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Abstract. Accurate national methane (CH4) emission estimates are essential for tracking progress towards cli-
mate goals. This study investigated Finnish CH4 emissions from 2000–2021 using bottom-up and top-down
approaches. We evaluated the ability of a global atmospheric inverse model CarbonTracker Europe – CH4 to
estimate CH4 emissions within a single country. We focused on how different priors and their uncertainties
affect the optimised emissions and showed that the optimised anthropogenic and natural CH4 emissions were
strongly dependent on the prior emissions. However, while the range of CH4 estimates was large, the optimised
emissions were more constrained than the bottom-up estimates. Further analysis showed that the optimisation
aligned the trends of anthropogenic and natural CH4 emissions and improved the modelled seasonal cycles of
natural emissions. Comparison of atmospheric CH4 observations with model results showed no clear preference
between anthropogenic inventories (EDGAR v6 and CAMS-REG), but results using the highest natural prior
(JSBACH–HIMMELI) agreed best with observations, suggesting that process-based models may underestimate
CH4 emissions from Finnish peatlands or unaccounted sources such as freshwater emissions. Additionally, us-
ing an uncertainty estimate based on a process-based model ensemble for natural CH4 emissions seemed to be
advantageous compared to the standard uncertainty definition. The average total posterior emission of the ensem-
ble from one inverse model with different priors was similar to the average of the ensemble including different
inverse models but similar priors. Thus, a single inverse model using a range of priors can be used to reliably
estimate CH4 emissions when an ensemble of different models is unavailable.
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1 Introduction

Methane (CH4) is the second most important anthropogenic
greenhouse gas (GHG) after carbon dioxide (CO2). Its atmo-
spheric concentration has nearly tripled since pre-industrial
times, primarily due to human activities (Canadell et al.,
2023). Since atmospheric CH4 measurements began in the
late 1970s (Rice et al., 2016), the growth rate of atmospheric
CH4 has varied considerably, with periods of rapid growth,
as well as a plateau (Nisbet et al., 2023); the growth rate of
CH4 was close to zero from 2000 to 2006, after which the at-
mospheric CH4 levels began to rise again (Nisbet et al., 2014;
Mikaloff-Fletcher and Schaefer, 2019), reaching remarkably
high increases of 15.15 ppb in 2020 and 17.97 ppb in 2021
(Lan et al., 2024). The reasons for this renewed growth and
the record-high CH4 growth rates in 2020 and 2021 are still
under discussion (Nisbet et al., 2023), which reflects the large
uncertainties in CH4 emissions. Reducing CH4 emissions is
an effective way to mitigate climate change (Nisbet et al.,
2020; Collins et al., 2018), given the short atmospheric life-
time of CH4 (9.1 years; Canadell et al., 2023) and its high
global warming potential (82.5 times higher than CO2 on a
20-year timescale; Forster et al., 2023). However, in order to
assess the success of the CH4 emission reductions, we need
to improve our ability to quantify CH4 emissions and their
changes.

In the Paris Agreement (UNFCCC, 2015), participating
countries committed to reporting their GHG emissions and
removals coherently and transparently by compiling national
greenhouse gas inventories (NGHGIs). The NGHGIs are
evaluated jointly every 5 years in the global stocktake (UN-
FCCC, 2023) which was completed for the first time in 2023.
They are based on a bottom-up approach that starts at the
sources and estimates how much GHG is emitted by each
source. The main objective is to capture trends caused by
(direct) anthropogenic activities in order to track the effect
of mitigation efforts put into practice, and thus, the NGHGIs
report emissions and sinks as annual country totals. In addi-
tion to the NGHGIs, which are compiled independently by
each country, there are other bottom-up anthropogenic GHG
inventories that are compiled for larger regions or even on a
global scale. Such inventories relevant to Finland are, for ex-
ample, the Emissions Database for Global Atmospheric Re-
search (EDGAR; European Commission and Joint Research
Centre et al., 2023), the Copernicus Atmosphere Monitor-
ing Service Regional inventory (CAMS-REG; Kuenen et al.,
2022) and the Greenhouse gas and Air pollution Interac-
tions and Synergies (GAINS; Höglund-Isaksson et al., 2020).
EDGAR is a widely used global inventory with regular up-
dates, while CAMS-REG and GAINS (the version used in
this study) only cover Europe. However, CAMS-REG and
GAINS use more specific country-level data, while EDGAR
uses globally consistent methods. The main uncertainties in
the bottom-up inventories result from the estimated magni-
tude of each source category and the emission factors used.

Nevertheless, they provide estimates for each source cate-
gory separately.

Another way to estimate GHG emissions is to use a top-
down approach or atmospheric inverse modelling. Using a
combination of an atmospheric chemical transport model and
measurements of atmospheric GHG mole fractions, they re-
vise the assumed prior emissions. The atmospheric inverse
models of GHGs are becoming increasingly important in
the context of our climate policies (Leip et al., 2018). Un-
til now, the assessment of national GHG budgets has relied
on bottom-up-based inventories, especially on the NGHGIs.
The 2019 refinement of the 2006 Intergovernmental Panel on
Climate Change (IPCC) Guidelines for National Greenhouse
Gas Inventories (Maksyutov et al., 2019) highlighted inverse
models as a potential way to support and verify the NGHGIs.
Some countries, such as the United Kingdom (Manning et al.,
2021; Lunt et al., 2021), Switzerland (Henne et al., 2016),
Germany (Integrated Greenhouse Gas Monitoring System
for Germany ITMS, 2024), Australia (Luhar et al., 2020) and
New Zealand (Geddes et al., 2021), already use inverse mod-
elling in their NGHGIs, either as an appendix or to correct
the methods used in the NGHGI. All of these countries have
certain advantages (for example, being an island and having
several atmospheric observation sites) that make it easier for
inverse models to estimate GHGs within their national bor-
ders. However, without such advantages, the partitioning of
inverse model results at the country level is still uncertain and
shows more differences between different models and model
setups (Deng et al., 2022; McGrath et al., 2023; Petrescu et
al., 2023, 2024).

Atmospheric inverse models are strongest when estimat-
ing total emissions, including both anthropogenic emissions
reported in the NGHGIs and natural sources. The further par-
titioning into source categories is, however, more complex,
but there are a number of ways in which this can be done.
One way is to take advantage of prior distributions and op-
timise different source categories individually but simultane-
ously (e.g. Tsuruta et al., 2017; Segers and Nanni, 2023; Ja-
nardanan et al., 2024). Since this method relies on the prior
distribution to partition between different source categories,
the optimisation is prone to misclassifying CH4 emissions
if there are multiple sources in the same area and if the rel-
ative magnitudes of the priors are not correct. This uncer-
tainty can be quantified to some extent using different prior
emissions and assessing how different prior emission esti-
mates affect the optimised emissions. In addition, analytical
inversions can be used (Cusworth et al., 2021; Worden et
al., 2023). To reduce the dependence on prior distributions,
the use of carbon isotope measurements has been intensively
studied (e.g. Thompson et al., 2018; McNorton et al., 2018;
Basu et al., 2022; Haghnegahdar et al., 2023; Chandra et al.,
2024; Mannisenaho et al., 2023). The models rely on differ-
ent CH4 sources having different isotopic signatures (δ13C),
e.g. emissions from wetlands have lower δ13C than fossil fuel
emissions. However, the sparse number of isotope measure-
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ments limits the use of isotope measurements in the inver-
sions as an additional constraint. Furthermore, δ13C values
have uncertainties (Thanwerdas et al., 2024), although the
largest uncertainty has been attributed to uncertainties in the
atmospheric chemistry (Basu et al., 2022). Similar to using
CH4 isotope measurements as an additional constraint, we
can also use co-emitted species and the ratio of them to CH4
emitted from specific sources, such as ethane (Rice et al.,
2016; Ramsden et al., 2022; Thompson et al., 2018).

Although only anthropogenic emissions are reported in the
NGHGIs, since our efforts to mitigate climate change can be
targeted at them, natural GHG emissions also have an impact
on climate change. Thus, it is equally important to quan-
tify natural emissions. In Finland, large areas of peatlands
are an important source of CH4, and the magnitude of nat-
ural CH4 emissions is high compared to anthropogenic CH4
emissions estimated by the Finnish NGHGI (Tenkanen et al.,
2024). Peatlands are concentrated in northern Finland, while
the majority of the Finnish population lives in the south. Con-
sequently, anthropogenic CH4 emissions originate from the
south. Different bottom-up estimates of CH4, including both
anthropogenic inventories (0.19–0.76 Tg yr−1; Sect. 3.1) and
process-based models estimating the soil CH4 balance (0.08–
0.39 Tg yr−1; Sect. 3.2), vary considerably in Finland. When
interpreting the inverse model results, it is essential to iden-
tify the reasons for these inconsistencies and to understand
the extent to which the prior emissions used cause uncer-
tainties in the optimised emission estimates, especially in re-
gions where both anthropogenic and natural CH4 emissions
are abundant.

We studied CH4 emissions in Finland during the last
2 decades (2000–2021) using both bottom-up and top-down
approaches and discuss how estimates from the two ap-
proaches differ. We aim to separate anthropogenic emissions
from natural peatland emissions and estimate their relative
magnitudes in Finland. Our focus is on CH4 emission esti-
mates from the inverse model CarbonTracker Europe – CH4
(CTE–CH4) (Tsuruta et al., 2017), which previous studies
have used to estimate Finnish CH4 emissions (Tsuruta et al.,
2019; Tenkanen et al., 2024), but here we extend the study
period and investigate the results in more detail. Our study
can be divided into the following four parts: first, we compare
different anthropogenic emission inventories (the Finnish
NGHGI; GAINS; CAMS-REG; and EDGAR v6, v7 and v8),
their total emission estimates and the magnitudes of different
source categories. Second, we study the estimates from our
inverse model using different prior and uncertainty estimates
and compare our ensemble with 13 inversion estimates col-
lected in the VERIFY project (https://verify.lsce.ipsl.fr/, last
access: 12 February 2025). Third, we study the seasonal cy-
cles of CH4 emissions to see how using atmospheric CH4
observations affects this seasonal cycle of CH4 estimates.
Finally, we compare the modelled atmospheric mole frac-
tions with observations and rank our inverse model estimates

based on this comparison, attempting to disentangle which
inverse model setup agrees best with observations.

2 Materials and methods

2.1 Anthropogenic methane emission inventories

2.1.1 Finnish NGHGI

Finnish anthropogenic CH4 emissions are reported on an an-
nual basis by Statistics Finland (Statistics Finland, 2023).
The reporting follows the IPCC 2006 reporting guide-
lines with refinements in 2019 (IPCC, 2019). The Finnish
NGHGI (NGHGI Fi) includes CH4 emissions from agricul-
ture; waste; energy; industry; and land use, land use change
and forestry (LULUCF). It uses a combination of infor-
mation from Tier 1 (emission factors from IPCC reports),
Tier 2 (country-specific emission factors) and Tier 3 (more
advanced methods such as process-based modelling). Emis-
sions from the fifth reporting category, LULUCF, are not
analysed here because NGHGI Fi was the only studied in-
ventory that reported LULUCF emissions. However, CH4
emissions from the LULUCF sector in Finland have been
discussed in detail by Tenkanen et al. (2024) and were on av-
erage 0.03 Tg yr−1 during 2000–2021, according to NGHGI
Fi.

2.1.2 EDGAR

EDGAR (https://edgar.jrc.ec.europa.eu/, last access:
12 February 2025) is a global emission inventory developed
by the Joint Research Centre of the European Commission
that provides estimates in a globally consistent way and
often does not use country-specific details. CH4 estimates
are provided by sector from agriculture, waste, energy and
industry, with further partitioning into subcategories. The
latest version, EDGAR v8 (European Commission and Joint
Research Centre et al., 2023), provides estimates up to 2022.
The spatial resolution is 0.1°× 0.1° (latitude× longitude),
and the temporal resolution is monthly.

2.1.3 CAMS-REG

CAMS-REG v5 is a European anthropogenic emission in-
ventory covering the period from 2005 to 2018. It builds on
the emission data reported officially in 2020 by countries
under the convention on long-range transboundary air pol-
lution (UNECE, 2012) and the EU national emission ceil-
ings (NEC) directive (European Commission, 2016) for air
pollutants and, similarly, the reported GHG emissions by the
countries to United Nations Framework Convention on Cli-
mate Change (UNFCCC). The structure of the dataset, the
harmonisation and gap-filling approach and the proxies used
for the spatial distribution of emissions are described in de-
tail by Kuenen et al. (2022). The spatial resolution of CAMS-
REG is 0.05°× 0.1°. The dataset provides total annual emis-
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sions by sector and is accompanied by temporal profiles by
country and sector to construct hourly and monthly emissions
that can be used as model input.

2.1.4 GAINS

The methodology used in GAINS (Höglund-Isaksson et al.,
2020) to estimate anthropogenic CH4 emissions is based on
the recommendations in the IPCC (Eggleston et al., 2006)
guidelines. For most sectors, GAINS uses country-specific
information in such a way that the estimated emissions are
consistent and comparable across geographical and temporal
scales. More advanced methods are used to estimate emis-
sions from the solid-waste sector (Gómez-Sanabria et al.,
2018) and fossil and gas systems (Höglund-Isaksson, 2017).
In addition to past estimates, GAINS can be used to estimate
future emissions based on mitigation scenarios. The version
of GAINS used in this study includes estimates for the coun-
tries that are part of the European Union, as well as Nor-
way, the United Kingdom and Switzerland. Emissions are
estimated monthly from 1990 to 2021, and the spatial res-
olution is 0.1°× 0.1°. The emissions from energy (upstream
and downstream sources in fossil fuel extraction and use),
agriculture (livestock, rice cultivation and agricultural waste
burning) and waste handling (solid waste and wastewater) are
estimated.

2.2 Atmospheric inverse model CTE–CH4

The atmospheric inverse model CTE–CH4 (Tsuruta et al.,
2017) is based on the Bayesian inversion approach, where
optimised CH4 fluxes are obtained by minimising the cost
function as follows:

J =
(
x− xb

)T
P−1

(
x− xb

)
+ (y−H (x))T R−1 (y−H (x)) , (1)

where the first part of the right-hand side contains the state
vector x [dimension N × 1] of the scaling factors used to
multiply by the CH4 surface fluxes, the prior state vector xb

and the prior error covariance matrix P [N×N ]. The second
part contains the observation vector y [dimensionM×1] and
its error covariance matrix R [M ×M]. H is the observation
operator that samples atmospheric CH4 at the measured loca-
tion and times based on the states x, which are then compared
with the observations.

2.2.1 Data assimilation

To optimise CH4 fluxes, we use the CarbonTracker Data
Assimilation Shell (CTDAS) (van der Laan-Luijkx et al.,
2017), which is based on the fixed-lag ensemble Kalman fil-
ter (EnKF) (Evensen, 2003; Peters et al., 2005). Using EnKF,
we represent the true state as an ensemble of sample states
randomly drawn from a mean state (x) and based on covari-
ance P. Each ensemble member is then optimised indepen-
dently, similarly to the Kalman filter (Kalman, 1960; Peters

et al., 2005). In this study, the size of the ensemble is 500,
and we use a time lag of 5 weeks (Peters et al., 2005; Tsuruta
et al., 2017). CTE–CH4 optimises anthropogenic and natural
CH4 fluxes simultaneously but separately at a spatial reso-
lution of 1°× 1° (approximately 110 km× 40–60 km in Fin-
land) over Europe, Russia, Canada and the USA and region-
ally elsewhere (Fig. S1 in the Supplement). The spatial cor-
relation is defined using an exponential decay model (Peters
et al., 2005), with correlation lengths of 100 km for 1°× 1°
grid-based optimisation domains, 500 km for other land do-
mains and 900 km for oceanic domains. The anthropogenic
and natural CH4 fluxes are assumed uncorrelated, and do-
mains between land and ocean are also assumed uncorrelated
(see also Sect. 2.2.5). The temporal optimisation resolution is
1 week.

2.2.2 Atmospheric chemistry transport model TM5

We use the atmospheric chemistry transport model TM5
(Krol et al., 2005) as the observation operator. TM5 is an Eu-
lerian model with a two-way nested zoom capability; i.e. we
can model atmospheric transport at a higher resolution in a
region of interest and have a coarser resolution globally. In
this study, we simulate atmospheric transport in 4°× 6° res-
olution globally with a 1°× 1° zoom grid over Europe (24–
74° N, 21° W–45° E), including a 2°× 3 intermediate zone
around the zoom (14–82° N, 36° W–54° E). The vertical do-
main is divided into 25 hybrid sigma pressure levels from the
surface to the upper atmosphere. We use ECMWF ERA5 me-
teorological data with a 3 h resolution (Hersbach et al., 2020).
The calculations include atmospheric sinks from photochem-
ical reactions with OH, Cl and O(1D). The reactions with OH
are calculated based on Houweling et al. (2014). For reac-
tions with Cl and O(1D), we use two schemes, namely pre-
scribed reaction rates calculated from the atmospheric chem-
istry general circulation model ECHAM5/MESSy1 (Jöckel
et al., 2006; Kangasaho et al., 2022) and reaction rates based
on Brühl and Crutzen (1993). The atmospheric sink varies
from month to month but does not include interannual vari-
ability.

2.2.3 Observations

We use observations from a global in situ measurement net-
work that includes the National Oceanic and Atmospheric
Administration GLOBALVIEWplus ObsPack v4.0 dataset
(Schuldt et al., 2021) and data from the National Insti-
tute for Environmental Studies (JR-STATION: Japan–Russia
Siberian Tall Tower Inland Observation Network, ver1.2;
Sasakawa et al., 2010) and the Finnish Meteorological In-
stitute (Tsuruta et al., 2019). Within Finland, measurements
were collected at six sites from southern to northern Finland,
including urban, natural and marine areas, namely KMP, PAL
(Hatakka, 2024), PUI (Lehtinen and Leskinen, 2024), SMR
(Levula and Mammarella, 2024), SOD and UTO (Hatakka
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and Laurila, 2024) (for the place name definitions, see Ta-
ble 1; Fig. 1). Globally, our dataset included 175 stations
from 2000 to 2021 (Fig. S1 and Table S1 in the Supple-
ment). Both weekly discrete air samples and hourly contin-
uous measurements are filtered based on quality flags es-
tablished by the respective institutions. To standardise the
dataset, hourly continuous observations representing well-
mixed atmospheric conditions are converted to daily aver-
ages calculated from 12:00 to 16:00 local time, except for
high-mountain sites where averages are calculated from 0:00
to 4:00 local time, following Tsuruta et al. (2017).

Observational uncertainties, also referred to as “model–
data mismatches”, are quantified for each site by considering
site-specific characteristics and measurement accuracy and
the ability of TM5 to simulate atmospheric CH4 mole frac-
tions (Bruhwiler et al., 2014; Tsuruta et al., 2017, 2019). Dis-
crepancies between modelled and observed mole fractions
are expected due to the resolution of TM5 and transport er-
rors. For example, TM5 performs better in simulating mole
fractions from remote marine background sites compared to
sites influenced by strong local emissions. We classify the
sites into different categories such as marine boundary layer
(4.5 ppb), terrestrial (25 ppb), mixed marine and terrestrial
(15 ppb) and strong local influence (30 ppb). The uncertain-
ties range from 4.5 to 75 ppb for global sites (Table S1) and
from 15 to 30 ppb for the Finnish sites (Table 1).

2.2.4 Prior emissions

As an anthropogenic prior, EDGAR v6 (European Commis-
sion and Joint Research Centre et al., 2021), is used. In
addition, a modified version of EDGAR v6 is used, where
emissions in Europe are replaced by emissions from CAMS-
REG. In Finland, CAMS-REG emissions are redistributed
based on Statistics Finland’s national GHG inventories of
livestock and landfill distribution (see details in Tenkanen et
al., 2024). For natural prior emissions, we use estimates from
two coupled ecosystem models, namely the Jena Scheme
for Biosphere–Atmosphere Coupling in Hamburg with the
HelsinkI Model of MEthane buiLd-up and emIssion for peat-
lands module (JSBACH–HIMMELI) (Raivonen et al., 2017;
Kleinen et al., 2020) and the Land surface Processes and eX-
changes with the DYnamical Peatland model based on TOP-
model (LPX-Bern DYPTOP) v1.4 (Lienert and Joos, 2018;
Stocker et al., 2014; Spahni et al., 2011, 2013), which in-
clude CH4 emissions from peatlands and mineral soils, as
well as the soil sink. LPX-Bern DYPTOP also simulates
emissions from inundated soils. In addition to the emis-
sions from JSBACH–HIMMELI and LPX-Bern DYPTOP,
the wetland prior (monthly averages from the 11 models
used by Poulter et al., 2017) combined with the soil sink
from Saunois et al. (2024) is used and referred to here as
the Global Carbon Project (GCP) prior. For other a priori
sources, we use estimates from the Global Fire Emissions
Database (GFED) v4.1s (van der Werf et al., 2017) for fire,

from VISIT (Ito and Inatomi, 2012) or Saunois et al. (2020)
for termites, from ECMWF data for ocean sources (Tsuruta
et al., 2017) or from Weber et al. (2019) and Etiope et al.
(2019) for geological emissions. We recognise that the emis-
sion categories referred to here as “other” are also from natu-
ral sources. However, as the optimised emissions using wet-
land emissions as the prior emissions are likely to include
emissions from other sources (e.g. freshwater), as well as
the soil sink, we refer to these emissions as “natural” in this
study.

2.2.5 Prior uncertainty estimates

As default prior uncertainties for both anthropogenic and nat-
ural emissions, we use 80 % for terrestrial fluxes and 20 % for
oceanic fluxes, assuming uncorrelated uncertainties, follow-
ing the practice established in previous studies (e.g. Tsuruta
et al., 2017; Bruhwiler et al., 2014). Since the uncertainty
depends on the prior flux, this means that when the prior
flux is small, the uncertainty is also small; i.e. we trust the
prior fluxes more. If we not only optimise the total emissions
but also try to separate different categories such as anthro-
pogenic and natural emissions, this could lead to a misalloca-
tion, especially in regions where both anthropogenic and nat-
ural sources are prominent. The optimisation may not be able
to change the correct category because the uncertainties are,
relatively speaking, too small or because the uncertainties in
the other category are too large (and therefore the optimisa-
tion is more likely to change those emissions). Studies based
on process-based models have shown that estimates of CH4
emissions from wetlands vary substantially and inhomoge-
neously (e.g. a global annual average was 119–203 Tg yr−1

from 2010 to 2019; Saunois et al., 2024) and thus have large
uncertainties (Melton et al., 2013; Ito et al., 2023; Chang et
al., 2023). We, therefore, let this guide our uncertainty esti-
mates, assigning larger uncertainties to areas and time peri-
ods for which the process-based models disagreed most and
assigning smaller uncertainties where they agreed most.

To calculate the uncertainties, we use an ensemble of six
process-based models from the GCP (Saunois et al., 2020).
This ensemble consists of prognostic runs; i.e. the models
used their internal approach to estimate the area of wetlands.
This enables us to account for differences in the location of
wetlands, which is one of the largest uncertainties in mod-
elling regional wetland emissions. The following models are
included, namely LPX-Bern, the Joint UK Land Environ-
ment Simulator (JULES), Organising Carbon and Hydrology
In Dynamic Ecosystems (ORCHIDEE), the Energy Exas-
cale Earth System Model (E3SM) Land Model (ELM-ECA),
VISIT and the Lund–Potsdam–Jena – Wald, Schnee, Land-
schaft (LPJ–WSL) dynamic global vegetation model. There
is also a prognostic version of the Canadian Land Surface
Scheme – Canadian Terrestrial Ecosystem Model (CLASS–
CTEM), but we exclude it because of its coarse resolution
and anomalously high values in the tropics. The average
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Table 1. List of the Finnish surface observation sites used in inversions. Observation uncertainty (Obs. unc.) is used to define diagonal
values in the observation covariance matrix. The data type is categorised into two measurements, namely discrete (D) and continuous (C).
All stations had data until the end of 2021. The contribution abbreviations are for the Finnish Meteorological Institute (FMI), National
Oceanic and Atmospheric Administration Earth System Research Laboratories (NOAA ESRL), Integrated Carbon Observation System –
Atmosphere Thematic Centre (ICOS–ATC), University of Eastern Finland (UEF) and University of Helsinki (UHELS). GAW stands for
Global Atmosphere Watch.

Site code Site Name Contributor Longitude Latitude Sampling Obs. Data Date min.
height unc. type

[° E] [° N] [m a.s.l.] [ppb] D/C [year/month]

KMP Kumpula FMI 24.96 60.20 53.00 30.0 C 2010/01
PAL Pallas–Sammaltunturi, GAW Station NOAA ESRL 24.12 67.97 570.00 15.0 D 2001/12
PAL Pallas–Sammaltunturi, GAW Station ICOS–ATC, FMI 24.12 67.97 577.00 15.0 C 2004/02
PUI Puijo ICOS–ATC, UEF 27.66 62.91 84.00 30.0 C 2011/11
SMR Hyytiälä ICOS–ATC, UHELS 24.29 61.85 306.00 25.0 C 2012/12
SOD Sodanykylä FMI 26.64 67.36 227.00 25.0 C 2012/01
UTO Utö ICOS–ATC, FMI 21.37 59.78 65.00 25.0 C 2012/03

monthly values of the used process-based models in north-
ern and southern Finland are shown in Fig. S2.

The uncertainty estimate based on a process-based model
ensemble is calculated as follows: for each month t from
January to December, we first calculate the monthly aver-
age fluxes F (m,t,r) from the process-based model estimates
F (m,tj , r), wherem is a model, tj is a month in a year j and
r is a region. The inverse model run with these new uncer-
tainty estimates extends from 2010 to 2021, but the process-
based models only have estimates up to 2017. Thus, we cal-
culate monthly averages from the process-based model esti-
mates for the period 2010–2017 as follows:

F (m,t,r)=
1
J

J∑
j=1

F (m,tj , r), J = 8. (2)

The quantile range Uq from the six-model ensemble m is
then calculated for each month and optimisation region (see
Sect. 2.2.1). The quantile range for each month and region
Uq (t, r) is defined as the range from the second (Q0.25) to
the third (Q0.75) quartile of the monthly estimates, e.g. the
range of the lowest and highest 25 %, as follows:

Uq (t, r)=Q0.75
(
F (m, t, r)

)
−Q0.25

(
F (m, t, r)

)
. (3)

Last, Uq (t, r) is divided by the monthly averages of the
natural prior used (LPX-Bern DYPTOP) in the inversion to
obtain the final uncertainty values U , which are used to cal-
culate the prior covariance matrix. However, we set the max-
imum uncertainty to 500 % and the minimum to 10 % of the
prior fluxes as follows:

U (t, r)=
Uq (t, r)

F (LPX-Bern DYPTOP, t, r)
, U (t, r) ∈ [0.1,5]. (4)

2.2.6 Ensemble of CTE–CH4 inversions

In this study, we formed an ensemble of five CTE–CH4 in-
version runs with different anthropogenic and natural pri-
ors, as well as different uncertainty estimates for the natural

prior emissions. The time periods covered by each inverse
model run also differed, depending on the priors used and
the time periods they covered. The inverse model setups are
listed in Table 2. The name of an inversion setup includes
the prior used (Invnatural_anthropogenic). The experiment with
varying natural uncertainty estimates was done with the same
priors as InvLPX_EDGAR and is noted by adding a subscript
“UNC” to the end of the setup name (InvLPX_EDGAR_UNC).
Other differences between the setups (priors used and atmo-
spheric sinks) are listed in Table S2.

2.3 Auxiliary CH4 data

To help us interpret the CH4 emissions estimated by the in-
verse model, we use auxiliary CH4 datasets introduced be-
low.

2.3.1 Ensemble of VERIFY inversions

The VERIFY project (https://verify.lsce.ipsl.fr/, last access:
12 February 2025) was a research and innovation project
funded by the European Commission under the H2020 pro-
gramme in 2018–2022. The project developed a GHG esti-
mation system to support NGHGI reporting, focusing on the
three major anthropogenic GHGs, namely carbon dioxide,
methane and nitrous oxide. Here we use the results of the
CH4 inverse model from the VERIFY project, some of which
were performed within the project, and the rest of the esti-
mates were collected from other projects, such as the GCP
(Saunois et al., 2020).

The VERIFY ensemble consists of 14 CH4 inverse model
estimates, but since one of them is InvGCP_EDGAR, we ex-
clude it from the VERIFY ensemble as it is already in-
cluded in our CTE–CH4 ensemble. We only examine total
CH4 emissions because only 3 of the 13 VERIFY ensem-
ble members provide the partitioning between natural and
anthropogenic emissions. Three inverse model estimates do
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Table 2. List of inversion setups. The anthropogenic and natural priors used, the natural prior uncertainty calculation scheme used and the
simulation periods are specified.

Inversion Anthropogenic prior Natural prior Natural unc Years

InvJSBACH_CAMSREG CAMS-REG JSBACH–HIMMELI 80 % 2004–2020
InvLPX_CAMSREG CAMS-REG LPX-Bern DYPTOP 80 % 2004–2020
InvLPX_EDGAR EDGAR v.6 LPX-Bern DYPTOP 80 % 2000–2021
InvLPX_EDGAR_UNC EDGAR v.6 LPX-Bern DYPTOP Varying 2010–2021
InvGCP_EDGAR EDGAR v.6 Saunois et al. (2024) 80 % 2000–2021

Figure 1. The land mask for Finland. Locations of six Finnish at-
mospheric observation sites (white dots and bold text) and flux mea-
surement sites (blue dots). The orange line shows the boundary be-
tween southern and northern Finland.

not include prior emissions estimates; there are two inver-
sion runs with FLEXINVERT (an atmospheric Bayesian in-
version framework using FLEXPART, the FLEXible PARTi-
cle dispersion model) provided by the Norwegian research
institute, NILU, and one inversion run with FLEXPART ex-
tended Kalman filter (FLExKF) provided by the Swiss in-
stitute EMPA (Swiss Federal Laboratories for Materials Sci-
ence and Technology).

2.3.2 Eddy covariance CH4 flux measurements

To verify the CH4 emissions of the inverse model, we use
eddy covariance measurements from two Finnish pristine
open-peatland sites, Lompolojänkkä and Siikaneva. Lom-
polojänkkä (68.0° N, 24.2° E) is located in northern Finland
and Siikaneva (61.8° N, 24.2° E) in southern Finland (Fig. 1).

A more detailed description of Lompolojänkkä is given by
Aurela et al. (2015) and of Siikaneva by Rinne et al. (2018).
Eddy covariance is an atmospheric measurement technique
that frequently measures vertical turbulent fluxes within the
atmospheric surface layer. The footprint of the measurement,
i.e. where the measured CH4 fluxes originate, varies, depend-
ing on the prevailing meteorological conditions, but aims
to cover the entire peatland ecosystem. The measurements
are taken from the FLUXNET-CH4 dataset (Delwiche et al.,
2021), and the gap-filled daily values are used here to calcu-
late monthly averages. Lompolojänkkä has data from 2006–
2010 and Siikaneva from 2013–2018.

2.3.3 Freshwater CH4 emissions

Freshwater is defined similarly to Saunois et al. (2020) here
and includes lakes, ponds, reservoirs, streams and rivers. The
freshwater CH4 emission estimates examined here are from
Stavert et al. (2022), who estimated the global annual fresh-
water CH4 to be 53 Tg yr−1.

2.3.4 Biomass-burning CH4 emissions

The following two estimates of biomass-burning CH4 emis-
sions are used: GFED v4.1s (van der Werf et al., 2017),
which is also used as a prior in the inversions, and the Coper-
nicus Atmosphere Monitoring Service (CAMS) Global Fire
Assimilation System (GFAS) (Kaiser et al., 2012). GFED is
provided in resolutions of 0.25°× 0.25° and GFAS in reso-
lutions of 0.1°× 0.1°. GFED has a monthly temporal reso-
lution, and GFAS has a daily temporal resolution. We aggre-
gate both datasets to 1°× 1° and monthly resolutions.

3 Results

3.1 Anthropogenic methane emission inventory
estimates in Finland

In this section, we study the annual CH4 emission estimates
in Finland from six anthropogenic inventories. The spatial
distributions of CAMS-REG, GAINS and EDGAR v7 are
shown in Fig. S4.

The annual emission estimates for the four main source
categories defined in the 2006 IPCC Guidelines for National
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Greenhouse Gas Inventories (Eggleston et al., 2006) (en-
ergy, industrial processes and product use, agriculture and
waste) are shown for each inventory in Fig. 2. Of the six
inventories examined, NGHGI Fi, CAMS-REG and GAINS
were in good agreement (Fig. 2a). CAMS-REG used reported
Finnish national data, and overall, the emissions in the two
inventories had similar magnitudes and trends. The small
differences between the values examined here could be ex-
plained by the fact that CAMS-REG has gridded estimates,
and the values in Finland were obtained using an area mask,
while NGHGI Fi is not spatially distributed. GAINS emis-
sions were at the same level as the other two, but there were
some differences; i.e. waste emissions had a larger decreas-
ing trend and agricultural emissions were higher from 2000
to 2015. The trend in GAINS was driven by the decreas-
ing number of cattle. This was also the case for NGHGI Fi.
According to NGHGI Fi, the number of cattle decreased by
more than a third between 1995 and 2021, but the decline
slowed down after 2010. The decrease in the number of cat-
tle has been offset by an increase in animal weight, growth
and milk production, which has led to higher-emission fac-
tors so that the magnitude of agricultural CH4 emissions has
remained the same in recent years.

The three EDGAR versions differed from the other in-
ventories but were similar to each other. The magnitudes
of CH4 emissions of different emission categories were the
same in EDGAR v6 and v7 (Fig. 2b). The difference between
the two versions was that v7 had a longer time series un-
til 2021, while v6 ended in 2018. Agricultural and industrial
emissions in all EDGAR versions were similar to those in
the other inventories. Energy emissions in EDGAR v8 were
lower than in v6 or v7 and showed no trend. However, the
absolute magnitude was still 3 times higher in EDGAR v8
(0.03 Tg yr−1) than in NGHGI Fi, CAMS-REG and GAINS
(0.01 Tg yr−1). In EDGAR v6 and v7, energy emissions in-
creased significantly from 2004 onwards. This increase was
due to higher estimates of fugitive methane emissions from
oil refining and methane emissions from natural gas process-
ing, transmission and distribution (Fig. S3). Waste emissions
in EDGAR inventories, although decreasing over the period
2000–2021, were about 4–5 times higher than in the other
inventories, although they were lower in v8 than in v6 and
v7.

Waste emissions were the largest source in all inventories
at the beginning of the study period. Due to the decreas-
ing trend of waste emissions, agriculture became the largest
source after 2008 in GAINS and after 2009 in NGHGI Fi. In
CAMS-REG, emissions from waste were higher than those
from agriculture in 2006; otherwise, agriculture had the high-
est emissions.

The EDGAR estimates stand out when looking at total an-
nual emissions (Fig. 2c). While the average from 2000 to
2020 was about 0.19 Tg yr−1 in NGHGI Fi and GAINS, it
was 0.76 Tg yr−1 in EDGAR v7 and 0.58 Tg yr−1 in EDGAR
v8. The EDGAR inventories also showed a higher interan-

nual variability, especially in the waste sector, than the other
inventory estimates.

3.2 Atmospheric inverse model emission estimates in
Finland

3.2.1 Annual estimates from CTE–CH4

In this section, we study the annual total, anthropogenic
and natural CH4 emissions in Finland and how the posterior
emissions differed from the prior emissions, depending on
the inverse model setup. The spatial distribution of the prior
and posterior emissions is shown in Figs. S4–S7.

The annual total emissions of Finland from the five CTE–
CH4 inverse model runs are shown in Fig. 3. The prior
emissions evidently had a strong influence on the pos-
terior emissions. The range of the total prior emissions
was large, but the range of the optimised emissions was
smaller after 2009 and until 2020, with an average range of
0.57 Tg yr−1 in 2009–2020, while the range of the prior emis-
sions was 0.69 Tg yr−1 in the same period. The inversions us-
ing LPX-Bern DYPTOP as the natural prior estimates had the
highest (InvLPX_EDGAR; 1.1 Tg yr−1 on average) and lowest
(InvLPX_CAMSREG; 0.51 Tg yr−1 on average) total emission
estimates, while the three estimates between them agreed
well, especially after 2016. To better explain the differences
between the total emission estimates, the anthropogenic and
natural CH4 emissions are studied separately below.

The magnitudes of the two anthropogenic posterior emis-
sion estimates using CAMS-REG were similar and slightly
higher than CAMS-REG (Fig. 4). The optimised results us-
ing EDGAR v6 varied more, but all posterior emissions
were higher than EDGAR v6 until 2009 and lower there-
after until 2020 or 2021, bringing the posterior estimates of
the five inversions closer together compared to their prior
estimates. The two anthropogenic posterior emissions us-
ing EDGAR v6 combined with the default uncertainty esti-
mate for the natural prior (InvLPX_EDGAR and InvGCP_EDGAR)
had similar anthropogenic emission estimates, but the in-
version with varying uncertainty estimates for the natu-
ral prior (InvLPX_EDGAR_UNC) had lower optimised anthro-
pogenic emission estimates than the other two, especially af-
ter 2016.

The natural posterior emissions were always higher than
the prior used, regardless of the natural prior, except in 2005
and 2006 when JSBACH–HIMMELI was higher (Fig. 5).
The order of the emission estimates was also maintained after
optimisation; the posterior emissions of InvJSBACH_CAMSREG
were the highest, and InvGCP_EDGAR were the lowest. The
three posterior emissions using LPX-Bern DYPTOP as a
prior lay between these two estimates, with the inversion
using the prior uncertainty estimates based on the ensem-
ble of process-based models (InvLPX_EDGAR_UNC) giving the
lowest estimates of the three. Since the estimates using the
GCP prior did not change much, but the optimised emissions
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Figure 2. Annual anthropogenic CH4 emissions per source category in Finland reported by (a) NGHGI Fi, CAMS-REG and GAINS; and
(b) EDGAR v6, v7 and v8. Note the different y-axis ranges. (c) Annual total CH4 emissions in all six inventories.

Figure 3. Annual total CH4 emission estimates from the five CTE–CH4 runs. Prior emissions are shown as dashed lines, and posterior
emissions are shown as solid lines. The shaded areas around the posterior emissions show 1 standard deviation of the ensemble distributions.
The right panel shows the mean prior and posterior emissions over the study period.
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Figure 4. Annual anthropogenic CH4 emission estimates from the five CTE–CH4 inverse model runs. Prior emissions are shown as dashed
lines and posterior emissions as solid lines. The shaded areas around the posterior emissions show 1 standard deviation of the ensemble
distributions. The right panel shows the mean prior and posterior emissions over the study period.

Figure 5. Annual natural CH4 emission estimates from the five CTE–CH4 inverse model runs. Prior emissions are shown as dashed lines and
posterior emissions as solid lines. The shaded areas around the posterior emissions show 1 standard deviation of the ensemble distributions.
The right panel shows the mean prior and posterior emissions over the study period.

with JSBACH–HIMMELI were increased, the range of nat-
ural posterior emissions (0.08–0.44 Tg yr−1) was larger than
the range of prior emissions (0.08–0.39 Tg yr−1).

Even though the absolute magnitudes of total CH4 emis-
sions and the partition between anthropogenic and natural
emissions differed between inversion runs, the trends of the
emission estimates were more similar after the optimisa-
tion (Table 3). All anthropogenic posterior emissions had
decreasing trends, although there was no significant trend
in EDGAR v6 for 2000–2021. Similarly, there were no
significant trends in the natural prior emissions, but there
were small positive trends in the optimised natural emissions

with InvJSBACH_CAMSREG (0.01 Tg yr−1; p value 0.0003) and
InvLPX_EDGAR (0.005 Tg yr−1; p value 0.004). Decreasing
anthropogenic emissions and increasing natural emissions
cancelled each other out so that the only statistically signifi-
cant trends in total emissions were found in InvGCP_EDGAR
(−0.007 Tg yr−1; p value 0.03) and InvJSBACH_CAMSREG
(0.009 Tg yr−1; p value 0.001). The signs of the trends were
opposite, reflecting the partitioning between natural and an-
thropogenic emissions; InvGCP_EDGAR had the highest an-
thropogenic emissions and the lowest natural emissions,
while InvJSBACH_CAMSREG had the highest natural emissions
and the lowest anthropogenic emissions.
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Table 3. Linear trends [Gg yr−1] and their p values (in brackets) for anthropogenic, natural and total CH4 emission estimates in Finland.
Values for prior and optimised estimates from the five CTE–CH4 inversion runs are shown. Statistically significant trends (p value smaller
than 0.05) are bolded.

Anthropogenic Natural Total

Prior Optimised Prior Optimised Prior Optimised

InvJSBACH_CAMSREG −2.9 (0.00) −2.2 (0.00) 0.8 (0.45) 11.3 (0.00) −2.0 (0.07) 9.1 (0.00)
InvLPX_CAMSREG −2.9 (0.00) −1.7 (0.01) −1.9 (0.16) 1.1 (0.64) −4.7 (0.00) −0.6 (0.78)
InvLPX_EDGAR 1.8 (0.36) −5.6 (0.03) 0.1 (0.87) 4.9 (0.00) 2.0 (0.36) −0.7 (0.84)
InvLPX_EDGAR_UNC −9.6 (0.03) −14.5 (0.07) 0.2 (0.92) 1.2 (0.64) −9.3 (0.06) −13.2 (0.13)
InvGCP_EDGAR 1.2 (0.56) −7.4 (0.03) −0.2 (0.12) 0.3 (0.15) 1.0 (0.63) −7.2 (0.03)

3.2.2 Years 2020 and 2021

During the last 2 years of the study period, 2020–2021, the
growth rate of the global atmospheric CH4 was remarkably
high (Lan et al., 2024; Nisbet et al., 2023). Although our in-
version results did not show exceptionally high CH4 emis-
sions during this period, there were still some consistent sig-
nals from the inversion estimates. In 2020, all total poste-
rior emissions were higher than in 2019. This increase was
due to increases in both anthropogenic and natural emis-
sions, except for InvGCP_EDGAR, where the increase was due
to anthropogenic emissions alone. However, its natural prior
and posterior emissions were low compared to the other es-
timates. In contrast to InvGCP_EDGAR, the natural posterior
emissions using JSBACH–HIMMELI as the natural prior
(InvJSBACH_CAMSREG) were highest in 2020.

In 2021, there were only three posterior emission es-
timates, namely InvLPX_EDGAR, InvLPX_EDGAR_UNC and
InvGCP_EDGAR. The three optimised total emissions were still
higher than in 2019, but emissions from InvGCP_EDGAR were
lower in 2021 than in 2020, while inversions with LPX-
Bern DYPTOP were higher in 2021. The partitioning to
natural or anthropogenic was also inconsistent across the
three inversion estimates; InvGCP_EDGAR had lower anthro-
pogenic and natural emissions in 2021 than in 2020, while in
InvLPX_EDGAR_UNC it was the other way round. At the same
time, the anthropogenic emissions of InvLPX_EDGAR were
higher, and the natural emissions were lower in 2021 than
in 2020. However, the differences between 2021 and 2020
were similar in magnitude to previous years.

In 2021, all estimates were higher than the prior total emis-
sions, and in particular, the anthropogenic posterior estimates
were close to the anthropogenic prior estimates. Part of the
reason for this may be due to the high biomass-burning emis-
sions in GFEDv4.1s, which seemed to affect at least the
emissions in InvLPX_EDGAR_UNC. The natural posterior emis-
sion estimates of InvLPX_EDGAR_UNC in high northern lat-
itudes (north of 50° N) were substantially higher than the
emissions from LPX-Bern DYPTOP in 2016–2020, but in
2021, the emissions decreased by 15 Tg compared to 2020
(Fig. S8). CH4 emissions of GFED in the high northern lati-

tudes were 8.6 Tg in 2021 compared to 3.3 Tg yr−1 in 2016–
2020 (Fig. S9). The high emissions from biomass burning
in the high northern latitudes most likely also affected the
methane budget estimates in Finland, although there were no
major forest fires in Finland. Emission estimates from an-
other biomass-burning dataset, GFAS, were also high in 2021
but only about half of the GFED estimates (4.9 Tg; Fig. S9).

3.2.3 Comparison of CTE–CH4 and VERIFY ensembles

We also compared the CTE–CH4 emission estimates with
the inversion results from the VERIFY project (Fig. 6). In
the CTE–CH4 ensemble, the average of the total CH4 emis-
sions from 2000–2021 was 0.83 Tg yr−1 (average minimum
and maximum range was 0.51–1.10 Tg yr−1) in the prior
and 0.85 Tg yr−1 (0.59–1.08 Tg yr−1) in the posterior esti-
mates. In the VERIFY ensemble, the prior emissions were
1.50 Tg yr−1 (0.78–2.28 Tg yr−1), almost twice that of the
CTE–CH4 ensemble, but the posterior emissions were re-
duced to 0.98 Tg yr−1 (0.61–1.43 Tg yr−1), bringing the to-
tal CH4 emission estimates close to the CTE–CH4 ensemble
and within the range of the posterior CTE–CH4 ensemble es-
timates. The ranges of the posterior emission were large, but
the range was considerably smaller than the range of the prior
estimates. The lowest posterior emissions from both ensem-
bles were approximately 0.6 Tg yr−1, but the highest emis-
sions differed by 0.3 Tg yr−1.

3.3 Seasonal cycle of methane emissions

Methane emissions, especially those from natural sources,
have a strong seasonal cycle, and in addition to estimating
the magnitude of emissions, it is important to have a cor-
rect estimate of the timing of CH4 emissions. We calculated
the monthly CH4 emissions to see how the optimisation af-
fected the seasonal cycle. Since the climate in southern and
northern Finland is different, and thus the timing of natural
CH4 emissions in southern and northern Finland also differs,
we divided the emissions from 64° N according to the divi-
sion used, for example, in the Finnish NGHGI (Fig. 1). We
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Figure 6. Estimated total annual CH4 emissions in Finland in 2000–2021, using inverse models. Two ensembles are included, namely CTE–
CH4 and VERIFY. The circle (prior) and diamond (optimised) symbols indicate the ensemble means. The lowest- and highest-emission
estimates are indicated by the lower and upper ends of the bars. Values for the priors are shown in yellow (VERIFY) and red (CTE–CH4),
and values for the optimised estimates are shown in light blue (VERIFY) and dark blue (CTE–CH4). The mean values of the priors are
connected to the mean values of the posteriors by a line. The colour of the line indicates whether emissions have increased (red) or decreased
(blue) compared to the prior. The number below the year gives the number of ensemble members in the CTE–CH4 (dark blue) and VERIFY
(light blue) ensembles for that year. The right panel shows the mean values over the whole study period.

focused on studying the emissions during the common time
period between all inversion runs (2010–2020).

The average, maximum and minimum monthly optimised
natural emissions and the average of the prior emissions in
2010–2020 are shown in Fig. 7. There was a clear difference
between the natural emissions in northern and southern Fin-
land, as the maximum monthly emission estimate was almost
0.12 Tg per month in the north and only half of that in the
south. In addition, the timing of the maxima of the posterior
emissions differed between the south and the north, whereas
the maxima in the priors were different only in the LPX-Bern
DYPTOP; in LPX-Bern DYPTOP, the maximum was either
in August or September in the north and in September or Oc-
tober in the south, while in JSBACH–HIMMELI and the nat-
ural prior GCP, the maximum was always in July. In northern
Finland, the maximum of InvGCP_EDGAR emissions did not
change from July, but the maximum of InvJSBACH_CAMSREG
emissions was in August rather than in July. In southern Fin-
land, the timing of the emissions did not change much from
the priors, except for InvJSBACH_CAMSREG, where the poste-
rior emissions were slightly shifted towards late summer.

In northern Finland, the posterior emissions using
LPX-Bern DYPTOP (InvLPX_CAMSREG, InvLPX_EDGAR and
InvLPX_EDGAR_UNC) had the largest increase from the pri-
ors in July to September so that the maximum was also
shifted earlier towards late summer, although September
was still the maximum in half of the years (Fig. 7a). This
shift was less pronounced in InvLPX_EDGAR_UNC. The rela-
tive uncertainty estimates of the natural prior emissions in
InvLPX_EDGAR_UNC varied monthly and were defined inde-
pendently for each 1°× 1° grid cell in Finland. This meant
that whether the assigned uncertainty was larger or smaller

than the constant 80 % used in the other inversions also
depended on the month and location. From November to
January, the uncertainty was smaller almost everywhere in
InvLPX_EDGAR_UNC compared to InvLPX_EDGAR. In Febru-
ary and March, InvLPX_EDGAR_UNC and InvLPX_EDGAR had
low natural prior CH4 emissions and small uncertainties.
From April to June, the uncertainty in InvLPX_EDGAR_UNC
was larger in northern Finland and smaller in southern Fin-
land, but this did not have a strong effect on the poste-
rior emissions, which remained close to the prior (Fig. 7a).
From July to October, the uncertainty in the north was
much smaller in InvLPX_EDGAR_UNC than in the other in-
versions, especially in grid cells where the natural prior
emissions were high. Thus, the optimisation was more con-
strained by the prior than when the default uncertainty was
used. However, southern Finland had a larger uncertainty in
summer and autumn. As the optimisation had more free-
dom to adjust the CH4 emissions in southern Finland in
InvLPX_EDGAR_UNC, it could also give more weight to the ob-
servation in the south. The natural posterior CH4 emissions
in the south did not differ between InvLPX_EDGAR_UNC and
InvLPX_EDGAR, but the anthropogenic posterior emissions
were lower in InvLPX_EDGAR_UNC than in InvLPX_EDGAR, es-
pecially in July–October (Fig. S10). The lower natural emis-
sions in the north and anthropogenic emissions in the south
resulted in lower total emissions in InvLPX_EDGAR_UNC com-
pared to InvLPX_EDGAR, and brought the seasonal cycle of
total CH4 emissions of InvLPX_EDGAR_UNC close to the sea-
sonal cycle of InvJSBACH_CAMSREG (Fig. 8a).

A comparison of the seasonal cycles of the total CH4
emissions between the CTE–CH4 and VERIFY ensembles
(Fig. 8b) shows similar results to the comparison of the an-
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Figure 7. Average monthly natural CH4 emission estimates from the five CTE–CH4 inverse model runs in (a) northern and (b) southern
Finland in 2010–2020. Prior estimates are shown as dashed lines, and optimised estimates are shown as solid lines. The shaded areas show
the minimum and maximum monthly posterior emission estimates. Freshwater emissions from Stavert et al. (2022) are shown with dashed–
dotted red lines.

Figure 8. (a) Average monthly total CH4 emission estimates from the five CTE–CH4 inverse model runs in Finland from 2010–2020. Prior
estimates are shown as dashed lines, and optimised estimates are shown as solid lines. The shaded areas show the lowest and highest monthly
posterior emission estimates. (b) Average of the monthly total CH4 emission estimates from the CTE–CH4 and VERIFY ensembles in
Finland from 2010–2020. The shaded areas show the minimum and maximum monthly estimates.
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nual totals; the VERIFY prior emissions were higher on av-
erage and had a wider range than the prior emissions in the
CTE–CH4 ensemble, but the amplitudes of the seasonal cy-
cles of the average posterior emissions agreed well. How-
ever, the phases of the average posterior emissions differed;
the VERIFY ensemble was consistently 1 month ahead of the
CTE–CH4 ensemble.

Figure 7 also shows the freshwater CH4 emissions from
Stavert et al. (2022). These emissions were not included in
the prior emissions of InvGCP_EDGAR or in the other inver-
sions. In northern Finland, the estimated freshwater emis-
sions were considerably lower than the posterior natural
emission estimates (except for InvGCP_EDGAR), but in south-
ern Finland, where there are many shallow lakes, they were
almost as high as the posterior natural emissions; the fresh-
water emissions were 0.15 Tg yr−1, while the JSBACH–
HIMMELI emissions were 0.13 Tg yr−1, and the optimised
natural emissions in InvJSBACH_CAMSREG were 0.16 Tg yr−1

on average in 2010–2020.
We also compared the seasonal cycles of the natu-

ral emission estimates with flux measurements from two
Finnish pristine peatlands. Figure 9 shows the measured
CH4 fluxes from Lompolojänkkä (northern Finland) and Si-
ikaneva (southern Finland). At Lompolojänkkä, the differ-
ent years had very similar seasonal cycles, and the maximum
was in August, except in 2008 when the maximum was in
July. At Siikaneva, CH4 fluxes varied more from year to year.
Nevertheless, the maximum of the fluxes was relatively con-
sistent regarding being in July or in August. In both peat-
lands, July and August were the months with the highest
CH4 fluxes. Due to the alterations made by the inverse model,
the seasonal cycles of the optimised emission estimates were
more consistent with the flux measurements than the seasonal
cycles of the prior estimates. However, it should be noted that
the inverse model estimates aggregate much larger areas and
a variety of sources rather than a single peatland, so a direct
comparison between the flux measurements and the inverse
model results is not possible.

3.4 Comparison of modelled methane mole fractions to
observations in Finnish sites

The CH4 emission estimates in Finland varied, depending
on the priors and prior uncertainty estimates used. To under-
stand which inversion best estimated CH4 emissions in Fin-
land, we compared modelled and observed mole fractions at
the six Finnish in situ sites also used in the optimisation. We
examined only the years 2010–2020, as these were common
to all inversion runs. Observations from Utö were included
from March 2018 and Hyytiälä from December 2016 as all
inversions included observations from these two sites. The
effect of including all available years was also examined, but
it did not change the result significantly. In addition to the
optimised mole fractions, we also studied the mole fractions
modelled with the prior emissions using a so-called forward

run mode, i.e. using only the TM5 transport model without
the data assimilation. The term “prior” refers to these mod-
elled mole fractions in this section. Similarly, the term “pos-
terior” is used to refer to the mole fractions obtained using
the optimised emissions.

In Fig. 10, correlation coefficients, detrended root mean
square errors (RMSE) and standard deviations are shown as
Taylor’s diagrams (Taylor, 2001) for all Finnish sites, com-
paring both the prior and posterior mole fractions. The cor-
relation coefficient describes the linear relationship between
the modelled and observed mole fractions, with values close
to 1 indicating good agreement between the two. The de-
trended RMSE quantifies and summarises the differences be-
tween the modelled and observed mole fractions. From the
RMSE alone, it is not possible to determine whether the dif-
ferences are due to different phases in the datasets or due
to differences in the amplitudes of the variations. The stan-
dard deviation provides additional information and shows
how much variation there is in each dataset.

The statistics of the priors varied more than the statistics of
the posterior mole fractions (Fig. 10; see also Fig. S11). The
prior values of InvGCP_EDGAR were in better agreement with
the observations than the other priors at almost all observa-
tion sites, especially at PUI, SMR and PAL. However, in con-
trast to the other inverse model setups, the posterior statistics
of InvGCP_EDGAR improved only slightly from the priors at
PAL and SOD, which are two northern stations surrounded
by natural CH4 sources. Overall, the posterior mole fraction
from different inverse model runs showed similar statistics,
especially at the UTO and SMR stations.

To summarise the statistics of the optimised mole frac-
tions, we ranked selected statistics as follows: for each site
and inversion run, the bias, the detrended RMSE and the de-
trended linear correlation coefficient R were calculated. The
bias was used instead of the standard deviations in Taylor’s
diagrams to emphasise any systematic errors in the modelled
mole fractions. Detrending the data removes long-term vari-
ations and allows us to examine short-term variations. We
detrended the data using the method introduced by Thoning
and Tans (1989), which takes a seasonal cycle into account.
The absolute value of each variable was then ranked between
the inversion runs from one to five, with the smallest being
the best value for the bias and the detrended RMSE and the
largest being the best value for the detrended R. The average
of the three rankings for each inversion run, as well as the av-
erage of all six stations, is shown in Fig. 11. The same figure,
but with prior statistics, is shown in Fig. S11.

Based on the average rankings, there was no single inver-
sion setup that stood out as the best across all sites. Most in-
version runs had better and worse rankings, depending on the
site. However, InvLPX_EDGAR_UNC had the best rankings in
general (average 2.11), especially in the southern sites (UTO,
KMP and SMR). In the northern sites (PAL and SOD),
where natural CH4 sources dominate, InvJSBACH_CAMSREG
had the best rankings. InvJSBACH_CAMSREG also had the
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Figure 9. Average monthly CH4 flux measurements at (a) Lompolojänkkä (northern Finland) and (b) Siikaneva (southern Finland). The
shaded areas show a 95 % confidence interval.

second-best overall ranking (2.61). The seasonal cycles of
the optimised total CH4 emissions of InvLPX_EDGAR_UNC
and InvJSBACH_CAMSREG were also quite similar (Fig. 8a).
InvGCP_EDGAR had the best rankings in PUI and SMR, where
the prior statistics already showed good agreement with the
observations, but the worst rankings in the northern peat-
land sites. InvLPX_CAMSREG, which had the lowest total pos-
terior emissions, had the worst rankings in general, and
InvLPX_EDGAR, which had the highest total posterior emis-
sions, had average rankings across all sites.

4 Discussion

4.1 Total methane emission estimates

We estimated methane emissions in Finland using the atmo-
spheric inverse model CTE–CH4. As a global model, it was
able to constrain the global total emissions well (on aver-
age 525 Tg yr−1, with a minimum and maximum range of
3.2 %). However, the ratio of the range to the average to-
tal emissions in Finland was much larger at 58 % (71 % in
the priors), which shows the difficulty of constraining emis-
sions at the country level and also how the underlying prior
emissions and their distribution affect emission estimates at
a smaller scale. Nonetheless, using a global model, the opti-
misation of emissions in a region of interest is not separated
from the emissions that occur outside of the region.

The range of posterior CH4 emissions in Finland was large
in the VERIFY ensemble (Fig. 6), which included estimates
from different inverse models and model runs, some of which
used the same priors and observations, and some of which
had their own setups. The range of prior estimates was even

wider, and as the optimisation always reduced the estimates,
the highest prior estimates were most likely too high. Fur-
thermore, the highest CTE–CH4 estimate (InvLPX_EDGAR),
which was lower than the highest estimate in the VER-
IFY ensemble, showed only moderate agreement with at-
mospheric CH4 observations, indicating that CH4 emissions
were probably too high. Thus, the CTE–CH4 ensemble range
seemed more reliable, especially when excluding its highest
estimate. Although the ranges of posterior emissions were
large, the averages of the VERIFY and CTE–CH4 ensem-
bles were in good agreement. This is consistent with previous
model intercomparisons which have shown that inversions
can constrain emissions on a larger scale and that ensembles
of inverse model estimates are more reliable and robust than
estimates from a single inversion run (Petrescu et al., 2024;
Saunois et al., 2020; Stavert et al., 2022). Further partitioning
into independent countries still relies on the distributions of
the priors.

4.2 Partition to anthropogenic and natural emissions

When comparing CH4 estimates from the inverse model with
national GHG inventories, it is important to understand not
only the total CH4 budget but also the partitioning of emis-
sions reported in the inventories. As these inventories only
cover anthropogenic activities, the share of anthropogenic
emissions in the total CH4 estimates is particularly impor-
tant. In CTE–CH4, emissions from anthropogenic and nat-
ural sources were optimised separately but simultaneously.
The emissions from both categories were analysed as they
were refined by CTE–CH4.
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Figure 10. Taylor’s diagram of the results of the five CTE–CH4 inverse model runs against the measured mole fractions from the Finnish
stations. (a) UTO, (b) KMP, (c) PUI, (d) SMR, (e) PAL and (f) SOD. Smaller circles correspond to values from forward modelling re-
sults using the TM5 transport model and prior emissions. The prior values of InvLPX_EDGAR_(UNC) are the same for InvLPX_EDGAR and
InvLPX_EDGAR_UNC as they had the same prior emissions.

The anthropogenic emission inventories gave two dras-
tically different estimates of Finnish CH4 emissions, with
EDGAR v6, v7 and v8 giving much higher estimates than
the other three, namely NGHGI Fi, CAMS-REG and GAINS
(Fig. 2c). Olhoff et al. (2022) compared the NGHGI esti-
mates with EDGAR v6 in the Nordic countries and showed
that the CH4 estimates from EDGAR v6 were much higher
than the NGHGI estimates from Finland, Norway and Swe-
den. They showed that the discrepancies were due to fugi-
tive emissions (in Norway and Finland) and waste emissions
(in Sweden and Finland). In addition, using Bayesian inverse
modelling, Worden et al. (2022) estimated Finland’s waste
emissions to be 0.11± 0.29 Tg in 2019 instead of the prior
value of 0.60± 0.36 Tg (EDGAR v4.3.2 in 2012), which is
much more consistent with the NGHGI Fi (0.06 Tg). Saboya
et al. (2022) compared modelled mole fractions using an
older version of EDGAR (v4.3.2) with observations in Lon-
don and found that emissions from the waste sector were
high and inconsistent with their estimates. As a global prod-
uct, EDGAR uses globally consistent methodologies, mean-

ing country-specific mitigation strategies may not have been
considered. For example, fugitive emissions from the oil and
gas sector in EDGAR v6 followed the trend of activity data in
the Nordic countries, indicating that efforts to reduce emis-
sions were not taken into account (Janssens-Maenhout et al.,
2019; Olhoff et al., 2022). However, in the latest update of
EDGAR v8 (European Commission and Joint Research Cen-
tre et al., 2023), there seems to be an improvement in the es-
timates for the energy sector, as they show the same trend as
the other inventories in Finland (Fig. 2c).

Based on the comparison between atmospheric mole
fractions modelled with CTE–CH4 and observations from
Finnish sites, neither EDGAR v6 nor CAMS-REG seemed to
be better than the other (Fig. 11). As the comparison with the
atmospheric mole fraction does not directly provide informa-
tion on whether the split between anthropogenic and natural
emissions is correct, this may indicate that the inverse model
had difficulties in separating anthropogenic and natural emis-
sions. This is particularly likely in southern Finland, where
there are anthropogenic and natural CH4 sources. It may also
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Figure 11. The average rank calculated for each inverse model run
for each site is shown. The bias, detrended RMSE and detrended R
of the modelled and measured mole fractions were calculated with
each inversion model run in each site, and the values were then
ranked between the model estimates (the lowest being the best in
bias and RMSE and the highest being the best in R). In addition,
the rightmost column is the average of all site averages.

reflect the complexity of modelling urban fluxes. To improve
estimates of anthropogenic emissions, it would be interesting
to combine city-scale estimates with our larger-scale inver-
sions.

The three natural CH4 priors used in this study differed
in absolute magnitude and in spatial and temporal distri-
bution. The comparison with the atmospheric observations
from northern Finland gave a clear ranking of the three
priors. InvJSBACH_CAMSREG, with the highest emission esti-
mates, seemed to have the most accurate natural estimates
in Finland; inversion runs with LPX-Bern DYPTOP had
the second-best ranking; and InvGCP_EDGAR, with the low-
est emission estimates, had the worst ranking (Fig. 11). The
natural posterior emissions were always higher than their
priors, even from JSBACH–HIMMELI, and the largest in-
creases were in 2016, when the summer was warm and
rainy (Finnish Meteorological Institute, 2016), and in 2019–
2020 (Fig. 5). Our results indicate that Finnish natural CH4
emissions from peatlands might be underestimated by the
process-based models, although the high natural posterior
emissions could also be due to sources other than peatlands.
In particular, emissions from freshwater sources are rele-
vant. We compared the freshwater emission estimates from
Stavert et al. (2022) with the natural CH4 prior and poste-
rior emissions in Fig. 7 and showed that in southern Fin-
land these estimates were as high as the highest optimised
natural emissions (InvJSBACH_CAMSREG). The spatial distri-
bution of the freshwater emission estimates coincided with
the JSBACH–HIMMELI estimates (Fig. S12), so the inver-
sion would most likely have included freshwater emissions in
the posterior natural emission estimates. However, as there
were still methane-emitting peatlands in southern Finland,
it is not expected that optimised InvJSBACH_CAMSREG emis-

sion estimates would have included only freshwater emis-
sions. Therefore, the freshwater emission estimates in Fin-
land seemed to be too high.

4.3 Years 2020 and 2021

The reasons for the high atmospheric CH4 growth rates in re-
cent years, especially in 2020–2021, have been under discus-
sion. Part of the high growth rate in 2020 has been attributed
to a weaker OH sink caused by a decrease in NOx emissions
due to the COVID-19 lockdowns (Stevenson et al., 2022; Qu
et al., 2022; Peng et al., 2022; Feng et al., 2023). However,
the weaker OH sink could not explain all of the increase in
atmospheric CH4, and wetlands, especially at high latitudes
and in the tropics, were also suggested to be responsible for
the increase (Qu et al., 2022; Peng et al., 2022; Zhang et al.,
2023; Feng et al., 2023; Qu et al., 2024). In Finland, total
CH4 emissions were higher in 2020 than in 2019 in all CTE–
CH4 inversions, and the increase was attributed to both an-
thropogenic and natural emissions, but the posterior natural
emissions in InvJSBACH_CAMSREG, which probably gave the
most realistic estimates of natural emissions, were highest in
2020.

The increase in the CH4 growth rate in 2021 has also
been attributed to wetlands (Feng et al., 2023; Zhang et al.,
2023; Qu et al., 2024). The natural CH4 emission estimates
of CTE–CH4 in Finland were higher in 2021 than in 2019,
but at the same level or lower than in 2020 (Fig. 5). To un-
derstand the Finnish emission estimates in 2021, it is bene-
ficial to study the emissions in the whole northern high lat-
itudes. The biomass-burning product used in the CTE–CH4
runs, GFEDv4.1s, estimated the CH4 emissions in the bo-
real forests (north of 50° N) to be 8.6 Tg, while they were
4.2 Tg in 2019 (Fig. S9). According to Feng et al. (2023),
the global CH4 emissions should have been 20.8 Tg higher
in 2021 than in 2019 to reproduce the observed atmospheric
methane, meaning that emissions from biomass burning in
boreal forests would account for 21 % of the increase in
global CH4 emissions. Zheng et al. (2023) showed that CO2
emissions from boreal forests have been increasing in re-
cent decades and that CO2 emissions were at a record high
in 2021. They also used GFEDv4.1s in their analysis, but
unlike our inversions, they specifically optimised biomass-
burning emissions. The record-high biomass-burning CH4
emissions in the boreal forests were probably the cause of
the large decrease in the optimised wetland emissions of
InvLPX_EDGAR_UNC in the high northern latitudes from 2020
to 2021 (Fig. S8). They most likely also constrained the op-
timisation in Finland, keeping the posterior emissions close
to the prior emissions. However, to verify this, it would re-
quire further investigation and, for example, an inverse model
setup in which biomass-burning CH4 emissions are also op-
timised. There are also uncertainties in the biomass-burning
emission estimates, and as discussed, GFAS had much lower-
emission estimates north of 50° N in 2021 (4.9 Tg; Fig. S9).
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The increase in 2021 compared to 2019 was still relatively
high in GFAS (2.2 Tg), i.e. it would have explained 11 % of
the global increase in CH4 emissions in 2021 estimated by
Feng et al. (2023).

4.4 Uncertainty estimations

In addition to different prior emissions, we also investi-
gated how different prior uncertainties affected the emission
estimates in Finland. InvLPX_EDGAR_UNC, where the natu-
ral prior uncertainty was defined based on a process-based
model ensemble, showed better agreement with observations
at the southern sites than InvLPX_EDGAR, which used the de-
fault prior uncertainties but otherwise had the same setup
(Fig. 11). In northern Finland, InvLPX_EDGAR had larger un-
certainties and performed better than InvLPX_EDGAR_UNC. In
addition, InvJSBACH_CAMSREG, which had the highest natural
prior emissions and thus the largest uncertainties in the north,
performed best at the northern sites. One might therefore ex-
pect that large uncertainties would give the optimisation the
freedom to fit the posterior emissions to the observations and,
with enough observations, lead to better emission estimates.
However, this only seemed to be the case for natural emis-
sions. The anthropogenic prior, EDGAR v6, had high emis-
sions and therefore large uncertainties, so in theory, the opti-
misation could have reduced anthropogenic emissions more
than it did. The largest reduction from EDGAR v6 was seen
with InvLPX_EDGAR_UNC (Fig. 4), even though its anthro-
pogenic prior uncertainty was the same as in the other runs.
Thus, simply having large uncertainties and a relatively large
number of sites does not guarantee a better estimate, but it is
important to know where the uncertainties lie. It can be com-
plicated to determine realistic uncertainty ranges, and even
using an ensemble of several individual estimates may not
capture the true magnitude of CH4 emissions.

Our uncertainty estimates were based on the process-based
models from the latest published GCP-CH4 (Saunois et al.,
2020). The ongoing effort to update the global CH4 budget
(Saunois et al., 2024) used an updated wetland extent prod-
uct (WAD2M v2.0; Zhang et al., 2021), and 12 models had
prognostic versions, almost doubling the number of model
estimates from Saunois et al. (2020). It would be interest-
ing to see how the uncertainty estimates would change if the
process-based models from Saunois et al. (2024) were used.

The optimisation in our inverse model is based on the
ensemble Kalman filter, which creates an ensemble of
500 members based on the priors and their uncertainties. By
default, this method gives us a range of estimates that repre-
sent the uncertainties in the emission estimates. With these
uncertainties we can, for example, calculate the uncertainty
reduction from prior to posterior, which indicates how well
the optimisation is able to constrain emissions. Another fairly
robust way of estimating the uncertainties is to use different
model ensembles and obtain a range of estimates (Petrescu et
al., 2024; Saunois et al., 2020; Stavert et al., 2022). As shown

here, using a single inverse model with different setups can
constrain and produce a comparable range of CH4 emission
estimates at the country level as an ensemble of different in-
verse models. As it is easier for an individual researcher or
research group to maintain one inverse model at a time, it
would be recommended to use different priors to produce
more constrained and reliable CH4 emission estimates.

5 Conclusions

In this study, CH4 emissions in Finland were investigated
using a range of bottom-up (inventories and process-based
models) and top-down (inverse models) estimates. We stud-
ied how different bottom-up emission estimates used as pri-
ors in the inverse model affected the posterior CH4 emis-
sions. This choice not only strongly influenced the poste-
rior emissions but was as important as the choice of inverse
model; the ensemble of inversion runs using the same inverse
model, but different priors resulted in similar average total
posterior emissions to using different inverse models but sim-
ilar priors.

Even though the CH4 emission estimates in Finland had
a large range, the range of the total posterior emissions was
smaller than the range of the prior emissions. The optimisa-
tion was also able to reconcile the trends of anthropogenic
and natural CH4 emissions, and the seasonal cycles of nat-
ural CH4 emissions were altered by the optimisation to bet-
ter match flux measurements from peatland sites. However,
the spatial distributions were not radically changed from the
prior emissions.

The comparison of atmospheric CH4 observations with
model results showed no clear preference between the an-
thropogenic inventories (EDGAR v6 and CAMS-REG),
but the comparison seemed to favour the highest natural
prior (JSBACH–HIMMELI). The optimised natural emis-
sions were higher than their prior emissions, which could
be due to missing emissions in the prior estimates, such as
freshwater. Estimates of freshwater emissions are still highly
uncertain, and the estimates examined in this study (Stavert
et al., 2022) appeared to be too high for Finland. We also
found evidence that CH4 emissions from biomass burning,
which were not optimised in CTE–CH4, were likely to have
a large impact on the optimised anthropogenic and natural
emissions in Finland and high northern latitudes, especially
in 2021. The biomass-burning emissions used in our inver-
sions (GFEDv4.1s) had much higher emissions than those in
GFAS, highlighting the uncertainties in the biomass-burning
CH4 emission estimates.

The optimised CH4 emissions were shown to depend on
the choice of prior emissions. This choice was particularly
important for the optimisation of the different emission com-
ponents, as the optimisation of the different emission com-
ponents was based on the spatial and temporal distribution
of the priors. Currently, there are six stations in Finland
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where atmospheric CH4 is measured. Adding more stations
would most likely help to better constrain the different emis-
sion components. In addition to more stations, we also need
more reliable prior estimates and realistic uncertainty esti-
mates. In this study, we tested an uncertainty estimate based
on a process-based model ensemble for natural CH4 emis-
sions, which appeared to be an advantageous method com-
pared to the standard uncertainty estimates (80 % of the prior
emissions). This type of uncertainty estimation could also be
used for anthropogenic emissions, although many of the an-
thropogenic inventories use the same statistics and activity
data. However, as shown here, the choices made in compil-
ing the inventories affect the estimated emissions, and the
differences between them can help us to identify where the
largest uncertainties lie.

The absolute magnitude of CH4 emissions from Finland,
especially anthropogenic emissions, is relatively small com-
pared to global totals. Consequently, these magnitudes are
primarily relevant in the context of methodological compar-
isons or for verifying the NGHGI. The broader relevance
of this study emerges from our assessment of the ability of
a global model to estimate CH4 emissions within a single
country. Such objectives are becoming increasingly relevant,
as highlighted by initiatives such as the World Meteorolog-
ical Organization’s Global Greenhouse Gas Watch (G3W).
This initiative aims to have global inverse models opera-
tionally running that could be used to assess country-specific
GHG emissions. Under G3W, inverse model results will be
available in common standard formats, making them more
accessible and easier to use. This will likely also encour-
age their use in future studies by those unfamiliar with in-
verse models. As discussed in this study, the interpretation
of inverse model results requires careful consideration of the
model setup, and in particular, posterior estimates should be
considered alongside prior emissions rather than as stand-
alone definitive results. Ideally, those conducting the model
runs would also provide uncertainty estimates (e.g. spatial
and temporal uncertainty reductions from prior to posterior
or an ensemble of inversions using different priors) and guid-
ance on how to interpret the results and what factors to con-
sider. Although the preparation of a comprehensive interpre-
tation guide is challenging due to the possible diverse appli-
cations of model results, the establishment of some common
guidelines would be beneficial (Peters et al., 2023).
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