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Abstract. Plume rise plays a critical role in dispersing pollutants emitted from tall stacks, dictating the height
reached by buoyant plumes and their subsequent downwind dispersion. Commonly, plume rise is assumed to be
governed by atmospheric stability and by the exit momentum and temperature of the effluent released from large
stacks. However, an under-recognized influence on plume rise is the effects of entrained and/or co-emitted water,
which can change the plume height due to exchange of latent heat associated with phase changes in within-plume
water. While many of the stack sources achieve high temperatures of the emitted effluent via combustion, the
impact of combustion-generated water on plume rise is often overlooked in large-scale air quality models. As
the rising water condenses or evaporates, it releases or absorbs latent heat, influencing the height reached by the
plumes. Our study investigates the effects of latent heat exchange by combustion-generated and entrained water
on plume rise. We introduce a novel approach that integrates moist thermodynamics into an empirical parameteri-
zation for plume rise, resulting in the development of PRISM (Plume-Rise-Iterative-Stratified-Moist). Long-term
(6-month duration) simulations using PRISM exhibit a difference of up to ± 100 % in surface concentrations of
emitted pollutants near industrial sources compared to previous predictions, emphasizing the substantial influ-
ence of moist thermodynamics on plume rise. Our results show up to 50 % improvement in model-simulated
plume height through evaluation vs. aircraft observations over the Canadian oil sands. This study pioneers a
plume rise sub-grid parameterization integrating moist thermodynamics in iterative calculation of neutral buoy-
ancy height for plumes emitted from industrial stacks, thereby advancing our understanding of plume behaviour
and enhancing the accuracy of air quality modelling. These advancements can potentially contribute to more
effective pollution control strategies.

1 Introduction

Effluents emitted from industrial and urban sources (e.g.
stacks) are often much warmer than the surrounding air and
are therefore buoyant. If the source of heat for the efflu-
ent is the combustion of hydrocarbons, in which water is a
by-product of combustion, then the water content of the ris-
ing plume may be greater than that of the surrounding at-
mosphere. The emitted effluents rise to higher altitudes than
the original release height due to exit momentum and buoy-
ancy, while the water vapour content simultaneously con-
denses (as plumes expand and cool), forming the visible

(cloud-like) plumes that can be observed rising from chim-
ney stacks and other sources (e.g. Sturman and Zawar-Reza,
2011). The buoyant rise due to the effluent’s exit velocity
and temperature upon emissions is captured within standard
algorithms for plume rise (e.g. Briggs, 1984). However, the
effects of latent heat exchange due to water condensation into
droplets and evaporation of these droplets for plumes emitted
from industrial stacks have not been implemented as a con-
trolling variable in plume rise sub-grid parameterization in
air quality models. Through 3D numerical modelling of the
governing processes (e.g. mass and energy balance), Gan-
goiti et al. (1997) have shown the impact of latent heat ex-
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change on plume buoyancy and atmospheric dispersion for
plumes from tall stacks. However, computational costs pre-
vent the use of explicit numerical modelling of plume tra-
jectory for regional large-scale air quality models with grid
sizes of a few kilometres and domain sizes of thousands
of kilometres, where plumes from thousands of simultane-
ously emitting sources may be simulated. For these regional
chemical transport models (e.g. Community Multiscale Air
quality (CMAQ) or Global Environmental Multiscale – Mod-
elling Air quality and Chemistry (GEM-MACH)), plume rise
is usually determined using some form of sub-grid parame-
terization embedded within the host 3D model (e.g. Briggs,
1984). We note that latent heat effects have been previously
taken into account in plume rise parameterization for vegeta-
tion (wild)fires (e.g. Freitas et al., 2007; Chen et al., 2019).
However, sub-grid parameterizations in large-scale air qual-
ity (chemical transport) models commonly do not incorpo-
rate moist thermodynamics when estimating plume rise from
high-temperature industrial stacks. The transport of the emit-
ted pollutants is governed by meteorological conditions and
atmospheric flow regimes (wind speed and direction) at the
effective release height. Therefore, to reliably predict the
range/extent of the atmospheric dispersion of the emitted pol-
lutants, accurate plume rise parameterization is essential and
has important implications for air quality predictions. For in-
stance, determining the final plume rise (sometimes referred
to as the effective stack height) is a requirement for the es-
timation of the maximum surface concentration at distances
downwind of the emission source. Calculating the final rise
with acceptable certainty is more difficult for unstable (con-
vective) conditions where turbulence is the main rise-limiting
factor (the rise may never actually terminate) compared
to stable atmosphere conditions with low winds (Briggs,
1984). Since the 1960s, a large amount of research work
has been dedicated to plume rise parameterization through
dimensional analysis, where empirical parameters are de-
termined from laboratory measurements and field observa-
tions (Hoult et al., 1969). Many air quality models (e.g. Im
et al., 2015; Byun and Ching, 1999; Holmes and Morawska,
2006) use a variation of the empirical formulations devel-
oped by Gary A. Briggs during late 1960s to early 1980s
(e.g. Briggs, 1965, 1969, 1975, 1984), such as the Com-
munity Multiscale Air Quality (CMAQ; Byun and Schere,
2006) and Global Environmental Multiscale – Modelling Air
quality and Chemistry (GEM-MACH; Moran et al., 2010)
models. Briggs (1984)’ empirical formulations parameterize
plume rise based on estimates of meteorological conditions
(e.g. stability) at the stack location/height, source informa-
tion (e.g. stack flow rate, temperature), estimated entrain-
ment rates, and observed plume height data. Briggs’ formula-
tions (and most other plume rise parameterizations) assume
uniform meteorological conditions (e.g. temperature, wind
speed) over the vertical span of the plume, either taken at the
stack top or averaged over the atmospheric layers between
the bottom and top of the plume. Such simplifications, when

applied to cases where the atmospheric vertical structure is
complex, can lead to large errors in plume final-rise estima-
tion. While commonly employed, subsequent evaluations of
such parameterizations have shown over/underpredictions by
over 50 % vs. observed plume heights (e.g. Hamilton, 1967;
England et al., 1976; Rittmann, 1982; Webster and Thomson,
2002). Gordon et al. (2018) conducted extensive evaluations
of plume rise prediction using the Briggs (1984) formulation
driven by ambient observations vs. aircraft SO2 measure-
ments over the Canadian oil sands (OS) during the Joint Oil
Sands Monitoring (JOSM) 2013 campaign (ECCC, 2018).
They found that the Briggs (1984) plume rise algorithm sig-
nificantly underpredicted the observed SO2 plume heights,
with more than 50 % of the predicted plume heights less than
half that of observed heights for plumes from large SO2-
emitting OS sources. Results by Gordon et al. (2018) also in-
cluded a subset of cases (less than 12 %) with overpredicted
plume heights, where plume height predictions by the Briggs
(1984) algorithm were more than twice the observed SO2
plume heights. These discrepancies were partially attributed
to potential presence of spatial heterogeneity in the meteoro-
logical data used to drive the plume rise algorithm (input data
were not co-located with the emission stacks). The impact
of spatial heterogeneity was confirmed by Akingunola et al.
(2018) through high-resolution meteorological model simu-
lations for the same locations and time periods. Akingunola
et al. (2018) demonstrated, using model-generated meteoro-
logical conditions at stack locations and calculations of resid-
ual plume buoyancy at successive levels above the inversion
layer height, that incorporation of these factors into a plume
rise model can significantly improve plume rise predictions,
with 70 % of predictions falling within a factor of 2 of the
observed plume heights.

Utilizing more accurate source emissions information
(e.g. continuous emission monitoring systems (CEMSs)) and
source-specific meteorology can improve the confidence in
initial/input information for plume rise parameterization,
while a layered approach can better resolve plume buoyancy
in cases of more complex atmospheric conditions. However,
efforts to improve plume rise parameterization (for large-
scale air quality models) have largely ignored the potential
importance of (within-plume) water thermodynamic effects.
Plume buoyancy is commonly determined in terms of initial
stack exit temperature and buoyancy flux reduction as the
plume rises, along with estimates of the ambient temperature
gradient (i.e. the height at which the plume comes to rest,
having the same density as the ambient atmosphere). How-
ever, as we show in the following work, release and/or uptake
of the latent heat associated with phase changes in water can
potentially alter plume buoyancy enough to impact the plume
rise significantly. In this work, we introduce a new plume rise
algorithm that performs plume buoyancy calculations at all
vertical levels above the stack top (as opposed to Akingunola
et al., 2018, where plume residual buoyancy calculations are
done only above the inversion layer height), which also ac-
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counts for the effect of latent heat exchange associated with
phase changes in within-plume water content. This algo-
rithm expands on relevant concepts from Briggs (1984) and
Akingunola et al. (2018) while including estimates of water
emissions (due to combustion) from stack sources in a new
plume rise parameterization. Following comparisons of pre-
dicted plume heights using an observation-driven model (of-
fline/standalone simulations with the new plume rise model)
vs. observed heights, we implemented the new parameteriza-
tion within the GEM-MACH air quality model (Moran et al.,
2010; Makar et al., 2021) and conducted a series of retro-
spective air quality model simulations for the Athabasca oil
sands (OS) region. We considered a simulation period that
overlaps with that of a 2018 aircraft measurement campaign
over OS as part of the Canada–Alberta oil sands monitor-
ing program (OSM; ECCC, 2018). We conducted sensitivity
analyses on the plume rise parameterization and evaluated
model performance vs. surface monitoring data and aircraft
measurements.

2 Methods

2.1 PRISM (Plume-Rise-Iterative-Stratified-Moist): the
new algorithm for plume rise parameterization

We developed a plume rise prediction algorithm based on
effluent buoyancy flux reduction while accounting for ther-
modynamic effects associated with latent heat release/uptake
as described below. The stack parameters such as stack ra-
dius, exit momentum, and temperature are translated into ef-
fluent initial conditions (i.e. volume flux, temperature, den-
sity). The initial water vapour content (mH2O,stack [kg]) in
the effluent is determined from annual and/or hourly emis-
sion rate inventory data for water vapour. The (known) input
stack parameters also include the stack top height zstack in
metres above ground level [m a.g.l.], stack radius rstack [m],
stack volume flow rate V̇stack [m3 s−1], stack/effluent tem-
perature Tstack [K], and effluent exit velocity wstack [m s−1].
The effluent buoyancy is determined in relation to ambient
air information, which can be from sounding data or model-
generated ambient state variables. The buoyancy flux imme-
diately above the stack top (F0) is then calculated as the
product of effluent buoyant acceleration and the stack vol-
ume flow rate (V̇stack),

F0 = g
ρair− ρstack

ρstack
V̇stack, (1)

where g [m s−2] is the gravitational acceleration, ρair
[kg m−3] is ambient air density, and ρstack [kg m−3] is ef-
fluent (dry air) density at the stack top (see Supplement,
Sect. S1, Eqs. S1 to S6 for the derivations and the corre-
sponding discrete formulations).

Briggs (1984) noted that the behaviour of plumes under
low-wind-speed conditions differed from that in higher wind
speeds and described these two conditions with two different

equations, one for “vertical” and the other for “bent-over”
plumes. Vertical plumes occur when the buoyancy and mo-
mentum of the emitted gases are strong enough (and/or the
wind speeds are sufficiently low) to overcome the effects of
wind. This typically happens under stable atmospheric con-
ditions or when the stack emissions are significantly hotter
and faster than the surrounding air. The plume rises verti-
cally under these conditions until it reaches the neutral buoy-
ancy height, where the plume parcel density approaches the
ambient air density. Bent-over plumes, on the other hand, oc-
cur when the wind speed is strong enough to bend the plume
horizontally. This is more common under neutral or unstable
atmospheric conditions. The plume initially rises due to its
buoyancy and momentum but is then bent over by the wind,
creating a trajectory that is more horizontal than vertical.
The parcel volume flux as it rises through the plume (which
includes the effects of entrainment), V̇ [m3 s−1], is deter-
mined based on empirical formulations for buoyant plumes
by Briggs (1984):

V̇ (z)=

{
0.791α4/3F

1/3
0 z′ 5/3, vertical,

π U (z)β2 z′ 2, bent over,
(2)

where z′ = z− zstack is the height above the stack top [m],
U [m s−1] is the horizontal wind speed at z [m], and α and
β are (dimensionless) empirical coefficients of entrainment
(see Sect. S1, Eq. S7 for the corresponding discrete formu-
lation). The Briggs (1984) formulation made use of the Tay-
lor entrainment hypothesis: “the rate at which ambient air is
drawn into the plume is proportional to the velocity shear
between the plume and the ambient fluid, and this shear con-
sists mainly of the plume’s vertical velocity”. Briggs (1984)
recommended (empirical) entrainment coefficients of about
α = 0.08 and β = 0.6 for buoyant plumes. The change in
effluent plume volume between two adjacent atmospheric
heights can be calculated by multiplying the average vol-
ume flux by the transit time between those heights as it rises,
1V (z)= V̇ (z) 1t . The transit time1t [s] can be determined
kinematically from parcel vertical velocity and buoyant ac-
celeration at height z. Parcel volume V [m3], vertical velocity
w [m s−1], density ρ [kg m−3], temperature T [K], and buoy-
ant acceleration a [m s−2] are numerically calculated in the
algorithm for each consecutive vertical level z (derivations
of the formulae presented here are provided in Sect. S1; see
Eqs. S8 to S19). Using these updated parameters, the equiva-
lent vapour pressure of the net amount of water in the parcel
is calculated as

ev(z)=
Pa

ε
qv =

Pa

ε

(
mH2O

ρV

)
, (3)

where qv [kg kg−1] is vapour mixing ratio, Pa [Pa] is air pres-
sure (equivalent for ambient and parcel air), and ε = 0.622
(Rogers and Yau, 1989). From Iribarne and Godson (1981),
the saturation vapour pressure of water [Pa] as a function of
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temperature of the rising parcel T [K] is given by

esat (T )= 10[−2937.4/T−4.9283log10T+25.5471]. (4)

In the following, we use simple parcel model parameter-
izations to estimate the latent heat release/uptake based on
the approach described in Rogers and Yau (1989). If the
parcel temperature drops below the saturation temperature
at a given level, the amount of the water mass mixing ratio
present in the condensed phase can be derived from the ex-
cess vapour pressure above saturation,

qc =max
[

(ev− esat(T ))
ε

Pa
, 0.0

]
. (5)

Note that qc can be calculated at each model layer using the
total water in the parcel and that an increase in qc between
two adjacent levels representing the layer midpoints implies
that condensation of water mass has occurred between those
levels, while a decrease in qc implies that the evaporation of
water mass has occurred between the levels. The correspond-
ing release or uptake of latent heat can be calculated as

1Qcond = Lv 1 (ρ V qc) , (6)

where Lv is the latent heat of condensation. Further, the
first law of thermodynamics (at constant pressure 1P = 0)
may be used to determine the change in parcel temperature
1Tcond resulting from the phase change in water (Rogers and
Yau, 1989),

1Tcond =
1Qcond

M Cp
, (7)

where Cp = 1004 J kg−1 K−1 is the specific heat at constant
pressure, and M = ρ V is the total parcel mass.

As in Briggs (1984), the rate of increase in the volume
of the rising air parcel carrying the pollutants is assumed to
be solely due to turbulent mixing between the parcel and
the surrounding atmosphere (entrainment), in which case
the change in parcel volume with respect to height can be
used to estimate the change in mass due to entrainment:
1men(z)= (ρair(z)1V (z)) [kg], where the subscript “air” in-
dicates the ambient outside-of-plume conditions at the given
height. When the effluent is at a higher temperature than
added ambient air mass (i.e. for buoyant plumes T > Tair),
heat is transferred from the effluent to the entrained air,

1Qen(z)=−Cp (T − Tair)1men(z), (8)

resulting in a corresponding change (decrease) in parcel tem-
perature,

1Ten =
1Qen

M Cp
. (9)

Another consideration with regard to entrainment is that
the parcel may be rising through air that contains water, in

both gaseous (qv,a) and liquid (qc,a) form, and this water may
be entrained during the rise between vertical levels,

1mH2O(z)= q∗1men(z), (10)

where q∗ = qv,a+ qc,a is the total entrained water content
mixing ratio. The entrained water contributes to the total wa-
ter within the plume:mH2O+1mH2O (with the stack-emitted
watermH2O,stack as the initial value). The entrained water can
influence parcel condensation or evaporation through adding
or removing mass from the condensed phase. If we assume
all the water content within the parcel to be vapour, the equiv-
alent vapour pressure of the new net amount of water in the
parcel can be recalculated from Eq. (3). The revised value
of ev can then be used to determine the new value of the
condensed-phase water within the parcel qc from Eq. (5). Re-
ferring back to Eq. (6), the energy lost or gained due to the
entrained water added to the parcel will be de facto included
in the heat exchange included in the equation.

The moist plume rise algorithm is stratified in the sense
that it performs layered calculations for plume vertical mo-
mentum, state variables, and buoyancy. At each height, the
amount of entrained air and water is determined. Further,
the change in temperature as a result of heat transfer to the
entrained air and latent heat release/uptake (due to phase
changes in water) is determined. The contributing processes
can be summarized as follows:

1T (z)=1Tcond(z)+1Ten(z)

=
1

M Cp
[1Qcond(z)+1Qen(z)] , (11)

where positive (negative) values of 1T indicate increases
(decreases) in plume temperature.

The algorithm utilizes an iterative solver (Newton–
Raphson/secant method; Oxford, 2014) to calculate par-
cel temperature, executing several iterations (up to a user-
defined maximum iteration number; for our tests, 20 to 50
iterations were sufficient) until it converges on a solution for
the (equilibrium) parcel temperature at a given layer in the
atmosphere. The parcel density is then recalculated from the
ideal gas law as a function of the revised parcel temperature
and air pressure,

ρ(z)=
Pa(z)
k Tv(z)

, (12)

where water mixing ratios in the vapour qv(z) and condensed
qc(z) phases are accounted for in calculating the updated par-
cel density in the virtual temperature term,

Tv(z)= T (z)
[

1+ qv(z)/ε
1+ qv(z)

− qc(z)
]

≈ T (z) (1+ 0.61qv(z)− qc(z)) . (13)

Note that the addition of condensed water further modifies
parcel buoyancy (see chap. 3 of Stull, 2017). The updated
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parcel density is then compared to ambient air density. If the
solution results in positive buoyancy (that is, the parcel den-
sity is still below that of the ambient air), the plume continues
to rise to the next vertical level up. These layered calculations
are repeated up to the vertical level at which the plume buoy-
ancy is either zero or negative (ρ(z)≥ ρair(z)). The height of
this vertical level is then taken as the final plume height. Fi-
nally, the plume vertical spread is determined from the plume
rise above the stack height 1h, and the emitted mass is uni-
formly distributed in the vertical between the plume bottom
and top, determined following the commonly used method
from Briggs (1975),

ht =hs+ 1.5 1h,

hb =hs+ 0.5 1h, (14)

where hs, ht, and hb are the stack top, plume top, and plume
bottom heights, respectively.

Our new plume rise algorithm PRISM (Plume-Rise-
Iterative-Stratified-Moist) is essentially a 1D model (with
user-defined resolutions and parameters) that can be run as
a standalone model or embedded within a host 3D model
(in this case GEM-MACH) as a sub-grid parameterization
scheme. In Sect. 3 we discuss results from both standalone
simulations and GEM-MACH model runs. PRISM takes
stack parameters (e.g. volume flow rate, temperature, water
content) and ambient air state variables as input informa-
tion and performs high-resolution (high vertical resolution)
layered calculations of parcel-buoyancy-driven rise. At each
height, the algorithm calculates the change in parcel temper-
ature (and corresponding change in density) as it rises, ex-
pands, and mixes with the ambient air, while taking into ac-
count the effects of latent heat uptake/release due to phase
changes in within-parcel water content. Note that the release
or absorption of latent heat due to condensation or evapo-
ration of water in the parcel may serve to decrease or in-
crease parcel buoyancy, depending on ambient conditions
such as the temperature profile and ambient water content.
See Sect. S1 for algorithm details and the corresponding dis-
crete numerical formulations.

2.2 Model description and setup

The Global Environmental Multiscale – Modelling Air qual-
ity and Chemistry (GEM-MACH) model is Environment
and Climate Change Canada’s (ECCC) air quality predic-
tion model (Moran et al., 2010). GEM-MACH is an on-
line air quality and chemical transport model, which resides
within the Global Environmental Multiscale (GEM) numer-
ical weather prediction model (Côté et al., 1998a, b; Girard
et al., 2014). The GEM meteorological model and its com-
ponents have been extensively evaluated elsewhere in the lit-
erature (e.g. Côté et al., 1998b; Bélair et al., 2003b, a; Li and
Barker, 2005; Milbrandt and Yau, 2005a, b; Fillion et al.,
2010; Girard et al., 2014; Milbrandt and Morrison, 2016).

In addition to the GEM weather prediction model, GEM-
MACH includes an atmospheric chemistry module (Moran
et al., 2010) with gas and particle process representation.
GEM-MACH is used here in its fully coupled configura-
tion – i.e. the model’s particulate matter is allowed to mod-
ify the meteorological predictions through direct and indi-
rect aerosol effects (Makar et al., 2015a, b; Gong et al.,
2015). For a recent evaluation of GEM-MACH’s perfor-
mance, see Makar et al. (2021); also see Fathi et al. (2021)
for a comprehensive discussion of tracer mass budget and
transport in GEM-MACH. For this work, a nested config-
uration for GEM-MACH was used, with a parent domain
covering North America at a 10 km resolution and a nested
high-resolution domain with a 2.5 km grid spacing over the
Canadian provinces of Alberta and Saskatchewan, including
the Athabasca oil sands region (see Fig. 1a). This region has
been characterized by an extensive effort to improve emis-
sions inventory inputs for regional model simulations (Zhang
et al., 2018) and hence is ideal for tests of plume rise algo-
rithms; the results we show are generic and are applicable to
all other cases of plume rise driven by combustion sources
of heat. The details of the GEM-MACH model configuration
used in this work appear in Table A1 in the Appendix.

Note that the initial implementation of the plume rise in
GEM-MACH utilized the Briggs (1984) empirical formu-
lation based on source parameters and estimates of atmo-
spheric stability at the stack top (Moran et al., 2010). Later,
plume rise in GEM-MACH based on Briggs (1984) was fur-
ther refined to include layered calculation of plume resid-
ual buoyancy above the inversion height, as described in
Akingunola et al. (2018). For this work, we configured the
GEM-MACH model at a high resolution (2.5 km grid spac-
ing) to perform two sets of retrospective air quality model
simulations with different plume rise options: (a) the original
GEM-MACH plume rise based on Akingunola et al. (2018),
hereafter referred to as GM-orig, and (b) PRISM as described
in this work (Sect. 2.1), hereafter referred to as GM-PRISM.

2.3 Case studies

We considered a simulation period for 2018 over the Cana-
dian oil sands (OS). This period overlaps with the Oil Sands
Monitoring (OSM) 2018 aircraft campaign over the oil sands
region between April and July of 2018. The aircraft cam-
paign is discussed in Sect. 2.5. For our standalone tests with
PRISM (offline PRISM), we used observed stack parame-
ters (e.g. exit temperature, volume flow rate) for the main
stacks in three OS facilities (Syncrude, Suncor, and Cana-
dian Natural Resources (CNRL)). We also incorporated me-
teorological vertical profiles at the locations of these stacks,
extracted from retrospective GEM model runs, as input in-
formation for PRISM plume height predictions. These pre-
dictions were then compared to aircraft-observed heights for
SO2 plumes emitted from the OS stacks of interest. Further,
we performed high-resolution (2.5 km grid spacing) air qual-
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Figure 1. (a) The GEM-MACH model nesting configuration with a parent domain at a 10 km resolution over North America (blue-shaded
area) and a nested domain at a 2.5 km resolution (red-shaded area) over Alberta and Saskatchewan provinces. The approximate perimeter of
Athabasca oil sands is shown with a blue rectangle. (b) The oil sands region within the 2.5 km domain is depicted with flight tracks (dark
lines) from the OSM 2018 aircraft campaign overlaid on the map. The region encompassing the surface mining facilities of the Athabasca oil
sands is shown by a dashed blue line. Most of the region’s SO2 emissions occur from large stacks associated with the upgrading of bitumen
at surface mining facilities within the dashed-line area.

ity simulations with the GEM-MACH model, focusing on the
Athabasca oil sands region. Our new plume rise algorithm
PRISM was implemented with the high-resolution GEM-
MACH simulations (GM-PRISM) for a 6-month model run
(February to July 2018 inclusive) and was compared to sim-
ulations carried out with the previous scheme (GM-orig)
(the latter lacking full stratified calculations of plume buoy-
ancy and water latent heat release/uptake; Akingunola et al.,
2018). Model output data from the simulation period were
compared to data from the Wood Buffalo Environmental As-
sociation (WBEA) surface monitoring network for the region
and to aircraft observations from the OSM 2018 campaign.
In our analysis, we focused on plumes emitted from the three
main (largest) SO2-emitting facilities: Syncrude, Suncor, and
CNRL. We compared model-generated SO2 fields to aircraft
SO2 measurements from 11 box flights around the 3 facil-
ities of interest. The aircraft data allow us to directly com-
pare model and observed SO2 plume heights and thus pro-
vide a direct estimate of plume rise accuracy (the surface
monitoring network data, the analysis of which follows the
plume height evaluation, allow us to estimate the effect of
the changes on surface SO2 concentration predictions). Four
of these flights were conducted in April and May of 2018 (2
flights each month), and the rest (7 flights) were conducted
in June of 2018. Hence, while April in this region is snow-
covered and represents emissions under winter conditions,
the majority of available aircraft data were for the summer-
time. Aircraft-measured and interpolated wind and SO2 data
were used to determine plume origins (emission sources). We
note that the box flights were designed with the intent of sam-
pling plumes from specific facilities; combined with the air-

craft wind speed and direction data, the emissions associated
with the source within an enclosing box flight can be dis-
tinguished from other sources in the region (see Sect. 2.5).
Flight planning included wind and air quality forecasts that
allowed box flights to avoid conditions under which a plume
from one facility impacted the air above another facility and
to avoid conditions that might lead to inaccurate retrievals of
emissions levels based on aircraft data (see Fathi et al., 2021).
SO2 data recorded during the segments of the flights corre-
sponding to model output data were analyzed to determine
plume centre heights (height of the maximum observed con-
centrations). The observed heights were compared to model-
predicted plume heights using the two plume rise algorithms,
GM-orig and GM-PRISM. The results of these evaluations
and comparisons are presented in Sect. 3.

2.4 Input emission rates and source parameters

Water vapour (H2O) and carbon dioxide (CO2) emission
rates from sources within the OS facilities are neither re-
ported in emission inventories such as National Pollutant
Release Inventory (NPRI: ECCC, 2023) nor form a part of
the continuous emission monitoring system (CEMS). How-
ever, their emissions are correlated with fuel combustion as
part of OS production/activities: CO2 and NOx emissions are
related to synthetic crude oil production at the OS (Liggio
et al., 2019). For this work, NOx emission rates, which are
reported in the NPRI and CEMS datasets, are used as a proxy
for estimating CO2 emission rates and the corresponding wa-
ter emission rates determined from combustion reaction sto-
ichiometry. The stoichiometry of the relative amounts of wa-
ter to CO2 emitted for a given fuel thus provides an estimate
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of the water emitted due to combustion. Wren et al. (2023)
calculated the average ratios of CO2 to NOx emission rates
from OSM 2018 aircraft campaign data for individual OS
facilities and source types (e.g. stack, area). For this work,
the CO2 : NOx ratios estimated by Wren et al. (2023) for the
stack sources were used in turn to estimate CO2 emission
rates from NOx reported in NPRI and CEMS. CO2 and H2O
are primarily generated from combustion of natural gas, with
methane (CH4) as its main component, in OS production op-
erations:

CH4+ 2 O2 −→ CO2+ 2 H2O. (R1)

Therefore, for every mole of CO2, 2 moles of H2O is emit-
ted due to combustion. Accordingly, a stoichiometric ratio of
1 : 2 of CO2 to H2O can be used to estimate H2O emissions
levels, as was done for this work. H2O emissions were then
calculated from NPRI- and/or CEMS-reported NOx emission
rates based on source-specific CO2 to NOx ratios. For the pe-
riod corresponding to the aircraft study, the continuous emis-
sions monitoring system (CEMS) hourly data were available
for SO2 and NOx for only two of the OS Suncor stack sources
and for SO2 for the other facilities/stacks. Canadian emis-
sions reporting requirements for NPRI reporting for large
stacks are for annual totals. Therefore, the hourly NOx and
consequently hourly H2O for the rest of the facilities were
estimated from NPRI annual emissions data. CEMS hourly
data for stack parameters (e.g. exit temperature, flow rate)
and SO2 emission rates were available for April to July 2018,
partially overlapping with the period of our 6-month run sim-
ulations from February to July 2018, and were used in the
simulations for the same period. We note that the estima-
tion of stack water emissions is a required input for our al-
gorithm – the methodology demonstrated here is easily ex-
pandable to other combustion stack sources. Knowledge of
the fuel type is required, with different fuels having differ-
ent amounts of water produced per carbon atom combusted
– i.e. Reaction (R1) depends on the fuel used for generating
heat for stack emissions. As we will discuss below, the ac-
curacy of the stack emissions and the consequent estimates
of water emissions have a key impact on the accuracy of
our plume rise algorithm. Note that we used the estimates
of combustion-generated water as described above in our
simulations (both standalone and GEM-MACH simulations
with PRISM) for the specific stack sources for which the fol-
lowing information was available: (a) reported NOx emis-
sion rates (CEMS or NPRI) and (b) facility-specific estimates
(aircraft-based) of CO2 to NOx emission ratios. Such source
emission information was not available for the majority of
the stack sources within our large-scale GEM-MACH mod-
elling domain (10 km resolution domain over North America,
2.5 km resolution domain over Alberta and Saskatchewan).
Nevertheless, in our GEM-MACH simulations with PRISM
(GM-PRISM), the plume rise from major point sources, in-
cluding those without combustion-generated water data, was

also impacted by the moist thermodynamics of the entrained
water from ambient air.

2.5 Aircraft campaign and WBEA surface monitoring
network

During the OSM 2018 campaign (April to July), aircraft-
based measurements of environmental variables (meteorol-
ogy, pollutant concentrations) were conducted over the Cana-
dian oil sands (OS) (ECCC, 2018). Figure 1b shows the
flight tracks taken by the aircraft during the OSM 2018
campaign over the OS region. The aircraft conducted sev-
eral flights during different days and times from April to
July 2018, including single screen flights tens of kilome-
tres downwind of OS facilities and box flights around the
facilities at near range. The designation box flight refers to a
flight pattern during which the aircraft would fly along closed
loops around a specific emitting facility at several consecu-
tive altitudes while making measurements of environmental
variables. The box flights were specifically designed to cap-
ture emissions from individual facilities. Aircraft-measured
data during box flights were converted into source emission
rates through flux estimations and mass-balance calculations,
utilizing the Top-down Emission Rate Retrieval Algorithm
(TERRA) algorithm described in Gordon et al. (2015). For
further discussion on the application of TERRA and the un-
certainties in emission rate retrievals based on aircraft mea-
surements, see Fathi et al. (2021). This was done for several
emitted species such as SO2, NOx , and CO2. As discussed in
Sect. 2.4, aircraft-based estimates, emission inventory data,
and continuous emissions monitoring system (CEMS) data
for NOx were used to derive the NOx to CO2 emission rate
ratio, which in turn was used to estimate the water emissions
rate.

Here, we also used aircraft measurements of SO2 con-
centrations downwind of several oil sands facilities (CNRL,
Syncrude, and Suncor) to determine observed plume heights
and evaluate our model-predicted plume rise (using both
GM-orig and GM-PRISM) vs. these observations. For our
analysis, we considered aircraft data from box flights where
measurements were made just a few kilometres downwind or
upwind of emission sources. This was done to avoid flights
that included a large long-range transport path/time of emit-
ted pollutant to the point of measurement so that the ob-
served plumes would be a better representation of emission
and plume rise conditions at the stack locations. We focused
on SO2 as the emitted pollutant, since it is a primary emitted
pollutant (i.e. not generally generated due to photo-chemical
reactions in the atmosphere) and due to the availability of
CEMS-based direct observations of SO2 within emitting
stacks. SO2 in oil sands (OS) regions is mainly emitted from
large high-temperature stack sources (over 90 % of the emit-
ted SO2 in the region originates in the large stacks, unlike
NO2, only about 40 % of which is emitted from large stacks;
Zhang et al., 2018), with low background levels from other
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sources, making SO2 a good indicator of buoyant plumes and
suitable for our study of plume rise parameterization.

Further, we evaluated model performance in terms of sur-
face concentrations of SO2 vs. air quality observations from
21 WBEA (Wood Buffalo Environmental Association) con-
tinuous surface motoring stations in Alberta. Here, we fo-
cus on SO2 as a primary emitted pollutant. Given that SO2
is mainly emitted from large smokestacks in the OS region
(over 90 %; Zhang et al., 2018), this makes it more rele-
vant for our purposes: evaluating the plume rise parameteri-
zation for buoyant sources. We analyzed the hourly WBEA
data from February to July 2018 vs. GEM-MACH-model-
generated fields (from both GM-orig and GM-PRISM) for
the same period.

3 Results and discussion

3.1 Model sensitivity to plume rise parameterization:
standalone PRISM simulations

We investigated the impact of within-plume combustion-
generated water on the neutral buoyancy height of the ef-
fluents from high-temperature stacks using PRISM (stan-
dalone). Figure 2 shows the dependence of plume final height
on stack temperature and the amount of water released within
the plume parcel for an idealized case with a dry adiabatic
lapse rate. The range of stack temperatures and water emis-
sions is taken from the corresponding reported parameters
for the stacks of interest for three oil sands (OS) facilities:
CNRL, Suncor, and Syncrude. Note that initial in-plume wa-
ter vapour was limited to values less than or equal to the sat-
uration level dictated by the saturation vapour pressure for
each given stack exit gas temperature (note the cutaway in
the surface plot in Fig. 2 and that the high temperatures al-
low for much higher water content than might be found at
ambient temperature conditions). The dependence on stack
exit temperature is evident from the results shown in Fig. 2
– i.e. higher stack temperature corresponds to higher plume
parcel (initial) buoyancy and the resulting increase in the fi-
nal height reached by the plume parcel (neutral buoyancy
height). The other interesting observation is the stronger de-
pendence on the amount of water vapour emitted. Our results
show the significant impact of latent heat exchange due to
phase changes in within-plume water on plume rise (Fig. 2).
The net release of latent heat as the water vapour condenses
within the rising plume modulates plume parcel buoyancy
significantly, resulting in up to 500 m of additional rise for
the case shown in Fig. 2; compare the plume height val-
ues (vertical axis, Fig. 2a) for zero water emissions to those
at maximum water emissions. The dependence trends (the
cross-sectional trends in Fig. 2) reveal that plume neutral
buoyancy height is impacted by moist thermodynamics more
significantly than by parcel initial temperature.

We also investigate the impact of moist thermodynam-
ics on plume rise for realistic cases with more complex

Figure 2. (a) The standalone PRISM-predicted final plume rise for
an idealized case as a function of stack temperature and emitted
water. (b) The idealized ambient profile for air temperature (with
the dry adiabatic lapse rate) is shown as a function of height. Plume
neutral buoyancy height shows stronger dependence on initial in-
plume water vapour than stack temperature, resulting in up to 500 m
of additional rise for the range shown.

atmospheric vertical structures. Using the GEM numerical
weather model (see Table A1) at a high resolution (2.5 km
grid spacing), we generated meteorological fields (wind, am-
bient air density, temperature, and vapour and liquid wa-
ter mixing ratios) for the 2018 aircraft campaign over the
oil sands region. We used the model-generated meteorolog-
ical fields (vertical profiles) corresponding to the period of
11 box flights around 3 OS facilities (Suncor, CNRL, Syn-
crude) as input for PRISM. Further, we used stack param-
eters (temperature, volume flow rate, water emission rate)
for high-temperature stacks within these three facilities to
model plume rise using PRISM (offline – i.e. not embed-
ded within the GEM-MACH 3D model). Figure 3 shows
the results for the case on 6 June 2018 for the Syncrude
main stack. Plume parcel temperature (T ), density (ρ), water
vapour mixing ratio (qv), condensed water mixing ratio (qc),
and parcel rise speed are compared to environmental param-
eters as a function of height in Fig. 3. The PRISM-predicted
parcel state variables are shown for four different rise cases:
vertical and bent-over rise with and without in-plume water.
The without in-plume water (dry) rise cases, illustrated by
dashed curves, show how parcel temperature drops (and den-
sity increases) as the rising parcel mixes with the ambient air
(through entrainment) until it reaches the neutral buoyancy
height (height at which the parcel density approaches ambi-
ent air density). Note that for the bent-over plume rise, the
parcel volume flux is a function of the horizontal wind speed
U (cross-wind is shown by a blue curve in Fig. 3e) accord-
ing to Eq. (2). Consequently, even in the presence of mild
cross-winds (2 to 5 m s−1), expansion (due to entrainment)
and the buoyancy reduction rate are higher for the bent-over
rise than the vertical rise, and therefore, the parcel reaches
neutral buoyancy at lower altitudes (Fig. 3). PRISM performs
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both (vertical and bent-over) calculations for each plume rise
case and following Briggs (1984) chooses the final rise cal-
culated by the one resulting in higher buoyancy reduction as
a function of height. The impact of latent heat exchange can
be seen for the moist plume rise cases, shown by solid curves
in Fig. 3. The condensation of in-plume water (and the result-
ing latent heat release) prolongs parcel buoyancy for both rise
types (vertical and bent-over), resulting in a higher final rise
compared to the dry cases. Note the difference in condensed
water (qc) vertical profiles for the bent-over (green) and ver-
tical (orange) rise types in Fig. 3d. Water condenses faster
(and at lower altitudes) for the bent-over rise, but it is short-
lived compared to the vertical rise. The corresponding impact
on parcel temperature (T ) and density (ρ) can also be seen
in Fig. 3a, b: parcel temperature drops (and parcel density
increases) with height at a lower rate for the period of latent
heat release (compared to rise with no latent heat exchange),
and as a result, the parcel state variables approach ambient
values at much higher altitudes. Note that the height at which
parcel plume density approaches ambient air density, within
an acceptable level of accuracy (defined as a convergence cri-
terion of the difference between parcel and ambient air den-
sity relative to the ambient air density below a threshold), is
taken as the plume neutral buoyancy height. Under most con-
vective conditions (and in the absence of strong inversions),
parcel density tends to approach ambient air density asymp-
totically (see Fig. 3b).

In our standalone tests with PRISM, we have noticed the
asymptotic offset between parcel air density and the ambi-
ent air density, which depends on the vertical resolution at
which buoyancy reduction calculations are performed, falls
between 0.1 % and 0.5 % of ambient air density. That is to
say, when parcel density starts to asymptotically approach
the ambient air density, as a result of the finite resolution
of the calculations and the slight excess humidity within the
plume parcel, plume density remains offset from the ambi-
ent density within a fraction of a percent of the ambient air
density at those heights, although it follows the same lapse
rate as the ambient air. Our criteria for convergence is thus
based on the observed numerical behaviour of the rising par-
cel. We believe that the physical reason for the observed sit-
uation where the parcel comes to rest without asymptotic
rise may reflect detrainment of parcel water to the ambi-
ent atmosphere. Future work will focus on evaluating the
detrainment impact. PRISM can be configured with differ-
ent density convergence criteria (ρconv) in terms of the per-
centage difference between parcel and ambient air density:
ρconv = |(ρ− ρair)|/ρair× 100. At the height where the dif-
ference between parcel density and ambient air density falls
within ρconv, the parcel is assumed to be neutrally buoy-
ant, and the rise terminates. We performed tests with ρconv
ranging between 0.1 % to 0.5 % and found ρconv = 0.3 % (by
comparing plume rise estimates to aircraft-observed plume
heights) to be the optimal convergence criterion for the ma-
jority of the cases we considered. We note that the choice

of ρconv depends on the numerical accuracy of the calcula-
tions and the vertical resolution at which the plume buoy-
ancy reduction is calculated. The results shown in Fig. 3 are
from calculations at a 1 m resolution. Our tests with different
resolutions up to a 10 m resolution have shown optimal per-
formance with ρconv between 0.1 % and 0.3 %. We also note
that the plume rise algorithm is sensitive to input information
such as stack exit temperature, and depending on the confi-
dence level of input parameters, the convergence criteria can
be either strict or relaxed.

3.2 Model sensitivity to plume rise parameterization:
GEM-MACH simulations

We performed two sets of retroactive simulations with the
GEM-MACH model, with the original plume rise algorithm
(GM-orig) and with PRISM embedded within GEM-MACH
(GM-PRISM). Model outputs from the two sets of simula-
tions were compared for a 6-month period between February
and July 2018. Output data were divided into two groups:
the wintertime (including the months of February, March,
and April) and summertime (including the months of May,
June, and July). This was done in order to investigate model
sensitivity to the two different plume rise parameterizations
for two general sets of conditions: the cold and more stable
atmosphere during the wintertime and the warmer and less
stable atmosphere during the summertime. The separation of
the simulations into the two seasons also allows us to exam-
ine the effect of emissions data accuracy on plume rise calcu-
lations: we note that the CEMS source parameter and emis-
sions data were available only for April to July 2018 (exclud-
ing the months of February and March in the wintertime).
The average SO2 surface concentrations for GM-PRISM
summertime simulations, with ρconv = 0.3 %, are shown in
Fig. 4a and b for the oil sands region sub-domain and for
the entire high-resolution domain, respectively. Figure 4c, d
show GM-PRISM normalized mean bias (NMB) in percent
relative to GM-orig simulations for surface SO2. The confi-
dence ratios at the 90 % confidence level (CR90; see Makar
et al., 2021) were also calculated between surface concentra-
tions generated by the two simulations and are depicted in
Fig. 4e, f. The confidence ratio values ≥ 1 are indicative of a
statistically significant difference between the GM-PRISM
and GM-orig simulations at the specified confidence level
(here 90 %). The highest values of CR (e.g. 2 and above)
are located close to sources of SO2, such as the oil sands
sources, as well as other sources located to the south and
west of the oil sands region (Fig. 4e, f). That is, the impact
of the revised parameterization is the strongest close to the
sources. We note that due to the lack of sufficient informa-
tion (e.g. source-specific CO2 to NOx emission rate ratios)
for reliably estimating the amount of combustion-generated
water mass for the hundreds of emission sources (none OS)
within the large-scale modelling domain, the emissions of
combustion water were only available for a number of OS
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Figure 3. The standalone PRISM-predicted parameters for a rising plume parcel are compared to ambient conditions for four different cases,
vertical and bent-over rise (moist and dry), for the main stack at the OS Syncrude facility on 6 June 2018 at 18:00 UTC. Parcel (a) temperature,
(b) density, (c) water vapour mixing ratio, (d) condensed water mixing ratio, and (e) rise speed and horizontal wind speed U (crosswind) are
shown.

facilities (e.g. aircraft-based facility-specific NOx to CO2
emission ratios). For those major point sources without wa-
ter emissions, the differences between the algorithms are
due to the entrainment of ambient water into dry combus-
tion plumes and the stratified calculation of plume buoyancy
in PRISM. For major OS point sources with water emis-
sions, the differences are further influenced by the moist ther-
modynamics of the combustion-generated water. Neverthe-
less, differences can be seen for all large stack sources of
SO2 within the domain, showing the impact of the revised
algorithm on SO2 even in the event that water emissions
are not available; entrained water interacts with the emit-
ted parcels and may have a significant impact on plume rise
and SO2 dispersion, with differences between the two simu-
lations exceeding the 90 % confidence level (CR90> 1) for
about 7 % of the entire modelling domain (Fig. 4). The im-
pact of combustion-generated water on plume rise for OS
stacks is apparent from Fig. 4e, with CR90> 1 for more than
20 % of the model domain corresponding to the oil sands re-
gion (the region within the dashed box in Fig. 4e). CR90≥ 1
values near large stack sources clearly demonstrate that the
plume rise algorithms predicted different plume heights at
source locations, resulting in different vertical distributions
of the SO2 plumes and significant differences at the surface.
These differences become less pronounced farther away from
the emission sources, although some regions of significant
differences (also significant at lower confidence levels, e.g.
CR80≥ 1, CR85≥ 1) can occur far downwind of the sources
(e.g. northern Saskatchewan; the CR90≥ 0.4 region in the
middle-right of Fig. 4f). The downwind differences demon-
strate the change in the direction and the range of the trans-
port of the emitted SO2 mass. This is a direct result of the

difference in rise parameterization due to the plumes rising
to different altitude levels with dissimilar flow regimes (e.g.
wind speed and direction, strength of turbulence). Similarly
for the wintertime, the differences between GM-PRISM- and
GM-orig-simulated surface SO2 were pronounced near emis-
sions sources but to a greater spatial extent, with CR90≥ 1
for 50 % of the model domain corresponding to the oil sands
region (see Fig. S1 in the Supplement for wintertime com-
parisons). For the wintertime, CR90≥ 1 values correspond
to about 10 % of the entire modelling domain. The differ-
ences between summertime and wintertime results are par-
tially attributable to drier and more stable conditions in the
colder months compared to more humid and convective con-
ditions in the warmer months. Generally, the new parame-
terization predicted lower plume heights and weaker verti-
cal mixing of the emitted SO2 mass compared to summer-
time. Also note that combustion-generated water emissions
information, CEMS emissions data, and stack parameter data
were not available for the majority of the wintertime simula-
tions.

The GM-orig algorithm parameterizes the plume rise
based on flux reduction calculations as a function of at-
mospheric stability (Akingunola et al., 2018), whereas the
GM-PRISM algorithm performs direct flux reduction calcu-
lations at each vertical level while accounting for heating/-
cooling due to phase changes in water. Consequently, the
GM-PRISM algorithm is more sensitive to input stack pa-
rameters and in-plume water mass data. We note that hourly
CEMS data (direct measurements) of source parameters (e.g.
effluent exit temperature and volume flow rate) were only
available for the period between April and July 2018 (April
plus summertime) as input for model simulations. The in-
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Figure 4. Average surface SO2 concentrations for the summertime period (May, June, and July 2018) generated by GM-PRISM simulations
with ρconv = 0.3 %, shown for (a) the oil sands region and (b) the entire domain. (c, d) Normalized mean bias (NMB) in % relative to
GM-orig simulations for the same period. (e, f) Confidence ratio at a 90 % confidence level (CR90).

put stack parameters for the months of February and March
(2/3 of wintertime) were based on the reported parameters in
the Canadian National Pollutant Release Inventory (NPRI).
The reported stack parameters are the “optimal” values for
a given stack but may not correspond to hour-to-hour varia-
tions. The winter stack parameter estimates are largely indi-
rect (based on other factors such as design parameters of the
stack) at low temporal resolutions (i.e. based on annual total
emissions data; AER, 2022). This adds further uncertainty to
wintertime evaluations of GM-PRISM simulations.

3.3 Plume rise prediction evaluation vs.
aircraft-observed SO2 plumes

Model plume height predictions by GM-orig and GM-
PRISM corresponding to 11 box flights during the OSM
2018 campaign were evaluated vs. aircraft observations for
SO2 plumes. Aircraft measurements of wind and concen-
tration fields at several altitude levels around the major
SO2-emitting OS facilities, Syncrude, Suncor, and CNRL,
were analyzed to determine the source stack of each ob-
served plume. Note that ambient atmospheric meteorologi-
cal variables were extracted from the GEM-MACH simula-
tions and used as meteorological inputs for the algorithm.
Plume centres for each flight case were identified and their
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altitudes estimated from the interpolated concentration data
(see Fig. S2). These observed plume heights were then com-
pared to plume height predictions by GM-orig and GM-
PRISM (ρconv = 0.3 %) simulations for the corresponding
times and locations. Figure 5 shows the comparisons be-
tween hourly model-predicted plume heights at the stack lo-
cation and aircraft-measured vertical profiles of SO2 concen-
trations corresponding the same model hour. The flight strat-
egy for these box flights was to encircle the facility, start-
ing the aircraft flights around the facility close to the surface
and increasing in altitude as the aircraft flew around the fa-
cility: a box-shaped spiral flight pattern, gradually increas-
ing in height (see Fig. S2). High concentrations of SO2 on a
given pass around the facility were taken as a tentative plume
height on each pass as the aircraft rose in altitude. However,
the highest concentration encountered during the entire set
of passes was used to represent the plume height, with lower
concentrations encountered during the course of the flight
representing either the edges of a rising plume or lower-
concentration plumes due to other sources within the facil-
ity and region (Fig. S2). In some cases, during the course of
a flight, the apparent equilibrium plume height (determined
from the highest concentration encountered during a given
pass around the facility) changed, possibly reflecting an on-
going change in plume height due to changing atmospheric
conditions (Fathi et al., 2021). That is, the top of the plume
was able to be distinguished close to the surface and then
again at a higher level on a subsequent higher-altitude pass
of the aircraft, suggesting either a rising plume during the
course of the study or multiple layers of SO2 within the box
domain. The final estimation of the plume height in these
cases was the location of the highest concentration encoun-
tered during the course of the flight. In Fig. 5, we show the
normalized concentration of SO2 measured at each hour by
the aircraft, indicating the height of the observed plume using
the maximum concentration at each time. For flights 4, 7, 9,
10, 17, and 21, the plume height increased during the course
of the flight. In flights 6, 8, 11, 19, and 20, the plume height
remained stable. In some of the cases where the plume height
increased, the estimate of the observed height at the first hour
(the lowest-elevation passes around the facility) is highly un-
certain since the flight had yet to reach the height at which
the entire vertical extent of the plume was sampled. Flights
4, 7, 9, 10, 17, and 21 are examples where the aircraft sam-
pling during the initial hour may not have reached sufficient
heights to sample the entire plume. The maximum concen-
tration recorded by the aircraft during each hour was then
compared to hour-by-hour model-predicted plume heights.
Model values for the plume height at each hour are shown in
symbols in Fig. 5 (grey lines and circles – GM-orig; orange
lines and squares – GM-PRISM), and the upper and lower
extent of the simulated plume via Eq. (14) is shown as a grey
(GM-orig) or orange (GM-PRISM) shaded region. Note that
most of these flights were conducted during local noon and
afternoon hours under convective conditions (see Fig. S3 for

model-predicted vs. aircraft-observed temperature profiles).
Therefore, it is reasonable to assume a temporal variation in
the vertical mixing of the observed plumes. Such temporal
trends were captured by both GM-orig and GM-PRISM sim-
ulations, as can be seen in Fig. 5.

GM-PRISM showed a significant improvement relative to
GM-orig in 8 of the 11 flights (flights 7, 8, 9, 11, 17, 19,
20, and 21). For these cases, GM-orig was shown to overes-
timate the plume height by up to a kilometre (e.g. flight 8),
while the distance between measured and modelled plume
heights is greatly reduced with GM-PRISM simulations. For
two flights (flights 6 and 10), the two algorithms produced
similar plume heights, and for one flight (flight 4), both ap-
proaches resulted in a considerable overestimate of plume
height (possibly due to a positive bias in model tempera-
tures that is discussed later). Figure 5 compares GM-orig-
and GM-PRISM-simulated plume maximum concentration
heights (GM-orig – grey line; GM-PRISM – orange line) to
the median of maximum concentration heights observed dur-
ing flight/sampling time. The tendency of GM-orig to over-
estimate plume height can be seen clearly, as can the general
overall improvement in plume height with GM-PRISM. The
summary values for the normalized mean bias (NMB) and
normalized root-mean-square error (NRMSE) in the plume
heights are shown in Fig. 5; the use of GM-PRISM has sub-
stantially reduced the magnitudes of both error metrics, with
the NMB decreasing from 60 % to 10 % and the NRMSE be-
ing halved. The new parameterization thus provides a clear
improvement in the plume height estimate compared to the
previous algorithm, indicating that the stratified calculation
of plume buoyancy and latent heat exchange associated with
in-plume water has a significant impact on plume rise.

We note that GM-PRISM overpredictions for flight 4 (win-
tertime) are partially due to a positive bias of a few de-
grees Celsius in model temperatures relative to aircraft mea-
surements (see Fig. S3). When this temperature bias is cor-
rected for, GM-PRISM plume height predictions can be fur-
ther improved. This demonstrates the sensitivity of the new
parameterization (GM-PRISM) to the input ambient tem-
perature profiles. Over/underpredictions, similar to the case
of flight 4, can potentially be related to model temperature
biases, although insufficiently precise stack parameter data
may also play a role, as discussed above. Using aircraft-
observed temperature (vertical) profiles as input into stan-
dalone PRISM simulations (not embedded within the GEM-
MACH model), we were able to confirm this effect for
flight 4 (a reduction in error parameters by about 10 % in
the NMB). We note that for the current work, we had win-
tertime aircraft data from only two flights (4 and 6), while
a larger observational dataset is needed for a more compre-
hensive investigation of such effects. Note that the ambient
air data required as input for the PRISM algorithm include
horizontal wind speed, air density, air pressure, and the wa-
ter content (vapour, liquid, ice) mixing ratio in addition to
temperature profiles. For the flight 4 example, only temper-
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Figure 5. Predictions of plume height in GM-orig and GM-PRISM simulations compared to OSM 2018 aircraft observations for the 11 case
studies. For each hour of the flight, aircraft-observed vertical profiles of concentration are shown as density maps (white to blue) up to the
height visited by the aircraft by that hour. Concentrations are shown as shaded blue regions, which have been normalized to the maximum
concentration encountered during the flight. Aircraft-observed SO2 plume maximum concentration heights are marked with cyan stars and
are taken here to represent the observed plume heights. Plume maximum concentration height predictions by GM-orig (grey circles) and
GM-PRISM (orange squares) are compared with the aircraft-observed heights (flight median). Results are shown as the normalized mean
bias (NMB) and normalized root-mean-squared error (NRMSE).

ature profiles were replaced with aircraft-observed tempera-
tures, and the rest of the ambient air input data were from the
GEM model output. Note that the combustion-generated wa-
ter data, derived from the CEMS and NPRI emissions data
of NOx (Sect. 2.4), were included in GEM-PRISM simula-
tions. The results shown in Fig. 5 show the impact of the
new parameterization, including the stratified calculations of
buoyancy and moist thermodynamic effects of both entrained
and emitted water.

3.4 Impact of plume rise parameterization on
GEM-MACH’s surface SO2 concentration
performance

Evaluations vs. the WBEA continuous monitoring network
confirm the results vs. aircraft-observed SO2 plumes and
show the substantial impact of moist-plume rise on down-
wind SO2 concentrations, with GM-PRISM improving the
prediction of surface SO2 concentration relative to GM-orig
predictions for the study period. Figure 6 shows the evalua-
tion of monthly average surface SO2 produced by the model
when making use of the two plume rise calculations vs. ob-
servations at WBEA continuous monitoring stations in the
oil sands region. Comparisons are shown for the summer-
time (May, June, and July, when CEMS data were avail-
able) in Fig. 6a, b and the wintertime (February, March, and

April, when CEMS data were mostly unavailable) in Fig. 6c,
d. Figure 6b and d show SO2 mean biases by GM-orig and
GM-PRISM (with ρconv = 0.3 %) at the locations of WBEA
stations over the OS region. Evaluation results show biases
of various degrees by GM-orig and GM-PRISM simulations.
The GM-PRISM method improved surface SO2 predictions
relative to GM-orig for the summertime, with the fraction
of predictions within a factor of 2 of observations (FAC2)
increased from 0.68 to 0.83 and the normalized mean bias
(NMB) reduced significantly, from −0.45 to −0.00, as sum-
marized in Table 1. GM-PRISM also improved the winter-
time surface SO2 predictions relative to GM-orig in terms
of mean bias, reducing NMB from −0.21 to 0.06 (Table 1).
We note that wintertime results are less conclusive due to
the absence of CEMS emissions and stack parameter data
as model input for most of the winter period. We note that
due to the strong spatial heterogeneity of concentration fields
(SO2), evaluations vs. observations at individual WBEA sta-
tions resulted in diverse statistics. This in turn demonstrates
the impact of different plume rise parameterizations on mod-
elling the dispersion (transport direction and range) of pol-
lutants. We also note that different choices for the plume
parcel convergence criteria ρconv result in different levels
of performance by the PRISM algorithm. Our tests with a
previous version of the emissions and stack parameter in-
put data using ρconv values of 0.1 %, 0.3 %, and 0.5 % re-
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sulted in summertime NMB scores of −0.27, −0.06, and
0.17, respectively (see Tables S1, S2, and S3 in the Sup-
plement). With ρconv = 0.5 % resulting in an overestimation
and ρconv = 0.1 % resulting in an underestimation of surface
SO2 concentrations for the full 6-month simulation (includ-
ing both CEMS and non-CEMS periods), ρconv = 0.3 % was
found to be the optimal convergence criterion for our mod-
elling study. GM-PRISM simulations with ρconv = 0.3 % re-
sulted in a relatively small bias of 3 % (compared to −32 %
by GM-orig) over the entire 6-month simulation period, as
shown in Table 1.

Several factors may contribute to model bias (with both
GM-orig and GM-PRISM). These can potentially be related
to the performance of the meteorological model in simulat-
ing mixing conditions for the same locations and time pe-
riods, which would require further investigation, including
comparisons to observed surface temperatures and vertical
temperature profiles. Another possible reason is the coarse
resolution of the model, with 2.5 km grid spacing and nu-
merical dilution of mixing ratios, rendering model-generated
surface concentrations less representative of near-source ob-
served values. Russell et al. (2019) used GEM-MACH sim-
ulations at 2.5 and 1 km resolutions to demonstrate that in-
creased resolution can result in a local increase in concentra-
tion, suggesting that model simulations at higher resolutions
can potentially improve model performance and reduce the
negative bias at the surface. This needs further investigation
using simulations at even higher resolutions (e.g. 50 m; Fathi
et al., 2023). A key difference between the summer and win-
ter simulation periods is the availability of time-specific stack
parameters from hourly CEMS data (stack parameter, emis-
sions) as input for model simulations, which added further
uncertainty to wintertime evaluations. For the summertime
period, for which CEMS data were used as input for simula-
tions, the PRISM algorithm improved the predictions signif-
icantly, in terms of both plume final height and surface con-
centrations in evaluations vs. observed values. We note the
significance of the improved predictions of plume height by
the PRISM algorithm under highly convective and complex
summertime conditions (where enhanced turbulence plays a
greater role in dispersion relative to the more stable condi-
tions of wintertime).

4 Conclusions

In this work, we investigated the behaviour of pollutant
plumes emitted from industrial stacks under various atmo-
spheric dispersion conditions in the context of plume rise
modelling. As demonstrated in this work, the vertical distri-
bution and downwind dispersion of pollutants emitted from
high-temperature anthropogenic sources are controlled by
plume parcel buoyancy and water content as well as by am-
bient atmospheric conditions. We explored the impact of
moist thermodynamics on buoyant plume rise from industrial

sources through the development of a new plume rise param-
eterization, PRISM (Plume-Rise-Iterative-Stratified-Moist).
This new approach incorporates the thermodynamic effects
of latent heat exchange associated with phase transitions
of in-plume water in the empirical formulations by Briggs
(1984), while performing layered (stratified) calculations of
parcel buoyancy for the rising plume. The effluents emit-
ted from high-temperature stacks include significant amounts
of combustion-generated water vapour that can condense as
the plume rises and cools. The subsequent heating due to
the release of latent heat can prolong the buoyancy of the
plumes and result in increased rise above the stack top. Con-
versely, the evaporation of the entrained liquid water within
the plume can result in additional cooling of the effluent and
limit the rise. We also note that the addition of condensed
water within the plume modifies parcel buoyancy and can
act as a rise limiting factor through latent heat loss as this
condensed water evaporates.

As the water emissions data were not available for the
sources of interest (Canadian oil sands) from the emission in-
ventory datasets, we estimated water emissions from the es-
timated NOx and CO2 emissions based on aircraft measure-
ments during an aircraft campaign in 2018 over the Cana-
dian oil sands (ECCC, 2018). For this purpose we used a
stoichiometric ratio of 1 : 2 of CO2 to H2O, as methane was
assumed to be the primary combustion fuel for the emission
sources considered. We demonstrated the significant impact
of latent heat exchange due to phase changes in within-plume
water on plume buoyancy and the final height reached by the
pollutant plumes emitted from anthropogenic sources, using
standalone (offline) simulations using PRISM with the re-
ported stack source information for several oil sands sources
as input data (stack exit temperature, volume flow rate, and
estimated water emissions). Our results show that emitted ef-
fluents that contain water vapour can rise up to 500 m higher
than dry (no water content) combustion plumes with the same
initial exit momentum and buoyancy (see Fig. 2). We showed
that plume behaviour has a stronger dependence on plume
parcel water content than on effluent exit temperature, sug-
gesting that the addition/removal of water mass in both gas
and liquid phases can act (and potentially be utilized) as an
effective controlling factor for the height reached by anthro-
pogenic pollutant plumes and their downwind dispersion. We
also showed that pollutant plumes can behave differently un-
der dry and humid conditions and in the presence of precip-
itation, by accounting for the thermodynamic impacts of en-
trained water (vapour and condensed) from the ambient air
into the parcel. Emitted and entrained water was found to im-
pact plume buoyancy and final rise height and may boost or
limit the buoyant rise of the plumes. For instance, a plume
parcel can maintain its water vapour content and positive
buoyancy for a longer duration and up to higher altitudes un-
der humid atmospheric conditions than under dry conditions.
Conversely, if water mass (rain droplets, ice, snow) is present
in the ambient air, as this water is entrained into the warm
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Figure 6. Evaluations vs. WBEA monthly average surface SO2 observations. Comparisons for (a, b) summertime and (c, d) wintertime are
shown. Panels (b) and (d) show model mean bias in ppb (GM-orig in blue, GM-PRISM in orange) vs. observations at WBEA stations on
the map of OS region for summer and winter, respectively. Also shown in (b) and (d) are the locations of the WBEA continuous monitoring
stations (white circles) and the OS facilities Syncrude (square), Suncor (downward triangle), and CNRL (upward triangle). WBEA station
IDs are noted on the corresponding white circles.

Table 1. Statistical comparison of average monthly SO2 surface concentrations vs. WBEA continuous monitoring data with GM-orig and
GM-PRISM (with ρconv = 0.3 %) simulations for the period from February to July 2018. R is the correlation coefficient, FAC2 is the fraction
of predictions within a factor of 2 of observations, NMB is the normalized mean bias, and RMSE is the root-mean-squared error.

Summertime Wintertime Full 6-month

Statistics GM-orig GM-PRISM GM-orig GM-PRISM GM-orig GM-PRISM

R 0.80 0.80 0.69 0.66 0.70 0.74
FAC2 0.68 0.83 0.86 0.86 0.77 0.84
NMB −0.45 −0.00 −0.21 0.06 −0.32 0.03
RMSE 0.52 0.54 0.44 0.51 0.48 0.53

plume parcel, it can result in heat loss and latent cooling as
the water evaporates (and ice melts) and consequently limit
the buoyant rise of the plume. We showed that moist ther-
modynamics has a wide-ranging impact on plume behaviour
and surface SO2 concentrations over a large region and un-
der varying atmospheric conditions (dry and humid, cold and
warm, stable and convective). This was accomplished using
a series of retrospective model simulations in which Environ-
ment and Climate Change Canada’s GEM-MACH air quality
model was used, coupled with the PRISM moist-plume-rise
algorithm (GM-PRISM), for a 6-month period. These mod-
elling results demonstrate the moist thermodynamic impact,
with a ±100 % difference in the average SO2 concentrations
near industrial sources (see Figs. 4 and S1).

Through comparisons with aircraft-observed SO2 plumes
during the OSM 2018 airborne campaign, we further demon-
strated the impact of moist thermodynamics on plume be-

haviour and showed that accounting for such effects can sig-
nificantly improve plume height predictions, on average by
up to 50 % in terms of NMB (normalized mean bias). These
impacts were demonstrated to provide a more accurate de-
scription of plume rise through evaluations of model per-
formance vs. WBEA surface monitoring network data (sur-
face SO2 concentrations) that showed significant improve-
ments for the summertime (and moderate improvements for
the wintertime) simulations in terms of all statistics (e.g. cor-
relation coefficient and bias; see Table 1 and Fig. 6). These
improvements in predictive capabilities by utilizing PRISM
further reinforce the fact that moist thermodynamics is a key
component of the rise of buoyant plumes and influences the
long-range transport and surface concentration of emitted
pollutants.

For the period between April and July 2018 (inclusive),
where hourly (directly measured) CEMS stack parameters
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and emissions data were available as model input informa-
tion, the new plume rise algorithm in GM-PRISM simula-
tions outperformed the older parameterization by 50 % in
terms of NMB (reduced RMSE by about 50 %) when cal-
culating the plume final (equilibrium) height (Fig. 5). GM-
PRISM also improved statistics (e.g. FAC2, NMB; Table 1)
for evaluations vs. the WBEA surface monitoring network
data (SO2) for the same period. Evaluations for the win-
tertime simulations were less conclusive due to the lack of
hourly input data (stack parameters, emissions) and direct
aircraft observations of the plume heights. The new plume
rise algorithm PRISM is highly sensitive to model input
information such as stack parameters and source emission
rates. The biases in simulated surface concentrations, espe-
cially in the wintertime, may be a function of this miss-
ing information. Therefore, further investigation for winter-
time conditions using high-resolution (temporal) and source-
specific input data is desired as these become available.

This study introduces a novel sub-grid parameterization
for plume rise, integrating moist thermodynamics into the
iterative calculation of neutral buoyancy height for plumes
emitted from industrial stacks. Our analysis underscores the
significant influence of moist thermodynamics on plume rise
and the subsequent downwind dispersion of emitted pollu-
tants, thus advancing our understanding of plume behaviour
under different atmospheric dynamics. We also note that the
addition of liquid-phase water due to condensation can po-
tentially impact the within-plume aqueous-phase chemistry
and plume composition, which will be further investigated in
subsequent research.
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Appendix A

Table A1. GEM-MACH model configuration details.

Model component Description Reference

Numerical weather
prediction model

The Global Environmental Multiscale (GEM) model v5.1.2. Côté et al. (1998a, b), Girard
et al. (2014)

Air quality model The GEM – Modelling Air quality and Chemistry (GEM-MACH)
model, based on v3.1.0a2.

Moran et al. (2010), Makar
et al. (2015a, b)

Model grid and
nesting, time stepping

The North American 10 km resolution parent domain provides
boundary conditions for a 2.5 km resolution, with 64 vertical levels in
the Alberta/Saskatchewan domain. The model was configured with the
following time stepping: for the 10 km domain, 5 min for physical
processes and 15 min for chemical processes; for the 2.5 km domain,
we used 1 min for physical processes and 2 min for chemical processes.

Girard et al. (2014), Makar
et al. (2015a, b)

Weather–aerosol
feedbacks

These provide a direct effect via binary water–dry aerosol mixtures
with Mie algorithm optical property calculations and an indirect effect
via aerosols providing cloud condensation nuclei via the
Abdul-Razzak and Ghan scheme.

Abdul-Razzak and Ghan
(2002), Gong et al. (2015),
Makar et al. (2015a, b)

Gas-phase chemistry The Acid Deposition and Oxidant Mechanism, version 2 (ADOM-II),
represents gas-phase chemistry for 42 gas species, which were
integrated using a Young and Boris solver.

Stockwell and Lurmann (1989)

Particle microphysics We used a sectional approach with 8 particle species (sulfate, nitrate,
ammonium, primary organic carbon, secondary organic carbon, black
carbon, sea salt, and crustal material) and 12 particle bins.

Gong et al. (2002, 2003)

Aqueous chemistry and
gas and aerosol
scavenging

We performed cloud scavenging of gases and aerosols along with
aqueous-phase chemistry using a Young and Boris solver (combined
time-resolved and steady-state chemistry).

Gong et al. (2015)

Deposition We used gas (Robichaud scheme) and particle dry deposition (Zhang
scheme), as described in Makar et al. (2018).

Makar et al. (2018)

Inorganic particle
thermodynamics

We used a sulfate–nitrate–ammonium non-ideal (high-concentration)
thermodynamic equilibrium system solved using a nested iterative
approach.

Makar et al. (2003)

Advection and mass
conservation

Chemical transport in GEM-MACH is solved utilizing an implicit
semi-Lagrangian (SL) advection space–time integration scheme. The
SL scheme is not inherently mass conserving and therefore requires the
use of a post-advection mass conservation step (the 3D iterative locally
mass conserving (ILMC) approach was used here).

Bermejo and Conde (2002),
Sørensen et al. (2013),
de Grandpré et al. (2016)

Emissions data Emissions are processed based on the Sparse Matrix Operator Kernel
Emissions (SMOKE) emissions data from the hybrid oil sands
database. Large-stack data were derived from the continuous emissions
monitoring system (CEMS).

Coats (1996); Zhang et al.
(2018)

Plume rise
parameterization

Briggs (1984) and PRISM (Plume-Rise-Iterative-Stratified-Moist), as
described in this work, were used to calculate plume rise in
GEM-MACH simulations.

Briggs (1984), Akingunola
et al. (2018), this study
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Code and data availability. The code for the plume rise al-
gorithm PRISM (Plume-Rise-Iterative-Stratified-Moist) used
in this work may be obtained on request to Sepehr Fathi
(sepehr.fathi@ec.gc.ca). The model results are available upon
request to sepehr.fathi@ec.gc.ca. GEM-MACH, the atmospheric
chemistry library for the GEM numerical atmospheric model
(© 2007–2013, Air Quality Research Division and National
Prediction Operations Division, Environment and Climate Change
Canada), is free software that can be redistributed and/or modified
under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation. The specific GEM-
MACH version used in this work may be obtained on request to
sepehr.fathi@ec.gc.ca. The aircraft measurement data from the
2018 campaign used in this work are available from the Environ-
ment and Climate Change Canada Data Catalogue (ECCC, 2018,
https://donnees.ec.gc.ca/data/air/monitor/ambient-air-quality-
oil-sands-region/pollutant-transformation-aircraft-based-multi-
parameters-oil-sands-region/?lang=en). The emissions data used
in our model are available in part online: executive summary,
joint oil sands monitoring program emissions inventory report
(ECCC, 2018), and the joint oil sands emissions inventory database
(https://ec.gc.ca/data_donnees/SSB-OSM_Air/Air/Emissions_
inventory_files/, last access: 20 December 2024) and from the
ECCC (2023, https://publications.gc.ca/collections/collection_
2018/eccc/En81-1-2018-eng.pdf). More recent updates may be
obtained by contacting Junhua Zhang (junhua.zhang@ec.gc.ca).

Supplement. The supplement related to this article is available
online at https://doi.org/10.5194/acp-25-2385-2025-supplement.
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