32.5 ± 2.5 4.4 
SoCAB 53.0 ± 5.6   76.6 ± 4.1 7.0 
SFB AB 54.8 ± 5.1 18.5 ± 3.7 6.3 
North Coast AB 47.6 ± 3.9  4.1 ± 3.0 6.1 
Ozone sondes 52.3 --- --- 

75th percentile 
San Diego AB 49.5 ± 2.9 27.9 ± 2.1 3.7 
SoCAB 50.0 ± 5.7 65.0 ± 4.1 7.1 
SFB AB 45.6 ± 3.5 14.4 ± 2.5 4.3 
North Coast AB 42.4 ± 3.2  3.0 ± 2.5 5.0 
Ozone sondes 45.8 --- --- 

median 
San Diego AB 45.8 ± 3.0 21.5 ± 2.2 3.7 
SoCAB 46.4 ± 5.9 50.8 ± 4.3 7.4 
SFB AB 38.8 ± 2.8 10.9 ± 2.0 3.5 
North Coast AB 37.6 ± 2.7  1.3 ± 2.1 4.2 
Ozone sondes 39.3 --- --- 

25th percentile 
San Diego AB 43.2 ± 3.2 14.9 ± 2.3 4.0 
SoCAB 45.6 ± 7.1 34.4 ± 5.1 8.8 
SFB AB 33.8 ± 2.1  8.6 ± 1.5 2.6 
North Coast AB 33.1 ± 2.7  0.5 ± 2.1 4.2 
Ozone sondes 31.8 --- --- 

10th percentile 
San Diego AB 40.4 ± 2.8 10.1 ± 2.0 3.5 
SoCAB 46.1 ± 6.9 18.0 ± 5.0 8.6 
SFB AB 29.1 ± 2.0  7.7 ± 1.4 2.5 
North Coast AB 29.3 ± 2.4  -0.7 ± 1.9 3.7 
Ozone sondes 25.7 --- --- 

Minimum 
San Diego AB 31.5 ± 4.1 4.4 ± 3.2 6.4 
SoCAB 43.1 ± 4.4 0.1 ± 3.4 6.9 
SFB AB 22.7 ± 3.0  5.2 ± 2.4 4.7 
North Coast AB 20.7 ± 3.3  -2.8 ± 2.6 5.1 
Ozone sondes 5.8 --- --- 

  21 



 

 4 

Table S3. Parameter values from all fits of Equation 3 to time series of ODVs recorded in the southwestern US. 22 
RMSD gives the root-mean-square deviations between the observed ODVs and the derived fits. 23 

Site(s) a (ppb) A (ppb) Nptsa RMSD 
(ppb) 

years 

CASTNET 
CASTNET - normalized 68.5 ± 1.5 2.8 ± 1.9 212 2.3 1990-2021 

Southwestern US - rural 
AZ rural 66.6 ± 1.9   5.4 ± 2.5 116 2.3  1990-2021 
Southern UT, Mesquite NV 64.8 ± 3.6   6.5 ± 5.6 66 2.6  1995-2021 
Four Corners area rural 69.6 ± 4.3 -2.7 ± 6.6 126 4.0  1996-2021 
Southern NM rural 69.4 ± 5.5 -1.3 ± 8.0 76 4.7  1992-2021 
CO rural 69.0 ± 3.1 -1.9 ± 4.4 97 4.0  1986-2021 

Southwestern US - urban 
Phoenix 69.0 ± 1.7 9.4 ± 2.3 658 4.8  1990-2021 
Phoenix max 75.2 ± 4.9 10.2 ± 5.4 32 2.9  1990-2021 
Tucson 63.9 ± 1.4   7.5 ± 1.2 264 3.4  1975-2021 
Tucson max 66.2 ± 2.9   9.7 ± 2.4 38 2.3  1980-2021 
Las Vegas 68.0 ± 2.6 11.6 ± 3.8 230 3.1  2000-2021 
Las Vegas max 69.6 ± 6.6 15.4 ± 9.9 22 2.3  2000-2021 
Reno 66.3 ± 2.2   4.9 ± 2.4 169 3.8  1982-2021 
Reno max 67.1 ± 4.8   6.8 ± 4.1 39 3.8  1982-2021 
Salt Lake City 66.6 ± 1.9 11.8 ± 1.7 351 5.2  1977-2021 
Salt Lake City max 68.9 ± 4.3 15.0 ± 3.2 43 3.8 1979-2021 
Albuquerque-Santa Fe 66.2 ± 1.8   4.0 ± 1.7 275 3.8  1981-2021 
Albuquerque-Santa Fe max 68.4 ± 3.0 5.3 ± 2.4 41 2.5  1981-2021 
Denver 69.0 ± 2.1 8.0 ± 1.7 412 6.2  1974-2021 
Denver max 74.7 ± 2.1 9.4 ± 1.4 47 4.3  1974-2021 

a Npts gives the number of ODVs included in each fit 24 
 25 
 26 
 27 

Table S4. Parameter values from fits of Equation 4 to time series of maximum ODVs recorded in southwestern US, 28 
Texas and two other urban areas, TX, New York City, with the a parameter held at that derived for all ODVs in the 29 
respective urban area. RMSD gives the root-mean-square deviations between the observed maximum ODVs and the 30 
derived fits. 31 

Site(s) a (ppb) AWF (ppb) WF 
(ppb) 

RMSD 
(ppb) 

years 

Southwestern US - urban 
Phoenix max 69.0 12.9 ± 3.6 1.6 ± 2.5 3.0 1990-2021 
Tucson max 63.9 10.5 ± 1.6 1.4 ± 1.6 2.2 1980-2021 
Las Vegas max 68.0 16.1 ± 6.6 0.8 ± 3.3 1.8 2000-2021 
Reno max 66.3   7.0 ± 1.3 0.6 ± 1.4 3.8 1982-2021 
Salt Lake City max 66.6 15.6 ± 2.0 1.6 ± 2.5 3.7 1977-2021 
Albuquerque-Santa Fe max 66.2   6.0 ± 1.5 1.4 ± 1.7 2.5 1981-2021 
Denver max 69.0 11.0 ± 1.7 4.0 ± 2.5 4.0 1974-2021 

Other urban areas 
Houston max 53.9 54.4 ± 3.2 1.8 ± 2.0 3.6 1995-2021 
Dallas max 57.7 43.0 ± 2.5 2.6 ± 1.2 1.7 2000-2021 
El Paso max 64.6 14.2 ± 2.1 3.2 ± 2.8 4.3 1977-2021 
New York City max 52.2 39.7 ± 2.3 3.1 ± 1.2 3.7 2000-2021 
Atlanta max 49.1 54.4 ± 9.9 1.2 ± 6.1 5.4 1995-2021 

 32 

33 
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Table S5. Parameter values from all fits of Equation 3 to time series of ODVs recorded in nine Texas regions and 34 
neighboring states. RMSD gives the root-mean-square deviations between the observed ODVs and the derived fits. 35 

Site(s) a (ppb) A (ppb) Nptsa RMSD 
(ppb) 

years 

CASTNET 
CASTNET - normalized 68.5 ± 1.5 2.8 ± 1.9 212 2.3 1990-2021 

Texas Regions 
Dallas region 57.7 ± 3.1   34.6 ± 4.5 422 5.9  1995-2021 
Houston region 53.9 ± 3.2   43.2 ± 4.2 478 6.7  1995-2021 
El Paso region 64.6 ± 1.8 11.5 ± 1.7 366 4.9  1976-2021 
San Antonio region  58.4 ± 4.1 26.6 ± 6.3 138 3.9  2000-2021 
Beaumont-PA-LC 54.7 ± 3.4 28.0 ± 5.1 230 4.0  2000-2021 
So Coast Texas 52.1 ± 4.1  27.5 ± 6.0 63 2.5  2000-2021 
SW Texas 49.8 ± 4.9 18.2 ± 6.9 72 3.1  2000-2021 
Tyler-LV-SP 50.8 ± 4.6 37.3 ± 6.8 89 3.5  2000-2021 
Western rural region 64.9 ± 5.8  3.2 ± 8.1 50 3.5  1989-2017 

Other Western States 
Oklahoma 56.6 ± 2.8 25.1 ± 4.4 365 4.0  2000-2021 
Louisiana 54.3 ± 2.3 29.9 ± 3.3 519 4.2  2000-2021 
Arkansas 48.2 ± 4.7 37.5 ± 7.6 141 4.5  2000-2021 
Kansas 56.6 ± 4.2 20.2 ± 6.6 174 4.3  2000-2021 
Nebraska 56.5 ± 4.0   7.4 ± 3.6 146 6.6  1980-2021 
Montana 58.6 ± 1.6 1.25b 99 4.7  1979-2021 
North Dakota 59.6 ± 0.9 1.25b 181 3.6  1982-2021 
South Dakota 62.2 ± 1.7 1.25b 80 4.4  1990-2021 
Wyoming 64.2 ± 0.6 1.25b 227 2.8  1999-2021 

a Npts gives the number of ODVs included in each fit 36 
b Fit with A parameter value held fixed at this value 37 
 38 
 39 
 40 
 41 
 42 

Table S6. Two-letter state abbreviations 43 
State State State 

Alabama AL Kentucky KY North Dakota ND 
Alaska AK Louisiana LA Ohio OH 
Arizona AZ Maine ME Oklahoma OK 
Arkansas AR Maryland MD Oregon OR 
California CA Massachusetts MA Pennsylvania PA 
Colorado CO Michigan MI Rhode Island RI 
Connecticut CT Minnesota MN South Carolina SC 
Delaware DE Mississippi MS South Dakota SD 
District of Columbia DC Missouri MO Tennessee TN 
Florida FL Montana MT Texas TX 
Georgia GA Nebraska NE Utah UT 
Hawaii HI Nevada NV Vermont VT 
Idaho ID New Hampshire NH Virginia VA 
Illinois IL New Jersey NJ Washington WA 
Indiana IN New Mexico NM West Virginia WV 
Iowa IA New York NY Wisconsin WI 
Kansas KS North Carolina NC Wyoming WY 

  44 
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 45 

Figure S1. Map of southwestern US rural monitoring sites; the symbols are color-coded according to site elevation as 46 
annotated. Lines indicate outlines of southwestern US states (black), urban areas (gold) and interstates and selected 47 
other major highways (violet). ODV time series from rural areas whose sites are analyzed together as separate data 48 
sets are included in Figure S2. Locations of specific CASTNET sites as well as the Four Corners area are annotated.  49 
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 50 

Figure S2. Time series of ODVs recorded in four southwestern US rural areas shown in Figure S1. Symbols 51 
indicate different sites as annotated. The southern NM sites are identified as western and eastern by different 52 
colors. Green dashed curves indicate fits of Equation 3 to all ODVs, with the parameters derived in the fit 53 
annotated. The black solid curves with dashed extensions indicate the fit to the baseline data from Figure 1, 54 
normalized to the respective a parameter values. The light dashed lines indicate the 70 ppb ozone NAAQS.  55 
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 56 

Figure S3. (upper graphs) Time series of ODVs recorded in two of the Texas regions shown in Figure 7 of the 57 
manuscript. Grey symbols in each graph indicate all recorded Texas ODVs. Colored symbols indicate the ODVs 58 
from each respective area. Upper curves indicate fits of Equation 3 to all ODVs in the area; the parameters derived 59 
in these fits are annotated. Lower curves with dashed extensions indicate the fit to the baseline data from Figure 60 
1, but here normalized to the respective a parameter values. (lower graphs) Time series of ODVs recorded in 61 
Oklahoma and the four northern rural states. For Oklahoma upper curve indicates fit of Equation 3 to all ODVs 62 
in the state for 2000-2021; the parameters derived in this fit is annotated. Lower curve with dashed extension 63 
indicates the fit to the baseline data from Figure 1, normalized to the a parameter value derived for Oklahoma.For 64 
the northern states the curves indicate fits of Equation 3 to all ODVs recorded in each state; in these fits the A 65 
parameter value is fixed at 1.25 ppb. The derived a parameter values are annotated. In all graphs, the light dashed 66 
lines indicate the 70 ppb ozone NAAQS.  67 
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 68 

Figure S4. Analysis of time series of ODVs recorded in four neighboring states. Grey symbols in each graph indicate 69 
all recorded ODVs in the states. Upper curves indicate fits of Equation 3 to all ODVs in the respective states. The 70 
parameters derived in these fits are annotated. Lower curves with dashed extensions indicate the fit to the baseline 71 
data from Figure 1, normalized to the respective a parameter values. Colored symbols in Arkansas indicate the ODVs 72 
from a single site that appear to be outliers, and are excluded from the fit.   73 
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 74 
Figure S5. Comparison of percentage of ODVs greater than 70 ppb recorded at all sites in individual states over two 75 
5-year periods: 2017-2021 (hatched and dark blue bars) and a period 20 years earlier - 1997-2001 (light-colored bars). 76 
Individual states are indicated by their two letter abbreviations (defined in Table S6). States are arbitrarily divided 77 
between eastern and western regions. Southwestern states, Texas and California are indicated by solid dark blue bars. 78 
Five states, all in the western region, reported no ODVs greater than 70 ppb. Format is the same as Figure 9 of the 79 
manuscript.  80 
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 81 

Figure S6. Analysis of time series of ODVs recorded in two eastern urban areas – Atlanta GA and New York City 82 
NY. In Georgia ODVs from three groups of sites are indicated with different symbols. Grey symbols in lower graph 83 
indicate all recorded ODVs in NY. In the GA graph, upper solid curve indicates fit of Equation 3 to all Atlanta ODVs 84 
and the dotted curve indicates fit of Equation 4 to maximum Atlanta ODVs indicated by outlined circles. In NY graph, 85 
upper solid curve indicates fit of Equation 4 to the ODVs recorded at the sites representing the maxima in New York 86 
City. The parameters derived in the fits to Equation 4 are annotated. Lower curves with dashed extensions indicate 87 
the fit to the baseline data from Figure 1, normalized to the respective a parameter values. The light dashed lines 88 
indicate the 70 ppb ozone NAAQS. 89 

  90 



 

 12 

S1.  Uncertainty of observation-based and chemical transport model results 91 

Equation 3 provides excellent fits to long-term ozone changes in diverse US regions. As written, Equation 3 has 5 92 
adjustable parameters (a, b, c, A, t); however 3 of these are constants whose values have been determined in previous 93 
analyses. Parrish et al. (2020) determined values for b = 0.20 ± 0.06 ppb yr-1 and c = 0.018 ± 0.006 ppb yr-2 that were 94 
the same within derived confidence limits throughout northern midlatitudes. Parrish et al. (2021a) show that these 95 
results are consistent with results from 28 published quantifications of changes in average surface ozone 96 
concentrations at remote and rural western US locations that are thought to represent background ozone transported 97 
into North America. Parrish et al. (2017; 2022) determined a value of t = 21.8 ± 0.8 years from the time dependence 98 
of ODVs in 7 southern California air basins. This same value (within confidence limits) fit ODV time series throughout 99 
the western and northern US (Parrish et al., 2022) and in the northeastern US (Parrish and Ennis, 2019). Substitution 100 
of these values for b, c and t into Equation 3 leaves only 2 unknown parameters: a and A. Section 4 of the paper shows 101 
that the resulting Equation 3 with varying a and A parameter values provides excellent fits to all percentiles of the 102 
distributions of the maximum MDA8 ozone concentrations in 4 urban and rural California air basins (Figure 2), and 103 
also to ODV time series recorded at rural and remote western US CASTNET sites (Figure 1), at urban and rural sites 104 
throughout the southwestern US and Texas (Figures 5, 6 and 8), and in surrounding and more distant US states (Figures 105 
S2-S4 and S6). Previous work (Parrish et al, 2017; 2022; Parrish and Ennis, 2019) demonstrate that same equation (or 106 
one closely related) provides excellent fits to ODV time series recorded urban and rural sites along the entire US West 107 
Coast, in the northern rural states and in the northeastern US.  108 

It is widely accepted that photochemical ozone production involves a very complex set of physical and chemical 109 
processes, and that complexity causes ambient ozone concentrations to exhibit a highly non-linear dependence upon 110 
precursor concentrations (see e.g., Monks et al., 2015). The excellent fits of a 2 parameter equation to a great number 111 
of long-term ozone concentration time series recorded in a widely diverse range of environments demonstrates that 112 
there is an underlying simplicity to the evolution of ozone concentrations throughout the US, notwithstanding the 113 
complexity of ozone photochemistry. Fully understanding the origins of this simplicity may provide a very useful 114 
challenge for CTMs studies.  115 

In previous papers we have discussed inconsistencies between results of observation-based and chemical transport 116 
model (CTM) simulations, and among results from different CTM simulations. Section 3.4 and Figure 6 of Parrish et 117 
al. (2017) show seven CTM-derived US background ODV estimates for southern California air basins that varied 118 
from ~45 to ~65 ppb, with one outlier of 92 ppb; the observational-derived value of 62 ppb agrees well with one of 119 
those model results, although it is larger than most others. In their Section 4.2 Parrish and Ennis (2019) compare 120 
results from three CTMs with those from our observational-based approach in five US regions; these comparisons 121 
show significant spatial correlation between approaches (r2 values for different CTMs with the observational-based 122 
results vary from 0.31 to 0.90), but the CTMs are, on average, systematically lower by 4 to 13 ppb. Zhang et al. (2020) 123 
find disagreements of similar magnitude between CTMs; US background ozone estimates from two state-of-the-art 124 
global models differed by 5 ppb on average and up to 15 ppb episodically. These disagreements have led to the 125 
increasing recognition that CTMs are not yet able to provide accurate estimates of atmospheric ozone concentrations 126 
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without incorporating additional information from observations; see, e.g., Skipper et al. (2021) and Hosseinpour et al. 127 
(2024).  128 

The results of Hosseinpour et al. (2024) are particularly relevant to the present paper. The authors used a random 129 
forest machine learning algorithm to improve CTM estimates of US background ozone extreme values (4th largest 130 
MDA8, i.e., comparable to our US background ODV) in four of the urban areas considered in our analysis (Table S7). 131 
The original CTM results were lower than the results derived in the present paper from the observation-based model 132 
by an average of 14 ppb for the three SW US urban areas, and 5 ppb for Houston; after correction the CTM results 133 
were increased so that they were lower by only to 2 or 3 ppb in all four cities. In the end, the machine learning 134 
algorithm had forced the CTM to match the observations, so that the CTM was no longer a free running simulation of 135 
the relevant physical and chemical processes. Instead, the combination of the CTM and the machine learning algorithm 136 
constituted an elaborate observational-based model. It is encouraging that this alternative observational-based 137 
approach gave results similar to those derived in this work from our much simpler observational-based model.  138 

Table S7. CAMx simulated 4th highest MDA8 background ozone concentration over April through September 2016 139 
before and after adjustment by the random forest algorithm reported (Hosseinpour et al., 2024) compared to our 140 
results for US background ODV in 2016. (Units: ppb) 141 

 Phoenix Salt Lake 
City 

Denver Houston 

CAMx original simulation 
(Hosseinpour et al. table 3) 

52 51 54 48 

Random Forest adjusted CTM 
(Hosseinpour et al. table 8) 

66 63 65 50 

US background ODV         
(this paper) 68 65 67 53 

Projection of future ozone concentrations by CTM simulation under assumptions regarding the temporal evolution 142 
of ozone precursor emissions and other relevant model parameters has provided a widely utilized tool for air quality 143 
policy development. Such projections have also been made by our observational-based model under assumed future 144 
evolution of the background and anthropogenic ozone contributions; here the parameterized temporal evolution of 145 
each contribution over the past decades was assumed to continue into the future. Parrish et al. (2017) made such ODV 146 
projections for seven southern CA air basins (their Figure 8, a portion of which is reproduced here). Those projections 147 
can now be compared with 8 years of ODVs that have been recorded 148 
since the projections were made; they are included in the figure to 149 
the right of the vertical dashed line. The projections had only mixed 150 
success; there is good agreement with the recent ODVs in the two, 151 

Original Figure 8 of Parrish et al. (2017). Past and projected evolution of 
the basin ODVs in southern California air basins. The symbols give the 
annual ODVs for each air basin, and the solid curves indicate the fits of their 
Equation 1, with the parameters from their Table 4, to the corresponding 
ODVs with projections to the year 2058. The horizontal dashed line indicates 
the NAAQS. Added here: Eight more recent years of ODVs are included 
for each of the 4 coastal air basins; they lie to the right of the vertical dashed 
line. The results for the 3 inland air basins have been removed for clarity. 
The larger asterisk symbols indicate CTM-derived ODV projections for the 
two more urbanized air basins 

 



 

 14 

less urbanized (North and South Central Coast) air basins, but the projections did not capture the observed increases 152 
of the recent ODVs in the more urbanized San Diego and South Coast air basins. However, in these two air basins, 153 
the CTM predictions (indicated in the figure) were even less accurate. The California Air Resources Board (CARB, 154 
2019) staff report for the Southern California AB predicted that the ODV would be 80 ppb by 2023, some 26 ppb 155 
below the observed value of 106 ppb, while the Parrish et al. (2017) projection was found to be too low as well, but 156 
at 90 ppb was 10 ppb closer than the CTM. For the San Diego AB the CARB (2017) staff report predicted that the 157 
ODV would fall to 75 ppb in the year 2017, Parrish et al. (2017) projected 78 ppb, while 84 ppb was actually recorded. 158 
The cause of the unexpected increases in the urbanized air basins remains largely unexplained (Wu et al., 2023). 159 

Parrish and Ennis (2019) projected maximum ODVs in eight northeastern US states (dashed curves in an expanded 160 
portion of their Figure 10 reproduced below) following the last year with ODVs available to them (2017). Here we 161 
evaluate the fidelity of those projections. For our analysis, ODVs from 2018-2022 or 2023 (depending on the state) 162 
had become available; we have added those ODV symbols to the figure shown here. Most of the more recent ODVs 163 
agree well with the projections, but in two states (Connecticut and New York) they deviate noticeably. These 164 
deviations are due to ODVs from coastal sites on the Long Island Sound, not from the major urban centers in the 165 
states. This suggests that photochemical ozone production from precursors trapped within the shallow marine 166 
inversion layer significantly impact maximum ozone concentrations in air transported ashore to these sites. Insights 167 
such as this make simple observation-based models particularly useful. Parrish and Ennis (2019) also projected the 168 
year in which ODVs would drop to the NAAQS (their table reproduced below). We have added a final column to that 169 
table indicating when the ODVs actually reached that limit. Again, with the exception of the same two states, 170 
reasonable agreement between the projections and reality is found, especially when the 2 to 4 ppb RMSD of the ODVs 171 
about the fits are considered. Projections of the future 172 
development of ODVs from our model can provide policy 173 
relevant information, although (as with any model projection) 174 
that information must be carefully evaluated.  175 

Original Table 3 of Parrish and Ennis (2019). Results of least-
squares fits of Equation 1 to the state maximum ODVs illustrated 
Figure 10; y0 and t were held constant at 45.8 ppb and 21.9 years, 
respectively. The absolute root-mean-square deviations between the 
observed ODVs and the derived fits are indicated.  YearNAAQS indicates 
the projected year that the fit to the state maximum ODV drops to the 
NAAQS of 70 ppb. Column added here: Last year of recorded ODV 
≥ NAAQS. 

State A* (ppb) RMSD 
(ppb) 

 YearNAAQS Last year 
ODV ≥ 
NAAQS 

Connecticut 61 ± 7 5.8 2021 >2023       
Maine 48 ± 4 3.2 2015 2010 
Massachusetts 53 ± 5 3.9 2017 2019 
New Hampshire 43 ± 4 3.0 2013 2012 
New Jersey 64 ± 5 3.7 2021 2022 
New York 58 ± 4 3.0 2019 >2023       
Rhode Island  52 ± 4 3.4 2017 2019 
Vermont 35 ± 3 2.1 2008 2009 

 

 

 

Original Figure 10 of Parrish and Ennis (2019). Time 
series of maximum ODVs reported from any site within 
each of the eight northeastern states. The solid curves 
are fits of Equation 1 to the respective colored symbols 
for the 2000-2017 period. The derived A* values from 
these latter fits are given in Table 3. The dashed lines 
are projections of the solid curves. Added here: 5 or 6 
more recent years of ODVs are included in each state. 
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S2.  Relationship of US background ODV to ozone exceedance days 176 

(Note: A previous version of some of this material was originally included in the Supplement to Parrish et al., 2022 - 177 
https://www.tandfonline.com/doi/suppl/10.1080/10962247.2022.2050962?scroll=top&role=tab)  178 

One important question lacks a definitive answer: Are the four days that record the highest MDA8 ozone 179 
concentrations, i.e., the days that determine the ODV at present, the same four days that correspond to the highest US 180 
background, i.e., the days that would determine the ODV in the absence of anthropogenic precursor emissions? In 181 
other words, do the present highest ozone days also correspond to the days with the largest background ozone? 182 
Photochemical models provide a direct answer, but given the uncertainty associated with modeled background ozone 183 
concentrations on specific days (estimated as >10 ppb by Jaffe et al., 2018) this answer is likely not reliable. From our 184 
observational perspective, we cannot directly answer this question; however observation-based analyses can 185 
illuminate this question. It is useful to consider a heuristic example based on artificial data that illustrates some 186 
important considerations when considering this issue.  187 

Figure S7 represents an imaginary world that has no meteorological variability; every day is exactly like every 188 
other, except that there are gradual seasonal changes. The upper graph shows how MDA8 ozone might vary seasonally 189 
at a particular measurement site (black curves decreasing in amplitude over time due to emission controls.) With no 190 
US anthropogenic precursor emissions, ozone would equal the US background ozone (blue curve, assumed to average 191 
40 ppb with a sinusoidal variation of 20 ppb amplitude), and would vary smoothly over the year, repeating identically 192 
each year. The US background ODV (i.e., the quantity we estimate in our work, which here is assumed constant) 193 
would then be given by the blue symbol very near the peak of the blue curve. 194 

US anthropogenic ozone precursor emissions in 2000 are assumed to increase the background ozone by an amount 195 
given by the red curve (average 35 ppb with a sinusoidal variation of 40 ppb amplitude). The blue and red curves are 196 
3 months out of phase, in approximate accord with observed Northern Hemisphere background free-tropospheric 197 
ozone concentrations that peak in the spring (April/May) and many urban areas that peak in mid to late summer. The 198 
total ozone measured in 2000 would then be given by the highest black curve, and the site ODV given by the highest 199 
black symbol. Subtraction of the US background ODV from the site ODV gives the US anthropogenic ODV 200 
enhancement in 2000 as indicated by the red arrow.  Notably, that quantity (60 ppb) is smaller than the US 201 
anthropogenic contribution to the ODV in 2000 (~71 ppb, given by orange arrow). This illustration lies at the heart of 202 
a common misunderstanding: the US background ODVs reported in this work are not the same as the current 203 
contributions of background ozone to current ODVs, because the maxima of background ozone and anthropogenic 204 
enhancements are offset from each other in the time of year when they occur. Nevertheless, when considering progress 205 
in reducing US anthropogenic precursor emissions, the US background ODV is still germane for considerations of 206 
compliance with the NAAQS. 207 
  208 
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Now we assume that the US anthropogenic 209 
ozone production decreases exponentially with a 210 
time constant of 20 years. Consequently, the total 211 
measured ozone (black curves) decreases year-by-212 
year, with the ODVs (black symbols) also 213 
decreasing, and simultaneously shifting to earlier in 214 
the year, and approaching the US background ODV 215 
(i.e., the blue symbol).  216 

As shown in the lower graph of Figure S7, the 217 
changes in site ODVs (black symbols in both 218 
graphs) are well fit by an exponential decay, as 219 
given by Equation 3 of the manuscript. The derived 220 
parameter a = 60.0 ± 0.4 ppb agrees with the 60 ppb 221 
maximum of the blue curve, and the parameter A = 222 
59.8 ± 0.3 ppb agrees with the 60 ppb magnitude of 223 
the year 2000 US anthropogenic ODV enhancement 224 
(red arrow in figure).  225 

An important conclusion from this illustrative 226 
example is that confusion can arise if a clear 227 
distinction is not made between the US 228 
anthropogenic ODV enhancement in 2000 (i.e., the 229 
red arrow), the anthropogenic contribution to the 230 
site ODV (i.e., the orange arrow) and the 231 
anthropogenic ozone production (i.e., the red curve, 232 
which varies during the year). 233 

One implication of this example is that episode 234 
days (i.e., those exhibiting the highest ozone) in 235 
earlier decades are not seasonally coincident with 236 
present episode days, and neither of those sets of 237 
episode days is seasonally coincident with future 238 
episode days. This is due to the growing relative 239 
importance of background ozone (which is larger in 240 
spring and early summer) as the magnitude of local 241 
and regional photochemical production, which is 242 
larger later in the summer, decreases. In actuality, episode days in southern California air basins have been observed 243 
to systematically move toward the spring from later in the summer; Parrish et al. (2017) show that when monitoring 244 
began in the South Coast Air Basin of California (i.e., the Los Angeles urban area) in the early 1970s, the average 245 
ozone episode day occurred in late July, but had progressively moved to early July by 2015. This seasonal shift of 246 

Figure S7: Schematic variation of ozone at a measurement 
site. (top) Blue and red curves give the assumed constant 
US background ozone and the US anthropogenic ozone 
production in the year 2000, respectively. The black curves 
are the total observed ozone in the year 2000 and at 
progressively later 4-year intervals. The US background 
ODV is given by the blue symbol, and the site ODVs are 
given by the black symbols at the peak of their respective 
curves. The year 2000 US anthropogenic ODV 
enhancement and anthropogenic ODV contribution are 
given by the red and orange arrows, respectively. (bottom) 
Temporal evolution of site ODVs from upper graph, fit to 
Equation 3 of the manuscript, with derived parameters 
annotated. 
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episode days adds considerable uncertainty to photochemical modeling for State Implementation Plan (SIP) 247 
development. The meteorological conditions (including the background ozone contribution) on the days that will 248 
require the greatest emission control efforts to lower the MDA8 ozone to the NAAQS is uncertain. The common 249 
assumption that those days correspond to the present maximum episode days is not valid, since days with higher 250 
background ozone concentrations may require even greater emission reductions to reach the NAAQS, even if they 251 
now are not the days when the highest ozone is observed. 252 

It should also be noted that an observation-based analysis has indicated a significant positive correlation between 253 
maximum observed ozone concentrations and high background ozone concentrations. Parrish et al. (2010) show that 254 
MDA8 ozone measured at surface sites in California’s Northern Sacramento Valley correlates positively (correlation 255 
coefficients as large as +0.53 at valley sites and +0.71 at an elevated surface site) with baseline ozone concentrations 256 
measured by sondes launched from the upwind location at Trinidad Head on the northern California coast. This 257 
analysis suggests that the days that determine the ODV will progressively tend to be the days of highest US background 258 
ozone concentration as anthropogenic ozone contributions are further reduced. 259 

It has been argued (e.g., see Section 1.8 of US EPA, 2020) that the highest US ozone concentrations occur during 260 
periods of low background ozone contributions. This argument is based on the reasoning that the largest background 261 
ozone contributions occur on spring days with strong convective mixing when ozone generated in the stratosphere or 262 
during long-range transport of Asian or natural precursors in the upper troposphere are more readily mixed to the 263 
surface. In contrast, the highest US ozone concentrations are thought to occur during multiday episodes under stagnant 264 
conditions when an air mass remains stationary over a region abundant in anthropogenic ozone precursor sources. 265 
However, this reasoning does not apply to the southwestern US, because surface ozone concentrations are strongly 266 
correlated with higher ambient temperatures, and higher temperatures are correlated with deeper atmospheric 267 
boundary layers (ABL) in this area. Examination of the climatology of ABL heights over western North America 268 
shows that in summer, when most ozone NAAQS violations occur, boundary layers tend to be deepest (see figure 5 269 
of von Engeln and Teixeira, 2013). Deeper boundary layers develop due to greater vertical mixing driven by strong 270 
surface heating (i.e., entrainment). A recent paper (Langford et al., 2022) emphasizes that layers with elevated ozone 271 
concentrations above Las Vegas were commonly entrained into the ABL and thereby contributed to mean MDA8 272 
regional background ozone concentrations of 50–55 ppb; note that our paper analyzes ODVs, which represent ~98th 273 
percentile MDA8 concentrations, and, as expected, the US background ODVs that we quantify are substantially larger 274 
than the 50–55 ppb mean background ozone discussed by Langford et al. (2022).  275 

Photochemical modeling in support of air quality policy development has generally focused on days exhibiting 276 
the largest MDA8 ozone concentrations. This choice is based on the implicit assumption that such days represent the 277 
meteorological conditions under which it will be most difficult to reduce the MDA8 to the NAAQS. Importantly, the 278 
US background ODV that is the focus of our analysis may not occur on those same days. Photochemical modeling 279 
on days with larger US background ODVs will be very informative, but such days are difficult to specifically 280 
identify. 281 
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S3.  Approximation of long-term change of US anthropogenic ODV enhancements by an exponential decrease 282 

An exponential function is chosen to approximate the long-term decrease of US anthropogenic ODV enhancements 283 
because it a) is consistent with our physical understanding of the drivers of urban and rural ozone concentrations, b) 284 
is a continuous function, c) is mathematically as simple as possible (i.e., has the fewest possible unknown parameters), 285 
and d) successfully accounts for a large fraction of the variance in recorded ODV time series throughout the US.  286 

Any functional form selected for interpretation of an ODV time series must be consistent, first, with a background 287 
contribution below which ODVs cannot be reduced by U.S. precursor emission controls alone, and second, with ODVs 288 
that have been enhanced above that background due to a pollution contribution, an enhancement that has continually 289 
decreased due to decades-long precursor emission reduction efforts. Equation 3 of the manuscript is designed to follow 290 
this physical picture. More generally, examination of ozone observations in US urban areas reveals similar trends 291 
throughout the country, with general decreases in all areas. A simple intuitive argument suggests that an exponential 292 
decrease in the pollution ozone contribution is to be expected. When emission controls are initiated, early progress 293 
can be rapid, since there are large emission sources that evolved initially with no plans for their control. As an 294 
illustrative example, when emission controls are first initiated it might be possible to reduce the pollution ozone 295 
contribution by half in the first 15 years of control efforts. After that period reducing emissions will be harder, since 296 
the most easily controlled emissions have been addressed. During the next 15 years, it might be possible to again 297 
reduce the remaining pollution ozone contribution by half (i.e., reduction of 25% of the original). A similar argument 298 
can be applied to each successive 15-year period. If this example were realistic, then the emission reductions would 299 
follow an exponential function, with t = 21.6 years, close to the value of t = 21.8 ± 0.8 years reported by Parrish et 300 
al. (2022). Simply put, the expected increasing difficulty of reducing emissions by an absolute amount implies an 301 
approximately exponential decrease in the impact of those emissions.  302 

Despite the large variability of tropospheric ozone on a wide spectrum of temporal scales, the underlying long-303 
term changes in ODVs are expected to be continuous, since they are determined by slowly varying drivers such as 304 
changes in anthropogenic precursor emissions, land use (which affects natural precursor emissions), and climate. 305 
Exceptions might include rapid societal changes, such as occurred during the COVID-19 epidemic response, and 306 
volcanic eruptions; however, no discontinuous long-term changes have been encountered in all of the US ODV time 307 
series we have analyzed. Thus, the choice of the exponential function, which is continuous, is again indicated.  308 

The exponential term of Equation 3 - A exp(-t/t) - with two parameters is the simplest possible functional form 309 
that can capture the behavior of the pollution enhancement. Each ODV is a three-year average; hence a three-decade 310 
ODV time series provides only 10 independent data. The ODVs have significant short-term variability (e.g., Guo et 311 
al., 2018), so an attempt to quantify systematic, long-term changes from available ODV time series requires fitting 312 
to no more than a simple mathematical function for that quantification. That is, to yield precise determinations of the 313 
values of the function’s parameters the function must have as few unknown parameters as possible. A linear 314 
function, also with two parameters - slope and intercept - is often utilized for time series fits; it is as mathematically 315 
simple as an exponential function, but a linear fit to a decreasing trend will eventually become negative, and 316 
therefore cannot generally be consistent with a positive background contribution. A linear decrease that ends when it 317 
intersects a background function, such as a constant or the function given by the first three terms of Equations 3 and 318 
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4 of the manuscript, requires only two parameters, but the resulting function is not continuous. Likewise, piece-wise 319 
linear fits are not continuous, and generally require at least four parameters to specify. Any other function that might 320 
be applied (e.g., a polynomial fit) would require more than two parameters. From a simplicity and continuity 321 
perspective, the chosen exponential function is uniquely suited for quantifying a decreasing ODV time series.  322 

Finally, experience has shown that an exponential function gives excellent fits to the last two to five decades of 323 
ozone observed in US urban areas. In their section 2.4 Parrish et al. (2017) present a multivariate fit of Equation 3 324 
(but with a constant background term) to maximum ODV time series in seven southern California air basins over 35 325 
years; the r2 value for that fit is 0.984. In a similar analysis Parrish and Ennis (2019) find an r2 value of 0.89 for a 326 
shorter (17 year) period of time series of maximum ODVs recorded in eight northeastern states. Section S6 below 327 
discusses similar analyses for ODV time series analyzed in this manuscript, and again find large r2 values – 0.94 for 328 
eight Texas regions and 0.79 for the maximum ODV time series in eight southwestern US urban areas. These large 329 
r2 values demonstrate that an exponential function accurately captures a large fraction (approximately equal to the 330 
respective r2 values) of the variance in the ODV time series in all US regions that we have investigated. These 331 
considerations demonstrate that an exponential function is a very effective choice for analysis of long-term ozone 332 
time series. 333 

S4.  Differing rates of decrease of anthropogenic precursor emissions are not directly treated 334 

Equation 3 includes only a single term to account for the influence of decreasing anthropogenic emissions on ODVs; 335 
that term depends on a single exponential time constant, t. However, different anthropogenic emission sectors may 336 
have differing time evolution of emissions, which may be expected to be reflected in the temporal evolution of ODVs. 337 
In effect, t in Equation 3 is assumed to represent an average, overall response of ODVs to decreasing anthropogenic 338 
emissions.  339 

In this and previous work we discuss the impact of two anthropogenic emission sectors that have not decreased. 340 
First, southern California has regions of very intensive agricultural activity - the Imperial Valley in the Salton Sea Air 341 
Basin, the San Joaquin Valley Air Basin, and the Salinas Valley in the North Central Coast Air Basin; Parrish et al. 342 
(2017; 2022) note that derived a parameter values are biased high by ~ 5 to 12 ppb in these locations, and thus cannot 343 
be interpreted as direct determinations of the US background ODV. Second, the development of Equation 4 provides 344 
an approximate treatment of the increasing influence of wildfires on ODVs; a small wildfire influence (WF up to 4 345 
ppb) could be discerned in the region studied in this work, and a larger influence (~10-15 ppb) was approximately 346 
quantified in urban areas of the Pacific Northwest (Parrish et al., 2022).  347 

There are additional anthropogenic emission sectors that may not have decreased over time, and hence could 348 
possibly bias our estimate of US background ODVs. These sources include emissions associated with oil and gas 349 
(O&G) exploration, drilling and production, which have increased over the past two decades in some regions of the 350 
Western US. In addition, nonroad equipment, such as construction equipment, lawn and garden equipment, and VCP 351 
emissions (Coggon et al., 2021) may be important in urban areas, and they have not received as much regulatory 352 
attention as anthropogenic emissions. The Supplement Section S5 of Parrish et al. (2022) analyzes time series of ozone 353 
observations in the Bakken O&G basin located in North Dakota, and examines correlations of derived a and A 354 
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parameter values in West Coast urban areas. That discussion found no indications of a significant bias arising from 355 
these emissions sectors.  356 

S5.  Value of exponential decrease time constant, t, determined in Southern California, applied to the entire 357 
southwestern US 358 

We have not found it possible to precisely determine the three parameters (a, A and t) of Equation 3 from a fit to 359 
most available US ODV time series. The analysis in the manuscript assumes that t in the southwestern US and 360 
Texas (as well as other states considered) is the same value as derived for southern California (t = 21.8 ± 0.8 years). 361 
This assumption follows from the perspective of other states closely following the lead of California in emission 362 
control efforts, and is supported by the excellent fits provided by Equation 3 to ODV time series throughout the US, 363 
as discussed above in Section S4.  364 

Generally, it is not possible to precisely determine the three parameters (a, A and t) of Equation 3 from a fit to 365 
most available US ODV time series. Here, however we conduct two iterative, multivariate regression analyses, 366 
similar to that described in Section 2.4 of Parrish et al. (2017) and applied by Parrish and Ennis (2019) to the 367 
northeastern US. Simultaneous fits to several ODV time series improve the precision of the parameter 368 
determinations, allow alternate derivation of some parameter values, and provide alternate estimates of confidence 369 
limits for the derived parameter values. Two separate analyses, each analyzing eight ODV time series, are presented. 370 
The first analysis fits Equation 3 to ODV time series from the first eight Texas regions listed in Table S5 and 371 
illustrated in Figures 8 and S4; the western rural region is omitted due to its small range of recorded ODVs. An 372 
ODV time series for each region is obtained by averaging all ODVs collected in that region for each year of the 373 
temporal ranges indicated in Table S5. A separate exponential time constant, tHo, is derived for the Houston region, 374 
and a single parameter value for t is derived for the other seven regions. Values of these two t values and 16 total 375 
separate a and A parameter values for each of the eight regions are optimized in an iterative process that minimizes 376 
the sum of the squares of the deviations between the fit and the original mean ODV time series. The second analysis 377 
fits Equation 4 to the maximum ODV time series in the seven southwestern US urban areas discussed in Section 4.3 378 
and plotted as light red solid circles in Figures 5 and 6, and the maximum El Paso ODV time series plotted in Figure 379 
8. A similar iterative process attempts to optimize single common parameter values for t and the wildfire 380 
proportionality constant (i.e., the factor of 0.03 in Equation 4) for all areas, and separate a and A parameter values of 381 
each of the eight regions. For both analyses the 18 derived parameter values are given in Table S8, and Figure S8 382 
compares the fits of Equations 3 and 4 to the original ODV time series, both for the original fits discussed in the 383 
manuscript (upper graphs) and for the multivariate analyses (lower graphs).  384 

The three derived t values (18.4 to 19.1 years) are up to 16% smaller than the southern California value of 21.8 ± 385 
0.8 years, and are outside the 95% confidence limit of the California value. However, it is very difficult to force 386 
convergence of the Texas multivariate fit, and not possible for the southwestern US analysis due to anti-correlations 387 
between parameters. Notably, the agreement between the a and A parameter values between the original analysis 388 
(assuming derived t = 21.8 ± 0.8 years) and the multivariate analysis (83% overall) is usually within the confidence 389 
limits of the original analysis, and these multivariate fits provided only very modest improvements over the original 390 
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fits in the overall r2 and RMSD values (compare final two rows in Table S8). Given this overall agreement, we are 391 
confident in our application of the southern California value of t throughout the entire region studied in this work.  392 

Table S8. Parameter values derived from multi-variate fits described in Section S3. All units are ppb ozone unless 393 
otherwise noted, except for the dimensionless parameter, r2. 394 

Texas region Original 
fitsa 

Multi-var 
fit 

SW US urban area Original 
fitsb 

Multi-var 
fitc 

t (years) 21.8 ± 0.8  18.9 ± 0.9   t (years) 21.8 ± 0.8 18.4 ± 0.7 
tHo (years) 21.8 ± 0.8  19.1 ± 2.2 prop. const. (year-1) 0.03 0.116 ± 0.19 
Dallas - A 34.6 ± 4.5 30.3 ± 1.7 Phoenix – AWF  12.9 ± 3.6 12.8 ± 1.9 
Dallas - a 57.7 ± 3.1   61.6 ± 1.3 Phoenix - a  69.0 ± 1.7   70.5 ± 1.7   
Houston - A 43.2 ± 4.2 39.1 ± 1.7 Tucson - AWF  10.5 ± 1.6 10.6 ± 1.3 
Houston - a 53.9 ± 3.2 57.9 ± 1.3 Tucson - a  63.9 ± 1.4 63.1 ± 1.6 
El Paso - A 11.5 ± 1.7 9.2 ± 0.6 Las Vegas - AWF  16.1 ± 6.6 16.8 ± 3.3 
El Paso - a 64.6 ± 1.8  66.6 ± 1.0 Las Vegas - a 68.0 ± 2.6  67.6 ± 2.1 
San Antonio - A 26.6 ± 6.3 25.0 ± 2.2 Reno - AWF  7.0 ± 1.3 6.8 ± 1.2 
San Antonio - a 58.4 ± 4.1 60.4 ± 1.4 Reno - a  66.3 ± 2.2 66.1 ± 1.6 
Beau.-PA-LC - A 28.0 ± 5.1 25.5 ± 2.2 Salt Lake City - AWF 15.6 ± 2.0 14.9 ± 1.0 
Beau.-PA-LC - a 54.7 ± 3.4 57.2 ± 1.4 Salt Lake City - a 66.6 ± 1.9 66.3 ± 1.5 
So Coast Texas - A 27.5 ± 6.0 25.6 ± 2.2 Albuquer.-SF - AWF 6.0 ± 1.5 6.9 ± 1.1 
So Coast Texas - a 52.1 ± 4.1 54.2 ± 1.4 Albuquer.-SF - a 66.2 ± 1.8 64.7 ± 1.5 
SW Texas - A 18.2 ± 6.9 16.7 ± 2.1 Denver - AWF 11.0 ± 1.7 13.4 ± 0.8 
SW Texas - a 49.8 ± 4.9  51.6 ± 1.4 Denver - a 69.0 ± 2.1  64.5 ± 1.5 
Tyler-LV-SP - A 37.3 ± 6.8 33.8 ± 2.2 El Paso - AWF 14.2 ± 2.1 15.1 ± 0.9 
Tyler-LV-SP - a 50.8 ± 4.6 54.2 ± 1.4 El Paso - a 64.6 ± 1.8 62.3 ± 1.5 

r2 d 0.934 0.936 r2 d 0.770 0.794 
RMSD d 2.65 2.61 RMSD d 3.42 3.24 

a Fits described in Section 4 of the paper. Values are reproduced from Table S5. 395 
b Fits described in Section 4 of the paper. Values are reproduced from Tables S3 and S4. 396 
c Multivariate fit did not converge; these results were obtained after a large number of iterations of the fitting 397 

routine. 398 
d r2 and RMSD are the parameters for the linear regression fit between the actual ODVs and the fit function, as 399 

shown in Figure S8.  400 
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 402 

Figure S8. Comparison of observed ODVs with those from fits. The Texas regional and southwestern US urban 403 
time series are on the left and right, respectively. The fits to individual time series from the paper are at the top and 404 
the simultaneous multivariate fits to all of the time series are at the bottom. Black lines give the linear fit to all points 405 
with the intercept held at zero; the slopes of all lines are within 0.0013 of unity, the value expected for a perfect fit. 406 
The iterative process was not able to locate a unique minimum for the sum of the squares of the deviations for the 18 407 
parameter fit to the southwestern US urban time series; this is attributed to poor constraints on all 18 parameters in 408 
the that data set.  409 

S6.  Effect of not considering the US Exceptional Event Rule 410 

In this work we utilize the ODVs tabulated in the data archive of the US EPA to quantify the maximum ozone 411 
concentrations impacting surface monitoring sites, and to determine whether a site is approaching or exceeding the 412 
NAAQS. It should be noted that if measurement data are influenced by exceptional events, such as wildfires (e.g., 413 
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Jaffe et al., 2013) or stratospheric ozone intrusions (e.g., Langford et al., 2017), those data can, in principle, be 414 
removed from the MDA8 monitoring record, as uncontrollable “exceptional events”, thereby affecting the ODV 415 
archive. More details of the Exceptional Events Rule can be found on the US EPA website: https://www.epa.gov/air-416 
quality-analysis/treatment-air-quality-data-influenced-exceptional-events-homepage-exceptional. If a significant 417 
number of ODVs were affected by excluded data, then the ODV archive would not faithfully reflect the actual time 418 
series of maximum ozone concentrations, or the true relationship of the ozone concentrations at a site to the 419 
NAAQS. Data are excluded when the US EPA concurs with a state’s exceptional event demonstration.  420 

The US EPA apparently does not maintain a data base of exceptional event concurrences, but so far as we can 421 
determine from an internet search, at the time of this writing, the US EPA has concurred with only one ozone 422 
exceptional event demonstration in the five southwestern US states plus TX and CA examined in this paper since the 423 
implementation of the 2016 Exceptional Events Rule. That event was on September 2 and 4, 2017 when wildfires in 424 
the Pacific Northwest impacted the National Renewable Energy Laboratory (NREL) ozone monitoring site operated 425 
in the greater Denver urban area. As a result of this concurrence the ODV at that site would be reduced by 1 ppb for 426 
the years 2017 (from 80 to 79 ppb) and 2019 (from 77 to 76 ppb). In 2017, but not in 2019, this site recorded the 427 
maximum ODV in the Denver area, so the urban maximum ODV would be reduced by 1 ppb in 2017, but not 428 
affected in 2019. According to the statistics compiled by David et al. (2021), there were 5 other exceptional events 429 
totalling 14 days to which the EPA concurred in 2000-2015 under an earlier exceptional event rule; thus, there has 430 
been on average only 1 exceptional event every 3 years successfully removed from nonattainment consideration 431 
within the seven state region. 432 

In summary, archived ODVs can be reduced by US EPA exceptional event concurrences; however, to date 433 
concurrences have been extremely limited, and therefore have not significantly affected the analysis presented in 434 
this paper. However, future concurrences may possibly affect application of the present analysis approach to coming 435 
years. 436 
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